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ABSTRACT

We consider two network interdiction problems: one where a network user tries to traverse
a network from a starting vertex s to a target vertex t along the shortest path while an
interdictor tries to eliminate all short s-t paths by destroying as few vertices (arcs) as possible,
and one where the network user, as before, tries to traverse the network from s to t along
the shortest path while the interdictor tries to destroy a fixed number of vertices (arcs) so
as to cause the biggest increase in the shortest s-t path. The latter problem is known as the
Most Vital Vertices (Arcs) Problem. In this paper we provide inapproximability bounds for
several variants of these problems.
Keywords: approximation algorithm, most vital edges problem, network interdiction, net-
work inhibition, shortest-path interdiction, minimal vertex cover.



1 Introduction

Network interdiction problems involve two opposing sides, a network user who operates a
network in order to optimize some objective function, and the interdictor who attempts
to limit the network user’s achievable objective value by interdicting network vertices or
arcs. We assume that the interdictor has limited resources. Several versions of this problem
were considered in the literature, see e.g., [MM70, GMT71, BGV89, CS82, CMW98, FH75,
GMT71, Gol78, MM70, Whi99, IW02, Woo93, Cun85].

In this paper we consider the case when the network user’s objective is to traverse the
network from a starting vertex s to a target vertex t along the shortest path. In the simplest
example of such a problem the interdictor tries to destroy the smallest possible number of
arcs in the network to prevent the network user from reaching t. This leads to the well
known problem of finding a minimum s-t cut, which can be obtained by a maximum flow
computation. Some other special versions, for instance when for every vertex the number
of outgoing arcs which can be destroyed by the interdictor is limited, can also be efficiently
solved [ZGK05].

We consider two models: one where the interdictor tries to eliminate all short s-t paths
while destroying as few vertices (arcs) as possible, and one where he tries to destroy a fixed
number of vertices (arcs) so as to cause the biggest increase in the shortest s-t path. The
latter problem is known as the Most Vital Vertices (Arcs) Problem.

A. Bar-Noy, S. Khuller and B. Schieber [BNKS95] showed that the Most Vital Vertices
Problem and the Most Vital Edges Problem are NP-hard. In this paper we strengthen this
result by providing inapproximability bounds for these and several other problems.

The remainder of the paper is organized as follows. In Section 1.1 we introduce several
optimization problems and state our main results. We first prove these results in Sections
2, 3, 4 and 5 for more general, restricted versions of our problems, defined in Section 1.2.
The proofs are based on the NP-hardness and inapproximability of minimum vertex cover
problems, presented in Section 1.3. In Section 6 we provide reductions from restricted
problems to the original versions, while in Section 7 we further reduce the original problems
to the special case of bipartite input graphs. Finally, in Section 8 we consider related decision
problems.

1.1 Main Results

We call the length of the shortest path (dipath) from a vertex s to t in a graph (digraph) G
the s-t distance and denote it by dG(s, t).

We consider a graph (digraph) G = (V,E) with a nonnegative length associated with
every edge (arc), two distinct vertices s and t, and a threshold k ∈ Z+.

A vertex blocker of (G, s, t, k) is a set of vertices different from s and t whose removal
increases the s-t distance to at least k. We define the Minimum Vertex Blocker to Short
Paths Problem (MVBP) as follows:
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Minimum Vertex Blocker to Short Paths Problem
(MVBP)

Input: A graph (digraph) G with a nonnegative length associ-
ated with every edge (arc), two vertices s, t and a threshold
k

Output: The size bV (G, s, t, k) of the smallest vertex blocker,
i.e.,

bV (G, s, t, k) = min{ |U | | dG[V rU ](s, t) ≥ k, U ⊆ V r{s, t}}.

Theorem 1 It is NP-hard to approximate the size of the smallest vertex blocker within a
factor smaller than 10

√
5 − 21 ≈ 1.36, even for bipartite graphs.

An edge blocker of (G, s, t, k) is a set of edges (arcs) whose removal increases the s-
t distance to at least k. We define the Minimum Edge Blocker to Short Paths Problem
(MEBP) as follows:

Minimum Edge Blocker to Short Paths Problem (MEBP)

Input: A graph (digraph) G with a nonnegative length associ-
ated with every edge (arc), two vertices s, t and a threshold
k

Output: The size bE(G, s, t, k) of the smallest edge blocker, i.e.,

bE(G, s, t, k) = min{ |F | | d(V,ErF )(s, t) ≥ k, E ⊆ F}.

Theorem 2 It is NP-hard to approximate the size of the smallest edge blocker within a
factor smaller than 10

√
5 − 21 ≈ 1.36, even for bipartite graphs.

We define the Most Vital Vertices Problem (MVVP) as follows:
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Most Vital Vertices Problem (MVVP)

Input: A graph (digraph) G = (V,E) with a nonnegative length
associated with every edge (arc), two special vertices s, t
and a threshold k

Output: The maximum lV (G, s, t, k) of s-t distances in all graphs
obtained from G by removing k vertices. More precisely:

lV (G, s, t, k) = max{dG[V rU ](s, t) | U ⊆ V r{s, t}, |U | = k}.

Theorem 3 It is NP-hard to approximate lV within a factor smaller than 2, even for bipar-
tite graphs.

We define the Most Vital Edges Problem (MVEP) as follows:

The Most Vital Edges Problem (MVEP)

Input: A graph (digraph) G = (V,E) with a nonnegative length
associated with every edge (arc), two vertices s, t and a
threshold k

Output: The maximum lE(G, s, t, k) of s-t distances in all graphs
obtained from G by removing k edges. More precisely:

lE(G, s, t, k) = max{d(V,ErF )(s, t) | F ⊆ E, |F | = k}.

Theorem 4 It is NP-hard to approximate lE within a factor smaller than 2, even for bipar-
tite graphs.

In Section 8 we reformulate the above results for the case of decision problems and prove
the following, more general, NP-hardness results.

Theorem 5 For every fixed ǫ > 0 it is NP-hard to distinguish graphs having s-t distance d
after removing k vertices (edges) from those having s-t distance less than 1

2−ǫ
d in all induced

subgraphs obtained by removing (34
33

− ǫ)k vertices (edges), where d and k are both parts of
the input.

Theorem 6 For every fixed ǫ > 0 it is NP-hard to distinguish graphs having a vertex (edge)
blocker of size k to paths of length at most d from those having all vertex (edge) blockers of
size greater than (34

33
− ǫ) k to paths of length at most 1

2−ǫ
d, where d and k are both parts of

the input.
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1.2 Restricted Problems

In this section we define restricted versions of the above problems by introducing the as-
sumption that some vertices (edges) cannot be removed. We called these vertices (edges)
fixed. The remaining vertices (edges) are called removable.

We obtain restricted-MVBP and restricted-MVVP from MVBP and MVVP, respectively,
by fixing some vertices (in addition to s and t). Similarly we obtain restricted-MEBP and
restricted-MVEP from MEBP and MVEP, respectively, by fixing some edges.

For a graph G, two vertices s, t, a set of fixed vertices V ′ (or a set of fixed edges E ′)
and a threshold k, let b′V (G, s, t, V ′, k), b′E(G, s, t, E ′, k), l′V (G, s, t, V ′, k) and l′E(G, s, t, E ′, k)
denote the solutions to restricted-MVBP, restricted-MEBP, restricted-MVVP and restricted-
MVEP, respectively.

Given an instance (G, s, t, V ′, k) of restricted-MVBP we assume that all removable ver-
tices form a vertex blocker. Similarly given an instance (G, s, t, E ′, k) of restricted-MEBP
we assume that all removable edges form an edge blocker.

1.3 Minimum Vertex Cover Problem

In this section we present previously known results on which the proofs of our main results
are based. A vertex cover of an undirected graph G is a subset of vertices incident to every
edge. Let τ(G) denote the size of the smallest vertex cover of G.

Deciding if G has a vertex cover of size at most k is NP-hard [GJ79], even for tripartite
graphs [Pol74]. However, τ(G) can be easily approximated within a factor 2, since the
vertex cover consisting of both vertices of edges belonging to the maximum matching can
be computed in polynomial time and its size is at most 2τ(G). Improving this simple 2-
approximation algorithm has been a quite nontrivial task. The best known approximation
algorithm has a factor of 2 − Θ( 1√

log n
), where n is the number of vertices [Kar05].

On the other hand, in 1997 H̊astad [H̊as97] proved that it NP-hard to approximate
τ(G) within a factor smaller than 7

6
≈ 1.17. Recently Dinur and Safra [DS05] obtained a

better inapproximability factor of 10
√

5 − 21 ≈ 1.36. For tripartite graphs it NP-hard to
approximate τ(G) within a factor smaller than 34

33
≈ 1.03 [CCR99].

2 Proof of Theorem 1

In this section we prove Theorem 1 by reducing the minimum vertex cover problem to
restricted-MVBP. As shown in Section 6.1 and Section 7, for each instance of restricted-
MVBP we can construct an instance of MVBP with the same optimal value and a bipartite
input graph. Therefore Theorem 7 below implies Theorem 1.

Theorem 7 It is NP-hard to approximate b′V within a factor smaller than 10
√

5−21 ≈ 1.36.

Proof: Let G be an undirected graph with vertices v1, . . . , vn (see Figure 1). We construct
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v1

v2

v3

v4

Figure 1: Graph G.

an instance of restricted-MVBP. We obtain an undirected graph H from G by adding to it
a path su1u2 . . . unt and connecting vi to ui for i = 1, . . . , n (see Figure 2). Let W denote
the vertex set of H. We assign length 1 to edges u1u2, u2u3, . . . , un−1un and 0 to all other
edges. Let V ′ = {u1, . . . , un} be the set of fixed vertices. The threshold is n − 1. Note that
the set of all removable vertices forms a vertex blocker.

v1

v2

v3

v4

s tu1 u2 u3 u4

0

0

0

0

0

0

0

0

1 1 10 0

Figure 2: Graph H. Squares are fixed vertices.

Recall that τ(G) denotes the size of the smallest vertex cover of G.

Claim 1 τ(G) = b′V (H, s, t, V ′, n − 1).

Proof: Let U ⊆ {v1, . . . , vn} be a set of removable vertices. We show that U is a vertex
cover of G if and only if U is a vertex blocker of (H, s, t, n − 1).

Suppose U is a vertex cover of G. Since V r U is an independent set of G, there is only
one s-t path, su1u2 . . . unt, in H[W r U ] and the length of this path is n− 1 (see Figure 3).

v2

v3

s tu1 u2 u3 u4

0

0

1 1 10 0

Figure 3: Graph H[W r U ] obtained from H by removal of the vertex cover U = {v1, v4} of
G.
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Conversely, suppose U is a vertex blocker of (H, s, t, n − 1). Note that for every i < j
there is no edge between vertices vi and vj in H[W r U ], since otherwise there would exist
a path su1 . . . uivivjuj . . . unt in H[W r U ] shorter than n − 1. Thus U is a vertex cover of
G. �

Since it is NP-hard to approximate the minimum vertex cover within a factor smaller
than 10

√
5 − 21 ≈ 1.36 [DS05], Theorem 7 follows.

We can similarly reduce the minimum vertex cover problem to restricted-MVBP for
directed graphs. Let H be a digraph obtained from G by replacing every edge vivj, i < j, of
G by an arc vivj, adding to it a dipath su1u2 . . . unt and connecting vi to ui with two arcs
viui and uivi for i = 1, . . . , n (see Figure 4).

v1

v2

v3

v4

s tu1 u2 u3 u4

0

0

0

0

0

0

0

00

0

0

0

1 1 10 0

Figure 4: Digraph H. Squares are fixed vertices.

As before we assign length 1 to arcs u1u2, u2u3, . . . , un−1un and 0 to all other arcs, vertices
u1, . . . , un are fixed and the threshold is n − 1. The proof that τ(G) = b′V (H, s, t, V ′, n − 1)
is analogous. �

3 Proof of Theorem 2

In this section we prove Theorem 2 similarly to the proof of Theorem 1. We reduce the
minimum vertex cover problem to restricted-MEBP. As shown in Section 6.2 and Section 7,
for each instance of restricted-MEBP we can construct an instance of MEBP with the same
optimal value and a bipartite input graph. Therefore Theorem 8 below implies Theorem 2.

In the proof of Theorem 8 we use a gadget first described in [BNKS95], where it was used
to prove NP-hardness of the Most Vital Edges Problem.

Theorem 8 It is NP-hard to approximate b′E within a factor smaller than 10
√

5−21 ≈ 1.36.

Proof: Let G be a undirected graph with vertices v1, . . . , vn (see Figure 1). We construct
an instance of restricted-MEBP. We obtain an undirected graph H from G by

• replacing every vertex vi of G by two vertices v′
i and v′′

i connected by an edge v′
iv

′′
i of

length 1 for i = 1, . . . , n,
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• replacing every edge vivj, i < j, of G by v′′
i v

′
j of length 5(j − i) − 2,

• adding to it a path P = su′
1u

′′
1u

′
2u

′′
2 . . . u′

nu′′
nt, where u′

iu
′′
i has length 5 for i = 1, . . . , n

and other edges have length 0,

• adding two edges v′
iu

′
i and v′′

i u
′′
i of length 2 for i = 1, . . . , n (see Figure 5).
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Figure 5: Graph H. Solid lines are fixed edges.

All edges except for v′
1v

′′
1 , . . . , v

′
nv′′

n are fixed. We denote the set of fixed edges by E ′. The
threshold is 5(n − 1). Note that the set of all removable edges forms a vertex blocker. Let
W and E denote the vertex set and the edge set of H, respectively.

Let x ∈ {u′
i, u

′′
i }, y ∈ {u′′

j , u
′′
j}, where i 6= j. We call the subpath of P from x to y an x-y

line. An x-y detour is an x-y path D in H, where no vertices of D, apart from the first and
the last, belong to P . An i-j shortcut is the path v′

iv
′′
i v

′
jv

′′
j (see Figure 6).

Let length(Q) denote the length of a path Q.

Claim 2 If x-y detour D contains no shortcuts then length(D) ≥ length(x-y line).

Proof: There are four possible kinds of x-y detours containing no shortcuts:
Case 1: u′

iv
′
iv

′′
i u

′′
i , for i = 1, . . . , n. Then length(x-y line) = 5 and length(detour(x, y)) =

5
Case 2: u′

iv
′
iv

′′
i v

′
ju

′
j, for i = 1, . . . , n. Then length(x-y line) = 5(j−i) and length(detour(x, y)) =

5(j − i) + 3,
Case 3: u′′

i v
′′
i v

′
ju

′
j, for i = 1, . . . , n. Then length(x-y line) = 5(j−i−1) and length(detour(x, y)) =

5(j − i) + 2.
Case 4: u′′

i v
′′
i v

′
jv

′′
j u

′′
j , for i = 1, . . . , n. Then length(x-y line) = 5(j−i) and length(detour(x, y)) =

5(j − i) + 3.

Thus all four kinds of x-y detours are at least as long as x-y line. �

Claim 3 Let Q be an s-t path in H. If for every detour D contained in P length(D) ≥
length(x-y line), where x and y are ends of D, then the length of Q is at least 5(n − 1).
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Figure 6: Thick lines are edges of the s-t path consisting of the s-u′
1 line, a u′

1-u
′′
2 detour D1,

the u′′
2-u

′
3 line, a u′

3-u
′
4 detour D2 and the u′

4-t line. Note that the detour D1 contains the
1-2 shortcut.

Proof: Note that Q starts with the edge su′
1 and ends with the edge u′′

nt. Thus we can
decompose Q into an alternating sequence of lines and detours the s-l1 line, an l1-r1 detour
D1, the r1-l2 line, an l2-r2 detour D2, . . ., an lm-rm detour Dm, the rm-t line (see Figure 6).
Since no x-y detour is shorter than the x-y line, we have

length(Q) = length(s-l1 line) + length(D1) + length(r1-l2 line)

+ length(D2) + . . . + length(rm-t line)

≥ length(s-l1 line) + length(l1-r1 line) + length(r1-l2 line)

+ length(l2-r2 line) + . . . + length(rm-t line)

≥ length(P ) = 5(n − 1).

�

Recall that τ(G) denotes the size of the smallest vertex cover of G.

Claim 4 τ(G) = b′E(H, s, t, E ′, 5(n − 1)).

Proof: Let F be a set of removable edges. We show that {vi | v′
iv

′′
i ∈ F} is a vertex cover

of G if and only if F is an edge blocker of (H, s, t, 5(n − 1), E ′).
Suppose {vi | viv

′
i ∈ F} is a vertex cover of G. Thus there is no shortcut in the graph

(W,E r F ). By Claim 2 all x-y detours are longer than x-y lines, which by Claim 3 implies
that every s-t path has length at least 5(n − 1).

Conversely, suppose F is an edge blocker of (H, s, t, E ′, 5(n − 1)) and suppose that
v′

iv
′′
i , v

′
jv

′′
j /∈ F , for some edge vivj of G. Then F does not block the path consisting of the

s-u′
i line, the u′

i-u
′′
j detour u′

iv
′
iv

′′
i v

′
jv

′′
j u

′′
j and the u′′

j -t line which has a total length 5(n−1)−1,
a contradiction. �

Since it is NP-hard to approximate the minimum vertex cover within a factor smaller
than 10

√
5 − 21 ≈ 1.36 [DS05], Theorem 8 follows.
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Note that we can similarly reduce the Minimum Vertex Cover Problem to restricted-
MEBP for directed graphs. Let H be a digraph obtained from G by

• replacing every vertex vi of G by two vertices v′
i and v′′

i connected by an arc v′
iv

′′
i of

length 0 for i = 1, . . . , n,

• replacing every edge vivj, i < j, of G by v′′
i v

′
j of length 0,

• adding to it a dipath su1u2 . . . unt, where arcs u1u2, u2u3, . . . , un−1un have length 1
and all other arcs have length 0,

• adding two arcs uiv
′
i and v′′

i ui of length 0 for i = 1, . . . , n (see Figure 7).

v′

1

v′

2

v′

3

v′

4
v′′

1

v′′

2

v′′

3

v′′

4

s tu1 u2 u3 u4

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

1 1 10 0

Figure 7: Digraph H. Solid lines are fixed arcs.

As before, all edges except for v′
1v

′′
1 , . . . , v

′
nv′′

n are fixed, we denote the set of fixed edges by
E ′ and the threshold is 5(n − 1).

Analogously to proof of Claim 1 we can show that τ(G) = b′E(H, s, t, E ′, n− 1), implying
the theorem. �

4 Proof of Theorem 3

In this section we prove Theorem 3 by reducing the problem of deciding whether a tripartite
graph has a vertex cover of size at most k, which is known to be NP-hard [Pol74], to
restricted-MVVP. As shown in Section 6.3 and Section 7, for each instance of restricted-
MVVP we can construct an instance of MVVP with the same optimal value and a bipartite
input graph. Therefore Theorem 9 below implies Theorem 3.

Theorem 9 It is NP-hard to approximate l′V within a factor smaller than 2.

Proof: We will show that a (2−ǫ)-approximation algorithm, where ǫ > 0, can decide whether
a tripartite graph has a vertex cover of size k in polynomial time.
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V1

V2

V3

Figure 8: Tripartite graph G.

Let G be tripartite graph with vertex set V = V1 ∪ V2 ∪ V3, where V1, V2 and V3 are
independent sets (see Figure 8). We construct an instance of restricted-MVVP. We obtain
an undirected graph H from G by adding to it a path su1u2u3t and connecting every v ∈ Vi

to ui, for i = 1, 2, 3 (see Figure 9). Let W denote the vertex set of H. We assign length 1 to
edges u1u2, u2u3 and 0 to all other edges. Vertices u1, u2, u3 are fixed.

V1

V2

V3

s tu1 u2 u3

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

1 10 0

Figure 9: Graph H. Squares are fixed vertices.

Claim 5

(i) If G has a vertex cover of size at most k then l′V (H, s, t, V ′, k) = 2.

(ii) If G does not have a vertex cover of size at most k then l′V (H, s, t, V ′, k) ≤ 1.

Proof: (i) Let U be a vertex cover of G such that |U | ≤ k. Since V r U is an independent
set in G, there is only one s-t path, su1u2u3t, in H[W r U ] and the length of this path is 2.

(ii) Since G has no vertex cover of size k, for every k-element subset U of removable
vertices, V r U is not independent in G. Thus there is an edge xy in H[W r U ] with x and
y belonging to different parts of G. There are three cases:
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Case 1: x ∈ V1, y ∈ V2. Then su1xyu2u3t is an s-t path of length 1.
Case 2: x ∈ V1, y ∈ V3. Then su1xyu3t is an s-t path of length 0.
Case 3: x ∈ V2, y ∈ V3. Then su1u2xyu3t is an s-t path of length 1.
Thus the s-t distance in H[W r U ] is 0 or 1 for every k-element set U of removable

vertices. �

Since a (2 − ǫ)-approximation algorithm, when run on H, must produce a solution
smaller than 2 when l′V (H, s, t, V ′, k) ∈ {0, 1} and a solution greater than or equal to 2
when l′V (H, s, t, V ′, k) = 2, such an algorithm could distinguish graphs that have a vertex
cover of size k from graphs that do not.

We can similarly reduce the Most Vital Vertices Problem to restricted-MVVP for directed
graphs. We obtain a directed graph H from G by replacing every edge vw, where v ∈ Vi,
w ∈ Vj, i < j, of G by an arc vw, adding to it a dipath su1u2u3t and two arcs vui and uiv
for every v ∈ Vi, for i = 1, 2, 3 (see Figure 10). We assign length 1 to arcs u1u2, u2u3 and 0
to all other arcs. Vertices u1, u2, u3 are fixed. The proof of Claim 5 is essentially the same
as in the undirected case. �

V1

V2

V3

s tu1 u2 u3

0

0

0

0

0

0

0

0

00

00

00

00

00

00

00

1 10 0

Figure 10: Digraph H. Squares are fixed vertices.

5 Proof of Theorem 4

In this section we prove Theorem 4 by reducing the problem of deciding whether a tripartite
graph has a vertex cover of size at most k, which is known to be NP-hard [Pol74], to restricted-
MVEP. As shown in Section 6.4 and Section 7, for each instance of restricted-MVEP we can
construct an instance of MVEP with the same optimal value and a bipartite input graph.
Therefore Theorem 10 below implies Theorem 4.

Theorem 10 It is NP-hard to approximate l′E within a factor smaller than 2.
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Proof: We will show that a (2−ǫ)-approximation algorithm, where ǫ > 0, can decide whether
a tripartite graph has a vertex cover of size k in polynomial time.

Let G be tripartite graph with vertex set V = V1 ∪ V2 ∪ V3 (see Figure 8). We next
construct an instance of restricted-MVEP. We obtain an undirected graph H from G by
replacing every vertex v ∈ V by two vertices v′, v′′ and an edge v′v′′, replacing every edge
vw, where v ∈ Vi, w ∈ Vj, i < j by v′′w′, adding to it a path su′

1u
′′
1u

′
2u

′′
2u

′
3u

′′
3t and connecting

every v′ ∈ Vi to u′
i and v′′ ∈ Vi to u′′

i , for i = 1, 2, 3 (see Figure 11). Let W denote the vertex
set of H. We assign length 2 to edges u′

1u
′′
1, u′

2u
′′
2, u′

3u
′′
3, length 1 to an edge v′′u′′

1 for every
v′′ ∈ V1, length 1 to edges v′u′

2, v′′u′′
2 for every v′, v′′ ∈ V2, length 1 to an edge v′u′

3 for every
v′ ∈ V3, and 0 to all other edges. The arcs v′v′′ for v ∈ V are removable.
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3
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1
u′′
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3
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0

0

0

0

0

0

0

0

0

0

0

0

0
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2
2

0

1

1
0

0

1

1

1

1

0
1

1

1

0

0 1 0 2 0 1 0

Figure 11: Graph H. Solid lines are fixed edges.

Claim 6

(i) If G has a vertex cover of size at most k then l′E(H, s, t, V ′, k) = 4.

(ii) If G does not have a vertex cover of size at most k then l′E(H, s, t, V ′, k) ≤ 2.

Proof: (i) Let U be a vertex cover of G such that |U | ≤ k. Since V r U is an independent
set in G, there is only one s-t path, su′

1u
′′
1u

′
2u

′′
2u

′
3u

′′
3t, in H[W r U ] and the length of this

path is 4.
(ii) Since G has no vertex cover of size k, for every k-element subset U of removable

vertices, V r U is not independent in G. Thus there is an edge xy in H[W r U ] with x and
y belonging to different parts of G. There are two cases:

Case 1: x ∈ V1, y ∈ V2 or x ∈ V2, y ∈ V3. Then the shortest s-x path, the edge xy and
the shortest y-t path form an s-t path of length 2.

Case 2: x ∈ V1, y ∈ V3. Then the shortest s-x path, the edge xy and the shortest y-t
path form an s-t path of length 0.
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Thus the s-t distance in H[W r U ] is 0 or 2 for every k-element set U of removable
vertices. �

Since a (2 − ǫ)-approximation algorithm, when run on H, must produce a solution
smaller than 2 when l′E(H, s, t, V ′, k) ∈ {0, 1} and a solution greater than or equal to 2
when l′E(H, s, t, V ′, k) = 2, such an algorithm could distinguish graphs that have a vertex
cover of size k from graphs that do not.

We can similarly reduce the Most Vital Edges Problem to restricted-MVEP for directed
graphs. We obtain a directed graph H from G by replacing every vertex v ∈ V by two
vertices v′ and v′′, replacing every arc vw, where v ∈ Vi, w ∈ Vj, i < j by v′′w′, adding to it
a dipath su1u2u3t and two arcs uiv

′ and v′′ui for every v ∈ Vi, for i = 1, 2, 3 (see Figure 12).
We assign length 1 to arcs u1u2, u2u3 and 0 to all other arcs. The arcs v′v′′ for v ∈ V are
removable. The proof of Claim 6 is essentially the same as in the undirected case.

V1

V2

V3

s tu1 u2 u3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

00

00

00

1 10 0

Figure 12: Digraph H. Solid lines are fixed arcs.

�

6 Reduction from Restricted to Original Problems

In this section for each instance of a restricted problem we construct in polynomial time an
instance of the original problem with the same optimal value.

For an undirected graph we define the operation of splitting a vertex x into n copies as
follows: we replace x by vertices x1, . . . , xn and each edge xy of length l by edges x1y, . . . , xny
of length l (see Figure 13). We call vertices x1, . . . , xn split vertices of x.

Analogously, for a directed graph we define the operation of splitting a vertex x into
n copies as follows: we replace x by vertices x1, . . . , xn, each arc xy of length l by edges
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l1

l2

l3x

xn

x2

x1

l1

l2

l3

l1

l2

l3l1

l2

l3

Figure 13: Operation of splitting x into n copies.

l1
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l3x

xn

x2

x1

l1

l2

l3

l1

l2

l3l1

l2

l3

Figure 14: Operation of splitting x into n copies in directed graphs.

x1y, . . . , xny of length l and each arc yx of length l by edges yx1, . . . , yxn of length l (see
Figure 14).

For a graph (digraph) we define the operation of splitting an edge (arc) xy into n copies
as follows: we add vertices z1, . . . , zn, then replace the edge (arc) xy of length l by edges
(arcs) xz1, . . . , xzn of length l and edges (arcs) z1y, . . . , zny of length 0 (see Figure 15). We
call vertices z1, . . . , zn division vertices of xy.

yx l x y

z1

z2

z3

l

l

l

0

0

0

Figure 15: Operation of splitting xy into n copies.

6.1 Reduction from Restricted-MVBP to MVBP

For each instance of restricted-MVBP we construct in polynomial time an instance of MVBP
with the same size of the minimum vertex blocker.

Let (G, s, t, V ′, k) be an instance of restricted-MVBP. Recall that we assume that all
removable vertices form a vertex blocker. Let n be the number of vertices of G. We obtain
a graph H from G by consecutively splitting every fixed vertex x ∈ V ′ into n copies. Let W
denote the vertex set of H.
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Observation 1 Let U be a subset of removable vertices. U is a vertex blocker of (H, s, t, k)
if and only if U is a vertex blocker of (G, s, t, V ′, k).

Claim 7 Let U be a minimum vertex blocker of (H, s, t, k). If U contains a split vertex y of
some fixed vertex x, then U contains all split vertices of x.

Proof: Since y ∈ U , there is an s-t path in in H[(W r U) ∪ y] through y which is shorter
than k. Suppose there is a split vertex z of x such that z /∈ U . Since the neighborhoods of y
and z are the same we can replace y by z in this path and obtain a path of the same length
in H[(W r U)], a contradiction with U being a vertex blocker. Thus all split vertices of x
belong to U . �

Proposition 1 b′V (G, s, t, V ′, k) = bV (H, s, t, k).

Proof: By Observation 1 every vertex blocker of (G, s, t, V ′, k) is a vertex blocker of (H, s, t, k).
Thus b′V (G, s, t, V ′, k) ≥ bV (H, s, t, k).

Suppose b′V (G, s, t, V ′, k) > bV (H, s, t, k). Let U be a minimum vertex blocker of (H, s, t, k).
Since by our assumption all removable vertices form a vertex blocker of (G, s, t, V ′, k), we
obtain |U | < n. Thus by Claim 7 U cannot contain split vertices. By Observation 1 U is a
vertex blocker of (G, s, t, V ′, k), a contradiction. �

6.2 Reduction from restricted-MEBP to MEBP

For each instance of restricted-MEBP we construct in polynomial time an instance of MEBP
with the same size of the minimum edge blocker.

Let (G, s, t, E ′, k) be an instance of restricted-MEBP. Recall that we assume that all
removable edges (arcs) form a edge blocker. Let m be the number of edges (arcs) of G. We
obtain a graph H from G by consecutively splitting every fixed edge (arcs) xy ∈ E ′ into m
copies.

Similarly to Proposition 1 we can show that the minimum edge blockers of (G, s, t, E ′, k)
and (H, s, t, k) have the same size.

Proposition 2 b′E(G, s, t, E ′, k) = bV (H, s, t, k).

6.3 Reduction from restricted-MVVP to MVVP

For each instance of restricted-MVVP we construct in polynomial time an instance of MVVP
with the same optimal value.

Let (G, s, t, V ′, k) be an instance of restricted-MVVP. We construct an instance (H, s, t, k)
as in Section 6.1. Similarly to Proposition 1 we can show that the the maximum of s-t
distances in all graphs obtained from G by removing k vertices and the maximum of s-t
distances in all graphs obtained from H by removing k vertices are equal.

Proposition 3 l′V (G, s, t, V ′, k) = lV (H, s, t, k).
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6.4 Reduction from restricted-MVEP to MVEP

For each instance of restricted-MVEP we construct in polynomial time an instance of MVEP
with the same optimal value.

Let (G, s, t, V ′, k) be an instance of restricted-MVEP. We construct an instance (H, s, t, k)
as in Section 6.2. Similarly to Proposition 1 we can show that the the maximum of s-
t distances in all graphs obtained from G by removing k edges and the maximum of s-t
distances in all graphs obtained from H by removing k edges are equal.

Proposition 4 l′E(G, s, t, E ′, k) = lE(H, s, t, k).

7 Reduction to Bipartite Graphs

In this section for each instance of an original problem we construct in polynomial time an
instance with a bipartite input graph and the same optimal value.

Let G = (V,E) be a graph (digraph). We construct a graph (digraph) H by splitting every
edge of G into 1 copy, where the operation of edge splitting was defined in Section 6. Let W
be the set of vertices newly added division vertices. Note that the graph H is bipartite, since
every edge of H has one endpoint in V and the other in W . Analogously to Proposition 1,
we can prove that bE(G, s, t, k) = bE(H, s, t, k) and lE(G, s, t, k) = lE(H, s, t, k).

We next obtain a graph (digraph) H ′ from H by splitting every vertex of W into |V |
copies, where the operation of vertex splitting was defined in Section 6. Note that H ′

is still bipartite, and we can prove that bV (G, s, t, k) = bV (H ′, s, t, k) and lV (G, s, t, k) =
lV (H ′, s, t, k).

8 Decision Problems

Using the well known connection between optimization and decision problems (see Chap-
ter 29 in [Vaz01]) we can restate Theorems 1, 2, 3 and 4 as follows:

Proposition 5 (Theorem 1’ and Theorem 2’) It is NP-hard to distinguish instances of
MVBP having a vertex (edge) blocker of size d to paths of length at most k from those having
all vertex (edge) blockers of size greater than 1.36 d to paths of length at most k, where d is
also a part of the input. �

Proposition 6 (Theorem 3’ and Theorem 4’) For every fixed ǫ > 0 it is NP-hard to
distinguish instances of MVVP having s-t distance d after removing some k vertices (edges)
from those having s-t distance less than 1

2−ǫ
d in all induced subgraphs obtained by removing

k vertices (edges), where k is also a part of the input. �

Note that Theorem 5 is the strengthening of Theorems 3’ and 4’. Similarly Theorem 6 can be
viewed a two-sided generalization of Theorems 1’ and 2’, although the corresponding factor
is worse.
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8.1 Proof of Theorem 5

As shown in [CCR99], it is NP-hard to approximate the size of the smallest vertex cover in
tripartite graphs within a factor smaller than 34

33
. This can be restated as follows: for every

fixed ǫ > 0 it is NP-hard to distinguish tripartite graphs having a vertex cover of size k from
those having all vertex covers of size greater than (34

33
− ǫ)k, where k is a part of the input.

The claim below immediately follows from Claims 5 and 6.

Claim 8 Let G be a tripartite graph, let HV and HE be the graphs constructed from G in
Sections 4 and 5, respectively, and let ǫ > 0.

(i) If G has a vertex cover of size k then l′V (HV , s, t, V ′, k) ≥ 2 and l′E(HE, s, t, E ′, k) ≥ 2.

(ii) If all vertex covers of G have size larger than (34
33
− ǫ)k then l′V (HV , s, t, V ′, (34

33
− ǫ)k) ≤ 1

and l′E(HE, s, t, E ′, (34
33

− ǫ)k) ≤ 1.

Theorem 5 follows from Claim 8 and the inapproximability result stated in the beginning of
this subsection.

8.2 Proof of Theorem 6

Claim 9 Let G be a graph and let s, t be two vertices of G.

(i) bV (G, s, t, b) ≤ a if and only if lV (G, s, t, a) ≥ b.

(ii) bE(G, s, t, b) ≤ a if and only if lE(G, s, t, a) ≥ b.

Proof: Both expressions bV (G, s, t, b) ≤ a and lV (G, s, t, a) ≥ b are equivalent to the exis-
tence of a vertex blocker of size a to s-t paths of length at most b in G. The proof of (ii) is
identical. �

We can obtain Theorem 6 by applying Claim 9 to Theorem 5.
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