
DIMACS Technical Report 2006-14

July 2006

An Efficient Optimal-Equilibrium Algorithm for

Two-player Game Trees

by

Michael L. Littman1

Dept. of Computer Science
Rutgers University

Piscataway, NJ 08854

Nishkam Ravi

Dept. of Computer Science
Rutgers University

Piscataway, NJ 08854

Arjun Talwar2

Dept. of Mathematics
Stanford University
Stanford, CA 94309

Martin Zinkevich

Dept. of Computing Science
University of Alberta
Edmonton Alberta

Canada T6G 2E8

1Permanent Member
2DIMACS REU Student

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

ABSTRACT

Two-player complete-information game trees are perhaps the simplest possible setting for
studying general-sum games and the computational problem of finding equilibria. These
games admit a simple bottom-up algorithm for finding subgame perfect Nash equilibria effi-
ciently. However, such an algorithm can fail to identify optimal equilibria, such as those that
maximize social welfare. The reason is that, counterintuitively, probabilistic action choices
are sometimes needed to achieve maximum payoffs. We provide a novel polynomial-time al-
gorithm for this problem that explicitly reasons about stochastic decisions and demonstrate
its use in an example card game.

1 Introduction

Game-tree search for zero-sum games has been a staple of AI research since its earliest days.
Recently, research on general-sum games has intensified as a way of reasoning about more
complex agent interactions (Kearns et al. 2001). In this paper, we treat the problem of
finding optimal Nash equilibria in general-sum two-player game-trees.

1.1 Problem Definition

A game-tree problem, as studied in this paper, is specified by a tree with n nodes. A leaf
node has no children, but it does have a payoff vector R(i) ∈ <2. Each non-leaf node i has
an associated player T (i) ∈ {1, 2} who controls play in that node. Except for the root node,
each node has a parent node P (i) ∈ {1, . . . , n}.

Play begins at the root of the tree. When playing node i, Player T (i) chooses an action.
We define the set of actions available from node i as A(i) = {j|P (j) = i}; Player T (i) selects
from among the child nodes of i. When a leaf node i is reached, the players receive their
payoffs in the form of a payoff vector R(i). Specifically, Player x receives the xth component
of the payoff vector R(i)x.

In the small example in Figure 1, node numbers are written above the nodes and leaves
are marked with rectangles. Non-leaf nodes contain the player number for the player who
controls that node and leaf nodes contain their payoff vectors. Here, play begins with a
decision by Player 2 at node 1. Player 2 can choose between the two children of the root,
node 2 and node 3. If Player 2 selects node 2 as his action, Player 1 gets to make a choice
between node 4 and node 5. If Player 1 chooses the left child, node 4, a leaf is reached. From
node 4, Player 1 receives a payoff of 2 and Player 2 receives a payoff of 3 and the game ends.

2
1

1
2

1000
4

3

2
3

4
2

100

5

Figure 1: A small game tree that demonstrates the challenge of finding optimal equilibria.

1.2 Equilibria

A joint strategy for a game tree is a selection, at each node of the game tree, of a probability
distribution over actions. We can write a joint strategy as a function π that maps each node
of the tree to a probability distribution over its children. Returning to Figure 1, one joint

– 2 –

strategy is π(1)2 = 1/2, π(1)3 = 1/2 (choose node 2 from node 1 with probability 1/2 and
node 3 with probability 1/2), and π(2)5 = 1 (always choose node 5 from node 2).

The value of a strategy π is the expected payoff vector if strategy π is followed. It can be
defined recursively as follows. In the context of a strategy π, define V π(i) to be the value for
the game defined by the subtree rooted at node i. For a leaf node, V π(i) = R(i). Otherwise,

V π(i) =
∑

j∈A(i)

π(i)jV
π(j). (1)

The sum, here, is taken over each component of the payoff vector separately. Equation 1
just tells us that once we calculate the values for each child node, we can find the values of
each parent and consequently the root by working our way up the tree.

The example strategy above has a value of [501, 52] because, starting from node 2, Player 1
chooses node 5 resulting in payoffs of [2, 100]. Starting from node 1, Player 2 randomizes
over node 2 and node 3, resulting in the expected payoffs given.

A joint strategy π is a subgame perfect Nash equilibrium (Osborne and Rubinstein 1994),
or equilibrium for short, if there is no i such that T (i) can increase her value V π(i)T (i) at i
by changing the strategy π(i) at i. Specifically, let π be a strategy for a game, and i be a
node of the game tree. We say that strategy π is locally optimal at node i if

V π(i)T (i) ≥ max
j∈A(j)

V π(j)T (j). (2)

Equation 2 simply states that the player controlling node i (T (i)) can’t improve her payoff
by selecting some other action choice at node i. Strategy π is an equilibrium if it is locally
optimal at every node.

A subgame at node i of a game tree is the game obtained by retaining only the subtree
rooted at node i. An equilibrium strategy for a game is also an equilibrium strategy for all
subgames of the game.

Note that the example strategy given above is not an equilibrium because Player 2 can
increase his payoff to 100 by choosing node 2 deterministically from node 1. The joint
strategy πA(1)2 = 1, πA(2)5 = 1, is an equilibrium, however, as Player 1 cannot improve her
value of 2 by changing her decision at node 2 and Player 2 cannot improve his value of 100
by changing his decision at node 1.

The definition of an equilibrium can be turned directly into an algorithm for computing
an equilibrium. Define V (i) = R(i) for every leaf node i. For non-leaf nodes, V (i) = V (j∗)
where i = P (j∗) and j∗ ∈ A(i) is chosen such that V (j∗)T (i) ≥ maxj∈A(j) V (j)T (i). In words,
V (i) is the value vector of the child of node i that has the largest payoff for the player
controlling node i (T (i)). Such a player is happy with its choice at that node since no other
choice will improve its expected payoff.

Given the V function, the corresponding equilibrium strategy is π(i)j = 1 where j ∈ A(j)
and V (j) = V (i); at each node, the strategy chooses the child whose value vector matches
that of the node. The anyNash algorithm returns this strategy, π.

– 3 –

By construction, the strategy produced by anyNash satisfies the conditions for being an
equilibrium expressed in Equation 2. Specifically, at each node i the strategy chooses a child
node that results in the best possible (local) outcome for the player who controls node i.

1.3 Optimal Equilibria

Some games, like the example game in Figure 1, have multiple equilibria. The situation
arises initially when a player has a choice of actions that results in identical payoffs for that
player. In fact, if anyNash does not encounter any ties as it proceeds up the game tree, it
finds the unique equilibrium.

When there is a choice of equilibria, anyNash chooses one arbitrarily. However, some
equilibria are more desirable than others. We use the term optimal equilibrium to refer to
an equilibrium that is the most desirable among the possible equilibria.

There are many possible kinds of desirable equilibria and we focus on four representative
types here. If Vx is the value to Player x for playing the equilibrium, we can seek the
equilibrium that is the:

1. social optimum; maximize the sum of values over all players:
∑

x Vx.

2. fairest; maximize the minimum payoff: minx Vx.

3. single maximum; maximize the maximum payoff over all players: maxx Vx.

4. best for y; maximize the payoff to some specific Player y: Vy.

Greenwald and Hall (2003) refer to these concepts as utilitarian, egalitarian, republican, and
libertarian, respectively. They are also explicitly treated by Conitzer and Sandholm (2003)
in the bimatrix setting.

The previous section described an equilibrium πA for the example game with a value of
[2, 100]. A second equilibrium is πB(1)3 = 1 and πB(2)4 = 1. The value of this equilibrium is
[1000, 4]. Equilibrium B is the social optimum (1004 > 102), the fairest (4 > 2), the single
maximum (1000 > 100), and the best for Player 1 (1000 > 2). Equilibrium A, however, is
the best for Player 2 (100 > 4).

Note that this game has an infinitely large set of equilibria. In particular, consider a
strategy π such that π(1)2 = 1, π(2)4 = α, and π(2)5 = 1 − α (for 0 ≤ α ≤ 1). Since
T (2) = 1 and Player 1 is indifferent to the outcomes at the children of node 2, the subgame
rooted at node 2 is an equilibrium, regardless of the value of α. For the strategy to be an
equilibrium game at node 1, however, it must be the case that V π(2)2 ≥ V π(3)2. Since
node 3 is a leaf, V π(3)2 = R(3)2 = 4. By Equation 1, V π(2)2 = αV π(4)2 + (1− α)V π(5)2 =
α3 + (1− α)100 = −97α + 100. We have V π(2)2 ≥ V π(3)2 when −97α + 100 ≥ 4 or when
0 ≤ α ≤ 96/97. Any such value of α leads to a distinct equilibrium strategy.

Later, we show that such stochastic equilibria play a key role in the search for optimal
equilibria.

– 4 –

1.4 Challenges

When ties are encountered in anyNash, a naive approach to finding an optimal equilibrium
is to break ties in favor of the optimal (local) outcome. We note that this approach does
not generally produce optimal equilibria. As a concrete example, consider trying to find the
social optimum in the example game from Figure 1.

anyNash begins with node 2 (the lowest non-leaf node), which Player 1 controls. It is
immediately faced with the choice of two actions with equal payoffs for Player 1. Since
we seek the social optimum, a natural choice for node 2 is node 5 (total payoffs 102 > 5).
However, now Player 2 is faced with the choice at node 1 of a payoff of 100 for itself or
a payoff of 4 for itself. To produce an equilibrium, Player 2 must choose node 2 in this
situation, resulting in a total value of 102.

Player 1’s selection of node 5 prevented the computation from arriving at the actual
social optimum equilibrium, specifically Equilibrium πB. This equilibrium would have arisen
only from Player 1 selecting node 4. We conclude that an algorithm that wishes to compute
the social optimum cannot work by simply selecting actions bottom up—the right choice
depends on decisions made elsewhere in the tree. Our algorithm handles this issue by keeping
all equilibria as it works its way up the tree.

1.5 Related Models

We briefly relate the problem we address in this paper to others attacked in the literature.
First, a more general game tree can also have stochastic nodes that result in a transition

to a child node according to a given set of probabilities. A game without stochastic nodes
can be called deterministic. Such nodes bridge the gap to richer models such as stochastic
games (Shapley 1953, Condon 1992).

A general game tree can also include information sets. An information set is a set of
nodes controlled by the same player that the player cannot distinguish between. Therefore,
the player is constrained to choose the same action or probability distribution over actions
at every node in an information set. A game tree without information sets can be called a
complete-information game.

A game is called zero sum if it has two players and, for each leaf node i, R(i)1+R(i)2 = 0.
Other games can be called general sum.

Another natural extension is to consider games with more than 2 players.
Equilibria in zero-sum game trees with stochastic nodes and information sets can be found

in polynomial time using a linear-programming-based algorithm due to Koller et al. (1996).
General-sum game trees with information sets include bimatrix games as a special case;

the root of the tree is the first player’s action, the level below is the second player’s action,
and all nodes at the second level are in the same information set. It is well known that
finding optimal equilibria in these games is NP-hard (Gilboa and Zemel 1989, Conitzer and
Sandholm 2003). It was also recently shown that finding any equilibria in these games is
PPAD-hard (Chen and Deng 2005) and is therefore presumed intractable.

– 5 –

NP−hard

general sum

complete information

PPAD−hard

optimalany

information set

any optimal

P

zero sum

P

deterministic
stochastic

NP−hard

Popen

3+ players 2 players

Figure 2: A summary of complexity results for game trees. The heavy boxes are contributions
of the current paper.

A single arbitrary equilibrium can be found in general-sum complete-information game
trees with stochastic nodes in polynomial time using a variation of the anyNash algorithm
described above. We have shown that finding optimal equilibria, for example social-optimal
equilibria, is NP-hard; see the following section.

The problem of finding optimal equilibria in general-sum deterministic complete-information
game trees, we show in this paper to be efficiently solvable. Huang and Sycara (2003) re-
ferred to this class of games as complete-information extensive games (CEGs) and they
developed a learning algorithm based on anyNash. This bottom-up approach cannot find op-
timal equilibria for game trees requiring stochastic actions, such as the example we describe
in Section 2.

Our efficient algorithm is specific to two-player games. The problem of finding optimal
equilibria in general-sum deterministic complete-information game trees with three or more
players is currently an open problem. Figure 2 summarizes the known complexity results for
finding equilibria in game trees.

1.6 NP-hardness of game trees with stochastic nodes

Space precludes a formal proof, but we quickly sketch the result.
The knapsack problem: There is a given knapsack (Garey and Johnson 1979) of some

capacity c > 0 and a finite list of n objects, that is, pairs (wi, vi) where wi represents the

– 6 –

weight of the object and vi the value. Find the selection of items (δ(i) = 1 if selected, else 0)
such that

∑n

i=1 δ(i)wi ≤ c and
∑n

i=1 δ(i)vi is maximized.
Given a knapsack instance, we construct the following game. Player 1 first decides to

commence the game or abort in which case the payoffs are −c
nM

for Player 1, for large enough
M such that the utility of Player 1 is not significant in determining the socially optimal
equilibrium, and a very large sum for Player 2. If the game commences, Player 2 is sent to a
node of the game tree representing one of the n objects at random (with equal probability),
and chooses whether to quit with [0, 0] or pass to Player 1 who decides if this object goes in
the knapsack or not. Both these actions cost Player 1 −wi

M
. However, if Player 1 assigns an

object to the knapsack, Player 2 earns vi, and zero otherwise (see Figure 3).

2
1

1
2

0
0

3

−wi

M

0

4
−wi

M

vi

5

Figure 3: The subgame representing an object with weight wi and value vi. Any equilibrium
where Player 2 gets a strictly positive utility, Player 1 gets a utility of −wi

M
.

In this game, the subgames initiated by Player 2 for each object have values [0, 0] and
[−wi

M
, vi] as outcomes of their local equilibria. There are several other equilibria as well,

but we see that the others cannot improve these payoffs for any player. That is, these
are the pareto-dominant equilibria. This property will allow us to equate pareto-dominant
equilibria of the whole game to the 2n assignments of the knapsack. Consequently, because
of the initial move of the game, the socially optimal solution to the game is equivalent to a
knapsack solution. So, a polynomial solution to the stochastic game-tree problem could be
used to solve the NP-hard knapsack problem; it is also NP-hard.

2 The Optimal-Equilibrium Algorithm

The fundamental concept behind our algorithm is that of the utility profile set or UPS. The
utility profile set for the subgame at node i is

U(i) = {V π(i)|π is an equilibrium strategy},

the set of possible equilibrium payoffs for the two players. We show that these sets can be
represented and manipulated efficiently.

Without loss of generality, we can assume that the game tree is binary: that for each

– 7 –

non-leaf node i, there are two children, left(i) and right(i).1 Our algorithm, bestNash, for
finding optimal equilibria involves first finding the utility profile sets for all subgames.

Algorithm 1 getEquilibriumUPS(Node i)

if isLeaf(i) then

return {R(i)}
end if

SL ← getEquilibriumUPS(left(i))
SR ← getEquilibriumUPS(right(i))
return merge(SL, SR, T (i))

Algorithm 1 gives the high-level structure of the technique. It computes the UPSs for
the children of i, then combines the results using “merge” to produce the UPS for i. Before
specifying merge algorithmically, we specify it mathematically:

merge(SL, SR, x) = mergeRandom(SL, SR, x) ∪

mergeLDet(SL, SR, x) ∪mergeLDet(SR, SL, x),

mergeRandom(SL, SR, x) = (3)

{λs + (1− λ)t : λ ∈ [0, 1], s ∈ SL, t ∈ SR, sx = tx},

mergeLDet(SL, SR, x) = {s : s ∈ SL, sx ≥ min
t∈SR

tx}.

In words, mergeLDet takes the UPS for one child and keeps only the payoffs that are an
improvement for Player x over any payoff in the UPS of the second child. That is, to be an
equilbrium payoff, the controlling player must do no less well than the (worst) alternative.
However, if Player x has a choice between two equal payoffs, any stochastic combination
of the two choices is locally optimal. So, mergeRandom returns any payoff that can be
achieved as a convex combination of two payoff vectors for which the controlling player is
indifferent. Finally, merge returns any payoff vector that be attained by an equilibrium that
deterministically chooses the left child, the right child, or stochastically combines the two.

Consider the behavior of anyNash on the game illustated in Figure 4. From node 5,
Player 1 is indifferent and can choose either node 10 or node 11; we consider these two
possibilities in turn. If she chooses node 10, the leftward action is preferred by the players
at nodes 4, 3, and 2. Ultimately, Player 1 chooses node 2 at node 1, resulting in a payoff
vector of [3, 1].

On the other hand, if Player 1 chooses node 11 at node 5, a different cascade takes place.
The rightward action is preferred by the players at nodes 4, 3, 2, and 1, resulting in a payoff
vector of [3, 3].

1If in the true tree there are more than two children (say, m children) for a non-leaf node i, then i can be
replaced with m− 1 internal nodes j1 . . . jm−1 with the same player in control as i, where the first node j1

gives a choice of taking the first action or going to the second node, the second node j2 is a choice of taking
the second action or going to the third node j3, and so forth, until the last node is a choice between the last
two actions.

– 8 –

1
1

2
2

1
3

2
4

1
5

2
5

6

3
1

7

1
0

8

0
2

9

3
1

10
3
3

11

Figure 4: A game where the social optimum equilibrium involves randomness. The square
to the right of each node is its UPS.

On the other hand, if Player 1 randomizes uniformly between nodes 10 and 11 at node 5,
π(5)10 = π(5)11 = 1/2, then V π(5) = (3, 2). Then, if Player 2 randomizes uniformly between
nodes 9 and 5 at node 4, π(4)5 = π(4)9 = 1/2, then V π(4) = (1.5, 2). The choices at the
remaining nodes are deterministic and result in an overall payoff vector of [5, 2]. This payoff
vector has a higher social welfare than either of the two purely deterministic equilibria,
indicating that stochastic action choices must be taken into consideration when searching
for optimal equilibria.

Thus, these complex UPSs appear needed to find optimal equilibria. We next explain how
to operationalize the mathematical definition given in Equation 4. The key to a practical
implementation of merge is that we can a priori specify a finite number of regions (based on
the payoffs at the leaves), which we refer to as a basis, such that any UPS can be represented
as a union of some collection of these basis sets. Suppose that O = {R(i)|i is a leaf} is the
set of payoffs. Define U 1 = {u1

1 . . . u1
n1
} such that u1

1 < u1
2 < . . . < u1

n1
and U1 = {u1(o)}o∈O

to be the list of all n1 possible payoffs for Player 1. Define U 2 = {u2
1 . . . u2

n2
}, u2, and n2

analogously for Player 2. These sets can be constructed in O(n log n) time, where n is the
number of leaf nodes in the tree. Define Nk = {1 . . . k} as the set of numbers from 1 to k,
for short. Given U 1 and U2, define the set of points, lines, and axis-aligned rectangles in the

– 9 –

grid defined by U1 and U2 as follows: 2

Pi,j = {(u1
i , u

2
j)} ∀i ∈ Nn1

, j ∈ Nn2
, (4)

L1
i,j = [u1

i , u
1
i+1]× {u

2
j} ∀i ∈ Nn1−1, j ∈ Nn2

, (5)

L2
i,j = {u1

i } × [u2
j , u

2
j+1] ∀i ∈ Nn1

, j ∈ Nn2−1, (6)

Di,j = [u1
i , u

1
i+1]× [u2

j , u
2
j+1]∀i ∈ Nn1−1, j ∈ Nn2−1, (7)

B = {Pi,j} ∪ {L
1
i,j} ∪ {L

2
i,j} ∪ {Di,j}. (8)

Definition 1 A set S is simply representable if there exists a collection B ′ ⊆ B such
that S = ∪B∈B′B.

Given a simply representable set S, we represent it in the machine by four two-dimensional
Boolean arrays, S.P [][],S.L1[][],S.L2[][], and S.D[][], such that:

S =
⋃

x∈S.P

Px ∪
⋃

x∈S.L1

L1
x ∪

⋃

x∈S.L2

L2
x ∪

⋃

x∈S.D

Dx, (9)

where the union is over all index pairs for which the two-dimensional array stores the value
“true”. We prove inductively that the output of getEquilibriumUPS is simply representable.
As a base case, for any leaf o, {(u1(o), u2(o))} = Pi,j for some i and some j. Now, for
internal nodes, we need to prove that the output of the merge function, given two simply
representable sets, outputs a simply representable set.

Lemma 2 If B, B′ ∈ B, then:

1. mergeLDet(B, B ′, i) is simply representable.

2. mergeRandom(B, B ′, i) is simply representable.

This result can be proven by simple iteration over the various cases.

Lemma 3 If B1,B2 ⊆ B, SL = ∪B∈B1B and SR = ∪B∈B2B (that is, they are simply repre-
sentable), then merge(SL, SR, i) is simply representable.

This result follows from the distributive property of merge over union, and the fact that the
union of two simply representable sets is simply representable.

Thus, we have established that the sets in which we are interested are simply repre-
sentable. Further, the number of entries in the data structure for representing the set is
Θ(n1n2) = O(n2).

Applying the distributive property directly to merge simply representable sets is some-
what inefficient, as it takes Ω((n1n2)

2) time. We can show how it can be done in O(n1n2)
time. Algorithm 2 and Algorithm 3 are O(n1n2) algorithms for computing mergeLDet(·, ·, 1)
and mergeRandom(·, ·, 1), respectively at a node for Player 1. Since union can be performed

2Observe that Pi,j , Pi,j+1 ⊆ L2
i,j , Pi,j , Pi+1,j ⊆ L1

i,j , and L1
i,j , L

1
i,j+1, L

2
i,j , L

2
i,j+1 ∈ Di,j .

– 10 –

SL SR

mergeLDet(SL, SR, 2) mergeLDet(SR, SL, 2)

mergeRandom(SL, SR, 2)

merge(SL, SR, 2)

Figure 5: Illustration of the sets generated in the steps of merging two example UPSs.

in O(n1n2) time as well, a merge can be performed in O(n1n2) time. Given U1 and U2 (which
take O(n log n) time to construct), one need only perform n merges (one for each node in
the game tree), and therefore the overall runtime is O(nn1n2), which is O(n3), but can be
substantially less if the payoffs comes from a small set of possibilities.

To make the merge operation more accessible, let’s consider a concrete example. Figure 5
gives example UPSs for SL and SR. The mergeLDet sets show the two sets after truncating
each one based on the smallest value obtainable in the other subtree. The mergeRandom
set comes from “filling in” the points that are obtainable as convex combinations of values
for Player 1 when Player 2’s values are tied between the two subtrees. Finally, merge is the
result of unioning the mergeRandom and mergeLDet sets.

Once the UPS is computed recursively for the root of the game tree, bestNash selects
the optimal payoff at the root. For all four notions of optimality considered in this paper,
this calculation can be carried out simply by checking the upper-right corner of each of the
rectangular regions in the UPS. Other notions of optimality, like maximizing the product
of the payoffs of the two players, can also be computed efficiently from the resulting data
structure.

Once the optimal payoff is identified, bestNash can proceed recursively top down to cre-
ate the corresponding equilibrium strategy by choosing the strategy at each node (either a
deterministic or stochastic choice as needed) that attains the target value.

– 11 –

Algorithm 2 mergeLDetP1(UPS SL, UPS SR)

m← min{i : ∃j s.t. SR.P [i][j]}
X ← ∅
for i = m to n1 do

for j = 1 to n2 do

X.P [i][j]← SL.P [i][j]
if i 6= n1 then

X.L1[i][j]← SL.L1[i][j]
end if

if j 6= n2 then

X.L2[i][j]← SL.L2[i][j]
end if

if i 6= n1 and j 6= n2 then

X.D[i][j]← SL.D[i][j]
end if

end for

end for

3 Experimental Results

In this section, we compare the result of applying anyNash to that of bestNash in a game tree
derived from a realistic card game.

3.1 Rules of the Game

“Oh Hell!” is card game in the Spades family played with closed-handed bidding.3 Thus,
representing the game tree for this game requires information sets.

Since this paper is focused on games of complete information, we modified the rules
of the game to create the open-handed variant described below. Note that solutions to
complete-information games can be used to guide decision making in imperfect information
games (Sturtevant 2004), so this simplification may be of practical interest in computer
games.

Open-Handed Oh Hell! (OHOH) is played with one standard pack of cards and from 2 to
7 players. On each hand, every player is dealt the same number of cards, with the number
ranging from 1 to 7. Players can see each other’s cards in this variant. Before the game
begins, a trump suit is randomly chosen. Each player declares the number of rounds she
thinks she can win; this declaration is called the contract. The contracts are declared in
a round-robin fashion. A contract can range from zero to the number of cards dealt to a
player. The contract of the player who declares last is constrained so that the sum of the
contracts of the players does not equal the number of cards dealt—someone will not be able

3See, for example, http://en.wikipedia.org/wiki/Oh Hell for rules and other information.

– 12 –

Algorithm 3 mergeRandomP1(UPS SL, UPS SR)

X ← ∅
for i = 1 to n1 do

if ∃j s.t. SL.P [i][j] and ∃k s.t. SR.P [i][k] then

low ← min{j : SL.P [i][j] or SR.P [i][j]}
high← max{j : SL.P [i][j] or SR.P [i][j]}
for j = low to high do

X.P [i][j]← true
if j 6= high then

X.L2[i][j]← true
end if

end for

end if

end for

for i = 1 to n1 − 1 do

if ∃j s.t. SL.L1[i][j] and ∃k s.t. SR.L1[i][k] then

low ← min{j : SL.L1[i][j] or SR.L1[i][j]}
high← max{j : SL.L1[i][j] or SR.L1[i][j]}
for j = low to high do

X.L1[i][j]← true
if j 6= high then

X.D[i][j]← true
end if

end for

end if

end for

return X

to make her contract.
To win, a player has to meet her contract. That is, the number of rounds won by a player

should be the same as her contract. If a player manages to meet her contract, her payoff is
10 plus the value of the contract. If she deviates from the contract, her payoff is −10 minus
the value of the contract.

A round is played in the following manner: Players play one card each by moving it to
the center in a round-robin fashion. The one who goes first is called the Button and has the
freedom to play any card. The others have to play a card of the same suit, unless they don’t
have one. If all the cards are of the same suit, the one with the highest value is the winning
card. Deuce (2) is the lowest in value and ace is the highest.

If all the cards are not of the same suit, and there is one or more trump cards in the
center, the highest trump card is the winning card. If there are no trump cards in the center,
and the cards are of different suits, the card that has the color of the Button’s card and is

– 13 –

4-card 5-card
tree depth 10 12
tree size (n) ≈ 10, 000 ≈ 400, 000
distinct payoffs (n1, n2) 6 7
anyNash running time 137 ms 2 sec
bestNash running time 605 ms 11 sec
multiple equilibria 30% 52%
social optimum 22.0% 41.5%
fairest 3.2% 4.0%
single maximum 21.6% 39.2%
best for Player 1 20.8% 37.6%
best for Player 2 9.4% 17.1%

Table 1: Properties of the OHOH game trees and the fraction of the time bestNash found a
better equilibrium than anyNash.

highest in value is the winning card. The player with the winning card wins the round, and
is designated the Button for the next round.

3.2 Empirical Results

We present experimental results on the 2-player, 4-card and 5-card versions of OHOH. We
randomly generated 1000 hands. For each hand, we ran anyNash and bestNash.

For each hand we solved, we compared the value of the equilibrium found by anyNash to
the one found by bestNash for several notions of optimality. We computed the fraction of
times anyNash did not find optimal equilibrium. The results, along with other attributes of
the games, are summarized in Table 1.

These results show that, even in this simple card game, multiple equilibria abound.
Therefore, if we want to find optimal equilibria, we should not rely on anyNash to find them.
Although the expense of running bestNash is polynomial, for a large game tree, its worse
case running time is substantial (cubic in the number of leaves, where anyNash is linear).
However, this example shows that, in practice, the additional expense of running bestNash

can be close (within a factor of 6) to that of anyNash.
Taken together, these results show that bestNash is a viable procedure for searching

general-sum game trees.
Another empirical question is whether or not reasoning about action probabilities is

critical to finding optimal equilibria. Using the same hands from the experiments above, we
implemented a simplified algorithm that finds the optimal deterministic equilibrium. This
algorithm tended to run about twice as fast as bestNash and half as fast as anyNash. For
all 1000 hands, it found the same fairest, single maximum, best for P1, and best for P2
equilibria. However, in 7.6% of the hands for the 4-card game (11.8% for the 5-card game),
the deterministic social optimum was worse than that found by bestNash. So, in fact, the

– 14 –

probabilistic reasoning did come into play in this natural card game.

4 Conclusion

We studied general-sum two-player complete-information game trees and found that it is
possible to find optimal equilbria in polynomial time. As shown by a simple example, we
discovered that computing optimal equilibria requires reasoning about probabilistic strate-
gies. Our proposed algorithm builds utility profile sets for each node of the game tree from
the bottom up and uses the set at the root, which compactly represents all equilibria, to
select an optimal equilibrium of any of several types. An open problem is whether an efficient
algorithm exists for 3-or-more player games or for other equilibrium concepts such as perfect
equilibria or subgame-perfect equilbria that are all socially optimal.

We implemented the new algorithm on a modification of a popular card game and found
that, indeed, multiple equilibria are common. Our algorithm was frequently able to find
improvements over arbitrarily chosen equilibria and a significant fraction of games required
the use of probabilistic reasoning to identify the equilibrium that maximized the total payoffs
to the two players.

Acknowledgments

We thank our anonymous reviewers, Nathan Sturtevant, and the support of NSF ITR IIS-
0325281, NSF Research Experience for Undergraduates, and the Alberta Ingenuity Centre
for Machine Learning.

References

Xi Chen and Xiaotie Deng. Settling the complexity of 2-player Nash-equilibrium. Electronic
Colloquium on Computational Complexity Report TR05-140, 2005.

Anne Condon. The complexity of stochastic games. Information and Computation, 96(2):203–224,
February 1992.

Vincent Conitzer and Tuomas Sandholm. Complexity results about Nash equilibria. In Proceedings
of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03), pages 765–771,
2003.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco, CA, 1979.

I. Gilboa and E. Zemel. Nash and correlated equilibria: some complexity considerations. Games
and Economic Behavior, 1:80–93, 1989.

– 15 –

Amy Greenwald and Keith Hall. Correlated-Q learning. In Proceedings of the Twentieth Interna-
tional Conference on Machine Learning, pages 242–249, 2003.

Pu Huang and Katia Sycara. Multi-agent learning in extensive games with complete information. In
Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-03), pages 701–708, 2003.

Michael Kearns, Michael L. Littman, and Satinder Singh. Graphical models for game theory. In
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI), pages 253–
260, 2001. URL http://www.cs.rutgers.edu/ mlittman/papers/uai01-gg.ps.

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior, 14(2):247–259, 1996.

Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press, 1994.

L.S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the United
States of America, 39:1095–1100, 1953.

Nathan Sturtevant. Current challenges in multi-player game search. In Computers and Games,
pages 285–300, 2004.

