DIMACS Technical Report 2007-03
 March 2007

Generating vertices of polyhedra and related monotone generation problems

by

Endre Boros
RUTCOR, Rutgers University 640 Bartholomew Road
Piscataway, NJ 08854-8003
boros@rutcor.rutgers.edu
Khaled Elbassioni
Max-Planck-Institut für Informatik
Saarbrücken, Germany
elbassio@mpi-sb.mpg.de

Vladimir Gurvich
RUTCOR, Rutgers University
gurvich@rutcor.rutgers.edu

Kazuhisa Makino
Graduate School of Information Science and Technology
University of Tokyo
Tokyo, 113-8656, Japan
makino@mist.i.u-tokyo.ac.jp

[^0]
Abstract

The well-known vertex enumeration problem calls for generating all vertices of a polyhedron given by its description as a system of linear inequalities. Recently, a number of combinatorial techniques have been developed and applied successfully to a large number of monotone generation problems from different areas. We consider several such techniques and give examples in which they are applicable to vertex enumeration. We also discuss their limitations and suggest methods to prove NP-hardness of a monotone generation problem, in particular, of vertex enumeration for (unbounded) polyhedra.

Keywords: polytope, polyhedron, vertex, enumeration, monotone generation, graph, directed graph, path, cut, hypergraph, transversal, dualization, system of linear inequalities, integer programming.

1 Introduction

1.1 Vertex enumeration

The well-known Minkowski-Weyl theorem states that any convex polyhedron $P \subseteq \mathbb{R}^{n}$ can be represented in the following two ways.

- H-representation: the intersection of finitely many halfspaces

$$
\begin{equation*}
P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} \tag{1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}$ is an $m \times n$ real matrix and $b \in \mathbb{R}^{m}$ is an m-dimensional real vector;

- V-representation: the Minkowski sum of the convex hull of a set of vectors and the conic hull of a set of directions in \mathbb{R}^{n}

$$
\begin{equation*}
P=\operatorname{conv}\left\{v_{1}, \ldots, v_{r}\right\}+\operatorname{cone}\left\{d_{1}, \ldots, d_{s}\right\} \tag{2}
\end{equation*}
$$

where $\mathcal{V}(P)=\left\{v_{1}, \ldots, v_{r}\right\} \subseteq \mathbb{R}^{n}$ is the set of vertices or extreme points of $P, \mathcal{D}(P)=$ $\left\{d_{1}, \ldots, d_{s}\right\} \subseteq \mathbb{R}^{n}$ is the set of extreme directions of P, and

$$
\begin{aligned}
& \operatorname{conv}\left\{v_{1}, \ldots, v_{r}\right\}=\left\{\sum_{i=1}^{r} \lambda_{i} v_{i}: \sum_{i=1}^{r} \lambda_{i}=1, \lambda_{1} \geq 0, \ldots, \lambda_{r} \geq 0,\right\} \\
& \operatorname{cone}\left\{d_{1}, \ldots, d_{s}\right\}=\left\{\sum_{i=1}^{s} \mu_{i} d_{i}: \mu_{1} \geq 0, \ldots, \mu_{s} \geq 0\right\}
\end{aligned}
$$

see, e.g., $[46,52]$ for a good introduction to polyhedral theory. In this article, we assume that all vectors and matrices are rational, and denote by L the bit size of A and b.

The vertex enumeration problem calls for generating all the vertices $\mathcal{V}(P)$ of a polyhedron P given by its H-representation. Clearly, the size of the vertex set $\mathcal{V}(P)$ can be (and typically is) exponential in n or m, and thus, when we consider the computational complexity of the vertex enumeration problem, one can only hope for output-sensitive algorithms, that is, those whose running time depends not only on n, m and L, but also on $|\mathcal{V}(P)|$. In particular, we consider the following decision and generation problems:
$\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$: Given a polyhedron, represented by a system of linear inequalities (1), and a subset $\mathcal{X} \subseteq \mathcal{V}(P)$ of its vertices, is $\mathcal{X}=\mathcal{V}(P)$?
$\operatorname{IncGen}(P, \mathcal{V}(P), \mathcal{X})$: Given a polyhedron, represented by a system of linear inequalities (1), and a subset of its vertices $\mathcal{X} \subseteq \mathcal{V}(P)$, find a new vertex in $\mathcal{V}(P) \backslash \mathcal{X}$, or indicate that there is none.
$\operatorname{Gen}(P, \mathcal{V}(P))$: Given a polyhedron, represented by a system of linear inequalities (1), generate all elements of $\mathcal{V}(P)$.

When the polyhedron P is bounded, the decision problem is referred to as the PolytopePolyhedron problem [37]. One can distinguish different notions of efficiency, according to the time/space complexity of the generation problem:

- Output polynomial or Total polynomial: Problem $\operatorname{Gen}(P, \mathcal{V}(P))$ can be solved in poly $(n, m, L, \mid \mathcal{V}(P$ time.
- Incremental polynomial: Problem $\operatorname{Inc} \operatorname{Gen}(P, \mathcal{V}(P), \mathcal{X})$ can be solved in poly $(n, m, L,|\mathcal{X}|)$ time, for every $\mathcal{X} \subseteq \mathcal{V}(P)$.
- Polynomial delay: Problem $\operatorname{IncGen}(P, \mathcal{V}(P), \mathcal{X})$ can be solved in $\operatorname{poly}(n, m, L)$ time. More precisely, the time required to generate a new element of $\mathcal{V}(P)$ is polynomial only in the input size.
- Polynomial space: The total space required to solve $\operatorname{Gen}(P, \mathcal{V}(P))$ s bounded by a poly (n, m, L). This is only possible if the algorithm looks at no more than poly (n, m, L) many outputs that it has already generated.
- Strongly P-enumerable: $\mathcal{V}(P)$ can be enumerated with amortized polynomial delay (that is, in poly $(n, m, L)|\mathcal{V}(P)|$ time) using polynomial space.
- NP-hard: the decision problem $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$ is NP-hard, which means that $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$ is coNP-complete, since it belongs to coNP.

It is obvious that any incremental polynomial-time algorithm for generating $\mathcal{V}(P)$ is also output-polynomial. Perhaps, the next statement is less obvious.

Proposition 1 The following 3 claims are equivalent:
(i) $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$ is polynomial;
(ii) $\operatorname{Gen}(P, \mathcal{V}(P))$ is incremental polynomial;
(iii) $\operatorname{Gen}(P, \mathcal{V}(P))$ is output polynomial.

Proof. Since (ii) \Rightarrow (iii) clearly holds, we show that (i) \Rightarrow (ii) and (iii) \Rightarrow (i).
(i) \Rightarrow (ii): We show that $\operatorname{IncGen}(P, \mathcal{V}(P), \mathcal{X})$ can be solved, that is, a new vertex in $\mathcal{V}(P) \backslash \mathcal{X}$ can be found, by m calls to the decision problem $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$.

Let \mathcal{J} be an algorithm that solves $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$. For $I \subseteq[m] \stackrel{\text { def }}{=}\{1, \ldots, m\}$, denote respectively by A_{I} and b_{I} the submatrices of A and b formed by the rows $i \in I$, and let $\bar{I}=[m] \backslash I$. Define the polyhedron

$$
\begin{equation*}
P_{I}=\left\{x \in \mathbb{R}^{n}: A_{I} x=b_{I}, A_{\bar{I}} \leq b_{\bar{I}}\right\} \tag{3}
\end{equation*}
$$

and $\mathcal{X}_{I}=\left\{x \in \mathcal{X} \mid x \in P_{I}\right\}$. We initialize $I=\emptyset$, and iterate the following, for $i=1, \ldots, m$:

Call \mathcal{J} on $P_{I^{\prime}}$ and $\mathcal{X}_{I^{\prime}}$, where $I^{\prime}=I \cup\{i\}$.
If \mathcal{J} answers "Yes," then update $I:=I^{\prime}$.
It is not difficult to see that a new $x \in \mathcal{V}(P) \backslash \mathcal{X}$ can be computed by solving linear equations $A_{I} x=b_{I}$ for I obtained by the above procedure.
(iii) \Rightarrow (i). Let \mathcal{J} be an algorithm that solves $\operatorname{Gen}(P, \mathcal{V}(P))$ and $t(n, m, L, M)$ be the (polynomial) worst case time limit of \mathcal{J} on inputs of size parameters n, m, and L, as before, and output size $M=|\mathcal{V}(P)|$. Given $\mathcal{X} \subseteq \mathcal{V}(P)$, we run \mathcal{J}, and stop as soon as one of the following conditions is satisfied:
(a) a vertex $x \in \mathcal{V}(P) \backslash \mathcal{X}$ is found,
(b) the running time of \mathcal{J} exceeds $t(n, m, L,|\mathcal{X}|)$, or
(c) all vertices of P are found.

If (a) happens, we return "Yes." If (b) happens, we know that $|\mathcal{X}|<|\mathcal{V}(P)|$ and thus we return "Yes." Otherwise, we can conclude that $\mathcal{X}=\mathcal{V}(P)$, and hence we return "No." This procedure clearly implies (iii) \Rightarrow (i).

In view of this proposition, if the decision problem is NP-hard, then no algorithm can generate all the elements of $\mathcal{V}(P)$ in incremental or total polynomial time, unless $\mathrm{P}=\mathrm{NP}$.

Given a polytope (that is, bounded polyhedron) P by its representation (1), and a set $\mathcal{X} \subseteq \mathbb{R}^{n}$, checking if $P \subseteq \operatorname{conv}(\mathcal{X})$ was shown to be coNP-complete in [26]. If $\mathcal{X} \subseteq \mathcal{V}(P)$, then $\operatorname{conv}(\mathcal{X}) \subseteq P$, and hence the problem becomes equivalent to problem $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$. More recently, it was shown [32] that, for general polyhedra, problem $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$ is NP-hard. Let us remark that polyhedra in the reduction of [32] are unbounded. Thus, it remains open whether the vertex generation problem for polytopes is also hard. On the other hand, it is well-known (as we shall also see below) that the joint generation problem $\operatorname{Gen}(P, \mathcal{V}(P) \cup \mathcal{D}(P))$ of generating the extreme points and extreme directions of a given polyhedron P is equivalent to generating the vertices $\mathcal{V}\left(P^{\prime}\right)$ of some polytope P^{\prime} derived from P. In particular, if the vertex enumeration problem is polynomially solvable then the following statement will be somewhat surprising.

Proposition 2 Let P be a polyhedron, given by its representation (1). Then
(i) If vertex enumeration for polytopes is solvable in output polynomial time, then there is an incremental polynomial-time algorithm that outputs $\mathcal{V}(P) \cup \mathcal{D}(P)$ in the following order: all the elements of $\mathcal{D}(P)$ are generated first then all the elements of $\mathcal{V}(P)$.
(ii) Unless $\mathrm{P}=\mathrm{NP}$, there is no incremental polynomial-time algorithm that outputs $\mathcal{V}(P) \cup$ $\mathcal{D}(P)$ such that all the elements of $\mathcal{V}(P)$ are generated before any element of $\mathcal{D}(P)$.

Proof. The second statement follows from the NP-hardness of $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$ [32]; see also Section 4. Let us prove the first one. Let $U=2^{\operatorname{poly}(n, m, L)}$ be a strict upper bound on the ℓ_{1}-norm $\|x\|_{1}$ of any vertex x of P (such bounds are known to exist for rational polyhedra, see e.g., [46]). Let P^{\prime} be the polytope $P \cap\left\{x \in \mathbb{R}^{n}:-U \leq \mathbf{1}_{n}^{T} x \leq U\right\}$, where $\mathbf{1}_{n}$ is the n-dimensional vector of all ones. Then it can be verified that the set $\mathcal{V}(P) \cup \mathcal{D}(P)$ is in one-toone correspondence with $\mathcal{V}\left(P^{\prime}\right)$, and furthermore that $\mathcal{V}(P)=\mathcal{V}\left(P^{\prime}\right) \cap\left\{x \in \mathbb{R}^{n}:\|x\|_{1}<U\right\}$. It is also known that the extreme directions of P are in one-to-one correspondence with the vertices of the polytope $P^{\prime \prime}=\left\{x \in \mathbb{R}^{n}: A x \leq \mathbf{0}, \mathbf{1}_{n}^{T} x=1\right\}$. Thus, in the first stage, we use our polynomial-time vertex enumeration routine to solve problem $\operatorname{Gen}\left(P^{\prime \prime}, \mathcal{V}\left(P^{\prime \prime}\right)\right)$ and get all extreme directions of P, in time poly $(n, m, L,|\mathcal{D}(P)|)$. In the second stage, we use the routine to solve $\operatorname{IncGen}\left(P^{\prime}, \mathcal{V}\left(P^{\prime}\right), \mathcal{X}\right)$ and only keep those outputs $x \in \mathcal{V}\left(P^{\prime}\right)$ that satisfy $\|x\|_{1}<U$. The total time for the second stage is poly $(n, m, L,|\mathcal{D}(P)|+|\mathcal{V}(P)|)$.

1.2 Monotone generation

We consider a monotone property $\pi: 2^{W} \rightarrow\{0,1\}$ defined over the subsets of a finite set $W: \pi(X) \leq \pi(Y)$ whenever $X \subseteq Y \subseteq W$. We assume that there exists a polynomialtime evaluation oracle for π, that is, an algorithm that, given any $X \subseteq W$, determines in polynomial time in the size of W (and maybe some other input parameters), the value of $\pi(X) \in\{0,1\}$. We denote by $\operatorname{Min}(\pi) \subseteq 2^{W}$ (respectively, $\operatorname{Max}(\pi) \subseteq 2^{W}$) the family of all minimal (respectively, maximal) subsets of W satisfying (respectively, not satisfying) a monotone property π. We will be interested in the generation of the families $\operatorname{Min}(\pi)$ (and/or $\operatorname{Max}(\pi)$), and so we can define, as before, the corresponding decision and generation problems $\operatorname{Dec}(\pi, \operatorname{Min}(\pi), \mathcal{X}), \operatorname{IncGen}(\pi, \operatorname{Min}(\pi), \mathcal{X})$, and $\operatorname{Gen}(\pi, \operatorname{Min}(\pi))$.

Given a polyhedron P, defined as (1), one can express the vertex enumeration problem for P as a monotone generation problem, for instance, as follows. Let $W=[m]$ and for $I \subseteq E$, denote by P_{I} the polyhedron (3). Define the monotone property $\pi: 2^{W} \rightarrow\{0,1\}$ as follows

$$
\begin{equation*}
\pi(I)=1 \Longleftrightarrow P_{I} \neq \emptyset \tag{4}
\end{equation*}
$$

Then $\operatorname{Max}(\pi)$ is the family of maximal tight feasible subsystems of P, and it is not difficult to verify that they are in one-to-one correspondence with the vertices of P :

Fact 1 If $\mathcal{V}(P) \neq \emptyset$ then there exists a one-to-one correspondence between $\operatorname{Max}(\pi)$ and $\mathcal{V}(P)$.

We now give another monotone formulation of the vertex enumeration problem. Consider a polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$ given in standard form, and let $\mathcal{A} \subseteq \mathbb{R}^{n}$ be set of $n+1$ vectors in \mathbb{R}^{n} consisting of the columns of A and $-b$. Define the monotone property $\pi: 2^{\mathcal{A}} \rightarrow\{0,1\}:$

$$
\pi(X)=1 \Longleftrightarrow \mathbf{0} \in \operatorname{conv}(X)
$$

Let us call the families $\operatorname{Min}(\pi)$ and $\operatorname{Max}(\pi)$ simplices and anti-simplices, respectively, with respect to \mathcal{A}. Then it turns out that the vertex enumeration problem for polytopes is equivalent to the generation of such simplices. More precisely, we have the following relationship.

Fact $2([32])$ There exists a one-to-one correspondence between $\operatorname{Min}(\pi)$ and $\mathcal{V}(P) \cup \mathcal{D}(P)$.
It is worth mentioning that if we change the monotone property above to be defined as: $\pi(X)=1$ if and only if $\mathbf{0} \in \operatorname{int}(\operatorname{conv}(X))$, where $\operatorname{int}(Y)$ denotes the interior of a set Y, then the status of the problem becomes less open. Precisely, it was shown in [10] that $\operatorname{Dec}(\operatorname{Max}(\pi), \mathcal{X})$ (and hence the generation of the so-called anti-bodies) is NP-hard. On the other hand, the generation of the family $\operatorname{Min}(\pi)$ of minimal subsets of \mathcal{A} that contain $\mathbf{0}$ in the interior of their convex hull (these are called bodies in [10]) turns out to be at least as hard as the hypergraph transversal generation problem, described in the next section.

1.3 Hypergraph transversals

Let $\mathcal{H} \subseteq 2^{V}$ be a hypergraph on a finite set of vertices V. A subset $X \subseteq V$ is said to be a transversal of \mathcal{H} if $X \cap H \neq \emptyset$ for all $H \in \mathcal{H}$. We denote by \mathcal{H}^{d} the transversal hypergraph of \mathcal{H}, that is, the hypergraph consisting of all minimal transversals of \mathcal{H}. Clearly, if we define a monotone property $\pi: 2^{V} \rightarrow\{0,1\}$ by $\pi(X)=1$ if and only if $X \cap H \neq \emptyset$ for all $H \in \mathcal{H}$, then we have a one-to-one correspondence between \mathcal{H}^{d} and $\operatorname{Min}(\pi)$. It turns out that the generation problem for many interesting monotone properties is reducible to problem $\operatorname{Gen}\left(\mathcal{H}, \mathcal{H}^{d}\right)$ of generating all minimal transversals of a hypergraph \mathcal{H}, see e.g., [8, 22, 34].

The best known algorithm [23] for this problem runs in quasi-polynomial time $N^{o(\log N)}$, where $N=|V|+|\mathcal{H}|+\left|\mathcal{H}^{d}\right|$. No polynomial algorithm is known, though such algorithms exist for many special cases, e.g., for graphs or, more generally, for the hypergraphs of bounded edge-size $[9,20,39,40]$.

A similarity between the polytope-polyhedron and hypergraph transversal problems is pointed out in [37], where it is also mentioned that the latter problem may be strictly between P and coNP; this conjecture is attributed to Gottlob.

2 Four Generation Techniques

In this paper, we describe four methods that have been successfully applied to monotone generation problems. We then survey some of the known results about vertex enumeration and put them in the framework of these enumeration techniques. On the way, we also obtain some new results. Namely, we show that the method used for enumerating vertices of $0 / 1$ polytopes is unlikely to extend for 0/1-polyhedra. We also give incremental polynomial-time algorithms for enumerating all vertices of polyhedra associated with 0/1-network matrices.

GEN-A (\mathcal{G}) :

Input: A supergraph \mathcal{G} on the family \mathcal{F}_{π} satisfying a property π Output: The elements of family \mathcal{F}_{π}

1. Find an initial vertex $X_{0} \in \mathcal{F}_{\pi}$
2. Initialize a queue $\mathcal{Q}=\left\{X_{0}\right\}$ and a dictionary of output vertices $\mathcal{D}=\left\{X_{0}\right\}$.
(* Perform a breadth-first search of \mathcal{G} starting from $X_{0}{ }^{*}$)
3. \quad while $\mathcal{Q} \neq \emptyset$ do
4. \quad Take the first vertex X out of the queue \mathcal{Q} and output X
5. for each $Y \in \mathcal{N}(X)$ do
6.

if $Y \notin \mathcal{D}$ then
Insert it to \mathcal{Q} and to \mathcal{D}

Figure 1: The supergraph method

2.1 The supergraph approach

Let W be a finite set and assume that we are interested in generating the family \mathcal{F}_{π} of all subsets of W satisfying a certain (not necessarily monotone) property $\pi: 2^{W} \rightarrow\{0,1\}$. This technique works by building and traversing a directed graph $\mathcal{G}=\left(\mathcal{F}_{\pi}, \mathcal{E}\right)$, defined on the family $\mathcal{F}_{\pi} \subseteq 2^{E}$ to be generated. The arcs of \mathcal{G} are defined by a neighborhood function $\mathcal{N}: \mathcal{F}_{\pi} \rightarrow 2^{\mathcal{F}_{\pi}}$ that to any $X \in \mathcal{F}_{\pi}$ assigns a set of its successors $\mathcal{N}(X)$ in \mathcal{G}. A special vertex $X_{0} \in \mathcal{F}_{\pi}$ is identified from which all other vertices of \mathcal{G} are reachable. The method works by traversing, say, in the breadth-first search order, the vertices of \mathcal{G}, starting from X_{0}. If \mathcal{G} is strongly connected then X_{0} can be any vertex in \mathcal{F}_{π}.

The following facts are known about this approach (see e.g. [31, 47]):
Proposition 3 (i) If $\mathcal{N}(X)$ is polynomial-time computable, then GEN-A yields a polynomialdelay algorithm for enumerating \mathcal{F}_{π}.
(ii) If $\mathcal{N}(X)$ can be generated in incremental polynomial time, then then GEN-A yields a incremental polynomial-time algorithm for enumerating \mathcal{F}_{π}.
(iii) If $\mathcal{N}(X)$ is polynomial-time computable and \mathcal{G} is a tree, then, using depth-first search instead of breadth-first search in GEN-A, \mathcal{F}_{π} can be generated with polynomial delay. Moreover, if in addition $\mathcal{N}^{-1}(X)$ is polynomial-time computable, then \mathcal{F}_{π} can be generated with polynomial space.

We remark that if the neighborhood function is polynomial-time computable then we have $|\mathcal{N}(X)| \leq \operatorname{poly}(|W|)$ for every $X \in \mathcal{F}_{\pi}$. For (iii), it is not difficult to see that \mathcal{F}_{π} can be generated in incremental polynomial time if $\mathcal{N}(X)$ is polynomial-time computable and \mathcal{G} is a tree. In order to obtain a polynomial-delay algorithm, $X \in \mathcal{F}_{\pi}$ is output just after the
first visit to it, if the depth of X is odd; Otherwise, X is output just before coming back to the parent.

2.1.1 The neighborhood operator for vertices of polyhedra

Let P be a polyhedron given by (1). For a vertex $v \in \mathcal{V}(P)$, it is natural to define the neighbors of v as the "polyhedral" neighbors, that is

$$
\mathcal{N}(v)=\left\{v^{\prime} \in \mathcal{V}(P):\left(v^{\prime}, v\right) \text { forms an edge of } P\right\}
$$

As is well-known, the supergraph \mathcal{G}, defined with this neighborhood is strongly connected. Thus, by Proposition 3, enumerating the vertices of $\mathcal{V}(P)$ reduces to the neighborhood computation. Conversely, as observed in [43], the generation of $\mathcal{N}(v)$ for a given v is at least as hard as the vertex enumeration problem for polytopes. For example, consider the generation of the vertices adjacent to the $(n+1)$ st unit vector \mathbf{e}^{n+1} in the pyramid $\operatorname{pyr}(x, P) \subseteq$ \mathbb{R}^{n+1} with base P and apex \mathbf{e}^{n+1}. However, in some cases, as the examples given below, the neighborhood computation can be done with polynomial delay or in incremental polynomial time.

2.1.2 Simple polyhedra

Recall that a polyhedron $P \subseteq \mathbb{R}^{n}$ is simple if each vertex of P is the intersection of exactly n facet-defining inequalities for P. For such polyhedra, the vertices are in one-to-one correspondence with the subsets of tight inequalities, and hence the neighborhood operator can be computed in polynomial time. Indeed, let $v, v^{\prime} \in \mathcal{V}(P)$ be two vertices of P, and $I, I^{\prime} \subseteq[m]$ be the linearly independent tight inequalities of P, defining these vertices respectively. Then v and v^{\prime} are neighbors if and only if $\left|I \backslash I^{\prime}\right|=1$. Thus for any vertex v, we have $|\mathcal{N}(v)| \leq n(m-n)$, and hence by Proposition 3-(i), Traversal (\mathcal{G}) enumerates $\mathcal{V}(P)$ with polynomial delay. It was furthermore observed by Avis and Fukuda [3] that the supergraph \mathcal{G} can be turned into a tree as follows. Fix an arbitrary vector $c \in \mathbb{R}^{n}$, for which there is $v_{0} \in \mathcal{V}(P)$ such that $c^{T} v_{0}<c^{T} x$ for all $x \in P$. Then starting from any vertex $v \in \mathcal{V}(P)$ and using the simplex method with any anti-cyclic rule, there is a unique path from v to v_{0} on P. This defines a tree with root v_{0}, for which the children of a given vertex v can be generated by finding first all candidates v^{\prime} as above, but only keeping the vertices v^{\prime} such that v is obtained from v^{\prime} by a single simplex pivoting operation. By traversing the tree in depth-first search, we can show that the vertices of P can be enumerated with polynomial delay and space. Clearly, the same can also be said about polyhedra in which every vertex has at most $n+\delta$ tight inequalities, for some constant δ, since a vertex can correspond to at most $\binom{n+\delta}{n} \leq O\left(n^{\delta}\right)$ tight inequalities.

2.1.3 Flow polyhedra

Let $G=(V, E)$ be a directed graph with vertex set V and arc set E, and let $A \in\{-1,0,1\}^{V \times E}$ be the the vertex-arc incidence matrix of G, that is

$$
a_{u, e}= \begin{cases}1 & \text { if arc } e \text { enters } u \\ -1 & \text { if arc } e \text { leaves } u \\ 0 & \text { otherwise }\end{cases}
$$

for a vertex $u \in V$ and an arc $e \in E$. For $b \in \mathbb{R}^{V}$, let $P=P(A, b)=\left\{x \in \mathbb{R}^{E}: A x=b, x \geq\right.$ $0\}$ be the flow polyhedron associated with G. Provan [43] considered such a class of polyhedra (even with upper and lower bounds on the variables $l \leq x \leq c$, for some $l, c \in \mathbb{R}^{E}$) and showed that they can be highly degenerate. Furthermore, he gave an incremental polynomial time algorithm for enumerating the vertices using the supergraph approach as follows. Let $v \in \mathcal{V}(P)$ be a given vertex of P, and construct a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ from G by contracting all arcs e with $v_{e}>0$. Then the set of polyhedral edges of v is in one-to-one correspondence with the directed cycles of G^{\prime}, which can be enumerated with polynomial delay [44]. This gives an incremental polynomial time procedure for enumerating the $\mathcal{V}(P) \cup \mathcal{D}(P)$ (c.f. Proposition 3-(ii)). Furthermore, one can also list the set of vertices $\mathcal{V}(P)$ by observing that an unbounded edge (that is, an extreme direction) of P corresponds to a directed cycle of G^{\prime}, for which all the contracted arcs, that have both vertices on the cycle, are on the same direction of the cycle. Let $E^{\prime \prime}=\left\{e \in E: v_{e}>0\right\}$, and for an $\operatorname{arc} e \in E^{\prime \prime}$, let G_{e} be the graph obtained from G by contracting all arcs in $E^{\prime \prime}-e$. Let $\mathcal{P}_{(u, w)}$ be the set of directed paths from u to w in $G_{(u, w)}$. It is well known that they can be enumerated with polynomial delay [44]. Then the set of bounded edges adjacent to v (that correspond to neighbors $v^{\prime} \in \mathcal{N}(v)$) are in one-to-one correspondence with the set $\bigcup_{e \in E} \mathcal{P}_{e}$; see [43] for more details. Since each element of $\mathcal{N}(v)$ can be found at most $|E|$ times, we get an output polynomial algorithm for enumerating $\mathcal{N}(v)$, which can be turned into an incremental polynomial one, by Proposition 1.

A similar result was also obtained for the polyhedra $P\left(A^{T}, b\right)$ obtained from the transpose of A and $b \in \mathbb{R}^{E}$. This result was furthermore generalized in [1] to any matrix A with at most two nonzero entries in each row or with at most two nonzero entries in each column.

2.2 Using transversal generation

2.2.1 Polyhedra with 0/1-matrices and 0/1-vertices

For $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, let

$$
\begin{equation*}
P(A, b)=\left\{x \in \mathbb{R}^{n} \mid A x \geq b, x \geq 0\right\} \tag{5}
\end{equation*}
$$

For a matrix $A \in\{0,1\}^{m \times n}$, let $\mathcal{H}(A) \subseteq 2^{[n]}$ be a hypergraph such that the characteristic vectors of hyperedges are the rows of A. We denote by $\mathbf{1}_{m}$ the m-dimensional vector all of whose components are ones. The following fact relates the vertices of an integral polyhedron $P\left(A, \mathbf{1}_{m}\right)$ to the minimal transversals of $\mathcal{H}(A)$.

Proposition 4 ([35]) Let A be an $m \times n 0 / 1$-matrix such that the polyhedron $P=P\left(A, \mathbf{1}_{m}\right)$ has only integral vertices. Then the vertices of P are in one-to-one correspondence with the minimal transversals of the hypergraph $\mathcal{H}(A)$.

By the above proposition, the problem of enumerating the vertices of the polyhedron $P\left(A, \mathbf{1}_{m}\right)$, when A is a $0 / 1$-matrix and $\mathcal{V}(P) \subseteq\{0,1\}^{n}$, reduces to finding all minimal transversals of the hypergraph $\mathcal{H}(A)$. As an immediate consequence of this and the result of [23], we obtain the following statement.

Corollary 1 Let A be an $m \times n 0 / 1$-matrix such that the polyhedron $P\left(A, \mathbf{1}_{m}\right)$ has only integral vertices. Then the vertices of $P\left(A, \mathbf{1}_{m}\right)$ can be enumerated in incremental quasipolynomial time.

For example, if the matrix A is totally unimodular then the polyhedron $P\left(A, \mathbf{1}_{m}\right)$ has integral vertices that can be enumerated in incremental quasi-polynomial time. A further interesting special case: a matrix $A \in\{0,1\}^{m \times n}$ is said to be a network matrix, if there exists a directed tree \mathbf{T} such that the rows of A one-to-one correspond to the arcs in \mathbf{T} and each column of A is the characteristic vector of a directed path in \mathbf{T}, where we say that a directed graph G is a directed tree if the underlying graph of G (that is, the undirected graph obtained from G by ignoring orientation of arcs) is a tree. Such a representation of a network matrix can be obtained from A in polynomial time; see, e.g., [46].

In Section 3, we show the following results for polyhedra associated with 0/1-network matrices.

Theorem 1 Let $A \in\{0,1\}^{m \times n}$ be a network matrix. Then we have:
(i) The vertices of $P\left(A, \mathbf{1}_{m}\right)$ can be enumerated in incremental polynomial time using polynomial space.
(ii) The vertices of $P\left(A^{T}, \mathbf{1}_{n}\right)$ can be enumerated in incremental polynomial time using polynomial space.

In the next section, we relate the problems of enumerating vertices of the polyhedra $P\left(A, \mathbf{1}_{m}\right)$ and $P\left(A^{T}, \mathbf{1}_{n}\right)$ for a 0/1-network matrix A to two other enumeration problems on directed trees. This will turn also to be useful in the NP-hardness proof of Section 2.5.4.

2.3 Two enumeration problems on directed trees

Given a directed tree $\mathbf{T}=(V, E)$ and a set of n directed paths on \mathbf{T}, defined by source-sink pairs $\mathcal{P}=\left\{\left(s_{i}, t_{i}\right) \mid s_{i}, t_{i} \in V\right.$ for $\left.i=1, \ldots, n\right\}$, let us call a minimal path cover any minimal collection of paths $X \subseteq \mathcal{P}$ whose union covers all the arcs of \mathbf{T}. Let us further call a minimal cut conjunction any minimal collection of $\operatorname{arcs} X \subseteq E$ whose removal leaves no path between s_{i} and t_{i} for $i=1, \ldots, n$.

The following statement is clear form the definitions, Proposition 1, and the fact that a network matrix is totally unimodular.

Proposition 5 Let $A \in\{0,1\}^{m \times n}$ be a network matrix, defined by a tree \mathbf{T} and a collection of directed paths \mathcal{P}. Then:
(i) The vertices of $P\left(A, \mathbf{1}_{m}\right)$ are in one-to-one correspondence with the minimal path covers for $(\mathbf{T}, \mathcal{P})$.
(ii) The vertices of $P\left(A^{T}, \mathbf{1}_{n}\right)$ are in one-to-one correspondence with the minimal cut conjunctions for (\mathbf{T}, \mathcal{P}).

In view of Proposition 5, the two parts of Theorem 1 result respectively from the following two lemmas that will be proved in Section 3.

Lemma 1 Given a directed tree \mathbf{T}, and a collection of directed paths \mathcal{P}, the family of minimal path covers with respect to $(\mathbf{T}, \mathcal{P})$ can be enumerated in incremental polynomial time using polynomial space.

Lemma 2 Given a directed tree \mathbf{T}, and a collection of directed paths \mathcal{P}, the family of minimal cut conjunctions with respect to $(\mathbf{T}, \mathcal{P})$ can be enumerated in incremental polynomial time using polynomial space.

We remark that an incremental polynomial time algorithm exists [33] for the more general problem of enumerating cut conjunctions in undirected graphs: Given an undirected graph $G=(V, E)$, and a collection $B=\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ of k vertex pairs $s_{i}, t_{i} \in V$, enumerate all minimal edge sets $X \subseteq E$ such that for all $i=1, \ldots, k$, vertices s_{i} and t_{i} are disconnected in $G^{\prime}=(V, E \backslash X)$. This is obtained using the supergraph approach. However, in contrast to the one presented in Section 3.2, the space used by the algorithm is not polynomial.

2.4 Transversal-bounded polyhedra

Recall that the vertices of a polyhedron P given by (1) can be regarded as the maximal sets satisfying a monotone property π, given by (4). Let us call a polyhedron transversal-bounded (or dual-bounded) [8, 16] if there exists a (quasi-)polynomial $q: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, for which the following inequality holds

$$
\begin{equation*}
|\operatorname{Min}(\pi)| \leq q(n, m, L,|\operatorname{Max}(\pi)|) \tag{6}
\end{equation*}
$$

It follows from the results of [5, 29] that, for transversal-bounded polyhedra, problem $\operatorname{Gen}(P, \mathcal{V}(P))$ is (quasi-)polynomially reducible to the hypergraph transversal generation problem, and thus is solvable in incremental quasi-polynomial time. The only example known so far to satisfy (6) is the class of simple polytopes, for which it was shown in [45, 42], that $|\operatorname{Min}(\pi)| \leq(n+1)|\operatorname{Max}(\pi)|$. It would be interesting to see if there are other types of polyhedra that belong to this class.

Procedure GEN-B $\left(\pi, S_{1}, S_{2}\right)$:
Input: A property $\pi: 2^{W} \rightarrow\{0,1\}$ with $\pi \not \equiv 0$ and two disjoint sets S_{1}, S_{2} $\subseteq W$
Output: The family \mathcal{F}_{π} of all subsets X of W satisfying $X \supseteq S_{1}, X \cap S_{2}=$ \emptyset, and $\pi(X)=1$

1. if $\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$ is not feasible then
2. return
3. if there is an $e \in W \backslash\left(S_{1} \cup S_{2}\right)$ s.t. $\operatorname{Ext}\left(\pi, S_{1} \cup\{e\}, S_{2}\right)$ is feasible then
4. GEN-B $\left(\pi, S_{1} \cup\{e\}, S_{2}\right)$
5. $\operatorname{GEN}-\mathrm{B}\left(\pi, S_{1}, S_{2} \cup\{e\}\right)$
6. else output S_{1}
7. return

Figure 2: The flashlight method

2.5 Flashlight approach and its applications

2.5.1 Flashlight (or backtracking) method

Let $W=\{1,2, \ldots,|W|\}$, and suppose that we want to enumerate all elements of a family \mathcal{F}_{π} of subsets of W satisfying a given property π, where $\mathcal{F}_{\pi} \neq \emptyset$. This method works by building a binary search tree of depth $|W|$ whose leaves contain the elements of the family \mathcal{F}_{π}. Each node of the tree is identified with an ordered pair (S_{1}, S_{2}) of two disjoint subsets $S_{1}, S_{2} \subseteq W$, and at the root of the tree, we have $S_{1}=S_{2}=\emptyset$. The two children of an internal node (S_{1}, S_{2}) of the tree are defined as follows. We choose an element $e \in W \backslash\left(S_{1} \cup S_{2}\right)$ such that there is a subset $X \in \mathcal{F}_{\pi}$, satisfying $X \supseteq S_{1} \cup\{e\}$ and $X \cap S_{2}=\emptyset$. If no such element can be found then the current node is a leaf. Otherwise, the left child of the node (S_{1}, S_{2}) is identified with $\left(S_{1} \cup\{e\}, S_{2}\right)$. Analogously, the right child of the node $\left(S_{1}, S_{2}\right)$ is $\left(S_{1}, S_{2} \cup\{e\}\right)$, provided that there is a subset $X \in \mathcal{F}_{\pi}$, such that $X \supseteq S_{1}$ and $X \cap\left(S_{2} \cup\{e\}\right)=\emptyset$. A formal description of the method is given in Figure 2; see [44] for general background on backtracking algorithms.

Clearly, for this method to work in polynomial time, we need to be able to perform the following check in polynomial time
$\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$: Given two disjoint subsets $S_{1}, S_{2} \subseteq W$, does there exist a set $X \in \mathcal{F}_{\pi}$, such that $X \supseteq S_{1}$ and $X \cap S_{2}=\emptyset$?

The performance of this method is summarized in the following statement.
Proposition 6 If $\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$ is solvable in polynomial time for any given disjoint sets $S_{1}, S_{2} \subseteq W$ then the algorithm GEN-B enumerates the family \mathcal{F}_{π} with polynomial delay using polynomial space (even in lexicographic order, if some ordering on W is given).

In general, the check $\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$ is NP-hard, but in some cases, as the ones described below, it can be performed in polynomial time. Sometimes, it is also possible to perform the check in polynomial time, provided that we do the extension from the set S_{1} to $S_{1} \cup\{e\}$ in a more careful way. More precisely, let $\mathcal{F}_{\pi}^{\prime} \subseteq 2^{E}$ be a family of sets, such that
(F1) $\mathcal{F}_{\pi}^{\prime} \supseteq \mathcal{F}_{\pi}$,
(F2) for every non-empty $X \in \mathcal{F}_{\pi}^{\prime}$, there exists an element $e \in X$ such that $X \backslash\{e\} \in \mathcal{F}_{\pi}^{\prime}$ (in particular, $\emptyset \in \mathcal{F}_{\pi}^{\prime}$), and
(F3) we can test in polynomial time if a given set $X \in \mathcal{F}_{\pi}^{\prime}$ is contained in \mathcal{F}_{π}.
In the backtracking procedure, if we always maintain the invariant $S_{1} \in \mathcal{F}_{\pi}^{\prime}$, Then checking $\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$ could be easier, see the example in Section 2.5.3.

2.5.2 0/1-polytopes

Bussieck and Lübbecke [18] used the flashlight method show the strong P-enumerability of the vertex set of 0/1-polytopes (more generally, of polytopes that are combinatorially equivalent with $0 / 1$-polytopes). Recall that a polyhedron P is $0 / 1$ if $\mathcal{V}(P) \subseteq\{0,1\}^{n}$. Let $W=[n]$ and $\pi: 2^{W} \rightarrow\{0,1\}$ be defined as follows: for $X \subseteq W, \pi(X)=1$ if and only if $X \subseteq[n]$ is the support set of a vertex. Then $\operatorname{Problem} \operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$ calls for the following check:
$\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$: Given a $0 / 1$-polyhedron P defined by (5) and two disjoint sets of variables $S_{1}, S_{2} \subseteq[n]$, determine if there is a vertex x of P such that $x_{i}=1$ for all $i \in S_{1}$ and $x_{i}=0$ for all $i \in S_{2}$.

If the polyhedron P is bounded, that is, P is a $0 / 1$-polytope, then the extension problem above is equivalent to checking if the polytope

$$
P^{\prime}=\left\{x \in P \mid x_{i}=1 \text { for all } i \in S_{1}, \text { and } x_{i}=0 \text { for all } i \in S_{2}\right\} .
$$

is non-empty, and hence it can be checked in polynomial time by solving a linear programming problem. Thus Proposition 1 implies that $\mathcal{V}(P)$ is strongly P-enumerable in this case. Note that this remains true even if the polytope is given by a separation oracle. However, the problem seems to be intractable for unbounded 0/1-polyhedra (see Theorem 2).

2.5.3 The perfect 2-matching polytope

Let $G=(V, E)$ be a graph. Consider the polytope

$$
P(G)=\left\{x \in \mathbb{R}^{E} \mid A x=\mathbf{1}_{V}, \quad x \geq 0\right\}
$$

where $A \in\{0,1\}^{V \times E}$ denotes the vertex-edge incidence matrix of G. When G is bipartite, the vertices of $P(G)$ are in one-to-one correspondence with the perfect matchings of G, and the result of the previous section implies that $\mathcal{V}(P)$ can be enumerated with polynomial delay. More efficient algorithms are known $[24,25,50,51]$.

For non-bipartite graphs G, it is well-know that the vertices of $P(G)$ are half-integral [38] (that is, the components of each vertex are in $\{0,1,1 / 2\}$), and that they correspond to the basic perfect 2 -matchings of G, that is, subsets of edges that form a cover of the vertices with vertex-disjoint edges and vertex-disjoint odd cycles. A (not necessarily basic) perfect 2-matching of G is a subset of edges that covers the vertices of G with vertex-disjoint edges and (even or odd) cycles. Denote respectively by $\mathcal{M}_{2}(G)$ and $\mathcal{M}_{2}^{\prime}(G)$ the families of perfect 2-matchings and basic perfect 2-matchings of a graph G. We present below the proof from [6], that the family $\mathcal{M}_{2}(G)$ can be enumerated with polynomial delay, and the family $\mathcal{M}_{2}^{\prime}(G)$ can be enumerated in incremental polynomial time.

Lemma 3 All perfect 2-matchings of a graph G can be generated with polynomial delay.
Proof. We use the flashlight method with a slight modification. For $X \subseteq E$, let $\pi(X)$ be the property that the graph (V, X) has a perfect 2-matching. Then $\mathcal{F}_{\pi}=\mathcal{M}_{2}(G)$. Define

$$
\begin{aligned}
\mathcal{F}_{\pi}^{\prime}= & \{X \subseteq E \mid \text { the graph }(V, X) \text { is a vertex-disjoint union } \\
& \text { of some cycles, some edges, and a path possibly of length zero }\} .
\end{aligned}
$$

It is easy to check if conditions (F1), (F2) and (F3) are satisfied. Given $S_{1} \in \mathcal{F}_{\pi}^{\prime}, S_{2} \subseteq E$, we modify the basic approach described in Section 2.5 in two ways. First, when we consider a new edge $e \in E \backslash\left(S_{1} \cup S_{2}\right)$ to be added to S_{1}, we first try an edge incident to an endpoint of the path in S_{1}, if this path has positive length. If the path has length zero then any edge $e \in E \backslash\left(S_{1} \cup S_{2}\right)$ can be chosen and defined to be a path of length one in $S_{1} \cup\{e\}$. Second, when we backtrack on an edge e defining a path of length one in S_{1}, we redefine S_{1} by considering e as a single edge rather than a path of length one. Now it remains to check if $\operatorname{Ext}\left(\pi, S_{1}, S_{2}\right)$ can be checked in polynomial time. Given $S_{1} \in \mathcal{F}_{\pi}^{\prime}, S_{2} \subseteq E$, and an edge $e \in E \backslash\left(S_{1} \cup S_{2}\right)$, chosen as above, such that $S_{1} \cup\{e\} \in \mathcal{F}_{\pi}^{\prime}$, we can check in polynomial time whether there is an $X \in \mathcal{M}_{2}(G)$ such that $X \supseteq S_{1} \cup\{e\}$ and $X \cap S_{2}=\emptyset$ in the following way. First, we delete from G all edges in S_{2}, and all vertices incident to edges in S_{1}, except the end-points x and y of the single path \mathbf{P} in S_{1}. Let us call the resulting graph G^{\prime}. Then, we construct an auxiliary bipartite graph G^{b} from G^{\prime} as follows (see [38]). For every vertex $v \neq x, y$ of G^{\prime} we define two vertices v^{\prime} and $v^{\prime \prime}$ in G^{b}. In addition, G^{b} also contains two other vertices x^{\prime} and $y^{\prime \prime}$. For every edge $\{u, v\}$ in G^{\prime}, with $\{u, v\} \cap\{x, y\}=0$, we define two edges $\left\{u^{\prime}, v^{\prime \prime}\right\}$ and $\left\{u^{\prime \prime}, v^{\prime}\right\}$ in G^{b}. For each edge $\{x, u\}$ in G^{\prime}, we introduce an edge $\left\{u^{\prime}, x^{\prime \prime}\right\}$ in G^{b}, and for each edge $\{u, y\}$ in G^{\prime}, we introduce an edge $\left\{u^{\prime}, y^{\prime \prime}\right\}$ in G^{b}. It is easy to see that there is an $X \in \mathcal{M}_{2}(G)$ such that $X \supseteq S_{1} \cup\{e\}$ and $X \cap S_{2}=\emptyset$ if and only if there is a perfect matching in G^{b}.

Lemma 4 For a graph $G=(V, E)$, we have

$$
\begin{equation*}
\left|\mathcal{M}_{2}(G)\right| \leq\binom{\left|\mathcal{M}_{2}^{\prime}(G)\right|+1}{2} \tag{7}
\end{equation*}
$$

Proof. Note that each non-basic perfect 2-matching M in G can be decomposed into two distinct basic perfect 2-matchings M^{\prime} and $M^{\prime \prime}$. This can be done by decomposing each even cycle C in M into two edge-disjoint perfect matchings C^{\prime} and $C^{\prime \prime}$. The two basic perfect 2-matchings M^{\prime} and $M^{\prime \prime}$ are defined to contain the disjoint edges in M and the edges of the odd cycles in M. In addition, M^{\prime} contains the edges of the perfect matching C^{\prime} for each even cycle C in M and $M^{\prime \prime}$ contains the edges of the perfect matching $C^{\prime \prime}$ for each even cycle C in M. This decomposition implies (7).

Thus by generating all perfect 2-matchings of G and discarding the non-basic ones, we can generate all basic perfect 2-matchings. By Lemma 4, the total time for this generation is polynomial in $|V|,|E|$, and $\left|\mathcal{M}_{2}^{\prime}(G)\right|$. By Proposition 1 , we get an incremental polynomial time algorithm for enumerating $\mathcal{V}(P(G))$.

2.5.4 NP-hardness of Flashlight for enumerating vertices of 0/1-polyhedra

It is natural to ask whether the same method used for generating the vertices of 0/1-polytopes can be extended to polyhedra with $0 / 1$-vertices. In this section we answer this question in the negative: we show that the extension problem, on which the efficiency of this method relies, is generally NP-hard. Our reduction will use polyhedra associated with network matrices of the form (5). Note that, if the vertices of a polyhedron $P=P\left(A, \mathbf{1}_{m}\right)$, defined by (5), are integral, then the vertices of the polytope $P \cap\{0,1\}^{n}$ correspond to the transversals of the hypergraph $\mathcal{H}(A)$, which might be exponentially larger in cardinality than the minimal transversals. More directly, we have the following negative results.

Theorem 2 Let A is an $m \times n(0,1)$-network matrix. Then we have:
(i) For a set $S \subseteq[n]$, problem $\operatorname{Ext}\left(P\left(A, \mathbf{1}_{m}\right), S, \emptyset\right)$ is $N P$-complete.
(ii) For a set $S \subseteq[m]$, problem $\operatorname{Ext}\left(P\left(A^{T}, \mathbf{1}_{n}\right), S, \emptyset\right)$ is NP-complete.

Proof. We reduce the following monotone satisfiability problem, which is known to be NP-complete [28] (see also Section 4.2.1), to the two problems.

Problem Monotone SAT

Input: A conjunctive normal form (CNF) $\phi\left(x_{1}, \ldots, x_{N}\right)=C_{1} \wedge \ldots \wedge C_{M}$, where each $C_{j}, j=1, \ldots, M^{\prime}$, is a disjunction of some literals in $\left\{x_{1}, \ldots, x_{N}\right\}$, and each $C_{j}, j=M^{\prime}+1, \ldots, M$, is a disjunction of some literals in $\left\{\bar{x}_{1}, \ldots, \bar{x}_{N}\right\}$.
Question: Is there a satisfying truth assignment for CNF ϕ, that is, $x \in\{0,1\}^{N}$ such that $\phi(x)=1$?
(i) $\operatorname{Ext}\left(P\left(A, \mathbf{1}_{m}\right), S, \emptyset\right)$: Given a CNF ϕ, we define a network matrix A by constructing a directed tree $\mathbf{T}=(V, E)$ and a set \mathcal{P} of directed paths in \mathbf{T} as follows:

$$
\begin{align*}
& V=\left\{u_{i}^{\prime}, u_{i}^{\prime \prime} \mid i \in[N]\right\} \cup\left\{c_{j} \mid j \in[M]\right\} \cup\left\{u_{0}\right\} \\
& E=\left\{\left(u_{i}^{\prime}, u_{0}\right),\left(u_{0}, u_{i}^{\prime \prime}\right) \mid i \in[N]\right\} \\
& \quad \cup\left\{\left(u_{0}, c_{j}\right) \mid j \in\left[M^{\prime}\right]\right\} \cup\left\{\left(c_{j}, u_{0}\right) \mid j \in\left\{M^{\prime}+1, \ldots, M\right\}\right\} \tag{8}\\
& \mathcal{P}=\left\{\left(u_{i}^{\prime}, u_{0}, u_{i}^{\prime \prime}\right) \mid i \in[N]\right\} \cup\left\{\left(u_{i}^{\prime}, u_{0}, c_{j}\right) \mid x_{i} \in C_{j}\right\} \cup\left\{\left(c_{j}, u_{0}, u_{i}^{\prime \prime}\right) \mid \bar{x}_{i} \in C_{j}\right\}
\end{align*}
$$

Here vertices u_{i}^{\prime} and $u_{i}^{\prime \prime}, i \in[N]$, correspond to positive and negative literals x_{i} and \bar{x}_{i}, respectively, and $c_{j}, j \in[M]$ corresponds to clause C_{j} in ϕ. Finally, we define the subfamily S of \mathcal{P} by

$$
S=\left\{\left(u_{i}^{\prime}, u_{0}, u_{i}^{\prime \prime}\right) \mid i \in[N]\right\}
$$

and claim that $\operatorname{Ext}\left(P\left(A, \mathbf{1}_{n}\right), S, \emptyset\right)$ is equivalent to Monotone SAT.
From Proposition 2, we note that $\operatorname{Ext}\left(P\left(A, \mathbf{1}_{n}\right), S, \emptyset\right)$ is to check if S can be extended to a minimal path cover for $(\mathbf{T}, \mathcal{P})$, that is, a minimal family of paths whose union contains all the arcs in E. Thus, to see our claim, we show that ϕ is satisfiable if and only if S is extendable to a minimal path cover for $(\mathbf{T}, \mathcal{P})$.

Let X be such a minimal extension, and let us define an assignment by setting $x_{i}:=1$ if and only if $\left(u_{i}^{\prime}, u_{0}\right)$ is covered with $X-S$. Since the minimality of X implies that any path in S is not covered with $X-S,\left(u_{0}, u_{i}^{\prime \prime}\right)$ is covered with $X-S$ only if $x_{i}=0$. Now, since X is a path cover, for each $j \in\left[M^{\prime}\right]=\left\{1, \ldots, M^{\prime}\right\},\left(u_{0}, c_{j}\right)$ is covered with some path in X, and hence, C_{j} contains a literal x_{i} with value 1 . Similarly, for each $j \in\left[M^{\prime \prime}\right]=\left\{M^{\prime}+1, \ldots, M\right\}$, $\left(c_{j}, u_{0}\right)$ is covered with some path in X, and hence C_{j} contains a literal \bar{x}_{i} with value 0 . These imply that CNF ϕ is satisfiable.

Conversely, from any satisfying assignment x for ϕ we can construct a minimal path cover X that contains S by setting $X=S \cup$
$\left\{\left(u_{i}^{\prime}, u_{0}, c_{j}\right) \mid i\right.$ is the least index such that $x_{i}=1$ and $x_{i} \in C_{j}$ for $\left.j \in\left[M^{\prime}\right]\right\} \cup$ $\left\{\left(c_{j}, u_{0}, u_{i}^{\prime \prime}\right) \mid i\right.$ is the least index such that $x_{i}=0$ and $\bar{x}_{i} \in C_{j}$ for $\left.j \in\left[M^{\prime \prime}\right]\right\}$.

This completes the proof of (i).
(ii) $\operatorname{Ext}\left(P\left(A^{T}, \mathbf{1}_{n}\right), S, \emptyset\right)$: Given a CNF ϕ, we define a network matrix A (that is, a directed tree $\mathbf{T}=(V, E)$ and a set \mathcal{P} of directed paths in $\mathbf{T})$ by (8). Furthermore, we define the subset S of arcs by

$$
S=\left\{\left(u_{0}, c_{j}\right) \mid j \in\left[M^{\prime}\right]\right\} \cup\left\{\left(c_{j}, u_{0}\right) \mid j \in\left[M^{\prime \prime}\right]\right\}
$$

and claim that $\operatorname{Ext}\left(P\left(A^{T}, \mathbf{1}_{m}\right), S, \emptyset\right)$ is equivalent to Monotone SAT.
Indeed, from Proposition 2, we derive that $\operatorname{Ext}\left(P\left(A^{T}, \mathbf{1}_{m}\right), S, \emptyset\right)$ is to check if S can be extended to a minimal cut conjunction for $(\mathbf{T}, \mathcal{P})$, that is, a minimal set of arcs that hits every directed path in \mathcal{P}. Thus, to see our claim, we show that ϕ is satisfiable if and only if S is extendable to a minimal cut conjunction for $(\mathbf{T}, \mathcal{P})$.

Let X be such a minimal extension. Then clearly, it can be obtained from S and exactly one of the two arcs $\left(u_{i}^{\prime}, u_{0}\right)$ and $\left(u_{0}, u_{i}^{\prime \prime}\right)$ for every $i \in[N]$ (no other arc is contained in $X)$. This defines an assignment by setting $x_{i}:=1$ if and only if $\left(u_{i}^{\prime}, u_{0}\right) \notin X$ (that is, $\left.\left(u_{0}, u_{i}^{\prime \prime}\right) \in X\right)$. Now the minimality of X implies that for each $j \in\left[M^{\prime}\right]$, there is a path $\left(u_{i}^{\prime}, u_{0}, c_{j}\right)$ in \mathcal{P} such that $\left(u_{i}^{\prime}, u_{0}\right) \notin X$, and and similarly, for $j=M^{\prime}+1, \ldots, M$, there is a path $\left(c_{j}, u_{0}, u_{i}^{\prime \prime}\right)$ in \mathcal{P} such that $\left(u_{0}, u_{i}^{\prime \prime}\right) \notin X$. This implies that CNF ϕ is satisfiable.

Conversely, from any satisfying assignment x for ϕ we can get a minimal cut conjunction X that contains S setting

$$
X=S \cup\left\{\left(u_{0}, u_{i}^{\prime \prime}\right) \mid x_{i}=1\right\} \cup\left\{\left(u_{i}^{\prime}, u_{0}\right) \mid x_{i}=0\right\}
$$

We conclude with the following remark. If flashlight works it results in a polynomial delay algorithm, while we get only an incremental polynomial one using the supergraph approach. However, for this reason, the flashlight subroutine is frequently NP-hard.

For example, for the transversal hypergraph problem flashlight techniques calls the following decision subproblem. Given a hypergraph H and a subset of its vertices X, whether X can be extended to a minimal transversal of H. A simple criterion is given in [13], see also [7]. However, the corresponding conditions are NP-hard to verify [13] already for graphs [7] unless the size of X is bounded by a constant.

The same happens for many generating problems on graphs. For example, given a (directed) graph $G=(V, E)$, a pair of vertices $s, t \in V$, and a subset $X \subseteq E$, it is NP-hard to decide whether X can be extended to a simple (directed) cycle, or to an s, t (directed) path, or to a minimal s, t-cut in G [14].

2.6 Projection techniques

The proof of Lemmas 1 and 2 is based on the following enumeration technique, developed originally in [49] (see also [31] and [36]). Let $W=[w]=\{1, \ldots, w\}$ be a finite set of elements, and let π be a monotone property defined over 2^{W}, that is, all the sets Y with $X \subseteq Y \subseteq W$ satisfy property π, if $X \subseteq W$ satisfies π. Here we assume that W satisfies π. Let \mathcal{F}_{π} be the family of minimal subsets satisfying π. By assumption, we have $\mathcal{F}_{\pi} \neq \emptyset$.

For $i=1, \ldots, w$, denote by $[i: w]$ the set $\{i, i+1, \ldots, w\}$, where we define $[w+1: w]=\emptyset$. By definition, we have $[1, i]=[i]$. We shall say that a set $X \subseteq W i$-minimally satisfies π if $X \supseteq[i: w], X$ satisfies π, and $X \backslash\{j\}$ does not satisfy π for all $j \in X \cap[i-1]$. Thus, $(w+1)$-minimally satisfying sets are just the minimal satisfying sets, i.e., such that in the family \mathcal{F}_{π}. For $i=1, \ldots, w$, denote by \mathcal{F}_{π}^{i} the family of sets that i-minimally satisfy property π. Given $i \in W$ and $X \in \mathcal{F}_{\pi}^{i}$, denote by $\mathcal{F}_{\pi}(i, X)$ the family of minimal subsets $Y \subseteq[i-1]$, such that $X \cup Y \backslash\{i\}$ satisfies π.

Proposition $7([\mathbf{2 1}, \mathbf{3 6}])$ Let $\mathcal{F}_{\pi}, \mathcal{F}_{\pi}^{i}$, and $\mathcal{F}_{\pi}(i, X)$ be defined as above. Then
(i) $\left|\mathcal{F}_{\pi}^{i}\right| \leq\left|\mathcal{F}_{\pi}\right|$ holds for all $i \in[w+1]$.
(ii) $\left|\mathcal{F}_{\pi}(i, X)\right| \leq\left|\mathcal{F}_{\pi}^{i+1}\right|$ holds for all $i \in[w]$ and all $X \in \mathcal{F}_{\pi}^{i}$.

Procedure GEN-C (π, i, X) :

Input: A monotone property π, an index $i \in[w]$, and an i-minimal satisfying set $X \in \mathcal{F}_{\pi}^{i}$.
Output: The family \mathcal{F}_{π} of all minimal subsets of $[w]$ satisfying π.

```
    if \(i=w+1\) then
    output \(X\);
    else
        if \(X \backslash\{i\}\) is satisfies \(\pi\) then
            GEN-C \((\pi, i+1, X \backslash\{i\})\);
            else
                GEN-C \((\pi, i+1, X)\);
                for each minimal set \(Y \in \mathcal{F}_{\pi}(i, X)\) do
                        if \(X \cup Y \backslash\{i\} \in \mathcal{F}_{\pi}^{i+1}\) then
                            Compute the lexicographically largest set \(Z \subseteq X \cup Y\) s.t.
                                \(Z \in \mathcal{F}_{\pi}^{i}\).
                                if \(Z=X\) then
                        \(\operatorname{GEN}-\mathrm{C}(\pi, i+1, X \cup Y \backslash\{i\}) ;\)
```

Figure 3: The projection method

Let us now formally describe a general procedure for generating all minimal sets that satisfy monotone property π.

Given $i \in[w]$, and $X \in \mathcal{F}_{\pi}^{i}$, we assume in the algorithm below that the minimal sets in $\mathcal{F}_{\pi}(i, X)$ are computed by calling a process $\mathcal{A}(i, X)$, in which, once $\mathcal{A}(i, X)$ finds an element $Y \in \mathcal{F}_{\pi}(i, X)$, it returns control to the calling process $\operatorname{GEN}(\pi, i, X)$, and when called the next time, it returns the next element of $\mathcal{F}_{\pi}(i, X)$ that has not been generated yet, if such an element exits.

Proposition $8([9,49])$ If the family $\mathcal{F}_{\pi}(i, X)$ can be enumerated in incremental polynomial time using polynomial space, for every $i \in[w]$ and every $X \in \mathcal{F}_{\pi}^{i}$, then so can the family \mathcal{F}_{π} using GEN-C.

3 Enumerating vertices of polyhedra associated with (0,1)-network matrices

In this section, we show how to enumerate the families $\mathcal{F}_{\pi}(i, X)$, in the two cases of path covers and cut conjunctions on trees.

3.1 Enumerating minimal path covers

Let $\mathbf{T}=(V, E)$ be a directed tree, and let \mathcal{P} be a collection of directed paths in \mathbf{T}. To apply the generation algorithm described in the previous section, we order the paths in \mathcal{P} arbitrarily, say $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$, let $W=[n]$, and for each $X \subseteq W$, let π be the property that $\left\{P_{i} \mid i \in X\right\}$ is a path cover. For simplicity, we may sometimes refer to a path P_{i} directly by its index i. In this setting, we show the following.

Lemma 5 Given an $i \in W$ and a set $X \in \mathcal{F}_{\pi}^{i}$ such that $X \backslash\{i\}$ is not a path cover, all elements of the family $\mathcal{F}_{\pi}(i, X)$ can be enumerated with delay $O(|V||\mathcal{P}|)$ and space $O(|V|+$ $|\mathcal{P}|)$.

To generate the family $\mathcal{F}_{\pi}(i, X)$, let U be a set of arcs in E that are not covered with the paths in $X \backslash\{i\}$, and we define a hypergraph $\mathcal{H} \subseteq 2^{U}$ by $\mathcal{H}=\left\{P_{j} \cap U \mid j \in W \backslash X\right\}$. By definition, we have $U \subseteq P_{i}$ and \mathcal{H} is interval, that is, every hyperedge in \mathcal{H} defines an interval (that is, a subpath) in U, where U is regarded as a path obtained from P_{i} by contracting arcs which are contained in some path $P_{j} \in X \backslash\{i\}$.

Now, we can see that $\mathcal{F}_{\pi}(i, X)$ corresponds the family of all minimal covers of an interval hypergraph \mathcal{H}, and show that they can be enumerated efficiently, from which Lemma 4 follows.

The latter problem is known to be solvable in incremental polynomial time. Indeed, an interval hypergraph \mathcal{H} is 2 -Helly: a subset of hyperedges from \mathcal{H} has a common vertex whenever every 2 hyperedges of this subset have one. The transposed hypergraph \mathcal{H}^{T} is 2 -conformal [4], and for this class for hypergraphs, it is known that the set of minimal transversals can be enumerated in incremental polynomial time [9]. Equivalently, if \mathcal{H}^{T} is 2-conformal, all minimal covers for \mathcal{H} can be enumerated in incremental polynomial time. Here we obtain the following stronger result, from which Lemma 4 follows.

Theorem 3 Given an interval hypergraph $\mathcal{H} \subseteq 2^{U}$, all minimal covers of \mathcal{H} can be generated with delay $O(|U||\mathcal{H}|)$ and in space $O(|U|+|\mathcal{H}|)$.

Proof of Theorem 3. Let $U=\{1, \ldots,|U|\}$, and each hyperedge H in an interval hypergraph \mathcal{H} is given by $I_{H}=\left[L_{H}: R_{H}\right]$, where $L_{H} \leq R_{H}$. Let $X=\left\{\left[L_{1}: R_{1}\right], \ldots,\left[L_{k}: R_{k}\right]\right\}$ be a sub-hypergraph of \mathcal{H}, that is, $X \subseteq \mathcal{H}$. If X is a minimal cover then $L_{i} \neq L_{j}$ clearly holds for all i and j with $i \neq j$, since no interval in X contains another. Moreover, we have the following characterization.

Proposition 9 Let $X=\left\{\left[L_{1}: R_{1}\right], \ldots,\left[L_{k}: R_{k}\right]\right\}$ be a sub-hypergraph of $\mathcal{H} \subseteq 2^{U}$, such that $L_{1}<L_{2}<\ldots<L_{k}$. Then X is a minimal cover if and only if (i) $L_{i+1} \leq R_{i}+1<L_{i+2}$, for $i=1, \ldots, k-2$, (ii) $L_{k} \leq R_{k-1}+1<R_{k}+1$, and (iii) $\left[L_{1}: R_{k}\right]=U$.

Proof. Suppose that $X \subseteq \mathcal{H}$ be a minimal cover. Then the minimality of X implies $R_{k-1}<R_{k}$. Note also that, for all $i=1, \ldots, k-1$, we have $L_{i+1} \leq R_{i}+1$, for otherwise the
point $R_{i}+1$ cannot be covered by any interval in X. Furthermore, for $i=1, \ldots, k-2$, we have $L_{i+2}>R_{i}+1$, for otherwise, $\left[L_{i}: R_{i}\right] \cup\left[L_{i+2}: R_{i+2}\right] \supseteq\left[L_{i+1}: R_{i+1}\right]$, contradicting the minimality of X. Since X is a cover of U, (i) and (ii) imply $\left[L_{1}: R_{k}\right]=U$.

Conversely, if $X=\left\{\left[L_{1}: R_{1}\right], \ldots,\left[L_{k}: R_{k}\right]\right\}$ satisfies properties (i)-(iii) stated in the proposition, then it is not difficult to see that X is a minimal cover of U.

Let \mathcal{F} be the family of minimal collections of intervals in \mathcal{H} that cover U, and let \mathcal{F}^{\prime} be the family of all collections $X=\left\{\left[L_{1}: R_{1}\right], \ldots,\left[L_{k}: R_{k}\right]\right\}$ of intervals in \mathcal{H} satisfying properties (i)-(ii) of Proposition 9 such that $L_{1}=1$. By definition, we have $\mathcal{F} \subseteq \mathcal{F}^{\prime}$, and any $X \in \mathcal{F}^{\prime}$ is a minimal cover of $\left[1: R_{k}\right] \subseteq U(=\{1, \ldots,|U|\})$. In our backtracking procedure, we shall always choose S_{1} from \mathcal{F}^{\prime}.

Given two disjoint subsets $S_{1}=\left\{\left[L_{1}: R_{1}\right], \ldots,\left[L_{k}: R_{k}\right]\right\} \in \mathcal{F}^{\prime}$ and $S_{2} \subseteq \mathcal{H}$, any interval $I=\left[L_{k+1}: R_{k+1}\right] \in \mathcal{H} \backslash\left(S_{1} \cup S_{2}\right)$ satisfies $S_{1} \cup\{I\} \in \mathcal{F}^{\prime}$ if and only if $R_{k-1}+1<L_{k+1} \leq R_{k}+1$ and $R_{k+1}>R_{k}$. Furthermore, by Proposition 9, one can verify whether there is an $X \in \mathcal{F}$ such that $X \supseteq S_{1} \cup\{I\}$ and $X \cap S_{2}=\emptyset$ in $O(|\mathcal{H}|)$ timed by checking if

$$
\begin{equation*}
\bigcup\left\{H \in \mathcal{H} \backslash\left(S_{1} \cup S_{2}\right) \mid L_{H}>R_{k}+1\right\} \supseteq\left[R_{k+1}+1: \max U\right] . \tag{9}
\end{equation*}
$$

Since the depth of the backtracking tree is at most $|U|$, by Proposition 9, the theorem follows.

3.2 Enumerating minimal cut conjunctions

Let $\mathbf{T}=(V, E)$ be a directed tree with a vertex set V and an arc set E, and let $\mathcal{P}=\left\{\left(s_{i}, t_{i}\right) \mid\right.$ $s_{i}, t_{i} \in V$, for $\left.i=1, \ldots, n\right\}$ be a collection of directed paths in \mathbf{T}, defined by source-sink pairs. To apply the generation algorithm described in the previous section, we let $W=E$, and for each $X \subseteq E$, we let π be the property that the graph $(V, E \backslash X)$ has no path between s_{i} and t_{i} for $i=1, \ldots, n$. Clearly, we may assume, without loss of generality, that every leaf of \mathbf{T} is either a source or sink, or both. Let us pick a vertex $r \in V$ arbitrarily to be a root of \mathbf{T}, and label all arcs of \mathbf{T} by their breadth- first search orders $\{1, \ldots,|E|\}$ from r, in the underlying tree of \mathbf{T}.

Lemma 6 Given an arc $i \in W$ and a set $X \in \mathcal{F}_{\pi}^{i}$ of i-minimal cut conjunctions such that $X \backslash\{i\}$ is not a cut conjunction, all elements of the family $\mathcal{F}_{\pi}(i, X)$ can be enumerated with delay $O(|V|)$ and space $O(|V|)$.

Proof. Since $X \backslash\{i\}$ does not satisfy π, the graph $(V, E \backslash(X \backslash\{i\}))$ contains a set of paths $\mathcal{P}^{\prime} \subseteq \mathcal{P}$. Since no such path exists in $(V, E \backslash X)$, each such path must contain arc $i=(a, b)$. Assume without loss of generality that the arc (a, b) points towards r, that is, b is closer to r than a in the underlying tree of \mathbf{T}. Note that the arcs in the subtree of \mathbf{T} rooted at a, (i.e., the arcs that are further from r than $(a, b))$ are labeled with values higher than i. Since all the paths in \mathcal{P}^{\prime} avoid all the arcs in $X \backslash\{i\}$ such that $X \supseteq\{i+1, \ldots, n\}$, none of these arcs
appears in the paths in \mathcal{P}^{\prime}. In other words, all the paths in \mathcal{P}^{\prime} have a common source a, \mathcal{P}^{\prime} forms an arborescence $\mathbf{T}^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ rooted at a, connecting a to sinks in \mathcal{P}^{\prime}.

The family $\mathcal{F}_{\pi}(i, X)$ thus consists of all minimal collection of arcs whose removal disconnects a from every sink of \mathcal{P}^{\prime}. We assume without loss of generality that all sink of \mathcal{P}^{\prime} are leaves in \mathbf{T}^{\prime}, since disconnecting a non-leaf v from a also means disconnecting from a all the nodes in the sub-arborescence of \mathbf{T}^{\prime} rooted at v. To find the elements of $\mathcal{F}_{\pi}(i, X)$, we again use a backtracking method that is based on the one described in the previous section.

Let S_{1} and S_{2} be two disjoint subsets of arcs in E^{\prime} such that they are extendable to some element of $\mathcal{F}_{\pi}(i, X)$, that is, there exists a $Y \in \mathcal{F}_{\pi}(i, X)$ with $Y \supseteq S_{1}$ and $Y \cap S_{2}=\emptyset$. Let $j \in E^{\prime} \backslash\left(S_{1} \cup S_{2}\right)$. Then it is not difficult to see that $S_{1} \cup\{j\}$ and S_{2} are extendable to some element of $\mathcal{F}_{\pi}(i, X)$ if and only if $S_{1} \cup\{j\}$ forms an antichain, that is, there is no directed path in \mathbf{T}^{\prime} containing two distinct arcs in S_{1}. Therefore, such an arc j can be found in $O(|V|)$ time. Similarly, S_{1} and $S_{2} \cup\{j\}$ are extendable to some element of $\mathcal{F}_{\pi}(i, X)$ if and only if $E^{\prime} \backslash\left(S_{2} \cup\{j\}\right)$ is a cut conjunction of \mathcal{P}^{\prime}, which can be checked in $O(|V|)$ time. Since the depth of the backtracking tree is at most $|V|$, we have an $O\left(|V|^{2}\right)$ delay algorithm. To reduce the complexity, we modify the algorithm as follows.

Let us first relabel all arcs of \mathbf{T}^{\prime} by their breadth-first search orders $\left\{1, \ldots,\left|E^{\prime}\right|\right\}$ from a. In the algorithm, starting from $S_{1}=S_{2}=\emptyset$, we try to add the least arc j such that $S_{1} \cup\{j\}$ and S_{2} are extendable to some element of $\mathcal{F}_{\pi}(i, X)$. Moreover, when we add an arc j to S_{1}, we add to S_{2} all the arcs j^{\prime} such that j and j^{\prime} do not form an antichain, i.e., there exists a directed path between j and j^{\prime}, since they are never added to S_{1} if $j \in S_{1}$. Note that by this modification, all the arcs in $E^{\prime} \backslash\left(S_{1} \cup S_{2}\right)$ can be added to S_{1}, and by the new labeling of arcs, when we add the least arc $j=(c, d)$ to S_{1}, we just add to S_{2} all the arcs in the sub-arborescence of \mathbf{T}^{\prime} rooted at d. Thus we can go to the left child (and backtrack, that is, go from the left child to the parent) in $O(\Delta)$ time, where Δ denotes the number of the arcs in the sub-arborescence of \mathbf{T}^{\prime} rooted at d.

On the other hand, when we add an arc j to S_{2}, we modify \mathbf{T}^{\prime} by contracting j. Then we can see that $j=(c, d)$ can be added to S_{2} if and only if $c=a$ and d is a leaf of the current T^{\prime}, and hence we can go to the right child (and backtrack) in $O(1)$ time.

Since the above Δ 's are pairwise disjoint in any path in the backtracking tree, the modified algorithm generates the elements of $\mathcal{F}_{\pi}(i, X)$ with $O(|V|)$ delay and in $O(|V|)$ space.

4 How to prove that a generation problem is hard?

As we noted earlier, in view of Proposition 1, if $\operatorname{Dec}(P, \mathcal{V}(P), \mathcal{X})$ is NP-hard then no algorithm can generate all the elements of $\mathcal{V}(P)$ in incremental or total polynomial time, unless $\mathrm{P}=\mathrm{NP}$. Thus, generation problems can be NP-hard.

Let us remark that there are many generation problems where already finding the first output object is difficult (for instance, generate all Hamiltonian cycles of a given graph). Let us note however that for a monotone generation problem with a polynomial oracle it is always easy to find the first (few) output objects. Furthermore, whenever we can generate
exponentially many output objects then, by the definition of incremental efficiency, the rest of the generation cannot be NP-hard. Hence, the general structure of an NP-hardness proof for a monotone generation problem consists of showing that after we got polynomially many output objects, deciding the existence of a next one is NP-hard. We are aware of only two techniques to achieve this goal, which we are going to describe here.

4.1 Reduction from stability number

As an example for an NP-hard monotone generation problem, let us consider integer programming. Given a system $A x \geq b$ of m linear inequalities in n integer variables, that is, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, we are looking for integral solutions $x \in \mathbb{Z}^{n}$ such that $0 \leq x \leq c$, where $c \in \mathbb{R}_{+}^{n}$ is a fixed non-negative vector. We get a binary programming problem if all n coordinates of c are equal to 1 , that is, $c=\mathbf{1}_{n}$. It is well-known that in general even the feasibility of such systems is NP-hard to verify. However, if matrix A is non-negative, $A \geq 0$ then the system is feasible if and only if $A c \geq b$. In this case the problem is to generate all integral (i) minimal feasible and (ii) maximal infeasible vectors. It is shown in [11] that (i) can be solved in incremental quasi-polynomial time, while (ii) is NP-hard.

Proposition 10 [11]. Given a system $A x \geq b$ with $A \geq 0$ and a family \mathcal{X} of its integral maximal infeasible vectors, it is NP-hard to decide whether the family \mathcal{X} is complete or it can be extended. The problem remains $N P$-hard even if A is a $(0,1)$-matrix, $c=\mathbf{1}_{n}$, and all coordinates of b but one are equal to 1 .

Proof. Let us consider the well-known NP-complete decision problem, called Stability Number: Given a graph $G=(V, E)$ and a threshold $t \geq 2$, decide if G contains a stable set of size t, or not. Let us introduce $n=|V|$ binary variables $x_{v}, v \in V$, and write $m-1=|E|$ inequalities of the form $x_{v}+x_{v^{\prime}} \geq 1$ corresponding to the edges $e=\left(x_{v}, x_{v^{\prime}}\right) \in E$, followed by a single inequality $\sum_{v \in V} x_{v} \geq n-t$. It is easy to verify that if x is the characteristic vector of an edge $e \in E$ then $\mathbf{1}_{n}-x$ is a maximal infeasible vector. Furthermore, there is another such vector if and only if G has a stable set of size t.

A few more generation problems whose hardness is proved by reduction from stability number can be found in in $[16,15]$ Typically, the input of such a problem contains at least one unbounded parameter. In the above example there is exactly one: the coordinate $n-t$ of vector b.

4.2 Reduction from satisfiability: sausage techniques

4.2.1 Reformulations of satisfiability in terms of monotone DNFs and CNFs and corresponding hard generation problems

Let \mathcal{C} be a CNF of k Boolean variables x_{1}, \ldots, x_{k}. It is well-known that verifying the satisfiability of \mathcal{C} is an NP-complete problem that we refer to as SAT.

Remark 1 SAT remains NP-complete even if we assume additionally that:
(i) No literal appears in all clauses of \mathcal{C}. (Indeed, if x (or \bar{x}) appears in all clauses then obviously C is satisfiable.)
(ii) For every variable x both literals x and \bar{x} appear in \mathcal{C} (and not in the same clause, of course). (Indeed, we can substitute $x=1$, if x appears in \mathcal{C} and \bar{x} does not and, respectively, $x=0$ if \bar{x} appears and x does not. In both cases the obtained CNF \mathcal{C}^{\prime} is satisfiable if and only if \mathcal{C} is satisfiable.)
It is also known ([48], Theorem 2.1) that SAT remains NP-hard even when
(iii) each clause contains at most 3 variables and each variable appears in at most 3 clauses (that is, when each variable appears in \mathcal{C} once negated, once non-negated, and it may appear once more, either negated or not).

For example, the following CNF satisfies all above conditions (i), (ii), (iii):

$$
\mathcal{C}=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\left(x_{2} \vee x_{3}\right)\left(x_{1} \vee \vee x_{3}\right)\left(\bar{x}_{1} \vee \bar{x}_{2}\right) .
$$

Given a $\operatorname{CNF} \mathcal{C}$, let us assign a non-negated literal y_{i} to each negated literal \bar{x}_{i} of \mathcal{C}, denote the obtained monotone CNF by $C=C(\mathcal{C})$ and the dual monotone DNF by $D=D(\mathcal{C})$. For the above example we get

$$
\begin{gather*}
C=\left(x_{1} \vee y_{2} \vee y_{3}\right)\left(x_{2} \vee x_{3}\right)\left(x_{1} \vee y_{2} \vee x_{3}\right)\left(y_{1} \vee y_{2}\right), \tag{10}\\
D=x_{1} y_{2} y_{3} \vee x_{2} x_{3} \vee x_{1} x_{3} \vee y_{1} y_{2} .
\end{gather*}
$$

Let us also introduce a pair of dual CNF C_{0} and DNF D_{0} as follows:

$$
\begin{gather*}
C_{0}=\left(x_{1} \vee y_{1}\right) \wedge \ldots \wedge\left(x_{k} \vee y_{k}\right), \tag{11}\\
D_{0}=x_{1} y_{1} \vee \ldots \vee x_{k} y_{k} .
\end{gather*}
$$

Now we can reformulate SAT in many trivially equivalent ways.
Proposition 11 The following 11 claims are equivalent:
(0) \mathcal{C} is not satisfiable,
(1) $D_{0} \geq C, \quad$ (2) $D_{0} \vee C \equiv D_{0}$, (3) $\bar{D}_{0} \wedge C \equiv 0$,
(4) $C \Rightarrow D_{0}$, (5) $C \wedge D_{0} \equiv C$, (6) $\bar{C} \vee D_{0} \equiv 1$;
(1') $C_{0} \leq D, \quad\left(2^{\prime}\right) C_{0} \wedge D \equiv C_{0}, \quad\left(3^{\prime}\right) C_{0} \wedge \bar{D} \equiv 0$,
(4') $D \Leftarrow C_{0}, \quad\left(5^{\prime}\right) D \vee C_{0} \equiv D, \quad\left(6^{\prime}\right) D \vee \bar{C}_{0} \equiv 1$.

Proof. Equivalence of (1-5) is obvious. Furthermore, $\left(i^{\prime}\right)$ is dual to (i) for $i=1,2,3,4,5$. It remains to show that (0) and (1) are equivalent. Indeed, both (0) and (1) are obviously equivalent to the following claim: each prime implicant of C contains a pair x_{j}, y_{j} for some $j \in[k]=\{1, \ldots, k\}$.

Remark 2 Thus, given a monotone DNF $D=c_{1} \vee \ldots \vee c_{n}$ and $C N F C=d_{1} \wedge \ldots \wedge d_{m}$ of common variables x_{1}, \ldots, x_{k}, inequality $D \geq C$ is $N P$-hard to verify. In contrast, $D \leq C$ (or equivalently, $D \Rightarrow C, D \vee C \equiv C, C \wedge D \equiv D$) can be easily verified in linear time. To do so, choose some $i \in[n]=\{1, \ldots, n\}$, set all variables of c_{i} to 1 , and all others to 0 . Then, obviously, $D=1$. It is also clear that $C \nsupseteq D$ if we get $c_{j}=0$ for some $j \in\{1, \ldots, m\}$; otherwise, $C=1$ whenever $D=1$, that is, $C \geq D$.

Let us also note that verification of the identity $C \equiv D$ is exactly dualization. As we already mentioned, this problem can be solved in quasi-polynomial time and, hence, it is not NP-hard unless each problem from NP is quasi-polynomially solvable. Moreover, verifying each of the following dual identities

$$
D_{1} \vee \ldots \vee D_{n} \equiv C, \quad C_{1} \wedge \ldots \wedge C_{n} \equiv D
$$

for arbitrary monotone DNFs D, D_{1}, \ldots, D_{n} and $C N F s C, C_{1}, \ldots, C_{n}$ are obviously equivalent to dualization too. In contrast, verifying identities

$$
D_{1} \wedge \ldots \wedge D_{n} \equiv C_{0}, \quad C_{1} \vee \ldots \vee C_{n} \equiv D_{0}
$$

are $N P$-hard, since they generalize $D \wedge C_{0} \equiv C_{0}$ and $C \vee D_{0} \equiv D_{0}$, respectively.
Finally, let us note that $C \bar{D}_{0}$ is equal to a "dipole" $C N F$, where all clauses of C are positive (contain no negations) and all clauses of $\bar{D}_{0}=\left(\bar{x}_{1} \vee \bar{y}_{1}\right) \ldots\left(\bar{x}_{k} \vee \bar{y}_{k}\right)$ are negative (contains only negated literals). Hence, equivalence of claims (0) and (5) implies that SAT is NP-complete already for dipole CNFs, or in other words, that Monotone SAT is NP-complete, a fact that we already made use of in Section 2.5.4.

Some statements from Proposition 11 can be naturally reformulated as (NP-hard) generation problems. For example, (2) $D_{0} \vee C \equiv D_{0}$, calls for enumerating all prime implicants of a monotone Boolean expression $D_{0} \vee C$. One can immediately get k of them, $x_{i} y_{i}$ for $i=1, \ldots k$, however, it is NP-hard to decide whether the obtained list is complete or it can be extended. In the next sections we will develop this approach and derive corollaries for reliability theory and vertex enumeration.

Now, let us consider two similar dual identities

$$
\begin{equation*}
D_{1} \wedge \ldots \wedge D_{n} \equiv D_{0}, \quad C_{1} \vee \ldots \vee C_{n} \equiv C_{0} \tag{12}
\end{equation*}
$$

where D_{0} and C_{0} are defined by (11).
Proposition 12 It is a coNP-complete problem to verify any of the identities of (12) already for quadratic DNFs D_{1}, \ldots, D_{n} and $C N F s C_{1}, \ldots, C_{n}$.

Proof. By duality, it will suffice to prove the first claim only. We will reduce it from SAT. Let \mathcal{C} be a CNF (satisfying conditions (i), (ii), (iii) of Remark 1) of k variables x_{1}, \ldots, x_{k}. Let us substitute y_{j} for each \bar{x}_{j} and get a monotone CNF $C=d_{1} \wedge \ldots \wedge d_{n}$.

Now for $i=1, \ldots, n$ let us set in (12) $D_{i}=D_{0} \vee d_{i}$. Conventionally, we delete the term $x_{j} y_{j}$ from D_{i} if the elementary disjunction d_{i} contains x_{j} or y_{j}, for $i=1, \ldots, n$ and $j=1, \ldots, m$. Then, by assumption (i), we have $D_{1} \wedge \ldots \wedge D_{n}=D_{0}$ if and only if the CNF \mathcal{C} is not satisfiable.

Let us remark that the following, more general, identities

$$
\begin{equation*}
D_{1} \wedge \ldots \wedge D_{n} \equiv D, \quad C_{1} \vee \ldots \vee C_{n} \equiv C \tag{13}
\end{equation*}
$$

can be reduced to dualization, and hence, verified in quasi-polynomial time in the next two special cases.

Case 1. All DNFs D_{i} (CNFs C_{i}) are linear, or in other words, they are just elementary disjunctions $D_{i}=d_{i}=x_{i}^{1} \vee \ldots \vee x_{i}^{k_{i}}$ (respectively, elementary conjunctions $C_{i}=c_{i}=$ $\left.x_{i}^{1} \ldots x_{i}^{k_{i}}\right)$ for $i=1, \ldots, n$. In this case (13) is reduced to the form $D \equiv C$ which is exactly dualization.

Case 2. The number of clauses in each of the CNFs C_{1}, \ldots, C_{n} (respectively, DNFs D_{1}, \ldots, D_{n}) are bounded by a constant. In this case each DNF D_{i} (respectively, CNF C_{i}) can be efficiently dualized in polynomial time, or even in parallel, see [7, 9].

We can reformulate Proposition 12 as NP-hardness of the following generation problem: Product of Hypergraphs. To each monotone DNF D let us assign (as usual) a hypergraph $H=(V, E)$ whose vertices are the variables and whose edges are the prime implicants of D.

Proposition 13 Given n hypergraphs $H_{i}=\left(V, E_{i}\right)$ on the common vertex set V, generate all minimal subsets of V which contain an edge of H_{i} for each $i=1, \ldots, n$. This generation problem is NP-hard already for graphs.

Proof. We can just translate the previous proof (of Proposition 12) in terms of graphs. Assign a vertex u_{i} (respectively, v_{i} to each literal x_{i} (respectively, y_{i}) for $i=1, \ldots, k$, introduce a new vertex w, and set $V=\left\{w, u_{1}, v_{1} \ldots, u_{k}, v_{k}\right\}$. Then for $i=1, \ldots, n$ to each quadratic conjunction $D_{i}=D_{0} \vee d_{i}$ let us assign the graph $G_{i}=\left(V, E_{i}\right)$ in which E_{i} contains edges $\left(v_{0}, u_{j}\right)$ (respectively, $\left.\left(v_{0}, v_{j}\right)\right)$ for each literal x_{j} (respectively, y_{j}) in d_{i}. By Proposition 12 , the product of the obtained n graphs G_{i}, \ldots, G_{n}, or in other words, all minimal subsets of V which contain an edge from E_{i} for each $i=1, \ldots, n$, is NP-hard to generate.

Another corollary of Propositions 12,13 is also related to the sets of n graphs in which, however, edges, not vertices, are in common. Given n (directed) graphs $G_{i}=\left(V_{i}, E_{i}\right)$ for $i=1, \ldots, n$, whose edges are labeled by the same indices $E=\left\{e_{1}, \ldots, e_{m}\right\}$, generate all minimal subsets of E such that the corresponding edges contain a (directed) cycle in G_{i} for each $i=1, \ldots, n$. It is easy to see that, by Propositions 12, 13, this problem is NP-hard. Let us remark that the problem is open for the case when n is bounded by a constant, in particular, for $n=2$.

We can fix a pair of vertices $s_{i}, t_{i} \in V_{i}$ for each $i=1, \ldots, n$ and consider (directed) $\left(s_{i}, t_{i}\right)$ paths instead of (directed) cycles. The corresponding generation problem remains NP-hard.

There are also interesting corollaries of Propositions 12, 13 in reliability theory. Given a directed graph $G=(V, E)$ and n pairs of terminals $s_{i}, t_{i} \in V$ for $i=1, \ldots, n$, generate all minimal subsets of E that contain a directed path from s_{i} to t_{i} for each $i=1, \ldots, n$. It results from Proposition 12 that this generating problem is hard [12].

4.2.2 Sausage technique

Given a CNF \mathcal{C}, let us assign distinct positive variables to all its literals and denote the obtained read-once monotone CNF by C^{\prime} and the dual read-once monotone DNF by D^{\prime}. We will denote by $x_{i}^{1}, x_{i}^{2}, \ldots$ and $y_{i}^{1}, y_{i}^{2}, \ldots$ the variables of C^{\prime} and D^{\prime} corresponding respectively to positive x_{i} and negated \bar{x}_{i} literals of \mathcal{C}. For our example from Section 4.2.1 we get

$$
\left.C^{\prime}=\left(x_{1}^{1} \vee y_{2}^{1} \vee y_{3}^{1}\right)\left(x_{2}^{1} \vee x_{3}^{1}\right)\left(x_{1}^{2} \vee x_{3}^{2}\right)\left(y_{1}^{1} \vee y_{2}^{2}\right), \quad D^{\prime}=x_{1}^{1} y_{2}^{1} y_{3}^{1} \vee x_{2}^{1} x_{3}^{1} \vee x_{1}^{2} x_{3}^{2} \vee y_{1}^{1} y_{2}^{2}\right)
$$

Let us now introduce formulae C_{0}^{\prime} and D_{0}^{\prime} as follows,

$$
C_{0}^{\prime}=\bigwedge_{i=1}^{m}\left(\left(x_{i}^{1} x_{i}^{2} \ldots\right) \vee\left(y_{1}^{1} y_{1}^{2} \ldots\right)\right), \quad D_{0}^{\prime}=\bigvee_{i=1}^{m}\left(\left(x_{i}^{1} \vee x_{i}^{2} \vee \ldots\right)\left(y_{i}^{1} \vee y_{i}^{2} \ldots\right)\right) .
$$

Let us remark that C_{0}^{\prime} and D_{0}^{\prime} are dual (\vee, \wedge)-formulae of depth 3 rather than a CNF and DNF. For our example we get

$$
C_{0}^{\prime}=\left(x_{1}^{1} x_{1}^{2} \vee y_{1}^{1}\right)\left(x_{2}^{1} \vee y_{2}^{1} y_{2}^{2}\right)\left(x_{3}^{1} x_{3}^{2} \vee y_{3}^{1}\right), \quad D_{0}^{\prime}=\left(x_{1}^{1} \vee x_{1}^{2}\right) y_{1}^{1} \vee x_{2}^{1}\left(y_{2}^{1} \vee y_{2}^{2}\right) \vee\left(x_{3}^{1} \vee x_{3}^{2}\right) y_{3}^{1} .
$$

Again, it is not difficult to see that inequality $C^{\prime} \leq D_{0}^{\prime}$ holds if and only if the original CNF \mathcal{C} is satisfiable. Furthermore, we can rewrite $C^{\prime} \leq D_{0}^{\prime}$ in several obviously equivalent ways:

$$
\begin{aligned}
& C^{\prime} \vee D_{0}^{\prime} \equiv D_{0}^{\prime}, \quad C^{\prime} \wedge D_{0}^{\prime} \equiv C^{\prime}, \quad C^{\prime} \leq D_{0}^{\prime}, \quad C^{\prime} \Rightarrow D_{0}^{\prime} ; \\
& D^{\prime} \wedge C_{0}^{\prime} \equiv C_{0}^{\prime}, \quad D^{\prime} \vee C_{0}^{\prime} \equiv D^{\prime}, \quad D^{\prime} \geq C_{0}^{\prime} ; \quad D^{\prime} \Leftarrow C_{0}^{\prime} .
\end{aligned}
$$

Given a CNF \mathcal{C}, let us standardly assign series-parallel graphs $G\left(C^{\prime}\right), G\left(D^{\prime}\right), G\left(C_{0}^{\prime}\right)$, and $G\left(D_{0}^{\prime}\right)$ to the monotone (\vee, \wedge) Boolean formulae $C^{\prime}, D^{\prime}, C_{0}^{\prime}$, and D_{0}^{\prime}, respectively. Each of these four graphs has two terminals s and t. Let us also note that all four have a common edge-set. By construction, all four are series-parallel and, in particular, planar. Moreover, $\left(G\left(C^{\prime}\right), G\left(D^{\prime}\right)\right)$ and $\left(G\left(C_{0}^{\prime}\right), G\left(D_{0}^{\prime}\right)\right)$ form two pairs of dual planar graphs. Figure 4 shows all four graphs corresponding to the CNF \mathcal{C} considered above.

We can reformulate SAT, as before, in many trivially equivalent ways.
Proposition 14 The following 5 statements are equivalent:

(0) CNF \mathcal{C} is satisfiable.

Figure 4: Four labeled graphs corresponding to the CNF \mathcal{C}.
(1) Graph $G\left(C_{0}^{\prime}\right)$ has an s, t-path whose edge-set contains the edge-set of an s, t-path in $G\left(C^{\prime}\right)$.
(1') There are two edge-disjoint s, t-paths: one in $G\left(C^{\prime}\right)$, another in $G\left(C_{0}^{\prime}\right)$.
(2) Graph $G\left(C_{0}^{\prime}\right)$ has an s, t-path whose edge-set contains the edge-set of no s, t-path in $G\left(D^{\prime}\right)$.
(2') Graph $G\left(C_{0}^{\prime}\right)$ has an s, t-path whose edge-set intersects the edge-set of every s, t-path in $G\left(D^{\prime}\right)$.

Proof. Let us show that claims (0) and (1) are equivalent. Indeed, it is easy to see that each s, t-path p_{0} in $G\left(C_{0}^{\prime}\right)$ is an assignment of variables of \mathcal{C} and this assignment is satisfying iff the edge-set of p_{0} contains the edge-set of some s, t-path p in $G(C)$. Hence, (1) means exactly that there is a satisfying assignment for \mathcal{C}.

Now let us note that for each s, t-path in $G\left(C_{0}^{\prime}\right)$ there exists another s, t-path such that the corresponding two edge-sets are complementary.

Moreover, the s, t-paths in $G\left(C^{\prime}\right)$ (respectively, in $G\left(C_{0}^{\prime}\right)$) are in a one-to-one correspondence with the s, t-cuts in $G\left(D^{\prime}\right)$ (respectively, in $G\left(D_{0}^{\prime}\right)$), since $\left(G\left(C^{\prime}\right), G\left(D^{\prime}\right)\right)$ and $\left(G\left(C_{0}^{\prime}\right), G\left(D_{0}^{\prime}\right)\right)$ form two pairs of dual planar graphs.
These two observations easily imply that all 5 above claims are equivalent.
Furthermore, we can substantially extend the list substituting a path of a graph by the corresponding cut of the dual graph.

Since SAT is NP-complete, we get a long list of NP-complete problems related to pairs of graphs $G^{\prime}=\left(V^{\prime}, E\right), G^{\prime \prime}=\left(V^{\prime \prime}, E\right)$ with common edge-sets.

In particular, it is NP-hard to check if G^{\prime} and $G^{\prime \prime}$ have edge-disjoint (or edge nested) s, t-paths (or s, t-cuts); whether they have edge-disjoint (or edge-nested) pair of an s, t-path and s, t-cut; whether G^{\prime} has an s, t-cut (or s, t-path) whose edge set contains no s, t-path (or s, t-cut, or vice versa) of $G^{\prime \prime}$, etc.

Remark 3 Moreover, all above problems remain NP-complete for directed graphs too. To get a proof it is sufficient to orient all edges of all four graphs in direction from s to t. It is well known that for series-parallel graphs (and, in fact, only for them) this operation is well-defined.

Finally, let us note that each of the above problems still remains NP-complete if we substitute simple (directed) cycles for (directed) s, t-paths. Indeed, let us identify the terminals s and t in $G\left(C^{\prime}\right)$ and in $G\left(C_{0}^{\prime}\right)$. Then in these two (directed) graphs each (directed) s,t-path turns into a simple (directed) cycle. We should note that:
(a) the number of s, t-paths may be exponential in size of $C N F \mathcal{C}$ for $G\left(C^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$, while for $G\left(D^{\prime}\right)$ and $G\left(D_{0}^{\prime}\right)$ it is at most linear and, respectively, quadratic in size of \mathcal{C};
(b) in all four graphs there are other simple (directed) cycles, not related to (directed) s, t paths. However, their number is at most linear in the size of \mathcal{C}. Hence, they can be checked separately and cannot influence the complexity.

We showed that Proposition 14 leads to many NP-hard decision problems. Let us now demonstrate that they can be easily reformulated as generation problems. The following statement explains the method.

Given two (directed) graphs $G^{\prime}=\left(V^{\prime}, E\right)$ and $G^{\prime \prime}=\left(V^{\prime \prime}, E\right)$ with a common edge-set E, generate all minimal subsets of E that contain a simple (directed) cycle in G^{\prime} or in $G^{\prime \prime}$. This problem is called disjunction of cycles [14].

Proposition 15 Disjunction of cycles is an NP-hard generation problem.
Proof. Consider the non-directed case first. Let us merge vertices s and t in $G\left(D^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$ and denote the obtained graphs by G^{\prime} and $G^{\prime \prime}$, respectively. Then we can easily enumerate all simple cycles of G^{\prime} and all "short" simple cycles of $G^{\prime \prime}$. However, by Proposition 14 it is NP-complete to decide if there is a "long" simple cycle in $G^{\prime \prime}$ whose edge-set contains no edge-set of a simple cycle in G^{\prime}.

Exactly the same arguments work in the directed case too. We only have to orient all edges of $G\left(D^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$ from s to t. Let us note that in this case there are no "short" simple cycles in $G^{\prime \prime}$.

Remark 4 Clearly, the similar statement holds if we substitute (directed) s, t-paths or s, t cuts for simple (directed) cycles.

In the previous subsection we considered the similar concept of conjunction of (directed) s, t-paths or simple cycles in n graphs. Let us recall that the corresponding generation problem is $N P$-hard when n is a part of the input, and it is open when n is bounded, already for $n=2$.

The method of this subsection we refer to as "sausage technique", because the graphs $G\left(C^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$ look like a sausage.

4.2.3 Generating all negative directed cycles is hard

Given a directed graph $G=(V, E)$ and a real-valued weight function $w: E \rightarrow \mathbb{R}$ on its edges, generate all negative directed cycles, or more precisely, all simple directed cycles C in G such that $\sum_{e \in E(C)} w(e)<0$. This generating problem is NP-hard.

Proposition 16 Given G, w and a collection of negative cycles \mathcal{X}, it is NP-hard to decide whether this collection is complete or it can be extended. The problem remains NP-hard even if w takes only two values: +1 and -1 .

In [32] this result is proved for both directed and non-directed graphs. Here we give a sketch of this proof for the directed case. Graph G ("double sausage") is constructed as follows.

Let us merge vertex t of graph $G\left(C^{\prime}\right)$ and vertex s of graph $G\left(C_{0}^{\prime}\right)$ and denote the obtained vertex by u. The obtained graph G_{1} is still series-parallel, so let us orient all its edges from s in $G\left(C^{\prime}\right)$ towards t in $G\left(C_{0}^{\prime}\right)$.

Let us recall that graphs $G\left(C^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$ had the common edge-set E which is in one-to-one correspondence with the literals of the CNF \mathcal{C}. Hence, the edges of the obtained directed graph G_{2} are labeled by E and each label $e \in E$ appears exactly twice.

Furthermore, it is NP-hard to check if G_{2} contains an s, t-path in which each label $e \in E$ appears at most once. Indeed, such a path exists in G_{2} if and only if there exist two edgedisjoint s, t-paths in $G\left(C^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$, which is NP-hard to verify by Proposition 14.

Now let us subdivide each directed edge $\left[v^{\prime}, v^{\prime \prime}\right)$ in G_{2} by 3 vertices v_{1}, v_{2}, v_{3} such that $v^{\prime}, v_{1}, v_{2}, v_{3}, v^{\prime \prime}$ go successively. In the obtained directed graph G_{3} let us define weight function w as follows: $w\left(v^{\prime}, v_{1}\right)=w\left(v_{3}, v^{\prime \prime}\right)=+1, w\left(v_{1}, v_{2}\right)=w\left(v_{2}, v_{3}\right)=-1$.

Furthermore, for each index $e \in E$ let us consider two corresponding directed edges $\left[v^{\prime}, v^{\prime \prime}\right)$ and $\left[u^{\prime}, u^{\prime \prime}\right)$ in G_{2} and their subdivisions $v^{\prime}, v_{1}, v_{2}, v_{3}, v^{\prime \prime}$ and $u^{\prime}, u_{1}, u_{2}, u_{3}, u^{\prime \prime}$ in G_{3}; then let us merge v_{1} and u_{3} and also v_{3} and u_{1}, denote two obtained vertices by v and u, respectively; see Figure 5. Finally, let us add one more directed edge $[t, s)$ and assign to it weight -1 .

Figure 5: Two pairs of vertices are merged.
By construction, vertices v, v_{2}, u, u_{2} form a simple directed cycle of weight -4 in the obtained directed graph G_{4}. There are $|E|$ such cycles. Does G_{4} contain more negative cycles? We will show that this question is NP-hard.

Let us note that there is a directed cycle of weight -1 in G_{4} whenever there exist two edgedisjoint s, t-paths in graphs $G\left(C^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$ (and this is NP-hard to decide, by Proposition 14). Indeed, the union of these two paths is an s, t-path in G_{4} whose total weight is 0 . Hence, these two paths and the edge $[t, s)$ form a simple directed cycle in G_{4} of weight -1 .

It is not difficult to verify that there can be no other negative cycles in G_{4}. In other words, G_{4} contains $|E|$ cycles of weight -4 , and projection of any other negative cycle Y to $G\left(C^{\prime}\right)$ and $G\left(C_{0}^{\prime}\right)$ must form an s, t-path in each graph. The complete proof is given in [32]. However, its main point is simple. If Y contains successive vertices u_{2}, v, v_{2} or u_{2}, v, v_{2}
then Y is a cycle of weight -4 . If Y contains successive vertices $v^{\prime}, v, u^{\prime \prime}$ or $u^{\prime}, u, u^{\prime \prime}$ then Y cannot be negative, moreover, $w(Y) \geq 1$.

4.2.4 Generating all vertices of a polyhedron is hard

We will derive the statement of the above title from two classical results.
Given a directed graph $G=(V, E)$ and a weight function $w: E \rightarrow \mathbb{R}$, let us introduce the potential function $x: V \rightarrow \mathbb{R}$ and transform the weight of each edge $e=\left[v^{\prime}, v^{\prime \prime}\right) \in E$ by formula: $w_{x}(e)=w(e)+x\left(v^{\prime}\right)-x\left(v^{\prime \prime}\right)$.

Gallai [27] proved that there is a potential function x such that $w_{x}(e) \geq 0$ for all $e \in E$ if and only if there is no negative cycle in G.

Given G and w, let us introduce the system of linear inequalities

$$
\begin{equation*}
x\left(v^{\prime \prime}\right)-x\left(v^{\prime}\right) \leq w(e) \quad \forall e=\left[v^{\prime}, v^{\prime \prime}\right) \in E . \tag{14}
\end{equation*}
$$

By Gallai's result, the minimal infeasible subsystems of (14) (so-called Helly subsystems) are in one-to-one correspondence with the simple negative directed cycles of G. Hence, by Proposition 16, given a system of linear inequalities, it is NP-hard to generate all its Helly subsystems.

Furthermore, by Farkas Lemma, a system $A x \geq b$ is infeasible if and only if there is a vector $y \geq 0$ such that $y^{T} A=0$ and $y^{T} b=1$. The polyhedron $Q=\left\{y \mid y \geq 0, y^{T} A=\right.$ $\left.0, y^{T} b=1\right\}$ of all such vectors is called the alternative polyhedron of the system $A x \geq b$. It is well-known that the vertices of Q are in one-to-one correspondence with the Helly subsystems of $A x \geq b$.

Thus, it is NP-hard to generate all vertices of a polyhedron.

References

[1] S. D. Abdullahi, M. E. Dyer, L. G. Proll, Listing vertices of polyhedra associated with dual LI (2) system, Fourth International Conference on Discrete Mathematics and Theoretical Computer Science (DMTCS'03), Université de Bourgogne and CDMTCS, July 2003, Dijon, France.
[2] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, Discrete and Computational Geometry (8) 295-313, 1992.
[3] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Applied Mathematics, 65(1-3):21-46, 1996.
[4] C. Berge, Hypergraphs, North Holland Mathematical Library, Vol. 445, Elsevier-North Holland, Amestrdam, 1989.
[5] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive Boolean functions, Information and Computation 123 (1995), 50-63.
[6] E. Boros, K. Elbassioni, V. Gurvich, Algorithms for generating minimal blockers of perfect matchings in bipartite graphs and related problems, ESA 2004, 122-133.
[7] E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan (2000). An efficient incremental algorithm for generating all maximal independent sets in hypergraphs of bounded dimension. Parallel Processing Letters, 10, 253-266.
[8] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan, Generating dual-bounded hypergraphs, Optimization Methods and Software, 17 (2002), 749-781.
[9] E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, Generating maximal independent sets for hypergraphs with bounded edge-intersections, 6th Latin American Theoretical Informatics Conference (LATIN 2004), (Martin Farach-Colton, ed.) Lecture Notes in Computer Science 2461, 424-435.
[10] E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan, Enumerating minimal dicuts and strongly connected subgraphs and related geometric problems, In D. Bienstock and G. Nemhauser, editors, Integer Programming and Combinatorial Optimization (IPCO), 10th International Conference, New York, NY, USA; June 7-11 2004., Lecture Notes in Computer Science 3064, 152-162, Berlin, Heidelberg, New York, Springer.
[11] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan and K. Makino (2002). Dual-bounded generating problems: all minimal integer solutions of a monotone systems of linear inequalities. SIAM J. Comput 31 (5) (2002), 1624-1643.
[12] E.Boros, K. Elbassioni, V.Gurvich, L.Khachiyan, and K. Makino, Generating paths and cuts in multi-pole (di)graphs, Mathematical Foundations of Computer Science (MFCS 2004) 29-th International Symposium of MFCS, Charles University, Prague, Czech Rep. August 22-27, 2004, Lecture Notes in Computer Science 3153 (2004), 298-309, (J. Fiala, V. Koubek, and J. Kratochvil eds.) Springer Verlag, Berlin, Heidelberg, New York, the full version is to appear in Disc. Appl. Math.
[13] E. Boros, V. Gurvich, and P. L. Hammer, Dual subimplicants of positive Boolean functions. Optimization Methods and Software, 10 (1998), 147-156 (RUTCOR Research Report 11-1993, Rutgers University).
[14] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. On the complexity of some enumeration problems for matroids, SIAM J. Disc. Math., 19 (4) (2005), 966984.
[15] E. Boros, V. Gurvich, L. Khachiyan and K. Makino (2001). Dual-bounded generating problems: weighted transversals of a hypergraph. Discrete Applied Mathematics, 142 (2004), 1-15.
[16] E. Boros, V. Gurvich, L. Khachiyan and K. Makino, Dual-bounded generating problems: partial and multiple transversals of a hypergraph, SIAM Journal on Computing, 30 (2001), 2036 - 2050.
[17] D. Bremner, K. Fukuda, and A. Marzetta, Primal-dual methods for vertex and facet enumeration, Discrete and Computational Geometry 20(3) (1998), 333-357.
[18] M. Bussieck and M. Lübbecke, The vertex set of a 0/1-polytope is strongly Penumerable, Computational Geometry: Theory and Applications 11(2) (1998), 103-109.
[19] C. Domingo, N. Mishra and L. Pitt, Efficient read-restricted monotone CNF/DNF dualization by learning with membership queries, Machine learning 37 (1999), 89-110.
[20] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM Journal on Computing, 24 (1995), 1278-1304.
[21] T. Eiter, G. Gottlob and K. Makino, New results on monotone dualization and generating hypergraph transversals, SIAM Journal on Computing, 32 (2003) 514-537. Extended abstract appeared in STOC-02.
[22] T. Eiter, K. Makino, and G. Gottlob, Computational aspects of monotone dualization: A brief survey, KBS Research Report INFSYS RR-1843-06-01, Institute of Information Systems, Vienna University of Technology Favoritenstraße 9-11, A-1040 Vienna, Austria, 2006.
[23] M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms, 21 (1996), 618-628.
[24] K. Fukuda and T. Matsui, Finding all minimum-cost perfect matchings in bipartite graphs, Networks 22(5) (1992), 461-468.
[25] K. Fukuda and T. Matsui, Finding all the perfect matchings in bipartite graphs, Appl. Math. Lett. 7(1) (1994), 15-18.
[26] R. M. Freund and J. B. Orlin, On the complexity of four polyhedral set containment problems, Mathematical Programming 33(2), (1985) 139-145.
[27] T. Gallai, Maximum-minimum Sätze über Graphen, Acta Mathematicae, Academiae Scientiarum Hungaricae 9 (1958) 395-434.
[28] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1991.
[29] V. Gurvich and L. Khachiyan, On generating the irredundant conjunctive and disjunctive normal forms of monotone Boolean functions, Discrete Applied Mathematics, 1996-97, issue 1-3, (1999) 363-373.
[30] D. S. Johnson, Open and closed problems in NP-completeness, Lecture given at the International School of Mathematics "G. Stampacchia": Summer School "NPCompleteness: The First 20 Years", Erice (Sicily), Italy, 20-27 June 1991.
[31] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters, 27 (1988), 119-123.
[32] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni and V. Gurvich, Generating all vertices of a polyhedron is hard, SODA 2006, 758-765.
[33] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino, Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs, ISAAC 2005, 156-165.
[34] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, and K. Makino, Enumerating Spanning and Connected Subsets in Graphs and Matroids, ESA 2006, 444-455
[35] A. Lehman, On the width-length inequality, Mimeographic notes (1965), published: Mathematical Programming 17 (1979), 403-417.
[36] E. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating all maximal independent sets: NP-hardness and polynomial-time algorithms, SIAM Journal on Computing, 9 (1980), 558-565.
[37] L. Lovász, Combinatorial optimization: some problems and trends, DIMACS Technical Report 1992-53, Rutgers University, 1992.
[38] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[39] K. Makino, Efficient dualization of $O(\log n)$-term monotone disjunctive normal forms, Discrete Applied Mathematics, 126 (2003), 305-312.
[40] K. Makino and T. Ibaraki, The maximum latency and identification of positive Boolean functions, SIAM J. Comput., 26 (1997), 1363-1383.
[41] C. Papadimitriou, NP-completeness: A retrospective, In Proceedings 24 th International Colloquium on Automata, Languages, and Programming (ICALP '97), LNCS 1256, pages 2-6, 1997.
[42] M. E. Pfetsch, The Maximum Feasible Subsystem Problem and Vertex-Facet Incidences of Polyhedra, Dissertation, TU Berlin, 2002.
[43] J. S. Provan, Efficient enumeration of the vertices of polyhedra associated with network LP's, Mathematical Programming, (64) (1994), 47-64.
[44] R. C. Read and R. E. Tarjan, Bounds on backtrack algorithms for listing cycles, paths, and spanning trees, Networks 5 (1975), 237-252.
[45] J. Gleeson and J. Ryan, Identifying minimally infeasible subsystems of inequalities, ORSA Journal on Computing, 2(1):61-63, 1990.
[46] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, 1986.
[47] B. Schwikowski and E. Speckenmeyer, On enumerating all minimal solutions of feedback problems, Discrete Applied Mathematics, 117:253-265, 2002.
[48] C.A. Tovey, A simplified NP-complete satisfiability problem, Discrete Applied Mathematics 8 (1984) 85-89.
[49] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all maximal independent sets, SIAM Journal on Computing, 6 (1977), 505-517.
[50] T. Uno, Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite graphs, in Proc. 8th International Symposium on Algorithms and Computation (ISAAC 1997), Singapore, December 1997, Lecture Notes in Computer Science 1350, 92-101.
[51] T. Uno, A fast algorithm for enumerating bipartite perfect matchings, in Proc. 12th International Symposium on Algorithms and Computation (ISAAC 2001), Christchurch, New Zealand, December 2001, Lecture Notes in Computer Science 2223 (Springer, Berlin, 2001), 367-379.
[52] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, No 152 (Springer, Berlin, 1995).

[^0]: DIMACS is a collaborative project of Rutgers University, Princeton University, AT\&T LabsResearch, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affiliate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS was founded as an NSF Science and Technology Center.

