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ABSTRACT

A d-graph G = (V ; E1, . . . , Ed) is a complete graph whose edges are colored by d colors, or in
other words, are partitioned into d subsets (some of which might be empty). We say that G is
complementary connected if the complement to each chromatic component of G is connected
on V , or in other words, if for each two vertices u, w ∈ V and color i ∈ I = {1, . . . , d} there
is a path between u and w without edges of Ei. We show that every such d-graph contains
a subgraph Π or ∆ , where Π has 4 vertices and 2 non-empty chromatic components each
of which is a P4, while ∆ is the three-colored triangle. This simple statement implies that
each Π- and ∆-free d-graph is uniquely decomposable in accordance with a tree T = T (G)
whose leaves are the vertices of V and other vertices of T are labeled by the colors of I.
We can naturally interpret such a tree as a positional game (with perfect information and
without moves of chance) of d players I = {1, . . . , d} and n outcomes V = {v1, . . . , vn}.
Thus, we get a one-to-one correspondence between these games and Π- and ∆-free d-graphs
and, as a corollary, a characterization of the normal forms of positional games with perfect
information. Another corollary of the above decomposition of d-graphs in case d = 2 is a
characterization of the read-once Boolean functions. These results are not new; in fact, they
are 25-35 years old. Yet, some important proofs did not appear in English.
Gyárfás and Simonyi recently proved a similar decomposition theorem for ∆-free d-graph.
They showed that each such d-graph can be obtained from 2-graphs by substitutions. This
theorem is based on results by Gallai, Cameron and Edmonds. We get some new applications
of these results.
Key words: decomposition, graphs, hypergraphs, Gallai’s graphs, positional games, read-
once functions, substitution.



1 Complementary connected d-graphs contain Π or ∆

We consider d-graphs G = (V ; E1, . . . , Ed) assuming that d ≥ 2 is a fixed positive integral,
while chromatic components Ei might be empty for some i ∈ I = {1, . . . , d}. For example,
we call G a 2- or 3-graph if G has only 2, respectively, 3, non-empty chromatic components.

The following 2-graph Π and 3-graph ∆ given in Figure 1 will play an important role:

v1

v2 v3

v4 v1

v2

v3

Figure 1: 2-graph Π and 3-graph ∆.

Π = (V ; E1, E2), where

V = {v1, v2, v3, v4}; E1 = {(v1, v2), (v2, v3), (v3, v4)}, and E2 = {(v2, v4), (v4, v1), (v1, v3)};

∆ = (V ; E1, E2, E3), where

V = {v1, v2, v3}, E1 = {(v1, v2)}, E2 = {(v2, v3)}, and E3 = {(v3, v1)}.

The complementary connected (CC) d-graphs were defined in Abstract.
By convention, G is a CC d-graph if |V | = 1 and this one-vertex d-graph we will call

trivial. Clearly, there is no CC d-graph with two vertices. It is easy to verify that ∆
(respectively, Π) is a unique CC d-graph with three (respectively, four) vertices. It is also
easy to see that Π and ∆ are minimal CC d-graphs, that is, they do not contain non-trivial
induced CC subgraphs. The next statement shows that, except Π and ∆, no other d-graph
has this property.

Theorem 1. Every non-trivial complementary connected d-graph contains Π or ∆.

Proof. Given a Π- and ∆-free d-graph G = (V ; E1, . . . , Ed), we will show that it is not CC,
that is, the graph Gi = (V, Ei) = (V,∪j 6=iEj) is not connected for some i ∈ I. (In the next
section we will show that there is exactly one such i ∈ I.) Let us assume indirectly that G
is CC and also Π- and ∆-free. Then G has the following property.

Lemma 1. For each edge (v′, v′′) ∈ Ei there exist a vertex v ∈ V such that (v, v′), (v, v′′) ∈ Ej

for some j 6= i.

Proof. Since v′, v′′, and v cannot form a ∆, it would suffice to show that (v, v′), (v, v′′) 6∈ Ei.
Since G is complementary connected, there exists a path between v′ and v′′ that contains no
edge from Ei. Let p be a shortest such path. Then each chord of p is of color i. Let ℓ be the
length (that is, the number of edges) of p. Clearly, ℓ 6= 1, because (v′, v′′) ∈ Ei. If ℓ = 2 then
p = {(v′, v), (v, v′′)} and we are done. Let us show that if ℓ ≥ 3 then G contains a Π or ∆.
Indeed, if p is monochromatic then a Π exists. Otherwise, p contains two successive edges
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of distinct colors, say, (v1, v2) ∈ Ei1 and (v2, v3) ∈ Ei2 , where i1 6= i2. Obviously, i1 6= i and
i2 6= i, since p contains no edges of color i. Thus, v1, v2, v3 form a ∆.

Now we proceed with the proof of Theorem 1 as follows.
Let (vj0 , vj1) ∈ Ei1 . By Lemma 1, there exists vj2 ∈ V and i2 ∈ I such that i2 6= i1

and (vj0 , vj2), (vj1, vj2) ∈ Ei2 . Furthermore, since (vj1 , vj2) ∈ Ei2 , by Lemma 1, there exists
vj3 ∈ V and i3 ∈ I such that (vj1 , vj3), (vj2, vj3) ∈ Ei3 and i3 6= i2, though i3 = i1 may hold.

Obviously, vj3 6= vj2 and vj3 6= vj1, by construction. It is also clear that vj3 6= vj0 , because
(vj0, vj2) ∈ Ei2 , while (vj3, vj2) ∈ Ei3 and i3 6= i2.

We will show that (vj3, vj0) ∈ Ei3 too. Let us consider two cases: i3 = i1 and i3 is
distinct from both i1 and i2. If i3 = i1 then (vj0, vj3) must be of color i1 too. Indeed, if
(vj0, vj3) ∈ Ei2 then all four vertices form a Π; if (vj0 , vj3) ∈ Ei4, where i4 6= i1 and i4 6= i2,
then (vj0 , vj2, vj3 form a ∆. If i3 6= i1 and i3 6= i2 then (vj0, vj3) must be in Ei3 too. Indeed, if
(vj0, vj3) ∈ Ei1 then vj0 , vj2, vj3 form a ∆; if vj0, vj3) ∈ Ei2 then (vj0 , vj1, vj3 form a ∆; finally,
if (vj0 , vj3) ∈ Ei4 , where where i4 6= i1 and i4 6= i2, then both above triangles form ∆s.

In general, we prove by induction that V cannot be finite. More precisely, we show that
for each k there is a sequence of vertices vj0, vj1, . . . , vjk−1

, vjk
and colors i1, i2, . . . , ik−1, ik

such that: (i) all vertices are pairwise distinct; (ii) though colors may coincide, yet, every
two successive colors are distinct, that is, im 6= im+1 for every m = 1, 2, . . . , k−1; and finally,
(iii) (vjk

, vjm
) ∈ Eik whenever k > m, that is, every vertex is connected by the same color

to all preceding vertices.
Suppose that we already got such vertices {vj0, vj1, . . . , vjk−1

} and colors {i1, i2, . . . , ik−1}
for k − 1. Since (vjk−2

, vjk−1
) ∈ Eik−1

, by Lemma 1, there is a vertex vjk
∈ V such that

(vjk−2
, vjk

), (vjk−1
, vjk

) ∈ Eik , where ik 6= ik−1. First, let us show that vjk
is distinct from all

preceding vertices, that is, vjk
= vjm

for no m < k. Indeed, by the induction hypothesis,
(vjk−1

, vjm
) ∈ Eik−1

, while, by construction, (vjk−1
, vjk

) ∈ Eik and ik 6= ik−1. Hence, vjk
6= vjm

.
Now, let us prove that (vjk

, vjm
) ∈ Eik for all m < k. Indeed, for m = k − 1 and

m = k − 2 this holds by construction. Given m < k − 2, let us consider four vertices
vjk−2

, vjk−1
, vjk

and vjm
. They are connected by six edges five of which are colored as fol-

lows: (vjk−2
, vjk

), (vjk−1
, vjk

) ∈ Eik , by construction; (vjk−2
, vjk−1

), (vjm
, vjk−1

) ∈ Eik−1
, and

(vjm
, vjk−2

) ∈ Eik−2
, by the induction hypothesis.

Let us show that (vjm
, vjk

) ∈ Eik . We know that ik 6= ik−1 6= ik−2, though ik and ik−2

may coincide. If they do then (vjm
, vjk

) ∈ Eik . Indeed, if (vjm
, vjk

) ∈ Eik−1
then all four

vertices, vjk−2
, vjk−1

, vjk
, and vjm

, form a Π; if (vjm
, vjk

) ∈ Eiℓ where iℓ 6= ik and iℓ 6= ik−1

then vjk−1
, vjk

, and vjm
form a ∆.

Now, let us suppose that ik 6= ik−2 and show that again (vjm
, vjk

) ∈ Eik . Indeed, if
(vjm

, vjk
) ∈ Eik−2

then vjk−1
, vjk

, and vjm
form a ∆; if (ajm

, ajk
) ∈ Eiℓ where iℓ 6= ik and

iℓ 6= ik−2, then ajk−2
, ajk

, and ajm
form a ∆.

Finally, let us note that for any fixed k the d-graph induced by Vk = {vj0 , vj1, . . . , vjk−1
, vjk

}

is not complementary connected, just because vjk
is an isolated vertex in Gk = (Vk, Eik).

Thus, V cannot be finite and we get a contradiction.
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Remark 1. In fact, we proved a little more than Theorem 1 claims.
Let us denote by G∞ the family of infinite d-graphs satisfying all properties (i,ii,iii) mentioned
above. It is easy to see that each G ∈ C∞ is complementary connected, though each finite
subgraph of G is not. Let us mention that G∞ contains only two graphs when d = 2, since in
this case two colors must alternate.
Our arguments show that each complementary connected d-graph (finite or infinite) must
contain a Π, or ∆, or an infinite subgraph from the family G∞.

Remark 2. The proof of Theorem 1 was given in [20]. The statement appears without proof
in [22]. The case d = 2 is a little simpler than the general one, since ∆ cannot exist when
d ≤ 2. This case was considered in [37, 38, 36, 19, 22]. It was also suggested as a problem
for Moscow Mathematical Olympiad in 1971 (Problem 72 in [15]) and was successfully solved
by five high school students.

2 Decomposition of Π- and ∆-free d-graphs, π- and δ-

free d-hypergraphs, and some applications

2.1 Decomposition tree

By Theorem 1, for any Π- and ∆-free d-graph G = (V ; E1, . . . , Ed) there exists an i ∈ I such
that the graph Gi = (V, Ei) = (V,∪j 6=iEj) is not connected. The following lemma implies
that there is exactly one such i ∈ I.

Lemma 2. Let G1 = (V, E1) and G2 = (V, E2) be two graphs on the common vertex-set
V such that both complementary graphs G1 = (V, E1) and G2 = (V, E2) are not connected.
Then E1 ∩ E2 6= ∅,

Proof. Let Vi ⊂ V be a connected component of Gi, then all edges between Vi and V \ Vi

belong to Ei, for both i = 1 and i = 2. Then E1 ∩E2 6= ∅, since Vi 6= ∅ and Vi 6= V for both
i = 1 and i = 2.

Given a Π- and ∆-free d-graph G = (V ; E1, . . . , Ed), there exists a unique i ∈ I such that
Gi = (V, Ei) is not connected. Let us decompose it into connected components and consider
the corresponding induced d-graphs (note that there are at least two of them). Each such
d-graph G′ is still Π- and ∆-free. Hence, there exists a unique j ∈ I (note that j 6= i) such
that ... etc. Thus, we get a decomposition tree T = T (G) whose leaves are in one-to-one
correspondence with v1, . . . , vn, and all other vertices are labeled by 1, . . . , d.

Remark 3. This decomposition was suggested in [20, 22]. Case d = 2 was considered before
[14, 37, 38, 19, 21, 28, 27]. A more general, substitution or modular, decomposition was
introduced by Gallai [14] and then studied in many papers; see [4, 5, 32, 34, 35] for a survey.
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1 2

34
S = {(1, 3)(2, 4)}
C = {(1, 2)(2, 3)(3, 4)(4, 1)}

1 3 2 4

Player 1

Player 2

12 23 34 41
13 1 3 3 1
24 2 2 4 4

F = 13 ∨ 24
F d = (1 ∨ 3)(2 ∨ 4) = 12 ∨ 13 ∨ 34 ∨ 41

Figure 2: A P4-free graph and the corresponding positional and normal game forms.

2.2 Π- and ∆-free d-graphs and positional games

We can naturally interpret the above decomposition by T = T (G) as a positional game
(with perfect information and without moves of chance) in which I = {1, . . . , d} is the set
of players and V = {v1, . . . , vn} is the set of outcomes.

We define this positional game P as follows. Let T = (U ∪ V, E) be a tree. Its vertices
U ∪ V are positions; they correspond to subgraphs of G obtained by the decomposition.
The leaves V = L(T ) are final positions or outcomes of the game; they are in one-to-one
correspondence with the vertices of G. To each non-final position u ∈ U we assign a player
i = i(u) ∈ I who makes a move in u by choosing any successor u′ of u. (This means that in
the d-graph G(u) the complement to the chromatic component i is disconnected and one of
its connected components form the d-graph G(u′).) The game begins in the initial position
s, corresponding to the original d-graph G, and ends in a final position, which corresponds
to a vertex v of G. The unique path from s to v is called a play.

According to section 2.1, we must assume that there are at least two possible moves
in each position and no player makes two moves in a row. Let us note, however, that
these two assumptions do not reduce generality, since they can always be enforced by trivial
modifications of a positional game.

Thus, to each Π- and ∆-free d-graphs G we assign a positional game P = P (G).
Four examples are given in Figures 2-5. To simplify the figures we substitute j for vj .
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1

2

3

4

5

6

S = {(1)(2, 4)(3, 4)(2, 5, 6)(3, 5, 6)}
C = {(1, 2, 3)(1, 4, 5)(1, 4, 6)}

1

4 3 2

6 5

Player 2

Player 1

Player 2

Player 1 1 24 34 256 356
123 1 2 3 2 3
145 1 4 4 5 5
146 1 4 4 6 6

F = 1(23 ∨ 4(5 ∨ 6)) = 123 ∨ 145 ∨ 146
F d = 1 ∨ (2 ∨ 3)(4 ∨ 56) = 1 ∨ 24 ∨ 34 ∨ 256 ∨ 356

Figure 3: Another P4-free graph and the corresponding positional and normal game forms.

1 2

34

C1 = {(13)(24)}
C2 = {(124)(234)}
C3 = {(123)(134)}

1 3 2 4

Player 1

Player 3Player 2
13 24

1 1 124 2 4
3 3 234 2 4
1 1 1 1
2 3 2 3
3 4 3 4

F1 = 13 ∨ 24 = 13 ∨ 24
F2 = (1 ∨ 3)24 = 124∨ 234
F3 = 13(2 ∨ 4) = 123∨ 134

F23 = (1 ∨ 3)(2 ∨ 4) = 12 ∨ 23 ∨ 34 ∨ 41
F13 = 13 ∨ 2 ∨ 4 = 13 ∨ 2 ∨ 4
F12 = 1 ∨ 3 ∨ 24 = 1 ∨ 3 ∨ 24

Figure 4: A Π- and ∆-free 3-graph and the corresponding positional and normal game forms.
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1 2

34

C1 = {(1)(234)}
C2 = {(13)(124)}
C3 = {(123)(134)}

1

1

2

3

3

2 4

players

outcomes
1 234

1 1 13 3 3
1 1 124 2 4
1 1 1 1
2 3 2 3
3 4 3 4

F1 = 1 ∨ 324 = 1 ∨ 234
F2 = 1(3 ∨ 24) = 13 ∨ 124
F3 = 13(2 ∨ 4) = 123 ∨ 134

F23 = 1(3 ∨ 2 ∨ 4) = 12 ∨ 13 ∨ 14
F13 = 1 ∨ 3(2 ∨ 4) = 1 ∨ 23 ∨ 34
F12 = 1 ∨ 3 ∨ 24 = 1 ∨ 3 ∨ 24

Figure 5: Another Π- and ∆-free 3-graph and the corresponding positional and normal game forms.

2.3 Positional d-graphs

To show that the above mapping is bijective we construct the inverse mapping as follows.
Given a positional game P , it is not difficult to reconstruct G from T = T (G) = (U∪V, E).

For each v1, v2 ∈ V let us consider the corresponding two plays in T : from s to v1 and from
s to v2. Since T is a tree, these two plays first coincide and then separate. Let u be their
last common position. We color (v1, v2) by the color i = i(u), do so for all pairs of vertices
in V , and denote the obtained d-graph by G(P ). It is easy to see that we get exactly our
original d-graph G, that is, G = G(P (G)). In particular, G(P ) is Π- and ∆-free for any P .
To see this it is sufficient to consider all positional games with 3 and 4 outcomes and verify
that they do not generate ∆ and Π, respectively.

We will call a d-graph G positional if it is obtained from a positional game P , that is, if
G = G(P ) for some P . The arguments of the last two subsections are summarized as follows.

Theorem 2. A d-graph G is positional if and only if it is Π- and ∆-free.

2.4 Positional d-hypergraphs

Given a positional game P , let us add to T = (U ∪V, E) one extra vertex v0 and edge (s, v0)
and denote the obtained tree by T ′ = (U ∪ V ′, E ′), where V ′ = V ∪ {v0} = {v0, v1, . . . , vn}
and E ′ = E ∪ {(s, v0)}. The vertex-set U and the mapping from U to I = {1, . . . , d} remain
the same. Let us recall that deg(u) ≥ 3 for each u ∈ U and i(u) 6= i(u′) whenever u and u′

are adjacent.
We get the original game P if we choose v0 as the initial position. Yet, we can choose any
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1

v1

v0 v2

v2

v0

2 1

v3

v1

v1

v3

1 3

v0

2

v2

v4

Figure 6: Three unrooted positional games with 3, 4 and 5 leaves.

v ∈ V ′, as well. To distinguish positional games assigned to T and T ′ we call them rooted
and unrooted and denote by P and P ′, respectively.

In sections 2.1-2.3 we assigned to the rooted games positional d-graphs and proved that
they are exactly Π- and ∆-free d-graphs. In this sections we will obtained similar results for
the unrooted positional games.

Let
(

V

3

)

denote the set of all triplets from V ′. Let us assign an arbitrary color i ∈ I to
each triplet and denote the obtained d-hypergraph by H = (V ′; E1, . . . , Ed).

(In this paper we consider only the hypergraphs whose all hyperedges are of cardinality
3; respectively, we call them triplets).

Since T ′ is a tree, there is a unique path between any two its vertices. Furthermore, for
any three distinct leaves vj1, vj2, vj3 ∈ V ′ there are three paths between them and there is a
unique vertex u = u(vj1, vj2, vj3) ∈ U that belongs to all three. To each triplet vj1, vj2, vj3 ∈ V ′

we assign the color i(u), where u = u(vj1, vj2, vj3), and denote the obtained d-hypergraph by
H = H(P ′). We will call a d-hypergraph H positional if it can be obtained in this way, that
is, if H = H(P ′) for some unrooted positional game P ′.

For example, let us consider three unrooted positional games P ′
1, P

′
2 and P ′

3 in Figure 6.
They define 1-, 2-, and 3-hypergraphs

H1 = (V ′
1 ; E

1
1 ), H2 = (V ′

2 ; E
2
1 , E

2
2 ), and H3 = (V ′

3 ; E
3
1 , E

3
2 , E3

3 ), where

V ′
1 = {v0, v1, v2)}, V ′

2 = {v0, v1, v2, v3)}, V ′
3 = {v0, v1, v2, v3, v4)};

E1
1 = {(v0, v1, v2)} ; E2

1 = {(v1, v3, v0), (v1, v3, v2)}, E
2
2 = {(v0, v2, v1), (v0, v2, v3)};

E3
1 = {(v1, v3, v0), (v1, v3, v2), (v1, v3, v4)} , E3

2 = {(v2, v4, v0), (v2, v4, v1), (v2, v4, v3)},
E3

3 = {(v0, v1, v2), (v0, v2, v3), (v0, v3, v4), (v0, v4, v1)}.

Let us remark that merging some chromatic components of a positional d-graph or d-
hypergraph results in another positional d-graph or d-hypergraph, respectively. Indeed,
this operation is realized by merging the corresponding players in the corresponding game,
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which results in another game. For example, merging the colors 1 and 2 in H3 we get
H′

3 = (V ; E3
1,2, E

3
3 ), where E3

1,2 = E3
1 ∪ E3

2 .

Let us note that any induced subhypergraph of a positional d-hypergraphs is positional.
In other words, like positional d-graphs, positional d-hypergraphs form a hereditary family.
Hence, to characterize them it is sufficient to find all minimal non-positional d-hypergraphs.
We show that, up to an isomorphism, there are only four of them.

First, there exists only one d-hypergraph with 3 vertices, H1, and it is positional.
There are two positional d-hypergraphs with 4 vertices: one is H2 and the other one

is obtained from it by merging colors 1 and 2. All other d-hypergraphs with 4 vertices
are not positional. There are 3 of them: δ2, δ3, and δ4. They have the same vertex-set
V ′ = {v0, v1, v2, v3} and the same 4 triplets {(v0, v1, v2), (v0, v1, v3), (v0, v2, v3), (v1, v2, v3)}
that are colored in δℓ by ℓ colors; where ℓ ∈ {2, 3, 4}. In other words,

δ2 = (V ′; E2
1 , E2

2 ), δ3 = (V ′; E3
1 , E3

2 , E3
3 ), and δ4 = (V ′; E4

1 , E4
2 , E

4
3 , E4

4 ), where

E2
1 = {(v0, v1, v2)}, E

2
2 = {(v0, v1, v3), (v0, v2, v3), (v1, v2, v3)},

E3
1 = {(v0, v1, v2)}, E

3
2 = {(v0, v1, v3)}, E

3
3 = {(v0, v2, v3), (v1, v2, v3)}, and

E4
1 = {(v0, v1, v2)}, E

4
2 = {(v0, v1, v3)}, E

4
3 = {(v0, v2, v3)}, E

4
4 = {(v1, v2, v3)}.

Note that we get δ3 (respectively, δ2) by merging two colors of δ4 (respectively, δ3).
For the sake of brevity, we call a d-hypergraph δ-free if it is δ2-,δ3-, and δ4-free.
We will show that, except δ2, δ3, and δ4, there is only one more forbidden d-hypergraph

π = (V ′; E1, E2) with 5 vertices V ′ = {v0, v1, v2, v3, v4} and 2 chromatic components

E1 = {(v0, v1, v2), (v1, v2, v3), (v2, v3, v4), (v3, v4, v0), (v4, v0, v1) and
E2 = {(v0, v1, v3), (v1, v2, v4), (v2, v3, v0), (v3, v4, v1), (v4, v0, v2).

Theorem 3. A d-hypergraph H is positional if and only if it is π- and δ-free.

Proof. The “only if” part is easy. It is sufficient to consider all unrooted positional games
with 4 and 5 outcomes and verify that between the corresponding 4- and 5-hypergraphs π

and δ do not appear. All these games are either given in Figure 6 or can be obtained from
them by merging players.

To prove the “if” part we will need the following concept of projection.
Given a d-hypergraph H = (V ; E1, . . . , Ed), and a vertex v ∈ V , let us define a d-graph

G = (V \ {v}; E1, . . . , Ed) as follows: (v′, v′′) ∈ Ei if and only if (v, v′, v′′) ∈ Ei, where
v′, v′′ ∈ V \ {v} and i ∈ I = {1, . . . , d}. We will call G a projection of H from v and denote
it by G = p(H, v).

By this definitions, we have G = p(H, v0) for G = G(P ) and H = H(P ′), where the
corresponding trees T and T ′ differ by one vertex v0 and edge (s, v0) added to T .

Lemma 3. Any projection of any δ-free d-hypergraph is a ∆-free graph.

Proof. Assume indirectly that p(H, v0} contains a ∆ on v1, v2, v3. Then {v1, v2, v3} and v0

induce δ2, δ3, or δ4 and we get a contradiction.

It is also easy to verify that all 5 projections of π are isomorphic to Π.
For example, projection from v0 results in G = p(π, v0) = (V ; E1, E2), where
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P ′ P

H G

v0

projection

from v0

Figure 7: Commutative diagram.

V = {v1, v2, v3, v4}; E1 = {(v1, v2), (v3, v4), (v4, v1)} and E2 = {(v1, v3), (v2, v3), (v2, v4)}.

We can formulate an inverse claim as follows.

Lemma 4. If a projection of a δ-free 2-hypergraph H = (V ′; E1, E2) contains Π then H
contains π.

Proof. Let us assume without loss of generality that v0 ∈ V ′ and that p(H, v0) contains the
subgraph Π = p(π, v0) = (V, E1, E2) given above, where V = V ′ \ {v0}. By the definition of
projection we have

(v0, v1, v2), (v4, v0, v1), (v3, v4, v0) ∈ E1 and (v0, v1, v3), (v4, v0, v2), (v2, v3, v0) ∈ E2.

Furthermore, we conclude that (v2, v3, v4) ∈ E1. Indeed, otherwise δ2 appears, since
(v4, v0, v2), (v2, v3, v0) ∈ E2 and (v3, v4, v0) ∈ E1. Similarly, we conclude that (v1, v2, v3) ∈ E1,
(v1, v2, v4), (v3, v4, v1) ∈ E2. Thus, H contains a π.

Now the “if part” of Theorem 3 follows. Indeed, let H = (V ′; E1, E2) be π- and δ-free,
V ′ = V ∪ {v0}, and G = (V ; E1, E2) = p(H, v0). In other words, a d-graph G is a projection
from v0 of a π- and δ-free d-hypergraph H. Then G is ∆-free, by Lemma 3, and it is Π-free,
by Lemma 4. Hence, by Theorem 2, G = G(P ), where P is a (rooted) positional game. Let
s be its root. Let us add to P one new vertex v0 and one new edge (v0, s) and denote the
obtained unrooted positional game by P ′. It is easy to verify that H = H(P ′). .

In fact, we proved that the Diagram in Figure 7 is commutative and all its mappings are
bijective. In this diagram P and P ′ stand for rooted and unrooted positional games, G for
Π- and ∆-free d-graphs, and H for π- and δ-free d-hypergraphs.

Let us also remark that we can generalize Lemma 4 as follows.

Proposition 1. Any δ-free d-hypergraph is uniquely defined by any its projection.

Proof. Let p(H, v0) = G, where G is a given d-graph. By the definition of projection, for all
i ∈ I and v′, v′′ ∈ V we have (v0, v

′, v′′) ∈ Ei in H if and only if (v′, v′′) ∈ Ei in G.
Now let us consider 3 vertices v, v′, v′′ ∈ V distinct from v0 and show that a color of the

triplet (v, v′, v′′) in H is uniquely determined by a given coloring of the 3 edges (v, v′), (v, v′′)
and (v′, v′′) in G. Let us consider the following 3 cases.

(i) All three edges in G are colored by the same color , that is, (v, v′),(v, v′′),(v′, v′′) ∈ Ei

for some i ∈ I. Then (v0, v, v′),(v0, v, v′′),(v0, v
′, v′′) ∈ Ei in H. Hence, the triplet (v, v′, v′′)
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in H must be colored by the same color too, that is, (v, v′, v′′) ∈ Ei, since otherwise the
quadruple {v0, v, v′, v′′} form a δ2 in H.

(ii) The three edges in G are colored by two colors i, j ∈ I, say (v, v′),(v, v′′) ∈ Ei and
(v′, v′′) ∈ Ej Then (v0, v, v′),(v0, v, v′′) ∈ Ei and (v0, v

′, v′′) ∈ Ej in H. Hence, the triplet
(v, v′, v′′) in H must be of color j, that is, (v, v′, v′′) ∈ Ej, since otherwise the quadruple
{v0, v, v′, v′′} form a δ2 in H.

(iii) The three edges in G are colored by the 3 distinct colors in G, or in other words,
v, v′, v′′ ∈ V form a ∆. Clearly, in this case the quadruple {v0, v, v′, v′′} form δ3 or δ4 in H.
Hence, this case is impossible.

This Proposition and Lemma 3 imply the following claim.

Theorem 4. Projection G = p(H, v0) is a one-to-one correspondence between ∆-free d-
graphs and δ-free d-hypergraphs with a fixed vertex.

Let us note, however, that projections from different vertices may be not isomorphic.
(Though, due to symmetry, all projections of π are isomorphic to Π.) For example, let us
consider the unrooted game P ′ with 5 leaves in Figure 6. By Theorem 3, the corresponding
d-hypergraph is π- and δ-free. Hence, its projection from any vertex is a Π and ∆-free d-
graph. However, the projections from v0 and from v1 are not isomorphic. Similarly, we get
two non-isomorphic rooted trees P0 and P1 by deleting, respectively, v0 and v1 from P ′.

Remark 4. The proofs of Proposition 1 and Theorems 3 and 4 were sketched in [22].

2.5 Read-once Boolean functions

A monotone Boolean function is called read-once if it has a (∨,∧)-formula in which each
variable appears only once. For example, F1 and F2 are read-once, while F3 and F4 are not.

F1 = v1v2 ∨ v2v3 ∨ v3v4 ∨ v4v1 = (v1 ∨ v3)(v2 ∨ v4),

F2 = v1v2v3 ∨ v1v4v5 ∨ v1v4v6 = v1(v2v3 ∨ v4(v5 ∨ v6));

F3 = v1v2 ∨ v2v3 ∨ v3v1, F4 = v1v2 ∨ v2v3 ∨ v3v4.

Given a function F , we define its co-occurrence graph G(F ) = (V, E) as follows. The
vertices of G(F ) are all essential variables of F . Two vertices v, v′ ∈ V are connected by an
edge if and only if the corresponding two variables belong to a prime implicant of F . See
examples in Figures 2 and 3.

Obviously, if F is read-once then the dual function F d is read-once too. Indeed, by de
Morgan rules, (F ∨ F ′)d = F d ∧ F ′d and (F ∧ F ′)d = F d ∨ F ′d, we get a read-once formula
for F d from a read-once formula for F by simply exchanging ∨ to ∧ and vice versa.

Theorem 5. [16, 19, 20, 24, 10, 11, 29]. The following properties of a monotone Boolean
function F are equivalent:

(i) F is read-once;

(i’) F d is read-once;
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(ii) F is normal and G(F ) is P4-free;

(ii’) F d is normal and G(F d) is P4-free;

(iii) graphs G(F ) and G(F d) are edge-disjoint;

(iv) graphs G(F ) and G(F d) are edge-complementary;

(v) graphs G(F ) and G(F d) are edge-complementary and the obtained 2-graph is Π-free;

(vi) Any two prime implicants of F and F d have exactly one common variable.

This Theorem is announced in [19] and proved in [20]. An improved (and simplified)
version of this proof is given in [16]. It is based on Theorem 2 for d = 2 and on a dual
subimplicant criterion [3]. This criterion, given a DNF of F , provides necessary and sufficient
conditions for a set of variables to be contained by a prime implicant of F d. Alternative proofs
can be found in [10, 11, 29].

It is easy to verify that for functions F1 and F2 given above all claims of Theorem 5 hold
(see Figures 2 and 3), while for F3 and F4 none of them holds. Indeed, F3 is self-dual, that
is, F d

3 = F3 = v1v2 ∨ v2v3 ∨ v3v1 and F d
4 = v1v3 ∨ v3v2 ∨ v2v4. Hence, G(F3) = G(F d

3 ), while
G(F4) and G(F d

4 ) also have a common edge, namely, (v2, v3).

2.6 Normal form of positional games

Let P be a positional game, where T = (U ∪ V, E) is a rooted tree, s is the root, and
V = {v1, . . . , vn} and I = {1, . . . , d} are the sets of outcomes and players, respectively.

A strategy of a player i ∈ I is a mapping that assigns a move (u, u′) to each position
u ∈ U such that i(u) = i. In other words, a strategy of a player i is a plan prescribing
how i should play in any possible position. Let Xi be the set of all strategies of i ∈ I and
X =

∏

i∈I Xi. The n-tuples x = (x1, . . . , xd) ∈ X are called situations. Every situation
x ∈ X uniquely defines a play that starts in the initial position s and ends in a final position
v = v(x) ∈ V . The obtained mapping g = g(P ) : X → V is called the normal form of P .

Four examples are given in Figures 2-5; the first two are 2-person and the last two are
3-person games. Respectively, their normal forms are 2- and 3-dimensional tables.

Let us remark that the mapping g is not injective, unless T is a star with the center s.
In other words, the same outcome may occur in several situations.

Two strategies xi
1 and xi

2 of a player i ∈ I are called equivalent if g(xi
1, x

I\{i}) =
g(xi

2, x
I\{i}) for any set of strategies xI\{i} of the remaining d − 1 players. We will merge

equivalent strategies and leave only one representative of each equivalence class; see four
examples in Figures 2-5.

In general, the normal form games are considered independently on the positional ones
and are defined as follows. Let I = {1, . . . , d} and V = {v1, . . . , vn} be sets of players and
outcomes, respectively; Xi be a set of all strategies of i ∈ I and X =

∏

i∈I Xi be a set of
situations. We define a normal game form g as a mapping g : X → V .

A game form g is called positional if g = g(P ) for a positional game P . The following
simple characterization of positional game forms [20, 21] is based on Theorem 2.
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A game form g : X → V is called rectangular if the following implication holds:

g(x1) = g(x2) = v ⇒ g(x) = v ∀x, x1, x2 ∈ X such that xi = xi
1 or xi = xi

2 ∀i ∈ I;

in other words, the implication holds for the situations x, x1, x2 ∈ X whenever x is a mixture
of x1 and x2. For example, all four game forms in Figures 2-5 are rectangular.

In general, it is easy to see that every positional game form is rectangular. Indeed, let
two situations x1, x2 ∈ X generate the same play p in P and let x ∈ X be a mixture of
x1 and x2. Then in each position u from p all three strategies xi

1, x
i
2, x

i ∈ Xi of the player
i = i(u) prescribe to stay in p. Hence, g(x) = g(x1) = g(x2).

Subsets K ∈ 2I and B ∈ 2V are called coalitions (of players) and blocks (of outcomes).
Given a game form g : X → V , we say that a (non-empty) coalition K ⊆ I is effective for

a block B ⊆ V if there exists a strategy xK = {xi, i ∈ K} ∈ XK such that g(xK , xI\K) ∈ B

for every strategy xI\K = {xi, i 6∈ K} ∈ XI\K of the complementary coalition I \ K, or in
other words, if coalition K can guarantee that some outcome from B will appear whatever
the rest of the players do. We will use the notation Eg(K, B) = 1 if K is effective for B and
Eg(K, B) = 0 otherwise; Eg is called the effectivity function of a game form g.

Clearly, effectivity functions of game forms are monotone,

Eg(K, B) = 1, K ⊆ K ′ ⊆ I, B ⊆ B′ ⊆ A ⇒ Eg(K
′, B′) = 1,

superadditive,

Eg(K1, B1) = 1, Eg(K2, B2) = 1, K1 ∩ K2 = ∅ ⇒ Eg(K1 ∪ K1, B1 ∩ B2) = 1,

and satisfy the following “boundary conditions”:

Eg(K, B) = 1 if K 6= ∅, B = V or K = I, B 6= ∅;

EG(K, B) = 0 if K = ∅, B 6= V or K 6= I, B = ∅.

By definition, Eg(I, ∅) = 0 and we also assume that Eg(∅, A) = 1. Hence, by monotonicity,
Eg(K, ∅) = 0 and Eg(K, V ) = 1 for every K ⊆ I.

Remark 5. Moulin and Peleg [33] proved that the above properties (monotonicity, superad-
ditivity and boundary conditions) characterize the effectivity functions of the game forms.

Obviously, the equalities Eg(K, B) = 1 and Eg(I \ K, V \ B) = 1 cannot hold simul-
taneously; in other words, two complementary (disjoint) coalitions cannot be effective for
two complementary (disjoint) blocks. Indeed, if they are then, by superadditivity, we have
Eg(I, ∅) = 1, that is, g(xK , xI\K) ∈ (B∩ (V \B)) = ∅ for some situation x = (xK , xI\K) ∈ X,
in contradiction to the boundary conditions.

Yet, the opposite equalities, Eg(K, B) = 0 and Eg(I \ K, V \ B) = 0, can both hold. If
they cannot then the game form is called tight. In other words, g is tight if

Eg(K, B) = 0 ⇒ Eg(I \ K, V \ B) = 1; ∀K ⊆ I, ∀B ⊆ V.

We will call game form g weakly tight if

Eg({i}, B) = 0 ⇒ Eg(I \ {i}, V \ B) = 1; ∀ i ∈ I
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and very weakly tight if the above implication holds for all i ∈ I but at most one.
By definition, for d ≤ 3 the notions of tightness and weak tightness coincide, yet, for

n > 3 tightness is essentially stronger. Furthermore, all three concepts (tightness, weak
tightness, and very weak tightness) coincide if d ≤ 2. It is shown in [20] that all three are
also equivalent for rectangular game forms and arbitrary d.

Theorem 6. A game form is positional if and only if it is rectangular and (very weakly)
tight.

Remark 6. This theorem was proved in [20] and announced without proof in [21].

It is not difficult to verify that all four game forms in Figures 2-5 are tight and rectangular.
The concept of tightness can be reformulated in terms of Boolean duality as follows. Let us
assign a Boolean variable to each outcome v ∈ V and the DNF

FK =
∨

B | Eg(K,B)=1

∧

v∈B

v

to every coalition K ⊆ I. See four examples in Figures 2-5.
Then g is tight (respectively, (very) weakly tight) if FK and FI\K are dual for all K ⊆ I

(respectively, for all (but one) K = {i}; i ∈ I).

Remark 7. A game form g is called Nash-solvable if for any payoff function u : I ×V → IR
the obtained game (g, u) has at least one Nash equilibrium in pure strategies. A two-person
(d = 2) game form g is Nash-solvable if and only if it is tight [18, 20, 23]. For zero-sum games
this result was obtained earlier [9, 17]. However, for d ≥ 3 tightness is neither necessary nor
sufficient condition for Nash-solvability [23].

3 Decomposing ∆-free d-graphs

3.1 Decomposing Gallai’s d-graphs into 2-graphs by substitution

In the literature ∆-free d-graphs are known as Gallai’s graphs, since they were introduced by
Gallai in [14]. We will call them Gallai’s d-graph which is more accurate. Gallai’s d-graphs
are well studied [1, 2, 6, 7, 8, 13, 26, 30, 31]. In particular, it is well-known that they are
closed under substitution.

Let us substitute a d-graph G ′′ for a vertex v of a d-graph G ′ and denote the obtained
d-graph by G = G(G′, v,G′′).

In is easy to see that then G contains both G′ and G′′ as induced subgraphs.
A family F of d-graphs is closed (respectively, exactly closed) under substitution if G ∈ F

whenever (respectively, if and only if) G ′ ∈ F and G′′ ∈ F .

Remark 8. Of course, we can apply these definitions to standard graphs (instead of d-graphs)
as well. It is sufficient to fix d = 2.

The following claim shows that Gallai’s d-graphs are exactly closed under substitution.
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Proposition 2. A d-graph G = G(G ′, v,G′′) contains a ∆ if and only if both G ′ and G′′

contain it.

Proof. Let G contain a ∆. Clearly, this ∆ cannot have exactly one edge in G ′′, because then
two remaining edges are of the same color. If it contains two edges in G ′′ then the third one
is in G′′ too and, hence, G′′ contains a ∆. Finally, if all three edges are in G ′ then G′ contains
a ∆. Conversely, if G′ or G′′ contains a ∆ then G contains it too, since both G ′ and G′′ are
induced subgraphs of G.

It is also known that each Gallai d-graph can be obtained from 2-graphs by substitutions.

Theorem 7. (Cameron and Edmonds, [6]; Gyárfás and Simonyi, [26]).
Let G be Gallai’s d-graph with at least 3 non-trivial chromatic components. Then G =
G(G′, v,G′′), where G′ and G′′ are non-trivial Gallai’s d-graphs.

Clearly, we can proceed with this decomposition until there are at least 3 non-trivial
chromatic components in G′ or in G′′, since both these d-graphs are still ∆-free; see Figure 8.
Thus, decomposing recursively, we will represent G by a binary tree T (G) whose leaves
correspond to 2-graphs.

G

G′′ G′ v

Figure 8: Decomposing G by the tree T (G); substituting G′′ for v in G′ to get G.

3.2 Proof of Theorem 7

To make the paper self contained we give here a proof that also can be found in [26]. The
following property of Gallai’s d-graphs is instrumental for their decomposition.

Lemma 5. Let G = (V ; E1, . . . , En) be a Gallai d-graph one of whose chromatic component,
say G1 = (V, E1), is disconnected and let V ′

1 and V ′′
1 be the vertex sets of its two connected

components. Then all edges between V ′
1 and V ′′

1 are homogeneously colored, that is, they all
are of the same color i, where i 6= 1.

Proof. Since V ′
1 and V ′′

1 are connected components of G1, no edge between them can be of
color 1. Assume indirectly that (x′, x′′) ∈ E2 and (y′, y′′) ∈ E3 for some x′, y′ ∈ V ′

1 and
x′′, y′′ ∈ V ′′

1 . Since V ′
1 and V ′′

1 are connected, we can choose a path p′ between x′ and y′ in
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C ′
1 and p′′ between x′′ and y′′ in C ′′

1 . Then we can get a contradiction by showing that the
d-graph induced by V (p′) ∪ V (p′′) contains a ∆, namely, a triangle colored by 1, 2 and 3.
This is easy to show by induction on the lengths of p′ and p′′.

Lemma 6 ([14], [6], and [26]). Every Gallai d-graph G = (V ; E1, . . . , Ed) with at least 3
non-trivial chromatic components has a color i ∈ I = {1, . . . , d} that does not span V , that
is, Gi = (V, Ei) is not connected.

Proof. We copy it from [26]. Let G be a minimal counterexample. We may assume that
for each vertex v ∈ V and color i ∈ I there is an edge e ∈ Ei incident to v. Indeed,
otherwise Gi = (V, Ei) is not connected, since v is an isolated vertex in it. Let us fix a
vertex x ∈ V and consider the induced subgraph Gx = G[V \ {x}]. Clearly, Gx must have
at least 3 non-trivial chromatic components. Indeed, if there are only 2 of them, say 1 and
2, then Gi = (V, Ei) is disconnected for each i = 3, . . . , d. Otherwise, since G is a minimal
counterexample, Gx is disconnected in some color, say in color 1. Let V1, . . . , Vk be the vertex-
sets of the corresponding connected components. By Lemma 4, for each two components all
edges between them are homogeneously colored, that is, they all are the same color i and,
obviously, i 6= 1.

We will get a contradiction by showing that G1 = (V, E1) is disconnected. Let us assume
the opposite. Then there are edges of color 1 from x to yj ∈ Vj for each j ∈ [k] = {1, . . . , k}.
Let (x, u) and (x, v) be edges of colors 2 and 3.

Case 1. If u and v are in the same component, say u, v ∈ V1, then (u, y2) must be of
color 2, since otherwise {x, u, y2} form a ∆, while (v, y2) must be of color 3, since otherwise
{x, v, y2} form a ∆. Thus, we get a contradiction with the homogeneous coloring of all edges
between V1 and V2.

Case 2. If u and v are in different components, say u ∈ V1 and v ∈ V2 then (u, y2)
must be of color 2, since otherwise {x, u, y2} form a ∆, while (v, y1) must be of color 3, since
otherwise {x, v, y1} form a ∆. Again we get the same contradiction.

Gyárfás and Simonyi remark that Lemma 6 “is essentially a content of Lemma (3.2.3)
in [14]”. Lemmas 5 and 6 imply Theorem 7. Indeed, let G = (V ; E1, . . . , Ed) be a Gallai
d-graph. If it has at most 2 non-trivial chromatic components then we are done. Otherwise,
by Lemma 6, there exists a non-trivial and non-connected component Gi = (V, Ei). Let
us decompose Gi into connected components and let V = V1 ∪ . . . Vk be the corresponding
partition of V . At least one of these sets, say V1, is of cardinality at least 2, since component
i is non-trivial. By Lemma 5, for every two distinct vertex-sets Vj′ and Vj′′ all edges between
them are homogeneously colored, that is, there exists a color i′ ∈ I = {1, . . . , d} such that
i′ 6= i and (v′, v′′) ∈ Ei′ for every v′ ∈ Vj′, v

′′ ∈ Vj′′. Thus, collapsing V1 into one vertex v we
obtain a non-trivial decomposition G = G(G ′, v,G′′), where “non-trivial” means that both G ′

and G′′ are distinct from G.

It is well-known that decomposing a graph into connected components can be executed in
linear time. Hence, given a Gallai d-graph G, its decomposition tree T (G) can be constructed
in linear time, too.
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3.3 Extending Cameron-Edmonds-Lovasz’ Theorem

Theorem 7 is instrumental to derive some nice properties of Gallai’s colorings.

Corollary 1. A Gallai d-graph with n vertices contains at most n− 1 non-trivial chromatic
components.

As it was mentioned in [26], this result by Erdős, Simonovits, and Sos [13] immediately
follows from Theorem 7 by induction.

Corollary 2. If all but one chromatic components of a Gallai d-graph are perfect graphs
then the remaining one is a perfect graph too.

This claim was proved by Cameron, Edmonds, and Lovasz [7]. (Clearly, it turns into
Lovasz’ Perfect Graph Theorem if d = 2.) Later, Cameron and Edmonds [6] strengthened
this claim showing that the same statement holds not only for perfect graphs but, in fact,
for any family of graphs that is closed under: (i) substitution, (ii) complementation, and
(iii) taking induced subgraphs. In [1] the claim is strengthened further as follows.

Theorem 8. [1]. Let F be a family of graphs closed under complementation and exactly
closed under substitution and let G = (V ; E1, . . . , Ed) be a Gallai d-graph such that at least
d − 1 of its chromatic components, say Gi = (V, Ei) for i = 1, . . . , d − 1, belong to F . Then

(a) the last component Gd = (V, Ed) is in F too, and moreover,

(b) all 2d projections of G belong to F , that is, for each subset J ⊆ I = {1, . . . , d} the
graph GJ = (V,∪j∈JEj) is in F .

Proof. Part (a). By Theorem 7, G can be obtained from 2-graphs by substitutions. Such
a decomposition of G is given by a tree T (G) whose leaves correspond to 2-graphs. It is
easy to see that by construction each chromatic component of G is decomposed by the same
tree T (G). Hence, all we have to prove is that both chromatic components of every 2-graph
belong to F . For colors 1, . . . , d− 1 this holds, since F is exactly closed under substitution,
and for the color d it holds, too, since F is also closed under complementation.

Part (b). It follows easily from part (a).
Given a (d + 1)-graph G = (V ; E1, . . . , Ed,Ed+1), let us identify the last two colors d and

d + 1 and consider the d-graph G ′ = (V ; E1, . . . , Ed−1, Ed), where Ed = Ed ∪ Ed+1. We
assume that G is ∆-free and that Gi = (V, Ei) ∈ F for i = 1, . . . , d − 1. Then G ′ is ∆-free
too and it follows from part (a) that Gd = (V, Ed) is also in F . Hence, the union of any
two colors is in F . From this by induction we derive that the union of any set of colors is in
F .

This theorem implies Cameron-Edmonds’ Theorem, as the following Lemma shows.

Lemma 7. Let F be a family of graphs closed under substitution and taking induced sub-
graphs then F is exactly closed under substitution.
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Proof. Indeed, if G = G(G′, v, G′′) then both G′ and G′′ are induced subgraphs of G.

A graph G is called a CIS-graph if each maximal clique and stable set of G intersect.
By definition, CIS-graphs are closed under complementation and it is shown in [1] that they
are exactly closed under substitution. However, an induced subgraph G′ of a CIS graph G

may be not a CIS-graph. For example, let G = (V, E), where V = {v0, v1, v2, v3, v4} and
E = {(v1, v2), (v2, v3), (v3, v4), (v0, v2), (v0, v3)}. Then G is a CIS-graph but its subgraph
G′ = P4 induced by V \ {v0} is not.

Thus, Theorem 8 is applicable to the family F of the CIS-graphs, though Cameron-
Edmonds’ Theorem is not, because only conditions (i) and (ii) hold for F but not (iii).

To get more examples of families satisfying conditions of Theorem 8 let us consider the
hereditary classes. Each such class is a family of graphs F defined by an explicitly given
family (finite or infinite) of forbidden subgraphs F ′. By definition, G ∈ F if and only if G

contains no induced subgraph isomorphic to a G′ ∈ F ′.
Let us call a graph (respectively, d-graph) G substitution-prime if it is not decomposable

by substitution, or more precisely, if G = G(G′, v, G′′) for no G′, G′′ and v, except for two
trivial cases: (G = G′ and V (G′′) = {v}) or (G = G′′ and V (G′) = {v}).

Suppose that G is decomposable, G = G(G′, v, G′′). If G′ or G′′ contains an induced
subgraph G0 then G also contains it, since both G′ and G′′ are induced subgraphs of G.
However, G may contain G0 even if G′ and G′′ do not. Yet, clearly, in this case G0 is not
substitution-prime. Hence, for both graphs and d-graphs, we obtain the following statement.

Proposition 3. Family F is exactly closed under substitution if all graphs (respectively,
d-graphs) in F ′ are substitution-prime.

Thus, F satisfies all conditions of Theorem 8 whenever F ′ is closed under complemen-
tation (G ∈ F ′ if and only if G ∈ F ′) and F ′ contains only substitution-prime graphs. For
example, these two properties hold for the family F ′ of the odd holes and anti-holes. In this
case F is the family of Berge graphs. Thus, Theorem 8 and the Strong Perfect Graph The-
orem imply Cameron-Edmonds-Lovász Theorem. Of course, it is simpler to show directly
that perfect graphs are exactly closed under substitution and then apply Lovasz’ perfect
graph theorem in place of the strong one.

However, if F ′ contains a decomposable graph, e.g., C4, then F may be not closed under
substitution. For example, let F ′ = {C4, C4} and consider the Gallai 3-graph in Figure 4.
Two of its chromatic components belong to F , while the third one, C4, does not. As another
example, let us consider F ′ = {C4, C4, C5}. Then, by [12], F is the family of the split graphs.
This family is not closed under substitution. Indeed, substituting a non-edge for a middle
vertex of P3 we get C4.

The CIS-graphs form a non-hereditary family closed under complementation and exactly
closed under substitution. It is not difficult to construct more examples of such families
and even to characterize all families of graphs and d-graphs that are exactly closed under
substitution.

Let F ′ be a family, finite or infinite, of (d-)graphs and let F = cl(F ′) be its closure under
substitutions. Typically, the family F is not hereditary.
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Proposition 4. A family F of (d-)graphs is exactly closed under substitution if and only
if F = cl(F ′), where F ′ is a family, finite or infinite, of substitution-prime (d-)graphs
Furthermore, F is closed under complementation whenever F ′ is.

Proof. The latter claim makes sense only for graphs and it is obvious. The former one follows
from the uniqueness of canonical modular decomposition [34].

However, the above characterization is not constructive. For example, the substitution-
prime perfect or CIS-graphs form infinite families that are difficult to describe explicitly.
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