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ABSTRACT

Given a non-negative integral m × n matrix A : I × J → ZZ+, the game Seki is defined as
follows. Two players R and C take turns and it is specified who begins (this player is called
the first and the opponent second). By one move a player can either reduce a strictly positive
entry of A by 1 or pass. If both players pass then the game results in a draw. Player R

(respectively, C) wins if a row (respectively, column) appears whose all entries are equal to
0. If after a move such a row and column appear simultaneously then the player who made
this last move is the winner. (We also consider another version, Seki-I, in which this case is
defined as a draw.) If neither R nor C can win in A, even being first, then A is called a seki
matrix or simply a seki. Furthermore, A is called a complete seki matrix (CSM) if A is a
seki and each player must pass, that is, if a player makes an active move then the opponent
wins.

Seki is a difficult game. We cannot solve it and present only some partial results and
conjectures mostly on the CSMs.

The game is closely related to the so-called seki (shared life) positions in GO. However,
Seki is of independent interest as a combinatorial game. Those readers who do not know
how to play GO can still understand the whole paper, except Appendix, where we analise
(seki) positions in GO corresponding to some (seki) matrices. Already for 3 × 3 matrices
such positions may be difficult even for advanced GO players.

Key words: combinatorial games, games with positive incentive, GO, seki, shared life,
complete seki, draw, integral matrix, symmetrizable matrix, magic square.



1 Introduction

The game Seki was introduced in [3] to analyze the so-called seki (shared life) positions in
GO. We refer to the website [2] that contains many examples and a systematic analysis of
such positions.

Yet, we hope that Seki, as a combinatorial game, is of independent interest and present
it here for mathematicians rather than for GO players. Though Seki is much easier than
GO, still, it is sophisticated enough. We cannot solve it and present here only some partial
results and conjectures mostly related to the complete seki matrices (CSMs). We verified
these conjectures for small matrices by computer. Our experimental results are based on a
computer code for repetition-free (up to permutations of rows and columns) generating all
integral m × n matrices whose maximum entry (so-called height) is at most h. We went as
far as (m, n, h) = (3,3,10),(4,4,3), (5,5,2);(3,4,6),(3,5,4),(4,5,2). Having all these matrices we
solve Seki by backward induction.

1.1 Main results and conjectures

The following conditions are sufficient for the second player to win. Player R can win if C

begins and there is a row i ∈ I such that sc
j − sr

i ≥ ai,j for every column j ∈ J and the
inequality is strict whenever ai,j = 0. Here sr

i and sc
j denote the sum of all entries of the row

i ∈ I and column j ∈ J , respectively, and ai,j is the corresponding entry of A. Clearly, the
similar claim holds for C. It is also obvious that the first player wins if (s)he has a move
such that the above conditions hold for the obtained matrix. We show that these two simple
criteria are not only sufficient but also necessary for a player to win in a 2× n matrix. This
observation implies that there exist only four 2 × 2 CSMs and there is no 2 × n CSMs for
n > 2. The same criteria also imply that an n×n matrix A is a CSM whenever A is a magic
square (that is, sr

i = sc
j = s for each i ∈ I, j ∈ J), whose sum s = s(A) ≥ 2 and height

h = h(A) ≤ 2. For example, all 2 × 2 CSMs are of this type, since for all of them h ≤ 2.
In the opposite direction, we show that each n × n CSM of height h ≤ 1 is a direct sum of
magic squares. It seems that the same holds for h ≤ 2 as well. Computations confirm this
conjecture for n ≤ 5.

However, there exist “non-magic” 3 × 3 CSMs. Furthermore, there is a symmetric 3 × 3
magic square (with sum s = 6) in which the first player, R or C, wins. This property
also holds for many 4 × 4 magic squares. They may have other surprising properties. For
example, in some of them player R (respectively, C) always wins, being the first or second.
Some others are semi-complete seki matrices, that is, R must pass, while C can move and
still draw, or vice versa. Among 3 × 3 matrices of height h ≤ 10 there exist only four
semi-complete seki matrices, of height 4 and 5, yet, they are not magic squares.

Let h(n) be a maximum height among n × n CSMs. We show that h(1) = h(2) = 2. It
looks like h(3) = 3; at least we verified that no 3× 3 CSM has the height between 4 and 10.
We conjecture that all seki matrices (in particular, all CSMs) are square, or equivalently,
that a player, R or C, always wins in a m × n matrix with m 6= n. Clearly, this conjecture



– 2 –

holds for 1 = m < n and we prove it for 2 = m < n. We also verify it by computer for 3× 4
(respectively, 3 × 5 and 4 × 5) matrices of height at most 6 (respectively, 4 and 2).

All n × n CSMs for n ≤ 3 are symmetrizable, that is, they can be made symmetric by a
permutation of the rows or columns. Yet, there are not symmetrizable 4 × 4 (respectively,
16 × 16) CSMs of height 2 (respectively, 1).

The game Seki is closely related to the so-called seki (shared life) positions in GO. How-
ever, Seki is of independent interest as a combinatorial game. Those readers who do not
know how to play GO can still understand the whole paper, except Appendix, where we
analise (seki) positions in GO corresponding to some (seki) matrices. Already for 3 × 3
matrices such positions may be difficult even for advanced GO players.

1.2 Seki-I

Let us recall that if after a move a row and column whose all entries are equal to 0 appear
simultaneously then the player who made this last move is claimed the winner. This rule
is implied by GO. Yet, it would be also logical to define each such position as a draw. We
call the obtained game by Seki-I and study it in Section 10. It seems that Seki-I is a little
simpler than Seki, although both games have similar properties.

For example, the following conditions are sufficient for the first player to win in Seki-I.
Being first, R wins if there is a row i ∈ I such that sc

j − sr
i ≥ ai,j for every column j ∈ J .

Obviously, the similar claim holds for C. These simple criteria imply that a magic square
whose sum s = s(A) ≥ 2 and height h = h(A) ≤ 1 is a CSM in Seki-I. Except them, so-called
2-cycles are CSMs too; see Section 10 for the proofs and precise definitions. We conjecture
that in Seki-I each CSM is a direct sum of the (0, 1) magic squares and 2-cycles.

1.3 Example

Let us consider the matrix A =
3 0 0
0 3 0
1 1 3

If player C begins then he can win successively attacking three times the entry a3,3 = 3;
while R by two moves can eliminate only entries a3,1 = 1 and a3,2 = 1. Then, after the next
move of C, the third row and column disappear simultaneously, and thus C wins.

On the other hand, if R begins then she can force a draw. Of course, she should not
pass, since in this case C wins, as we have just seen. Instead, R by first two moves reduces
the entries a1,1 = 3 and a2,2 = 3 by 1. Each time C must respond by deleting a3,1 = 1 and
a3,2 = 1, respectively, since otherwise R will delete the whole row in two moves. Thus, after
two rounds they come to

2 0 0
0 2 0
0 0 3
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This matrix is a seki but it is still not complete, since any player can reduce a3,3 = 3 by
1. Then a CSM appears. Indeed, after a move at ai,i = 2 for i = 1, 2, 3, the opponent will
delete this entry and the row and column i will be eliminated simultaneously. Let us remark
that R can also start by deleting a3,1 = 1 or a3,2 = 1. This will result in a draw, too.

A similar n×n example can be easily constructed: the main diagonal is 3, that is, ai,i = 3
for i = 1, . . . , n, the last row is 1, that is, an,i = 1 for i = 1, . . . , n − 1, and any other entry
is 0. Again, if C begins, he can win attacking the last column 3 times; if R begins then she
can force a draw attacking successively n distinct entries of the main diagonal and by this
forcing C to eliminate the whole last row, except for the last entry an,n = 3.

1.4 1 × n and 2 × 2 matrices

In case m = n = 1, obviously, we have: if a1,1 = 1 then the first player wins; a1,1 = 2 is a
CSM; a1,1 > 2 is a not complete seki matrix. In case m = 1 and n > 1 player C always wins.
Similarly, R wins if m > 1 and n = 1.

Now let us consider 2 × 2 matrices. It is easy to verify that the first player wins in the
following three:

1 2 1 3 1 2
2 2 3 3 2 3

For example, in the first one, player R (respectively, C) must reduce a1,2 = 2 (respectively,
a2,1 = 2) to 1. This is the only winning move. We leave to the reader finding a winning
strategy in the remaining two matrices.

The following four 2 × 2 matrices are not complete seki:

B2
1 B2

2 B2
3 B2

4

2 3 2 2 2 3 3 3
3 2 2 3 3 3 3 3

Indeed, it is easy to verify that nobody can win. Yet, a player can reduce an entry 3 of
a matrix and the corresponding game is still a draw, with only two exceptions. In the third
matrix player R (respectively, C) should not reduce a2,1 = 3 (respectively, a1,2 = 3), since in
this case (s)he will lose. For example, the opponent wins reducing the same entry further.

We will prove that there exist exactly four 2 × 2 CSMs:

A2
1 A2

2 A2
3 A2

4

1 1 2 0 2 1 2 2
1 1 0 2 1 2 2 2

It easy to see that in all four both players must pass. The corresponding GO-positions
are given in Figure 2 of the Appendix. In section 5 we will show that there are no more
2 × 2 CSMs. Here and in the sequel, we identify two matrices if one can be obtained from
the other by permutations of its rows and columns.

Let us note that all four 2 × 2 CSMs are symmetric. Moreover, they are magic squares,
that is, the sum of entries in each row and in each column takes the same value s.
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1.5 Magic squares

Clearly, if s = 1 then the first player, R or C, wins in one move in any n×n magic square. In
Section 6 we show that any 2×2 magic square with s > 1 is a seki and that A2

ℓ , ℓ = 1, 2, 3, 4,
are only CSMs among them.

In section 8 we will show that a n × n magic square is a CSM whenever its sum s ≥ 2
and height (the maximum entry) h ≤ 2. One could conjecture that, in general, any n × n

magic square with s > 1 is a seki. However, it is not true unless n = 2 or h ≤ 2. For
example, among 3 × 3 magic magic squares of height h ≤ 10 there are two (of height 3 and
4, respectively) in which the first player, R or C, always wins; see section 1.7. Clearly, a
unique magic square with s = 1 has this property too. Yet, all others 3 × 3 magic squares
of height h ≤ 10 are indeed seki.

However, there are very many interesting 4 × 4 magic squares of height 3: in some of
them the first player, R or C, always wins, while in some others R (or C) always wins, being
the first or second; see Section 1.8.

1.6 Direct sum of matrices

A trivial operation that respects CSMs is the direct sum of matrices, A = A′⊕A′′. Given an
m′ × n′ matrix A′ : I ′ × J ′ → ZZ+ and m′′ × n′′ matrix A′′ : I ′′ × J ′′ → ZZ+, let us define an
m×n matrix A : I×J → ZZ+, where m = m′+m′′, n = n′+n′′, and I = I ′∪I ′′, J = J ′∪J ′′;
furthermore ai,j = ai′,j′ if i = i′ ∈ I ′, j = j′ ∈ J ′ and ai,j = ai′′,j′′ if i = i′′ ∈ I ′′, j = j′′ ∈ J ′′;
otherwise, if i ∈ I ′, j ∈ J ′′ or i ∈ I ′′, j ∈ J ′ then ai,j = 0. The following statements are
obvious.

Claim 1 (i) If the first (respectively, the second) player wins in both A′ and A′′ then (s)he
wins in A as well.

(ii) If R (respectively, C) wins in both A′ and A′′ then (s)he wins in A.

(iii) Both A′ and A′′ are seki if and only if A is a seki.

(iv) Both A′ and A′′ are CSMs if and only if A is a CSM.

The last statement implies that a CSM may be not a magic square.
Moreover, it may be not a direct sum of magic squares. First such example was con-

structed in [3]; see Section 9. In the next Section we give more examples.

1.7 3 × 3 matrices

By a computer code, we got all 3 × 3 matrices of height h ≤ 10.
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1.7.1 Complete seki matrices

In particular, each 3 × 3 magic squares whose sum s ≥ 2 and height h ≤ 2 is a CSM. Thus,
we obtain

B3
1 B3

2 B3
3 B3

4 B3
5 B3

6 B3
7 B3

8 B3
9 B3

10 B3
11

002 011 012 012 111 022 022 112 122 200 222
020 101 111 120 111 202 211 121 212 011 222
200 110 210 201 111 220 211 211 221 011 222

Two of these CSMs, B3
1 and B3

10, are the direct sums of smaller CSMs.
The following two CSMs are direct sums too, yet, they are not magic squares:

2 0 0 2 0 0
0 2 1 0 2 2
0 1 2 0 2 2

Finally, there are seven 3 × 3 CSMs of height 3:

A3
1 A3

2 A3
3 A3

4 A3
5 A3

6 A3
7

033 133 301 320 320 320 033
303 313 022 212 203 213 331
330 331 121 023 032 033 312

Interestingly, the last two of them are not magic squares. In fact, A3
6 is obtained by one

move from a symmetric magic square

4 2 0
2 1 3
0 3 3

while A3
7 can be reduced by one move to a symmetric magic square A =

0 3 3
3 2 1
3 1 2

1.7.2 Magic squares in which the first player always wins

Since A3
7 was a CSM, the first player, R or C, always wins in A. A pretty long case

analysis confirms this conclusion. We leave it to the reader revealing only the first move: R

(respectively, C) can win reducing a1,2 (respectively, a2,1) from 3 to 2. The position in the
9 × 9 GO-board corresponding to A3

7 is given in Figure 3 of the Appendix.
There is another 3 × 3 magic square with the same property:

0 3 4
3 1 3
4 3 0



– 6 –

One can verify that R (respectively, C) wins reducing a2,1 (respectively, a1,2) from 3 to
2. Finally, the first player always wins in the 3 × 3 identity matrix, since in this case s = 1.
Interestingly, all three obtained matrices are symmetric.

Computer analysis shows that any other 3 × 3 magic square of height h ≤ 10 is a seki.
Moreover, both players, R and C, can start completing this seki. In section 1.8, we will see
that many more interesting options can take place for 4 × 4 magic squares of height 3.

1.7.3 Semi-complete seki

Among 3 × 3 matrices of height h ≤ 10 there are other two interesting examples:

A3
8 A3

9

0 3 3 0 3 5
4 0 3 3 0 5
4 3 0 4 4 0

Each of the above two matrices is a not complete seki such that only C can make an
active move, while R must pass. Such a matrix will be called a semi-complete seki matrix
(semi-CSM). Let us consider, e.g., A3

8. The corresponding position in the 9× 9 GO-board is
given in Figure 4 of the Appendix.

Let C reduce a1,2 from 3 to 2. If R would pass then C can even win playing at a3,2.
Instead, R should reduce a3,1 from 4 to 3. The obtained matrix is a (not complete) seki.
Again we leave the full case analysis to the reader.

Unlike C, player R must pass in A3
8. Indeed, due to obvious symmetry, R has only

three distinct moves: at a1,2, a2,1, and a3,2. If R chooses a1,2 then C can reduce a3,2 or, less
obviously, a2,1; if R chooses a2,1 then C answers at a1,2; finally, if R chooses a3,2 then C plays
at a1,2. It is not difficult to verify that in all three cases C wins.

Now let us consider A3
9. This example is more difficult to analyze. However, computer

says that it is a semi-CSM too. In particular, C can reduce a1,2 from 3 to 2. In return,
R should reduce a1,3 from 5 to 4. The obtained matrix is a (not complete) seki. Unlike
C, player R must pass in A3

9. Indeed, due to obvious symmetry, R has only three distinct
moves: at a1,2, a1,3, and a3,1. If R reduces a1,2 from 3 to 2 then C will reduce it further to
1; if R chooses a1,3 then C answers at a2,1; finally, if R chooses a3,1 then C answers at a1,2.
The program says that in all three cases C wins. Thus A3

9 is a semi-CSM too.

Let us remark that neither A3
8 nor A3

9 is a magic square.
In general, 3 × 3 semi-CSMs are rare. Among matrices of height h ≤ 10 there are only

four of them: A3
8, A

3
9 and two transposed matrices.

1.8 4 × 4 matrices of height 3

In contrast, there are many 4 × 4 semi-CSMs. Moreover, some of them are magic squares
too. For example, there exist ten 4 × 4 magic squares of height 3 that are semi-CSMs in
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which C can move, while R cannot.

0023 0023 0033 0123 0123 0123 0133 0312 0233 1133
2300 2201 3300 2301 2310 2121 3301 2112 3302 3311
1121 2210 1122 2121 2112 2211 2122 2121 3131 2222
2111 1121 2211 2121 2121 2211 2221 2121 2222 2222

There exist thirteen 4 × 4 magic squares of height 3 in which R always wins, being first
or second:

0023 0113 0113 0113 0113 0123 0123 0123 0123 0123 0123 0222 0223
1310 1130 3110 1220 2120 0321 0213 0213 0321 2103 1230 0222 3220
2012 2102 0221 2012 2210 3012 2220 3120 3012 2220 2202 3111 2113
2210 2210 2111 2210 1112 3210 2220 3210 3210 2220 3111 3111 2221

However, there exist only three 4 × 4 magic squares of height 3 in which R wins being
first and draws being second.

0 1 3 3 0 2 2 3 0 2 3 3
3 1 0 3 2 2 3 0 3 3 1 1
2 3 2 0 2 1 1 3 3 1 2 2
2 2 2 1 3 2 1 1 2 2 2 2

Yet, there are sixty 4 × 4 magic squares of height 3 in which the first player, R or C,
wins. Several examples follow:

0001 0023 0023 0023 · · · 0233 1133 1133
0010 0230 0320 2300 · · · 3212 1313 1322
0100 3101 3011 1130 · · · 3221 3221 3212
1000 2201 2201 2102 · · · 2222 3221 3221

On the other hand, there are many 4×4 CSMs that are not magic squares. For example,
the following five matrices:

3 0 0 2 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3
0 0 3 3 0 3 1 1 3 3 0 0 3 3 0 0 0 3 0 3
0 3 2 1 3 1 1 2 1 3 1 3 0 3 1 3 2 2 2 0
2 3 1 1 3 1 2 1 3 1 3 1 3 1 3 0 3 1 1 1

We leave to the reader to check that they are CSMs, indeed. In general, to verify the types
of all matrices given above is a difficult task and we just refer to our computer analysis.

1.9 Two main conjectures

1.9.1 Can game Seki in a non-square matrix result in a draw?

It looks like it cannot.
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Conjecture 1 Each seki matrix (and in particular, each CSM) is a square matrix, that is,
m = |I| = |J | = n.
Equivalently, a player, R or C, always wins in a m × n matrix when m 6= n.

Obviously, C wins if 1 = m < n (and R wins if 1 = n < m). In Section 8, the conjecture
is proved for 2 = m < n. It is also verified for the 3 × 4 (respectively, 3 × 5 and 4 × 5)
matrices of height at most 6 (respectively, 4 and 2).

For example, let us consider the following two matrices

2 1 1 1 1 2 1 1 1 1
2 2 2 2 2 2 2 2 2 2
2 3 2 3 3 2 3 2 3 2
1 3 6 8 8 1 3 6 8 8

and show that in the first one the first player, R or C, wins, while the second one R always
wins, being the first or second. In any case the game does not result in a draw.

Indeed, if R begins, she can eliminate the first row and win. Yet, if C is the first, he can
effectively resist by eliminating the first column. The further analysis is not difficult: R and
C eliminate successively the second and third rows and columns getting matrices

2 0 0 0 0 2 0 0 0 0 2 0 0 0 0
0 2 2 2 2 0 2 0 0 0 0 2 0 0 0
0 3 2 3 3 0 0 2 3 2 0 0 2 0 0
0 3 6 8 8 0 0 6 8 8 0 0 0 8 8

Finally, C wins. The second game will follow the same line but now R, even being second,
can eliminate the third row and win.

1.9.2 How large the height of an n × n CSM can be?

Conjecture 2 (i) For any fixed n the set of n × n CSMs is finite; or equivalently,

(i’) there is a function h : ZZ+ → ZZ+ such that the maximum entry (and hence, the
height) of an n × n CSM is equal to h(n).

(ii) Function h is unbounded, that is, h(n) can take arbitrarily large values.

Obviously, h(1) = 2, since a1,1 = 2 is a unique 1 × 1 CSM. In Section 6 we will show
that there are only four 2 × 2 CSMs: A2

ℓ , ℓ = 1, 2, 3, 4. Hence, h(2) = 2 too. It is likely that
h(3) = 3. At least, we verified that there is no 3 × 3 CSM of height h for 4 ≤ h ≤ 10. Yet,
we were not able to get reasonable bounds for h(4), because of the memory constraints. We
only know that h(4) ≥ 3.

In general, the results of Section 9 imply that h(n) ≥ 3 for each n ≥ 3.
It is natural to conjecture that h(n) is a non-decreasing function of n..
Perhaps, h(n) = n for n ≥ 2.
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1.10 Generalized Seki and Seki-I

Let G = (V, E) be a finite directed graph that has no directed cycles; its vertices v ∈ V

are called positions and the directed arcs e = (v, v′) ∈ E going out of a vertex v are called
the active moves in the position v. Let VT ⊆ V be the set of all terminal positions, that is,
positions in which there are no active moves.

We introduce two players R and C who take turns beginning with a specified initial
position v0 ∈ V \ VT . In each position v ∈ V \ VT the player on lead can either choose an
active move e = (v, v′) or pass. Then the opponent has to move from v′ or v, respectively. A
directed path from v0 to a position v ∈ V is called a debut and it is called a play if v ∈ VT .

Furthermore, let V R
T , V C

T ⊆ VT be two sets of terminal positions and, by definition, R

and C win if the play p terminates in V R
T and V C

T , respectively. If p terminates in a position
v ∈ VT \ (V R

T ∪V C
T ) then the result is defined as a draw. Finally, if p terminates in a position

v ∈ V R
T ∩ V C

T then there are two options: Seki and Seki-I. In Seki-I the result is defined
as a draw, while in Seki the player who made the last move is claimed the winner. The
position v ∈ V \ VT is called a complete seki position if each player, R and C, must pass in
it, otherwise the opponent wins.

2 The importance of being first or strategy thief

All above examples with symmetric matrices support the following statement.

Claim 2 The second player never wins in a symmetric matrix, in other words, either such
a matrix is a seki or the first player wins.

Proof. The standard “strategy stealing argument” works. Assume indirectly that the second
player has a winning strategy. In particular, (s)he can win if the first player pass. In this
case the second player does not pass (this would be a draw), instead (s)he begins and wins.
Yet, the first player can “steal” this winning strategy, since A is symmetric. We get a
contradiction. �

We can generalize this claim as follows: for a player to be the first is at least as good as to
be the second; this is true for any matrix. Milnor (1953) called this property of a game the
positive incentive. For example, Seki, GO, and all games in which both players are allowed
to pass have a positive incentive. More precisely, the following statement holds.

Claim 3 If R can win (respectively, draw) being second, then she can win (respectively, draw
or win) being first.

Proof. Indeed, to become second, being first, it is enough to pass. �

Clearly, the similar claim holds for C, as well. It is also clear that Claim 3 implies Claim
2.
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Claim 4 For the following three statements:

(i) The first player, R or C, cannot win in A;

(ii) The second player, R or C, cannot win in A;

(iii) A is a seki matrix;

we have (i) ⇒ (ii) & (iii) and (iii) ⇒ (i) & (ii).

Proof. Indeed, by definition, (iii) is equivalent to the conjunction of (i) and (ii). Furthermore,
(i) implies (ii), since Seki is a game with positive incentive. Indeed, let us assume indirectly
that (ii) does not hold. This means that for a matrix A the second player, say R, wins.
Then R wins, being the first, too, since it is enough for the first player to pass to become
the second one. �

3 Nine types of matrices

Given a matrix A in which R begins, let us say that A is of type:

W if R has a winning move;
L if C wins;
D if R cannot win but can draw, in other words, neither R nor C can win.

Interestingly, by Conjecture 1, only square matrices can be of type D.

Let us define the similar types assuming that C begins and consider both options. The
obtained nine types of matrices are interpreted as follows:

(W, W ) means the first player wins;

(W, D) that R wins if she begins and draws if plays second;

(D, W ) means the same for C;

(W, L) means that R always wins;

(L, W ) that C always wins;

(D, D) means seki, that is, the game is a draw, whoever begins;

(D, L) means that R wins when she plays second and only draws when begins.

(L, D) the same for C;

(L, L) means that the second player always wins.
The last three types, (D, L), (L, D), and (L, L), do not exist, since Seki is a game with

a positive incentive.

We get a less obvious classification if substitute D and L by the following similar but
slightly different properties:

D′ means that R has no winning move but has at least one active move (not pass) that
results in a draw;
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L′ means that R has no such a move, in other words, every move, except pass, is losing;
yet, pass may result in a draw.

Now the nine types of matrices are interpreted as follows: (W, W ) , (W, D′), (D′, W ),
(W, L′), and (L′, W ) mean the same as before. Furthermore,

(D′, D′) means that each player has an active move (not pass) that results in a draw,
that is, A is a (not complete) seki matrix such that each player can start completing this
seki.

(D′, L′) is a semi-complete seki, that is, A is a (not complete) seki matrix such that only
R, but not C, can start completing this seki.

(L′, D′) the same for C;

(L′, L′) means that A is a CSM, since the second player wins after each move of the first
one, except pass.

The following property of this type is obvious but important: if A is of type (L′, L′) and
A′ is obtained by reducing an entry of A by 1 then A′ is of type (W, W ).

Recall that, by Conjecture 1, D or D′ can appear only for square matrices.

Interestingly, all nine above types appear already among 4 × 4 magic squares of height
3; see Section 1.8. However, just a few types are possible for the 2 × 2 and 3 × 3 matrices
(not to mention magic squares); see Sections 1.4 and 1.7.

Except for the identity matrix, there is no 2×2 magic square of type (W, W ). Any other
2 × 2 magic square is a seki. Among them there are four of type (L′, L′), CSMs, and all
others are of type (D′, D′). There is no 2× 2 matrix (not to mention magic squares) of type
(D′, L′), semi-CSM.

We found out types of all 3× 3 matrices of height at most 10 and got the following data.
Among the magic squares there exist only three of type (W, W ) (see Section 1.5), while all
others are seki, (D′D′) or (L′, L′), and no other type appears. Among CSMs of height 3 five
are magic squares, A3

1, A
3
2, A

3
3, A

3
4, A

3
5, and two are not A3

6 and A3
7; see Section 1.7.1. (As we

already mentioned, each magic squares of sum s and height at most 2 is a CSM if s ≥ 2 and
is of type (W, W ) if s = 1; see Section 7.) Furthermore, there is no 3 × 3 CSM of height
between 4 and 10 and there exist only two matrices of type (D′, L′), semi-CSMs, A3

8 and A3
9,

yet, they are not magic squares.

4 When does the second player win?

A natural strategy in game Seki is to attack in the “bottle neck”. For example, for R it looks
good to move at (i, j) such that sr

i is minimal and sc
j is maximal. This principle provides a

simple sufficient condition for the second player to win.

Claim 5 Let A : I × J → ZZ+ be an m × n matrix.
Being second, player R wins whenever there is a row i ∈ I such that for every column j ∈ J

sc
j − sr

i ≥ ai,j (4.1)
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and this inequality is strict for each j such that ai,j = 0.

Proof. Let row i satisfy (4.1). If C plays at (i′, j′) then R responds at (i, j) for some j 6= j′.
If this is not possible, that is, ai,j′ = 0 for each j′ ∈ J , except j), then R plays at (i, j′). It is
easy to verify that conditions of Claim 5 still hold after such an exchange of moves. Indeed,
even if ai,j = 1 and it becomes 0 after R’s move, still (4.1) will hold for j. It remains to note
that C can pass. In this case R can choose any entry of the given row i to reduce; after this
(4.1) still hold for this i and for any column j. In any case, R will remove the whole row i

in sr
i moves and win before C eliminates a column. �

Of course, the similar statement holds for the player C as well.
Equation (4.1) means that R can take a burden of deleting ai,j and still win.
The sufficient condition of Claim 5, which we will denote by S, has many applications.

For example, S implies that each magic square is a CSM whenever its entries are at most 2
and its sum is at least 2; see Section 7. In Section 5.2 we will show that for 2×n matrices S

is not only necessary but also sufficient for the player R to win, being second. As a corollary
we derive that there is no 2×n seki for n > 2, in particular, there is no 2×3 seki; see Section
5.2. Furthermore, a 2 × 2 matrix is a seki matrix seki if and only if S fails for both players
R and C. This observation implies that there exist only four 2 × 2 CSMs A2

ℓ , ℓ = 1, 2, 3, 4,
given above; see Section 6.

Let us remark that the extra condition about strictness of (4.1) in S is essential. Indeed,
if ai,j = 0 and sr

i = sc
j then not R but C wins. Indeed, C can begin and delete column j

before R could eliminate row i or any other row. Strictness of (4.1) implies also the following
strict inequality.

Claim 6 If row i ∈ I satisfies S then sr
i < sc

j for each column j ∈ J .

Proof. Indeed, if ai,j > 0 then sr
i < sc

j , by (4.1); if ai,j = 0 then (4.1) is itself strict, by
Claim 5. �

What would be good sufficient conditions for the first player to win? It seems natural to
substitute (4.1) by a weaker inequality sc

j − sr
i ≥ ai,j − 1. However, the obtained condition

is not sufficient. Let us consider, for example, the following three matrices:

1 1 1 1 1 1 1 1
1 1 1 1 2 0 1 1
1 1 1 1 0 2

For each of them the inequality sc
j − sr

i ≥ ai,j − 1 holds for the first row, i = 1, and
every column j. Moreover, all entries of the first row are strictly positive. Yet, these three
matrices are CSMs, since they are magic squares of height h ≤ 2. Hence, R cannot win even
if she begins.

Of course, conditions of Claim 5, which are sufficient even for the second player to win,
are also sufficient for the first player to win. However, such conditions are too strong and
not necessary already for 2×2 matrices. In fact, the best what we can suggest is a triviality:
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Claim 7 Playing first, R wins whenever she can reduce the original matrix A to a matrix
A′ satisfying condition S, which is sufficient for R to win in A′ being second. �

Of course, the similar statement holds for the player C as well.
To illustrate Claim 7 let us consider A =

1 k

k k

This matrix is a CSM if k = 1. Yet, if k > 1 then R begins and wins by reducing a1,2 = k.
Indeed, row 1 of the obtained matrix A′ =

1 k − 1
k k

satisfies S, since (k +1)− (1+ (k− 1)) = 1 > 0 and (k +(k− 1))− (1+ (k− 1)) = k− 1 > 0.
Hence, R can win (by eliminating the first row) even if C begins. More generally, A =

ℓ k − ℓ

k k

satisfies S whenever 0 < ℓ < k.

We will show that if m ≤ 2 then Claims 5 and 7 provide not only sufficient but also
necessary conditions for R to win, being second. On the other hand, for the matrices of size
3 × 3 or lager that may have entries 3 or larger these conditions are only sufficient but not
necessary. Let us recall the magic square A′ from Section 1.5, where R, being first, wins.
However, it is easy to check that A′ does not satisfy the conditions of Claim 7.

5 Cases m ≤ 2 and m < n

5.1 Simple corollaries of condition S

Obviously, for each matrix A : I × J → ZZ+ we have

∑

i∈I

sr
i =

∑

j∈J

sc
j =

∑

i∈I,j∈J

ai,j (5.2)

Condition S claims that there is a row i ∈ I such that sc
j ≥ sr

i + ai,j for each column
j ∈ J and sc

j > sr
i whenever ai,j = 0. In particular, if m < n then S implies that there are

i ∈ I and j ∈ J such that sr
i > sc

j . For m = 2 we derive a stronger corollary. Let row 1
satisfy S. Then a2,j ≥ sr

1 for each j ∈ J . Hence,

sr
2 =

n∑

j=1

ai,j ≥ nsr
1 (5.3)

In other words, for m = 2, condition S implies that the sum of one row is at least n times
the some of the other.
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5.2 1 × n and 2 × n matrices

As we already mentioned, first player wins in every 1 × n matrix with n > 1. Also (s)he
wins if n = 1 and a1,1 = 1. Otherwise, a 1 × 1 matrix is a seki: it is a CSM if a1,1 = 2 (see
Figure 2 of the Appendix) and it is not complete if a1,1 > 2.

We will show that for m = 2 condition S is not only sufficient but also necessary for R,
being second, to win. More precisely, the following claim holds.

Claim 8 Let A be m×n matrix with 2 = m ≤ n and let C begin. Player R wins if and only
if condition S holds. Moreover, A can be a seki matrix only if m = n = 2; if 2 = m < n

then C wins whenever S does not hold.

Proof. By Claim 5, condition S is always sufficient for R, being second, to win. To prove
that it is necessary too, we assume that S does not hold and show that C can always maintain
this situation, that is, C has a move (not pass) such that for any response of R S still does
not hold for the obtained matrix. Clearly, S holds for a matrix that contains an empty row
and no empty column. Hence, no empty row can appear before an empty column appears.
In other words, either A is a seki matrix or C wins.

The problem that C has to solve is not too difficult, since S fails unless sr
2 ≥ nsr

1 or
sr
1 ≥ nsr

2, and n ≥ 2. For example, the following simple strategy works. Without loss of
generality, let us assume that sr

1 ≤ sr
2 and that row 1 does not satisfy S, that is, there is a

column j ∈ J such that sc
j − sr

1 < a1,j. If a2,j > 0 then C reduces it by 1. It is not difficult
to check that, after any move of R, condition S will not hold for the obtained matrix.

If a2,j = 0 then C can reduce a1,j . He wins in one move if a1,j = 1. If a1,j ≥ 2 then either
C can eliminate column j and win, or the matrix will be decomposed as the direct sum of
1 × 1 matrix a1,j, where a1,j ≥ 2, and a 1 × (n − 1) matrix.

Now we should consider two cases. If n > 2 then C wins in in every 1 × (n − 1) matrix
and hence, C wins in the original matrix, too. If n = 2 then both matrices can be seki. �

Finally, let us remark that R always wins if m = 2 and n = 1.

5.3 Case 3 ≤ m < n

If m ≥ 3 then condition S is only sufficient but no longer necessary. Indeed, R can win,
being second, even if S fails. Let us consider, for example, the following 3 × 4 matrix A =

2 1 1 1
1 2 1 1
3 3 4 4

Rows 1 and 2 have the sum sr
1 = sr

2 = 5 and the sum of each column is 6. Yet, S does
not hold. Indeed, rows 1 and 2 do not satisfy S, since sc

1 − sr
1 = 6 − 5 = 1 < 2 = a1,1 and

sc
2 − sr

2 = 6 − 5 = 1 < 2 = a2,2, and row 3 cannot satisfy S, since sr
3 = 14 is by far too
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large. Nevertheless, R wins even if C begins. Let us verify that for each move of C there
is a response of R enforcing S for row 1 or 2. Indeed, if C plays at (3, 1) (respectively, at
(3, 2)) then R answers at (2, 2) (respectively, at (1, 1)), and R can choose any one of these
two moves if C plays elsewhere. It is easy to see that after this exchange of moves row 1
(respectively, 2) will satisfy S and hence, R can win.

In case m = 2, when R can try to enforce S only for row 1, player C can effectively resist
this plan. Yet, if m ≥ 3 then R may threaten to enforce S either for row 1 or for 2, and C

cannot resist both threats.
Thus, R can win in case m ≥ 3 even if S fails. Yet, the following question remains open:

whether a seki matrix exists in case m < n? Note that if it does then a CSM exists too,
since each seki can be completed. We know that for 2 ≤ m < n the answer is negative. In
this case if S holds then R wins, otherwise C wins and seki never happens.

It looks like no CSM can exist for m < n for the following intuitive reason. “To win R

must attack only rows with small sums. Hence, C can safely play in a row i ∈ I with a large
sum” (sr

i > sc
j for some j ∈ J). Such a row always exists whenever m < n. However, the

above arguments have a flaw. For example, let us consider the 5 × 6 matrix A =

2 0 0 0 1 0
0 2 0 0 1 0
0 0 2 0 1 0
1 1 1 2 0 0
0 0 0 2 3 3

Interestingly, R can win in five moves forcing the elimination of the row 4 whose sum is
5. This results from a combination: R does not delete row 5 herself, instead she “helps C”
by eliminating first three entries of column 5. However, C must respond by eliminating the
first three entries of row 5; otherwise R will win in two moves deleting the corresponding
diagonal entry. Then, by the last two moves R eliminates a4,4 = 2 and wins.

However, we know that there is no m × n CSM with m ≤ 2 and m < n.

6 More about 2 × 2 matrices

In the previous section we proved that for 2×2 matrices conditions of Claims 5 and 7 are not
only sufficient but also necessary for a player to win. Hence, by negation of these conditions
we can characterize 2 × 2 (complete) seki matrices.

6.1 Standard form

Given a 2× 2 matrix A : I × J → ZZ+, where I = J = {1, 2}, without any loss of generality
we will assume that

sr
1 ≤ sr

2, sc
1 ≤ sc

2, sr
1 ≤ sc

1 (6.4)
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By substituting the entries of A, we can rewrite this system as follows.

a2,2 − a1,1 ≥ a2,1 − a1,2 ≥ 0. (6.5)

6.2 2 × 2 complete seki matrices

By definition, in a CSM the first player cannot win, moreover, if (s)he does not pass then the
opponent wins. Since for 2×2 matrices Claim 7 gives necessary and sufficient conditions for
the first player to win, we get a characterization of CSMs. However, they can be characterized
much simpler.

Claim 9 There exist only four 2 × 2 CSMs A2
ℓ , ℓ = 1, 2, 3, 4, see Section 1.4.

Proof. If the first player, say C, move at (2, 2) then R can win. How?
Case 1: R has a move after which row 1 will satisfy condition S. However, without

reducing a2,2, the same move would win even easier, and A is a CSM. Hence this case is
impossible.

Case 2: R has a move after which row 2 satisfy condition S. By two moves row 2 could
be reduced by 2. Hence, by (5.3), sr

1 ≥ 2(sr
2 − 2) and by (6.4), sr

2 ≥ sr
1. Thus, sr

2 ≥ 2sr
2 − 4,

that is, sr
2 ≤ 4. Summarizing, we obtain that sr

1 ≤ sr
2 ≤ 4. There are just a few matrices

satisfying these inequalities and it is easy to verify that, except four matrices A2
ℓ , ℓ = 1, 2, 3, 4

of Section 1.4, there are no other CSMs. �

For example, it is easy to check that the following matrices are seki but not complete:

3 1 3 1 3 0
1 3 1 2 1 3

6.3 2 × 2 seki matrices

Claims 5 and 7 provide sufficient conditions for a player to win. Claim 8 implies that for 2×2
matrices these conditions are also necessary. Thus, we obtain the following characterization
of 2 × 2 seki matrices.

Claim 10 A 2× 2 matrix A is a seki matrix if and only if conditions of Claims 5 and 7 do
not hold neither for R nor for C. In other words, for any move of a player condition S for
this player does not hold in the obtained matrix A′. �

The following four systems of two inequalities mean respectively that row 1, row 2, column
1, and column 2 satisfy condition S

a2,1 − a1,2 ≥ a1,1

a2,2 − a1,1 ≥ a1,2

a1,1 − a2,2 ≥ a2,1
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a1,2 − a2,1 ≥ a2,2

a1,2 − a2,1 ≥ a1,1

a2,2 − a1,1 ≥ a2,1

a1,1 − a2,2 ≥ a1,2

a2,1 − a1,2 ≥ a2,2

Recall that each inequality must be strict whenever right-hand-side is 0.
It is convenient to rewrite the above four systems as follows.

a2,1 ≥ a1,1 + a1,2 = sr
1

a2,2 ≥ a1,1 + a1,2 = sr
1

a1,1 ≥ a2,1 + a2,2 = sr
2

a1,2 ≥ a2,1 + a2,2 = sr
2

a1,2 ≥ a1,1 + a2,1 = sc
1

a2,2 ≥ a1,1 + a2,1 = sc
1

a1,1 ≥ a1,2 + a2,2 = sc
2

a2,1 ≥ a1,2 + a2,2 = sc
1

These systems allow us to simplify a bit our characterization of 2 × 2 seki matrices. To
do so, except the standard form (6.5), let us also assume for simplicity that each entry is at
least 2:

a1,1 ≥ 2 a1,2 ≥ 2 a2,1 ≥ 2 a2,2 ≥ 2 (6.6)

Otherwise, after reduction by 1 an entry can become 0 and we have to consider strict
inequalities in S too, which doubles the number of cases. So, we leave to the reader charac-
terizing the 2 × 2 seki matrices that may have entries 0 or 1. Under the above assumptions
Claim 10 can be reformulated as follows.

Claim 11 A 2× 2 matrix A satisfying (6.4), (6.5), and (6.6) is a seki matrix if and only if
it also satisfies to at least one of the following three linear systems:

a1,1 + a1,2 − a2,1 ≥ 2
a1,1 + a2,1 − a2,2 ≥ 2

a1,1 + a1,2 − a2,1 ≥ 2
a1,1 − a1,2 + a2,1 ≥ 2

a1,1 + a1,2 − a2,2 ≥ 2 �
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6.4 2 × 2 matrices in which the first player wins

Also Claim 7 provides a simple characterization of the 2×2 of type (W, W ). There are three
types of them:

0 1 0 a 1 a

a 0 a b a c

where 1 ≤ a ≤ b+1 and 1 ≤ a ≤ c ≥ 2. In other words, the following characterization holds.

Claim 12 A 2 × 2 matrix A is of type (W, W ) if and only if one of the following three
systems holds:

(i) a1,1 = a2,2 = 0, a1,2 = 1, a2,2 ≥ 1;

(ii) a1,1 = 0, 1 ≤ a1,2 = a2,1 ≤ a2,2 + 1;

(iii) 1 ≤ a1,1 ≤ a1,2 = a2,1 ≤ a2,2 ≥ 2.

Proof. . It follows easily from S. We leave details to the reader. �

7 CSMs and magic squares of height 1 and 2

Let us recall that a matrix A : I × J → ZZ+ is called a magic square with the sum s = s(A)
if sr

i = sc
j = s for every i ∈ I and j ∈ J . Obviously, in this case |I| = |J |. It is also clear

that the first player wins in one move when s = 1.
In Section 1.8 we saw that a 4 × 4 magic square of height 3 may be of any type. Yet, if

height is at most 2 then only CSMs, (L′, L′), remain.
A matrix of height 1 (respectively, 2) will be called a (0, 1) (respectively, (0, 1, 2)) matrix.

We conjecture that every (0, 1, 2) CSM is a direct sum of magic squares with s > 1, and vice
versa. However, we can prove only one direction of this conjecture, and the inverse one only
for (0, 1) CSMs.

Claim 13 Let A be a (0, 1, 2) magic square with s(A) > 1 then A is a CSM.

Proof. It follows from Claims 5 and 7. Let A : I × J → ZZ+ be a (0, 1, 2) magic square and
let a player, say C, make a move (not pass) reducing a positive entry ai0,j0 by 1. Clearly, for
the obtained matrix A′ we have s′i0 = s′j0 = s − 1, while s′i = s′j = s for all i ∈ I \ {i0} and
j ∈ J \ {j0}. We show that R wins in A′, unless s = 1, in which case the game is already
over and C won. Indeed, let R play at (i0, j1) for some j1 6= j0, if possible, and at (i0, j0)
otherwise. Clearly, in the latter case ai0,j0 becomes 0, since it was reduced twice and each
entry of A was at most 2. It is also clear that both, row i0 and column j0, are removed
by the last move of R (and hence, she wins), since otherwise R would not move at (i0, j0).
If the former case, when R made a move at (i0, j1), for the remaining matrix A′′ we have:
s′′i0 = s − 2, s′′j0 = s′′j1 = s − 1, while s′′i = s′′j = s for all i ∈ I \ {i0} and j ∈ J \ {j0, j1}. It is
easy to check that conditions of Claim 5 hold, since i0 satisfies (4.1) for any j. Indeed, for
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j = j0 or j = j1 (4.1) holds, since entries ai0,j0 and ai0,j1 being at most 2 were reduced by 1
and s′′j0 − s′′i0 = s′′j1 − s′′i0 = (s − 1) − (s − 2) = 1. Hence, (4.1) holds for columns j0 and j1

and it is strict whenever a′′

i0,j0
= 0 or a′′

i0,j1
= 0, respectively. Also (4.1) holds and it is strict

for any other column j, since s′′j − s′′i0 = s − (s − 2) = 2 and ai0,j0 ≤ 2. �

Clearly, the above claim and Claim 1 imply also that A is a CSM whenever it is a direct
sum A = ⊕k

i=1Ai of k (0, 1, 2) magic squares Ai and s(Ai) > 1 for i = 1, . . . , k. It is likely
that the inverse statement holds, too.

Conjecture 3 Every (0, 1, 2) CSM A is a direct sum of magic squares, that is, A = ⊕k
i=1Ai,

with s(Ai) > 1 for i = 1, . . . , k. �

By a computer code we verified this conjecture for n × n matrices with n ≤ 5.
One could start a proof of the conjecture as follows. Given A, let s = min{sr

i , i ∈
I; sc

j, j ∈ J} be the minimum sum in all rows and columns of A. Furthermore, let Ai,j

denote the matrix obtained from A by deleting its row i and column j. We would like to
show that there is no entry ai,j > 0 such that sr

i = s, sc
j > s or sr

i > s, sc
j = s. This would

imply that A is a direct sum, A = A′ ⊕A′′, where A′ is a magic square with sum s(A′) = s.
Then Conjecture 3 follows by induction. The next claim is a step in this direction.

Claim 14 Let A : I × J → {0, 1, 2} be a (0, 1, 2) m × n matrix with minimum sum s. If
there are i ∈ I and j ∈ J such that sr

i = s, sc
j > s, and ai,j > 0 then player R can begin

at (i, j) and win, unless there are also i′ ∈ I, j′ ∈ J such that sr
i′ > s, sc

j′ = s, ai′,j′ > 0,
ai,j′ = 2, and R cannot win in Ai,j′ even if she begins. Yet, even in this case, a move at (i, j)
guarantees at least a draw to R, unless in Ai,j′ player C wins even if R begins.

Proof. If sr
i = s, sc

j > s, and ai,j > 0 then R can start at (i, j) and play in row i all the
time. Clearly, she wins, unless there is a column j′ ∈ J such that sr

i′ > s, sc
j′ = s, ai′,j′ > 0,

ai,j′ = 2. In this, and only in this, case C has a defense strategy. He can start at ai′,j′ and
then play in column j′ all the time. If both players leave the entry ai,j′ = 2 untouched then
in s−2 moves A will be reduced to a direct sum A′⊕Ai,j′, where A′ is a 1×1 CSM ai,j′ = 2.
Such a strategy of R fails only if C wins in Ai,j′ even if R begins. Yet, if R can begin and
make at least a draw in Ai,j′ then she can still move at (i, j) and guarantee at least a draw
in A too. �

This claim implies Conjecture 3 for (0, 1) CSMs, though we cannot finish the proof in
general.

Claim 15 Every (0, 1) CSM A is a direct sum of magic squares; A = ⊕k
i=1Ai with s(Ai) > 1

for i = 1, . . . , k.

Proof. By Claim 14, for each (0, 1) CSM A : I × J → {0, 1} there are subsets I ′ ⊆ I and
J ′ ⊆ J and an integral s > 1 such that sr

i = sc
j = s for every i ∈ I ′, j ∈ J ′ and sr

i > s, sc
j > s
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for every i 6∈ I ′, j 6∈ J ′; moreover, ai,j = 0 for every i ∈ I ′ and j 6∈ J ′ and j ∈ J ′ and i 6∈ I ′.
Otherwise, A would not be a CSM, by Claim 14. (Note that this claim does not imply the
same for (0, 1, 2) matrices.) Furthermore, |I ′| = |J ′|, and A is a direct sum of two matrices:
A = As ⊕As+ . They both are CSMs, since A is a CSM. Now we can decompose the second
matrix in a similar way, etc. Finally, we get decomposition A = ⊕k

i=1Ai, where Ai are (0, 1)
magic squares whose sum s(Ai) > 1 for i = 1, . . . , k. �

8 Non-symmetrizable complete seki matrices

By Claim 2, the second player cannot win in a symmetric matrix, that is, either it is a seki
matrix, or the first player wins. The latter option can take place, indeed; see for example
Section 1.5.

Our computations show that, for n ≤ 3, all n × n CSMs are symmetric. More precisely,
they are symmetrizable, that is, can be made symmetric by a permutation of rows or columns.
However, the following 4 × 4 CSM A is not symmetrizable:

1 1 1 1
0 2 0 2
1 1 2 0
2 0 1 1

Indeed, A has row e that consists of all ones but no such column. Yet, A is a CSM, since
it is a (0, 1, 2) magic square with sum 4. Moreover, there are even non-symmetrizable (0, 1)
CSMs. However, their size is much larger. For example, let us consider the following 16×16
binary matrix:

0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1
0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0
1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0
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Figure 1: The adjacency matrix of this graph is a non-symmetrizable CSM.

Again, A is a CSM, since it is a magic square with sum 5. Yet, A is non-symmetrizable;
see, e,g., [1].

Remark 1 In fact, this example is just a slight modification (resulting in a magic square)
of the non-symmetrizable 16 × 16 matrix from [1]. The graph in Figure 5 of [1] has vertices
of degree 2,3, and 5. We add several edges to make it a regular (bipartite) graph of degree 5;
see Figure 1. However, the automorphism group, ZZ4, remains the same, and the obtained
16 × 16 adjacency matrix remains non-symmetrizable.

9 (3, 1, 1,−1)- and (3, 2, 2,−2)-extensions

Let us recall four 3 × 3 CSMs A3
i ; i = 3, 4, 5, 6 and three 2 × 2 seki matrices B2

1 , B
2
4 , and A2

4

(the last one is a CSM too):

A2
4 A3

3 B2
1 A3

5 A3
4 B2

4 A3
6

3 0 1 3 2 0 3 2 0 3 2 0
2 2 0 2 2 2 3 2 0 3 2 1 2 3 3 2 1 3
2 2 3 2 1 3 2 0 3 2 0 2 3 3 3 0 3 3

It is easy to notice that the 3×3 matrices A3
3, A3

4, A3
5 and A3

6 can be viewed as extensions
of the 2 × 2 matrices A2

4, B2
1 , B2

1 , and B2
4 , respectively.

More precisely, given an m×n matrix A : I×J → ZZ+, we define two new (m+1)×(n+1)
matrices A′ and A′′ as follows. Let us add one new row i0 to I and one new column j0 to
J and set a′

i0,j0
= 3. Furthermore, let us choose an entry ai∗,j∗ in A such that ai∗,j∗ ≥ 1

(respectively, ai∗,j∗ ≥ 2) and reduce it by 1, that is, set a′

i∗,j∗ = ai∗,j∗ − 1 (respectively, by 2,
that is, a′′

i∗,j∗ = ai∗,j∗ − 2). All other entries of A remain the same, that is, ai,j = a′

i,j = a′′

i,j

whenever i ∈ I \ {i∗} or j ∈ J \ {j∗}. Finally, let us define a′

i∗,j0
= a′

i0,j∗ = 1 (respectively,
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a′′

i∗,j0
= a′′

i0,j∗ = 2) and a′

i,j0
= a′

i0,j = a′′

i,j0
= a′′

i0,j = 0 for all other i and j, that is, for
i ∈ I \ {i∗} and j ∈ J \ {j∗}. We will call two obtained matrices, A′ and A′′, respectively,
the (3, 1, 1,−1)- and (3, 2, 2,−2)-extension of A at (i∗, j∗).

For example, A′′ = A3
5 is the (3, 2, 2,−2)-extension of B2

1 at (1, 1) and A′ = A3
3 is the

(3, 1, 1,−1)-extension of A2
4 at (2, 2). Let us notice that both last matrices are CSMs.

Moreover, our computations show that all (3, 1, 1,−1)-extension of ten 3 × 3 CSMs, A3
i ,

i = 1, 2, 3, 4, 5 and B3
j , j = 6, 7, 8, 9, 11, are CSMs too.

A3
1 A3

2 A3
3 A3

4 A3
5 B3

6 B3
7 B3

8 B3
9 B3

11

0 3 3 1 3 3 3 0 1 3 2 0 3 2 0 0 2 2 0 2 2 1 1 2 1 2 2 2 2 2
3 0 3 3 1 3 0 2 2 2 1 2 2 0 3 2 0 2 2 1 1 1 2 1 2 1 2 2 2 2
3 3 0 3 3 1 1 2 1 0 2 3 0 3 2 2 2 0 2 1 1 2 1 1 2 2 1 2 2 2

Furthermore, the (3, 1, 1,−1)-extensions of A3
6 at (i∗, j∗) are CSMs whenever (i∗+j∗ ≥ 4,

that is, at (1, 3), (1, 3), (2, 3), (3, 1), (3, 2), and (2, 2). However, at (1, 1) it is of type (W, W )
(the first player wins) and it is not defined at (1, 2) and at (2, 1), since a1,2 = a2,1 = 0.

Similarly, the (3, 1, 1,−1)-extensions of A3
7 at (i∗, j∗) are CSMs whenever min(i∗, j∗) ≥ 2,

that is, at (2, 2), (2, 3), (3, 2), and (3, 3). However, at (1, 2) and at (2, 1) it is a semi-CSM,
of type (D′, L′) and (L′, D′), respectively; while at (1, 3) and (3, 1) it is of type (L′, W ) and
(W, L′), that is, C and R win, respectively; finally, it is not defined at (1, 1), since a1,1 = 0.

In [3] it was erroneously announced that (3, 1, 1,−1)-extensions of CSMs are CSMs;
more precisely, if A′ is a (3, 1, 1,−1)-extension of A at (i∗, j∗) then A′ is a CSM whenever
sr

i∗ ≥ 4, sc
j∗ ≥ 4 and A is a CSM. The above analysis of the CSMs A3

6 and A3
7 shows that

this claim is an overstatement. However, among all 2 × 2 and 3 × 3 CSMs there are only
above five counterexamples: (3, 1, 1,−1)-extension of A3

6 at (1, 1) and of A3
7 at (1, 2), (1, 3),

(2, 1), and (3, 1) are not CSMs.
Let us also notice that the conditions sr

i∗ ≥ 4, sc
j∗ ≥ 4 above are absolutely necessary.

Indeed, if A is a CSM and sr
i∗ ≤ 3 (respectively, sc

j∗ ≤ 3) then, being first, R (respectively
C) wins in A′ in at most 3 moves.

Now, let us proceed with (3, 2, 2,−2)-extensions. We already mentioned that all (3, 2, 2,−2)-
extensions of (not complete 2 × 2 seki matrices) B2

1 and B2
4 are CSMs. The same property

holds for the following seven 3 × 3 matrices:

A3
1 A3

2 A3
4 A3

5 B3
9 B3

11 B3
12

0 3 3 1 3 3 3 2 0 3 2 0 1 2 2 2 2 2 3 1 1
3 0 3 3 1 3 2 1 2 2 0 3 2 1 2 2 2 2 1 2 2
3 3 0 3 3 1 0 2 3 0 3 2 2 2 1 2 2 2 1 2 2

Furthermore, let us consider the following nine 3 × 3 matrices:

C3
1 C3

2 C3
3 C3

4 C3
5 C3

6 C3
7 C3

8 C3
9

2 0 0 2 0 0 3 0 1 3 0 1 3 0 1 3 0 2 3 0 1 3 0 2 3 1 2
0 2 3 0 3 3 0 3 2 0 3 3 0 2 3 0 3 3 0 3 1 0 3 2 1 2 3
0 3 2 0 3 3 1 2 2 1 3 2 1 3 1 2 3 1 1 1 3 2 2 2 2 3 1
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For the first four of them, C3
i , i = 1, 2, 3, 4, the (3, 2, 2,−2)-extensions at (i∗, j∗) are CSMs

whenever min(i∗, j∗) ≥ 2; it is of type (W, W ) at (1, 1) and not defined at (1, 2),(1, 3),(2, 1),
and (3, 1). The same for C3

5 , except, it is not defined at (3, 3) either. The same for C3
6 , except,

it is (W, W ) not only at (1, 1) but at (1, 3) and (3, 1) too. For C3
7 the (3, 2, 2,−2)-extension

is (L′, L′) (a CSM) at (3, 3), it is (W, W ) at (1, 1) and (2, 2) and not defined otherwise. For
C3

8 it is (L′, L′) at (3, 3), it is (W, W ) at (1, 1) and (2, 2), it is (D′, D′) (a not complete seki)
at (1, 3), (2, 3), (3, 1), and (3, 2), and it is not defined at (1, 2) and (2, 1). Finally, for C3

9 it
is (L′, L′) at (2, 3), (3, 2), and (1, 1); it is (D′, D′) at (1, 3), (3, 1), and (2, 2), and it is not
defined at (1, 2), (2, 1), and (3, 3).

Let us apply the (3, 1, 1,−1)- and (3, 2, 2,−2))-extensions recursively beginning with the
2 × 2 matrices A2

4 and, respectively, B2
1 . We obtain the following two infinite sequences:

A
2
4 B

2
1

3 1 0 0 0 0
3 1 0 0 0 1 2 1 0 0 0 3 2 0 0 0

3 1 0 0 1 2 1 0 0 0 1 2 1 0 0 3 2 0 0 2 1 2 0 0
3 1 0 1 2 1 0 0 1 2 1 0 0 0 1 2 1 0 3 2 0 2 1 2 0 0 2 1 2 0

2 2 1 1 2 0 1 1 2 0 0 1 1 2 0 0 0 1 1 2 3 2 2 1 2 0 2 1 2 0 0 2 1 2
2 2 0 2 2 0 0 2 2 0 0 0 2 2 0 0 0 0 2 2 . . . 2 3 0 2 3 0 0 2 3 0 0 0 2 3 . . .

Claim 16 Except for B2
1, both sequences contains only CSMs.

This implies that for CSMs h(n) ≥ 3 whenever n ≥ 3; see Section 1.9.2. Indeed, each
sequence contains a (unique) n × n matrix for each n ≥ 2 and it is a CSM with a1,1 = 3
whenever n ≥ 3.
Proof. Let us note that both sequences contain only magic squares with sum 4 and 5,
respectively. Moreover, except for a1,1 = 3 (respectively, a1,1 = an,n = 3), all entries take only
values 0, 1, and 2. Thus, conditions of Claim 13 “almost” hold and by the same arguments we
can show that after “almost” any active move of a player the opponent wins in 3 (respectively,
in 4 ) moves. However, there are two important exceptions when the opponent cannot win
immediately; instead (s)he can reduce n × n to the (n − 1) × (n − 1) matrix from the same
sequence in which one entry is also reduced by 1. Thus, we can finish the proof by induction
on n, since in both sequences the 3 × 3 matrices are CSMs, A3

3 and A3
4, respectively.

Case 1. If a player, say R, reduces a1,1 = 3 then C answers at a2,1. It is easy to see
that R must play at a1,2. (In case of the second sequence, C will repeat by playing at a2,1

once more and again R must answer at a1,2). As a result of this exchange of moves, the the
original n×n matrix is reduced to the direct sum of two matrices: a 1×1 CSM a1,1 = 2 and
the (n − 1) × (n − 1) matrix from the same sequence in which the first entry is 2 instead of
3. Since C has to move in the obtained game, he can enforce the same reduction again, etc.

Case 2. If a player, say R, reduces a2,1 then C answers by reducing a1,1 = 3 to 2. By
this he threatens to eliminate the first column by the next 2 (respectively, 3) next moves.
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The only defense of R is to play at a1,2. (In case of the second sequence, C will proceed
by eliminating of a2,1 and R must eliminate a1,2) in return). The above exchange of moves
results in exactly the same reduction as in Case 1. Thus, C wins again.

Let us notice that the matrices of the second sequence are double-symmetric, that is,
ai,j = aj,i and ai,j = an−i+1,n−j+1 for any i and j. Hence, we can substitute (1, 2),(2, 1), and
(1, 1) by (n − 1, n),(n, n − 1), and (n, n), respectively.

It remains to verify that for any other move of any player the opponent can win in 3
(respectively, in 4) moves by applying the strategy suggested in the proof of Claim 13. �

10 Game Seki-I

The winner in Seki was defined as follows. Player R (respectively, C) wins if a row (respec-
tively, column) appears whose all entries are equal to 0. If after a move such a row and
column appear simultaneously then the player who made this last move is the winner.

The last rule is motivated by GO. Let us consider here a slightly different game, Seki-I,
which, by definition, is a draw when zero row and column appear simultaneously; all other
rules of Seki-I are the same as in Seki. The new game is no longer related to GO. However,
it is also logical and it seems that Seki-I is simpler than Seki. Both games have similar
properties but, by definition, some winning positions in Seki become draw positions in Seki-
I. Hence, the CSMs in Seki-I form a proper subset of the CSMs in Seki. Indeed, let us recall
that A is a CSM (that is, of type (L′L′)) if and only if each matrix A′ obtained by reducing
a strictly positive entry of A by 1 is of type (W, W ).

Clearly, Claim 1 holds for Seki-I too.
Let us show that Clam 5 can be simplified for Seki-I as follows.

Claim 17 Let A : I × J → ZZ+ be an m× n matrix whose every row and column contain a
strictly positive entry. Being first, player R wins whenever there is a row i ∈ I such that for
every column j ∈ J

sc
j − sr

i ≥ ai,j . (10.7)

Proof. Let row i satisfy (10.7). We will show that R can win just reducing its entries ai,j

in any order. Indeed, let R play at (i, j) and C answer at (i′, j′). We prove that (10.7) still
holds for the same row i in the obtained matrix A′.

Case 1: i′ = i. It is obvious. Indeed, sr
i is reduced by 2, while sc

j by at most 1 for each
j unless j′ = j. In the last case sc

j is reduced by 2 but ai,j too.
Case 2: i′ 6= i but j′ = j. Then sc

j is reduced by 2 but sr
i and ai,j are reduced by 1 each.

Hence, (10.7) still holds for j′ = j. Obviously, it holds for all other j′′ ∈ J too.
Case 3: i′ 6= i and j′ 6= j. It is again obvious. Indeed, sc

j, sc
j′, and sr

i are reduced by
1 each, while for any other column j′′ ∈ J the sum sc

j′′ does not change. We still have to
consider separately the case sr

i = ai,j = 1. Then sc
j ≥ 1 for all j ∈ J and, moreover, sc

i ≥ 2.
Thus, no zero column appears after eliminating ai,j and R wins in one move. �
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Of course, the similar statement holds for the player C as well.
Let us note that 1× 1 CSM a1,1 = 2 is not a CSM in Seki-I. Indeed, each player, R or C

can reduce 2 to 1 and Seki-I is still a draw. Let us recall four 2 × 2 CSMs

A2
1 A2

2 A2
3 A2

4

1 1 2 0 2 1 2 2
1 1 0 2 1 2 2 2

It is easy to verify that in Seki-I only A2
1 remains a CSM, while the other three matrices

become not complete seki.
By Claim 13, each (0, 1, 2) magic square with sum s(A) > 1 is a CSM in Seki. Yet, for

Seki-I only the following weaker claim holds.

Claim 18 If A is a (0, 1) magic square with sum s(A) > 1 then A is a CSM.

Let us remark that if s(A) = 1 then Seki-I is finished in one move and the result is a
draw. However, A is not a CSM in this case. Claim 18 follows easily from Claims 17.
Proof. Let A : I × J → ZZ+ be a (0, 1) magic square with s(A) > 1 and let a player, say C,
make an active move eliminating ai0,j0. The game is not yet over, since s(A) > 1 and it is easy
to see that in the obtained matrix A′ the row i satisfies (10.7). Indeed, for j = j0 we have
sc

j(A
′)−sr

i (A
′) = sc

j(A)−sr
i (A) = 0, since A is a magic square. Still (10.7) holds for A′, since

a′

i0,j0
= ai0,j0 − 1 = 0 too. For j 6= j0 we have sc

j(A
′)− sr

i (A
′) ≥ sc

j(A)− sr
i (A) + 1 ≥ 1 ≥ ai,j.

Hence, by Claim 18, R wins in A′ after any active move of C. By symmetry, C wins in A′

after any active move of R. Hence, A is a CSM. �

Clearly, the above claim and Claim 1 imply also that in Seki-I A is a CSM whenever it
is a direct sum A = ⊕k

i=1Ai of k (0, 1) magic squares Ai and s(Ai) > 1 for i = 1, . . . , k. The
inverse statement holds, too.

Claim 19 In Seki-I every (0, 1) CSM A is a direct sum of magic squares, that is, A =
⊕k

i=1Ai, with s(Ai) > 1 for i = 1, . . . , k.

The same statement holds for Seki as well, see Claim 3, and its proof for Seki-I is similar.
Yet, there are also CSMs of height two in Seki-I, for example, the 2-cycles:

0 0 0 2 2
0 0 2 2 0 0 2 0 2

0 2 2 0 2 0 2 0 2 0 2 0
2 0 2 2 0 2 0 2 0 2 0 0
2 2 0 2 2 0 0 2 2 0 0 0

For any n ≥ 3 we define the n × n 2-cycle by equations:

a1,n = a1,n−1 = a2,n = a2,n−2 = a3,n−1 = a3,n−3 = . . .

. . . = an−1,3 = an−1,1 = an,2 = an,1 = 2;

and all remaining entries are equal to 0.
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Claim 20 Every 2-cycle is a CSM.

Proof. We have to show that for each move of the first player there is a winning reply of the
second one. Due to the symmetry of 2-cycles, all first moves are equivalent. Let us consider,
for example, the 3 × 3 matrix and assume that C makes a move, say at (1, 2). We have to
show that now R can win. Indeed, R replies at (1, 3) threatening to eliminate the first row.
Still, C has a (unique) defense , at (3, 2). Now, if R plays at (1, 3) again then she will lose
and if at (1, 2) then C can force a draw answering at (2, 3). Yet, R has a stronger move, at
(2, 1). Now, C cannot play at (1, 2),(1, 3),(2, 1), or (1, 3), since then R wins in one move. If
instead C plays at (3, 1) or (3, 2) then still R wins replying at (1, 2) or (2, 1), respectively;
and both these moves are winning for R in case C would pass after (2, 1). The same analysis
works for longer 2-cycles as well. �

By Claim 1, we can strengthen Claim 18 as follows.

Claim 21 Every direct sum of (0, 1) magic squares with sum greater than 1 and 2-cycles is
a CSM in Seki-I. �

We conjecture that the inverse is also true.

Conjecture 4 Every CSM in Seki-I is a direct sum of (0, 1) magic squares with sum greater
than 1 and 2-cycles. In particular, each CSM is a square matrix.

11 Appendix

11.1 Game Seki and seki in GO

Here we explain how game Seki is related to seki positions in GO. We assume that the rules
of GO and standard notation are known.

Given an m × n matrix A : I × J → ZZ+, let us consider a position P in GO with m

White and n Black groups that are indexed by I and J , respectively, and let ai,j be the
number of common free points (so-called liberties or dame) between the White group i ∈ I

and Black group j ∈ J . Thus, players R and C in game Seki correspond to Black and White
in GO. Indeed, R (respectively, C) wants to delete all positive entries of a row (respectively,
of a column); accordingly, Black (respectively, White) wants to surround completely a White
(respectively, Black) group.

Of course, only very special, “seki-type”, positions in GO get an adequate description
in this way. We assume that numbers m and n remain unchanged, that is, no two groups
of the same color can ever be connected. Furthermore, we assume that each of the m + n

involved groups has no eyes and, moreover, no group can make an eye even if the opponent
will always pass.
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2 2

2 2

2 1
1 2

2 0

0 2

1 1
1 1

2

Figure 2: Five standard complete seki positions in GO and the corresponding 1×1 and four
2 × 2 complete seki matrices.
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Standard examples of complete seki positions are given in Figure 2. The fourth position
involves two groups, one White and one Black, with two dame between them. The corre-
sponding 1× 1 CSM is a1,1 = 2. The remaining four positions involve four groups each, two
White and two Black. They correspond exactly to four CSMs A2

ℓ , ℓ = 1, 2, 3, 4, from Section
1.4.

In terms of GO, Conjecture 2 means that in each (complete) seki position the numbers
of involved White and Black groups must be equal.

11.2 More sophisticated complete seki positions

a b c d e f g h i

1

2

3

4

5

6

7

8

9

0 3 3

3 3 1
3 1 2

Figure 3: A complete seki position corrersponding to the matrix A3
7.

Let us consider position in Figure 3. Is it a complete seki? This question may be difficult
even for advanced players, because such a complicated seki would hardly appear in practice.
To answer the question one should be smart in playing game Seki with matrices rather than
in GO. In fact, the answer is positive, since the corresponding matrix is the CSM A3

7.
Indeed, the left, right, and middle White groups correspond to the rows i1, i2 and i3,

while the right, lower, and upper Black groups correspond to the columns j1, j2 and j3,
respectively. Since a1,1 = 0, the corresponding White and Black groups have no dame in
common. (Let us remark that if all nine entries of a 3 × 3 matrix are strictly positive then
the corresponding GO position cannot exist on a plane board, by Kuratowski’s Theorem.)
The remaining eight positive entries a1,2 = 3, a1,3 = 3, a2,1 = 3, a2,2 = 3, a2,3 = 1, a3,1 = 3,
a3,2 = 1, a3,3 = 2 correspond to the following eight sets of dame: {a1, b2, b3}, {b7, b8, b9},
{f2, g2, h2}, {d1, d2, d3}, {f9}, {g4, g5, g6}, {e5}, {d7, e7}.

Now the analysis of Section 1.5 can be translated as follows. If a player, Black or White,
occupies d1,d2, or d3 then in the obtained position all six groups have the same number of
dame, 6. However, this position cannot be a seki, since the previous one was a complete
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seki. Now the first player must win. Indeed, Black (respectively, White) wins playing at a1,
b2, or b3 (respectively, at f2,g2, or h2). We leave complete case analysis to the reader.

11.3 Semi-complete seki positions

a b c d e f g h i

1

2

3

4

5

6

7

8

9

0 3 3
4 0 3

4 3 0

Figure 4: A semi-complete seki position corresponding to A3
8.

Let us consider a GO position corresponding to the semi-complete seki matrix A3
8 from

Section 1.7.3; see Figure 4. The lower, left, and right White groups correspond to the rows
i1, i2 and i3, while the upper, right, and left Black groups correspond to the columns j1, j2

and j3, respectively. The six positive entries of A3
8: a1,2 = 3, a1,3 = 3, a2,1 = 4, a2,3 = 3,

a3,1 = 4, a3,2 = 3, correspond to the following six sets of dame: {f3, g3, h3}, {b3, c3, d3},
{a7, b7, c7, d7}, {a5, b5, c5}, {f7, g7, h7, i7}, {g5, h5, i5}.

Now the analysis of Section 1.7.3 can be translated as follows. Since A3
8 is a semi-CSM,

the obtained GO position is a semi-complete seki, that is, only White can make an active
move such that the obtained position is still a seki, while Black must pass. Indeed, White
can occupy f3,g3, or h3. If after this Black will pass then White can even win playing at
g5, h5, or i5. Instead, Black should occupy f7,g7,h7, or i7 that results in a (not complete)
seki. We leave the full case analysis to the reader. Unlike White, Black must pass. Indeed,
due to the obvious symmetry, he has only three distinct options: to play at f3,g3, or h3, at
a7,b7,c7, or d7, or finally, at g5,h5, or i5. In the first case White can occupy g5,h5, or i5,
or, less obviously, a7,b7,c7, or d7; in the second case, he answers at f3,g3, or h3; finally, in
the third case he plays at f3,g3, or h3. Again, we leave it to the reader to verify that in all
three cases White wins.
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11.4 Seki with eyes

Let us now generalize game Seki in order to include into consideration groups with one eye.
Given an m × n seki-matrix A : I × J → ZZ+, let us add one new special row i0 to I and
one new special column j0 to J , and introduce arbitrary integral non-negative entries ai0,j

and ai,j0 for all j ∈ J and i ∈ I. The entry ai0,j0 is irrelevant and can be defined arbitrarily.
Let us denote the obtained extended matrix by A′ : I ′ × J ′ → ZZ+, where I ′ = I ∪ {i0} and
J ′ = J ∪ {j0}.

The entries ai0,j and ai,j0 are interpreted as the numbers of eyes of the Black group j ∈ J

and White group i ∈ I, respectively. In fact, keeping only GO in mind, we could restrict
ourselves by the case when ai0,j and ai,j0 take only values 0 or 1. Yet, for the sake of generality
we may allow arbitrary non-negative integral entries.

The rules of game Seki are changed as follows: after column j (row i)) is eliminated in
A player C (respectively, R) needs ai0,j (respectively, ai,j0) extra moves to eliminate it in
A′, and (s)he cannot reduce ai0,j (respectively, ai,j0) before column j (row i)) is completely
eliminated in A. We return to the standard game Seki if all entries of i0 and j0 equal 0. The
definitions of the winner, loser, seki, complete seki, etc., are the same for the generalized and
standard versions.

1

1

01

1

Figure 5: Complete seki with eyes.

Two examples of the generalized game Seki and the corresponding positions in GO are
given on Figures 5 and 6. The position in Figure 5 is a complete seki and the corresponding
1 × 2 matrix is a CSM. Let us note that in this case m 6= n: two Black groups and only
one White group are involved in this seki. The second White group is alive, since it has two
eyes. In the next section we will show that the position in Figure 6 is a complete seki too.

Thus, Conjecture 2, does not hold for seki with eyes, that is, such a seki may have m

White and n Black groups such that m 6= n and there is at most one eye in each group. Let
us recall that, by Conjecture 2, m = n whenever all groups have no eyes. Is it true that
m = n if each group has exactly one eye?

11.5 Complications

Even if we restrict ourselves by the seki-type positions satisfying all the above conditions,
still GO is much more complicated game than Seki.
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0 1 2
1 2 0

2 0 1

1

2

3

4

5

1

2

3

4

5

Figure 6: A non-seki position corresponding to a CSM.
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Let P be a position in GO and A be the corresponding matrix. It may happen that P is
a complete seki, while A is not a seki matrix, and vice versa, A may be a CSM, while P is
not a seki position at all.

It can be explained as follows. In game Seki if R eliminates a row or C a column then
(s)he is immediately claimed the winner and the game is over.

In GO the situation is more sophisticated, since groups can be sacrificed. If White takes
a large Black’s group in one (or several) moves after Black has taken a smaller White’s group
then White may win in GO, though R certainly wins in the corresponding game Seki.

Let us recall an example from [3]; see Figure 6. Here A is a CSM. However, P is not a
seki, since both Black and White can sacrifice a group and take a larger opponent’s group
a bit later. If White begins he can force a draw; if Black begins she wins by 2 points; see
Figure 6.

Nevertheless, let us confirm that our example in Figure 3 is a real complete seki. Indeed,
in this position there are two Black and two White groups that cannot be sacrificed, since
otherwise all three opponent’s groups will become connected. Only the left White group
(i1) could be exchanged for the right Black group (j1), and vice versa. However, these two
groups are of equal size, each has nine stones. To sacrifice one of them a player must add to
it one extra stone that will result in loss of two points.

Let us also note that to each CSM we can assign a complete seki position defined in a
graph G (though we cannot guarantee that G is the 19 × 19 planar grid). Indeed, given a
CSM A : I × J → ZZ+, we can easily choose G such that each White group i ∈ I and each
Black group j ∈ J are the neighbors in G and, moreover, they have sufficiently many stones
adjacent in G (though they may have no common liberties). In this case no group can be
sacrificed, since all groups of a player become safe whenever an opponent’s group is killed.

Now let us recall another example from [3]; see Figure 7. Here A is not a seki matrix.
Clearly, C can eliminate the second column in two moves. Doing so he wins in game Seki.
However, in GO the corresponding strategy is bad for White. Indeed, though White takes
first the small group in the upper right corner, yet, Black will retaliate in two moves by
taking the larger group in the opposite corner. It is not difficult to check that in fact this
position in GO is a complete seki.

Thus, analyzing a position P in GO, one must take into account not only its seki matrix
A but also many other factors, such as sizes of groups, exchange options, etc.

In [2] there are many other interesting examples of seki positions in GO in which each
player can take an opponent’s group, yet, it would result in a loss.

Thus, CSMs may correspond to complete seki positions in GO. However, some CSMs
do not and, vice versa, a complete seki position may correspond to a non-seki matrix; see
Sections 11.5. In general, CSMs describe only some very special seki positions in GO. There
are many other types, of totally different nature; see, for example, Haneseki and Nakadeseki
in [2].

What do we call “a group”? It is not that easy to be accurate in this issue. Typically, a
Black (respectively, White) group is a set of Black (respectively, White) stones that form a
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Figure 7: A complete seki position whose matrix is not a seki.

connected component in the GO-graph. Standardly, such a graph is the 19× 19 (or 13× 13,
or 9× 9) plane grid. Yet, sometimes several connected components with common neighbors
(dame or liberties, in terms of GO) form just one group. For example, in Figure 5 two White
stones in the lower right corner are not connected, yet, they form a single group. More
examples can be found in [2].

Finally, let us remark that not every seki-matrix A can be realized on a standard GO-
board. For example, the sum of all entries of A may be too large.

Furthermore, if A contains a 3×3 submatrix whose all entries are strictly positive then A

cannot be realized either. Moreover, it cannot be realized on a planar graph (not to mention
a planar grid), since the graph K3,3 is not planar, by Kuratowski’s Theorem. Yet, a 3 × 3
CSM A3

7 has only one 0 entry and the corresponding position is realized on the board 9× 9,
see Figure 3. In general, all seki matrices could be realized if instead of the standard GO
board we allow to play GO on arbitrary graphs.

11.6 Bridge and Single-Suit two-person game

The relation between GO and Seki is somewhat similar to the relation between Bridge and
the Single-suit two-person game [4]. This game was introduced in 1929 by Emanuel Lasker
who called it Whistette. It is defined as follows: 2n cards with the numbers 1, . . . , 2n are
shuffled and divided into two hands A and B of n cards each, held by players R and C. Let
us say, C begins. He chooses one of his cards and put in on the table. Then R, after seeing
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this card, selects one of her own. The player with the higher card wins the trick and gets the
lead. Two cards of the trick are removed and play continues until there are no more cards.
The goal of each player is to win as many tricks as possible.

The game is not trivial already for n = 3. For example, let C and R get 6, 4, 2 and 5, 3, 1
(or in Bridge terms, A,Q,10 and K,J,9), respectively. If C leads with 6 then he will win only
the first trick, yet, if C leads with 2 or 4 then he will get two tricks. For another example, let
C and R get 5, 4, 2 and 6, 3, 1 (or in Bridge terms, K,Q,10 and A,J,9), respectively. If C leads
with 5 or 4 and R wins with 6 then she will get no more tricks, yet, if R discards 1 in the first
trick then she will win the remaining two tricks. For larger n, say n = 20, Whistette becomes
complicated. Many interesting results are obtained in [4]. Recently, Johan Wästlund [6] got
a polynomial algorithm solving Whistette.

In some situations, Bridge is reduced to Whistette. Let us consider, for example, the
six-card end-play in which North and West have only trumps, say, 3, 6, 10, J, Q, A and
4, 5, 7, 8, 9, K, respectively. However, such situations are very rare. Furthermore, a posi-
tions with n > 6 cannot appear in Bridge at all, since there are only 13 cards in each suit.
Thus, it is not necessary for a Bridge expert to be good at Whistette. Similarly, games GO
and Seki demand very different skills. Unlike Bridge and GO, Whistette and Seki are pretty
boring games. Yet, they are complicated too. At least, there are many positions that are
difficult to analyze even for advanced Bridge and GO players.
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