
DIMACS Technical Report 2007-15

Berge Multiplication for Monotone Boolean Dualization
1

by

Endre Boros,2 Khaled Elbassioni3 Kazuhisa Makino4

1The first author is thankful for the partial support by NSF (CBET-0735910). The second and
third authors thank the partial support by DIMACS, the National Science Foundation’s Center for
Discrete Mathematics and Theoretical Computer Science.

2RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003;
(boros@rutcor.rutgers.edu)

3Max-Planck-Institut für Informatik, Saarbrücken, Germany; (elbassio@mpi-sb.mpg.de)
4Department of Mathematical Informatics, University of Tokyo, Tokyo, 113-8656, Japan;
(makino@mist.i.u-tokyo.ac.jp).

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

ABSTRACT

Given the prime CNF representation φ of a monotone Boolean function f : {0, 1}n 7→ {0, 1},
the dualization problem calls for finding the corresponding prime DNF representation ψ of
f . A very simple method (called Berge multiplication [3, Page 52–53]) works by multiplying
out the clauses of φ from left to right in some order, simplifying whenever possible using
the absorption law. We show that for any monotone CNF φ, Berge multiplication can be
done in subexponential time, and for many interesting subclasses of monotone CNF’s such
as CNF’s with bounded size, bounded degree, bounded intersection, bounded conformality,
and read-once formula, it can be done in polynomial or quasi-polynomial time.

1 Introduction

Let f : {0, 1}n → {0, 1} be a Boolean function. A function is called monotone (also called
positive) if for every pair of vectors x, y ∈ {0, 1}n, x ≤ y (i.e., xi ≤ yi for all i) always implies
f(x) ≤ f(y). Any monotone function f has a unique prime conjunctive normal form (CNF)
expression

φ(x) =
∧
C∈C

(∨
i∈C

xi

)
, (1)

where C is Sperner (i.e., I 6⊆ J and I 6⊇ J holds for I, J ∈ F with I 6= J). It is well-
known that F corresponds to the set of all prime implicates of f . The well-known monotone
Boolean dualization problem is to find the corresponding prime disjunctive normal form
(DNF) representation of f :

ψ(x) =
∨
D∈D

(∧
i∈D

xi

)
, (2)

where D is Sperner and corresponds to the set of all prime implicants of f . Equivalently, the
problem is to compute, for an explicitly given hypergraph C ⊆ 2V , the transversal hypergraph
D, consisting of all minimal transversals D of H (i.e., all subsets D ⊆ V such that D∩C 6= ∅
for all C ∈ C). This problem has received considerable attention in the literature (see e.g.,
[4, 15, 17, 35, 38]), since it is known to be polynomially or quasi-polynomially equivalent
with many problems in various areas, such as artificial intelligence (e.g., [15, 26]), database
theory (e.g., [37]), distributed systems (e.g., [21, 23]), machine learning and data mining (e.g.,
[1, 7, 22, 33]), mathematical programming (e.g., [6, 29]), matroid theory (e.g., [31, 30]), and
reliability theory (e.g., [10, 40]).

While the size of output DNF ψ can be exponential in the size of φ, it is open (for
more than 25 years now, e.g., [4, 16, 24, 34, 35, 38]) whether ψ can be computed in output-
polynomial (or polynomial total) time, i.e., in time polynomial in the combined size of φ and
ψ. Any such algorithm for the monotone dualization problem would significantly advance
the state of the art of the problems in the application areas mentioned above. This is
witnessed by the fact that these problems are cited in a rapidly growing body of literature
and have been referenced in various survey papers and complexity theory retrospectives,
e.g. [16, 18, 24, 35, 36, 38].

In 1996, Fredman and Khachiyan [20] established a remarkable result that the monotone
dualization problem can be solved in quasi-polynomial time O(nN) + N o(logN), where N =
|φ|+ |ψ|, thus putting the problem somewhere between polynomiality and NP-completeness.
They achieved this by presenting a quasi-polynomial time algorithm for the decision-version
of the problem: given two monotone Boolean formulae φ and ψ in CNF and DNF respectively,
is φ ≡ ψ ? Furthermore, for several special classes of monotone formulae φ, the problem is
known to be solvable in polynomial time, e.g., when every clause has bounded-size [9, 11,
15, 25], when every variable has bounded degree [12, 17, 38], when clauses have bounded
intersection-size [5], for read-once formulae [14], etc.

– 2 –

A very simple method to solve monotone dualization problem, called left-to-right multi-
plication, or sometimes Berge multiplication (see [3, Page 52–53]), works by traversing the
clauses of the input CNF in some order, say j = 1, . . . ,m = |φ|, multiplying out clause Cj
with the DNF obtained for C1 ∧ . . . ∧ Cj−1, and simplifying the DNF’s using the absorption
law (i.e., the identity x∨(x∧y) = x for all Boolean x, y) whenever possible (see Figure 1). We
remark that many practical algorithms for monotone dualization problem are obtained from
the left-to-right multiplication by putting several heuristic ideas (see e.g., [2, 13, 27, 28, 43]).

It is not difficult to come up with examples for which this method exhibits an exponential
blow-up in the input-output size, e.g., the intermediate DNFs are exponential in the input
size, while the final output is polynomially-bounded. Consider for instance, a CNF φ =∧

1≤i,j≤n(xi ∨ yj) on the set of 2n variables {x1, . . . , xn, y1, . . . , yn}. One can easily check if
the corresponding prime DNF is (x1 ∧ . . . ∧ xn) ∨ (y1 ∧ . . . ∧ yn). On the other hand, if we
start by multiplying the clauses (x1 ∨ y1), . . . , (xn ∨ yn), then we get 2n clauses, which will
be canceled out later in the process. More interestingly, Takata [41] gave an example for
which the left-to-right multiplication method exhibits a superpolynomial blow-up, under any
ordering of the clauses of the input CNF.

In view of this result, it is natural to ask whether there is an example where an exponential
blow-up is unavoidable under any ordering of the clauses. In this paper, we answer this
question in the negative. Namely, we show that, for any monotone CNF, there is an ordering
of the clauses such that the size of the intermediate DNF at any stage of the left-to-right
multiplication is bounded by a subexponential in the input-output size. Furthermore, we
show that, for several interesting well-known classes of monotone CNF formulae such as
read-once, bounded degree, bounded clause-size, etc., there are orderings of the clauses that
guarantee (quasi-)polynomial blow-up’s. The only result we are aware of this type is the one
for bounded degree formulae [12, 39].

To formally state our results, let us consider a monotone CNF φ = C1 ∧ · · · ∧ Cm, and
let π ∈ Sm be a permutation of the clauses, where Sm denotes the set of permutation of m
elements. For j = 1, . . . ,m, let φπj denote the CNF having the first j clauses in φ according
to the ordering π, i.e.,

φπj
def
=

j∧
l=1

Cπ(l). (3)

For a CNF (resp., DNF) ϕ, we denote by |ϕ| the number of clauses (resp., terms). Denote by
ν(π) the size of a maximum intermediate DNF produced during the left-right multiplication,
i.e.,

ν(π)
def
= max

1≤j≤m
|(φπj)∗|, (4)

where, for a monotone CNF ϕ, ϕ∗ denotes the prime DNF corresponding to ϕ. Then we
have the following theorem.

Theorem 1 Let φ be a prime monotone CNF. Then the following three statements hold,
where n and m respectively denote the number of variables and clauses in φ.

– 3 –

(i) If φ has bounded clause-size, bounded degree, or bounded intersection-size, then there
exists a permutation π of the clauses in φ such that ν(π) = |φ∗|O(1).

(ii) If φ has bounded conformality or read-once representation, then there exists a permuta-
tion π of the clauses in φ such that ν(π) = |φ∗|O(logm).

(iii) For any prime monotone CNF φ, there exists a permutation π of the clauses in φ such
that ν(π) ≤ n

√
n+1|φ∗|

√
n lnm.

Furthermore, such permutations can be found in polynomial time in n and m.

The formal definitions of the types of CNF’s stated in (i) and (ii) will be given in Sections
3 and 4. We remark that there is a prime monotone CNF φ with read-once representation
such that ν(π) = Ω(|φ∗|O(log logm)) holds for any permutation π of clauses in φ [41].

It is easy to see that, for a given permutation π, the left-to-right multiplication takes
polynomial time in n, m, and ν(π), where more careful analysis can be found in Section
2. Thus, the theorem above gives an upper bound on the running time of the left-to-right
multiplication procedure.

Corollary 1 The following three statements hold.

(i) If φ is a prime monotone CNF that has bounded clause-size, bounded degree, bounded
intersection-size, or is bounded degenerate, then the left-to-right multiplication for φ
can be done in output-polynomial time.

(ii) If φ is a prime monotone CNF that has bounded conformality or read-once representa-
tion, then the left-to-right multiplication for φ can be done in output-quasi-polynomial
time.

(iii) For any prime monotone CNF, the left-to-right multiplication can be done in output-
subexponential time.

The rest of the paper is organized as follows. In the next section, we state our notation
and present several properties of right-to-left multiplication used in the following sections.
In Section 3, we show that the left-to-right multiplication based on reverse lexicographic
ordering of clauses is an efficient way of dualizing monotone CNF’s with bounded clause-
size, bounded degree, or bounded clause-intersections. In Section 4, we present a more
general technique for ordering the clauses of an input CNF, and derive from it the above
stated results for general monotone CNF’s and for some special classes.

2 Preliminaries

Let φ = φ(x1, . . . , xn) be a formula. We denote by V (φ) the set of variables in φ. For
convenience, if φ is a monotone CNF (resp. DNF) and C is a clause (resp., term) in φ,

– 4 –

we shall write C ∈ φ, and view C also as the index set C ⊆ V (φ) of the variables that it
contains. This way, one can also view φ as a subfamily of 2V (φ), each of which represents a
clause (resp., term), and thus use ordinary set operations on it. A monotone CNF φ is prime
if for all C,C ′ ∈ φ, C ⊆ C ′ implies that C = C ′ (see (1)). If φ is a monotone CNF formula,
we denote by φ∗ a prime DNF formula representing the same monotone Boolean function as
φ (see (2)). As mentioned in Introduction, any monotone function has a unique prime CNF
(DNF) expression. In this paper we consider the following problem:

Problem Monotone Boolean Dualization

Input: The prime CNF φ of a monotone Boolean function.
Output: The prime DNF φ∗.

We shall assume that a given monotone CNF φ satisfies n = |V (φ)| and m = |φ|.
The left-to-right multiplication given in Figure 1 is one of the simplest procedure to solve

the Monotone Boolean Dualization. Here function Min(·) takes the conjunction of a
monotone prime DNF ρ and a monotone clause C, and returns a prime monotone DNF ρ′

that is equivalent to ρ ∧ C.

Procedure LR-Mult(φ, π):

Input: The prime CNF φ = ∧mj=1Cj of a monotone Boolean function and
a permutation π ∈ Sm.

Output: The prime DNF φ∗.

ψ0:= ∅
for j = 1, . . . ,m

ψj := Min(ψj−1 ∧ Cπ(j))

return ψm and halt

Figure 1: The left-to-right multiplication

It is not difficult to see that for all j = 1, . . . ,m, ψj in Figure 1 satisfies ψj = (φπj)∗, and
hence the left-to-right multiplication correctly computes φ∗ (= ψm). Let us then consider its
time complexity.

Lemma 1 For a prime monotone CNF φ and a permutation π ∈ Sm, Procedure LR-Mult(φ, π)
can be done in O(nmν(π)2) time.

Proof. Let us show that, for each j, ψj can be computed in O(nν(π)2) time from a prime
monotone DNF ψj−1 and a monotone clause Cπ(j), which completes the proof, since we have
m such j’s.

– 5 –

Note that

ψj ≡
∨

t∈ψj−1

∨
i∈Cπ(j)

(
t ∧ xi

)
.

Thus if t ∈ ψj−1 contains some i ∈ Cπ(j), then t ∈ ψj and we have

ψj ≡
∨

t∈ψj−1:

t∩Cπ(j) 6=∅

t ∨
∨

t∈ψj−1:

t∩Cπ(j)=∅

∨
i∈Cπ(j)

(
t ∧ xi

)
, (5)

since t ⊆ t ∧ xi for all i ∈ Cπ(j) and t is contained in prime ψj−1. Moreover, for a term
t ∈ ψj−1 with t ∩ Cπ(j) = ∅ and an index i ∈ Cπ(j), we claim that t ∧ xi ∈ ψj if and only if
there is no t′ ∈ ψj−1 such that t′ \ t = {i}.

For the only-if part, let t′ be a term in ψj−1 such that t′ \ t = {i}. Note that t′ ∈ ψj holds
by t′ ∩ Cπ(j) 6= ∅, and t′ (t ∧ xi holds, since t′ \ t = {i} and t \ t′ 6= ∅ (by the primality of
ψj−1). Therefore, t ∧ xi 6∈ ψj.

For the if part, let us assume that no t′ ∈ ψj−1 satisfies t′ \ t = {i}. Then all t′ (6= t) in
ψj−1 satisfy t′ 6⊆ t ∧ xi, since t′ \ t 6= ∅. This implies t ∧ xi ∈ ψj.

Since |ψj−1|, |ψj| ≤ ν(π), it follows from our claim that ψj can be computed in O(nν(π)2)
time. �

Lemma 2 For a prime monotone CNF φ and a permutation π ∈ Sm, Procedure LR-Mult(φ, π)
can be done in O(nm2ν(π)) time.

Proof. Let us show that, for each j, ψj can be computed in O(nmν(π)) time from a prime
monotone DNF ψj−1 and a monotone clause Cπ(j), which completes the proof, since we have
m such j’s.

By the discussion in the proof of Lemma 2, t ∈ ψj holds for any t ∈ ψj−1 with t∩Cπ(j) 6= ∅,
and ψj can be represented by (5). Let t be a term in ψj−1 with t ∩ Cπ(j) = ∅, and for an
` ∈ t, let C` = {C ∈ φπj−1 | C ∩ t = {`}}. By definition, C` ∩ C`′ = ∅ for any ` and `′ with
` 6= `′, and C` 6= ∅ for any ` ∈ t, since ψj−1 = (φπj−1)

∗. We now claim that t ∧ xi ∈ ψj for
i ∈ Cπ(j) if and only if no ` ∈ t satisfies C` = {C ∈ C` | C 3 i}.

Fo the only-if part, let ` be an index in t with C` = {C ∈ C` | C 3 i}. Then no C ∈ φπj−1

satisfies C ∩ (t∧ xi) = {`}, and hence t∧ xi is not a minimal transversal of φπj , which means
t ∧ xi 6∈ ψj (= (φπj)∗).

Fo the if part, let us assume that no ` in t satisfies C` = {C ∈ C` | C 3 i}. Then for each
` ∈ t∧ xi, there exists a clause C in φπj such that C ∩ (t∧ xi) = {`}. This implies that t∧ xi
is a minimal transversal of φπj , which completes the proof of the claim.

Note that
⋃
`∈t C` ⊆ φπj−1 and C` ∩ C`′ = ∅ for any `, `′ with ` 6= `′. Thus from the claim,

it is not difficult to see that ψj can be computed in O(nmν(π)) time. �

– 6 –

Proposition 1 For a prime monotone CNF φ and a permutation π ∈ Sm, Procedure
LR-Mult(φ, π) can be done in O(nmν(π) min{m, ν(π)}) time.

Proof. It follows from Lemmas 1 and 2. �

For a monotone CNF φ and i ∈ V (φ), we denote by φ(i) the subformula of φ consisting
of all clauses containing variable xi, and let degφ(i) = |φ(i)| be the degree of xi in φ. For
a subset S ⊆ V (φ) of variables, denote by φS the CNF formula obtained form φ by fixing
xi = 1 for all i ∈ V (φ) \ S. Equivalently, φS =

∧
C∈φ:C⊆S

(∨
i∈C xi

)
. Thus we call φS the

projection of φ on S. The reason that we are interested in projections is the following.

Proposition 2 ([34]) Let φ be a monotone CNF. For any S ⊆ V (φ), we have |φ∗S| ≤ |φ∗|.

Clearly, we have |(φ ∧ φ′)∗| ≤ |φ∗||(φ′)∗| for any CNF’s φ and φ′, and thus the above
proposition implies the following claims.

Lemma 3 Let φ ba a monotone CNF. If φ′ = φS1∧φS2∧· · ·∧φSk for some subsets S` ⊆ V (φ),
` = 1, .., k, then we have

|(φ′)∗| ≤ |φ∗|k.

�

Lemma 4 Let φ =
∧m
j=1Cj be a monotone CNF, and let π ∈ Sm be a permutation of the

clauses of φ such that for every j = 1, . . . ,m there exists some subsets Sj,` ⊆ V , ` = 1, . . . , kj
such that

φπj = φSj,1 ∧ φSj2 ∧ · · · ∧ φSj,kj (6)

holds. Let k = max{k1, . . . , k`}. Then we have ν(π) ≤ |φ∗|k, and thus LR-Mult(φ, π)
computes φ∗ in O(nm|φ∗|k min{m, |φ∗|k}) time.

Proof. Follow from Proposition 1 and Lemma 3. �

In the following sections we show various techniques to find such an ordering π of φ which
guarantees a small k in the above statement.

3 Reverse Lexicographic Orderings

Assume that V = V (φ) (= {1, 2, . . . , n}) and for subsets A,B ⊆ V let us denote by L =
L(A,B) their last common elements, i.e., L is the maximal subset L ⊆ A∩B such that for all
i1 ∈ (A∪B)\L and i2 ∈ L we have i1 < i2. We say that A precedes B if max(A\L(A,B)) <
max(B \L(A,B)). For example, if A = {1, 3, 5, 6} and B = {4, 5, 6}, then L(A,B) = {5, 6},
max(A\L(A,B)) = 3, max(B \L(A,B)) = 4, and A precedes B. On the other hand, if A =

– 7 –

{1, 3, 5} and B = {1, 5, 6}, then L(A,B) = ∅, max(A \L(A,B)) = 5, max(B \L(A,B)) = 6,
and A precedes B. Finally, we say that {C1, C2, . . . , Cm} is the reverse lexicographic labeling
of φ (or that the clauses of φ are in reverse lexicographic order), if Cj1 precedes Cj2 for
all 1 ≤ j1 < j2 ≤ m. Clearly, the reverse lexicographic order of the clauses is determined
uniquely by the ordering of the variable indices in V . To denote this dependence, let us use
Lσ(A,B) for the last common elements of A and B, when V is ordered by a permutation
σ ∈ Sn, and call the corresponding ordering of the clauses of φ the σ-reverse lexicographic
order of φ, denoted by πσ.

Given a permutation σ ∈ Sn, let us introduce

µσ(φ)
def
= max

1≤j<m
|Lσ(Cπσ(j), Cπσ(j+1))|. (7)

Clearly, given a permutation σ, the value of µσ(φ) can be computed in O(nm) time.

To simplify our notations, let us assume that σ = (1, . . . , n) and πσ = (1, . . .m), i.e.,
{C1, . . . , Cm} is the σ-reverse lexicographic labeling of φ. Given an index 1 ≤ j < m, let us
introduce Lj = Lσ(Cj, Cj+1), λ = |Lj|, and φj = φπσj (= C1 ∧ · · · ∧ Cj). By definition, we
have λ ≤ µσ(φ). Furthermore, let Lj = {i1, i2, . . . , iλ}, where i1 < · · · < iλ, and i0 is the
largest element in Cj+1 \ Lj. Clearly, {i0, . . . , iλ} is the last λ+ 1 elements of Lj+1.

Let [i] = {1, . . . , i} and consider the following subsets of V :

S` = [i` − 1] ∪
λ⋃

k=`+1

{ik} for all ` = 0, . . . , λ. (8)

Lemma 5 For all 1 ≤ j < m we have

φj = φS0 ∧ · · · ∧ φSλ .

Proof. By the definition of the reverse lexicographic order we have for a clause Cj′ ∈ φ that
Cj ∈ φS0 ∪ · · · ∪ φSλ if and only if Cj′ precedes Cj+1, i.e., iff j′ ≤ j. �

Lemma 6 For every j = 1, 2, . . . ,m we have k (≤ 1 + µσ(φ)) subsets Sj,1, Sj,2, . . . , Sj,k of
V such that (6) holds.

Proof. Clearly, for j = m we can choose k = 1 and Sm,1 = V . Otherwise, for j < m, let us
choose the sets as in (8). Then the claim follows by Lemma 5. �

Theorem 2 For every CNF φ and permutation σ of V , we have |ν(πσ)| ≤ |φ∗|1+µσ(φ), and
thus LR-Mult computes φ∗ in O(nm|φ∗|1+µσ(φ) min{m, |φ∗|1+µσ(φ)}) time.

– 8 –

Proof. It follows from Proposition 1 and Lemma 6. �

We shall show in the next subsections that even with σ = (1, 2, . . . , n), the class of
CNF’s φ for which µσ(φ) is a fixed constant includes several well-known classes, proving that
LR-Mult provides an efficient dualization for all these cases. Before turning to special types
of CNF’s, let us observe a useful property of the sets introduced in (8).

Lemma 7 For every ` = 0, . . . , λ the sets in

(φS0 ∪ φS1 ∪ · · · ∪ φS`) \
(
φS`+1

∪ · · · ∪ φSλ
)

all contain L = {i`+1, . . . , iλ} as their last elements according to πσ.

Unless otherwise stated, let us assume in the sequel that σ = (1, 2, . . . , n) and eliminate
it from our notations, and let π = πσ.

3.1 Degenerate CNF’s

Given a CNF φ, let us denote by

∆(φ) = max
i∈V

degφ(i)

the maximum degree of a variable in φ. For a given k, we say that φ has bounded occurrences
if ∆(φ) ≤ k. More generally, a CNF φ is said to be k-degenerate [17], for an integer k ∈ Z+,
if for any S ⊆ V , mini∈S degφS(i) ≤ k. Equivalently, φ is k-degenerate if and only if there
exists a permutation σ ∈ Sn of the variables such that, for all i = 1, . . . , n, degφ[i]

(i) ≤ k.

Here we note that such a permutation can be computed in O(nm) time [17]. This class
includes for instance formulae of bounded occurrences, bounded hypertree-width; see [17].
The following statement thus generalizes the results of [12, 39].

Theorem 3 If φ is a k-degenerate CNF and σ is a permutation of variables such that
degφ[i]

(i) ≤ k for all i = 1, . . . , n, then we have ν(πσ) ≤ |φ∗|nk−1, and thus LR-Mult computes

φ∗ in O(nkm|φ∗|min{m,nk−1|φ∗|}) time.

Proof. Assume without loss of generality that σ = (1, . . . , n) is a permutation of variables
such that degφ[i]

(i) ≤ k for all i = 1, . . . , n. Let j be an integer in [m − 1]. If Lj = ∅, then

φj = φS0 and hence |(φj)∗| ≤ |φ∗|. On the other hand, if Lj 6= ∅, then by Lemma 7, the
clauses in (

φS0 ∪ φS1 ∪ · · · ∪ φSλ−1

)
\ φSλ

all contain iλ as their last element, and we cannot have more than k − 1 such clauses, since
degφ[iλ]

(iλ) ≤ k and iλ ∈ Cj+1. This implies

|(φj)∗| ≤ nk−1|(φSλ)∗| ≤ nk−1|φ∗|.

�

We remark that for CNFs with bounded occurrences, any ordering σ of variables produces
a good left-to-right multiplication.

– 9 –

3.2 CNF’s with bounded (k, r)-intersections

Given a CNF φ, let D1(φ) and D2(φ) respectively denote the dimension and intersection size
of φ, i.e.,

D1(φ) = max
C∈φ
|C| and D2(φ) = max

C,C′∈φ
C 6=C′

|C ∩ C ′|.

For a given r we say that φ has bounded dimension and intersections if D1(φ) ≤ r and
D2(φ) ≤ r, respectively.

We generalize classes of monotone CNF’s with bounded occurrences, bounded dimension,
and bounded intersection as follows. Let k ≥ 1 and r ≥ 0 be integers. We denote by A(k, r)
the class of of monotone CNF formulae with (k, r)-bounded intersections [5]: φ ∈ A(k, r) if
for any k distinct clauses of φ, Cj1 , . . . , Cjk , we have

|
k⋂
`=1

Cj` | ≤ r.

Note that

∆(φ) ≤ k iff φ ∈ A(k + 1, 0), D1(φ) ≤ r iff φ ∈ A(1, r), and D2(φ) ≤ r iff φ ∈ A(2, r),

and hence, the class A(k, r) contains the bounded size, bounded degree, and bounded inter-
sections CNF’s as subclasses.

Lemma 8 Let φ ∈ A(k, r) and let σ be an arbitrary permutation of variables. Then, for
any index j with 1 ≤ j < m,

|(φπσj)∗| ≤


|φ∗|r if λ < r
|φ∗|r+1 if λ = r
nk−2|φ∗|r+1 if λ > r,

where λ = |Lj| (= |Lσ(Cπσ(j), Cπσ(j+1))|).

Proof. For simplicity, let σ = (1, . . . , n) and πσ = (1, . . . ,m). For an index j with 1 ≤ j <
m, let Lj = {i1, i2, . . . , iλ}, where i1 < · · · < iλ, and let i0 be the largest element in Cj+1 \Lj.

By Lemmas 3 and 5, we have |(φπσj)∗| ≤ |φ∗|λ+1, and thus the statement in the lemma
holds for λ ≤ r. If λ > r, it follows from Lemma 7 that

U
def
=
(
φS0 ∪ φS1 ∪ · · · ∪ φSλ−r−1

)
\
(
φSλ−r ∪ · · · ∪ φSλ

)
contains L = {iλ−r, . . . , iλ}. Thus we have

|U | ≤ k − 2,

since |L| = r + 1, Cj+1 ⊇ L, and Cj+1 6∈ U . This implies

|(φπσj)∗| ≤ nk−2

λ∏
`=λ−r

|(φS`)∗| ≤ nk−2|φ∗|r+1.

�

– 10 –

Lemma 9 Let φ ∈ A(k, r) and let σ be an arbitrary permutation of variables. Then, for
any index j with 1 ≤ j < m, λ < r holds for k = 1, and λ ≤ r holds for k = 2, where
λ = |Lj| (= |Lσ(Cπσ(j), Cπσ(j+1))|).

Proof. If k = 1, then we have λ < D1(φ) ≤ r. If k = 2, then we have λ ≤ D2(φ) ≤ r. �

From Lemmas 8 and 9, we have the following theorem.

Theorem 4 Let φ ∈ A(k, r) and let σ be an arbitrary permutation of variables. Then we
have

ν(πσ) ≤


|φ∗|r if k = 1
|φ∗|r+1 if k = 2
nk−2|φ∗|r+1 if k ≥ 3,

and thus LR-Mult computes φ∗ in

O(nm|φ∗|r min{m, |φ∗|r}) time if k = 1,

O(nm|φ∗|r+1 min{m, |φ∗|r+1}) time if k = 2, and

O(nk−1m|φ∗|r+1 min{m,nk−2|φ∗|r+1}) time if k ≥ 3.

As a corollary, for prime monotone CNFs φ with bounded degree ∆(φ) ≤ k, LR-Mult
computes φ∗ in O(nkm|φ∗|min{m,nk−1|φ∗|}) time, which matches Theorem 3.

4 Multiplication-Tree Orderings

Given a monotone CNF formula φ, we build a binary tree T, which we call a multiplication
tree, each node v of which is associated with a monotone CNF φ(v) as follows:

(I) if v is a leaf then φ(v) is an individual clause of φ and every clause of φ appears uniquely
in a leaf of T;

(II) if v is an internal node, then it has two children u and w such that φ(v) = φ(u)∧φ(w),
i.e., φ(v) is the conjunction of the subset of clauses of φ appearing in the leaves of the
subtree of T rooted at v.

For a binary multiplication tree T, we fix a planar embedding of T and let πT be the order
of clauses defined by the left-to-right traversal of the leaves of T. Namely, πT is obtained
in the depth-first search from the root of T in which at each node, the left child is visited
before the right one.

Note that any ordering π of clauses in φ can be represented by π = πT for some multi-
plication tree. Denote by N (T) the set of nodes of the tree T. For a node v ∈ N (T), let
φv be the subformula of φ obtained by the left-to-right traversal of the leaves of T upto the
right-most leaf of the subtree rooted at v:

φv = φπTr (=
r∧
i=1

CπT(i)),

– 11 –

where r is the number of leaves, counted from the left-most leaf of T, up to the right-most
leaf of the subtree rooted at v. In what follows we denote by ν(T) the size of a maximum
intermediate DNF produced during LR-Mult(φ, πT):

ν(T) = ν(πT) = max
v∈N (T)

{|(φv)∗|}.

We denote respectively by p(v), left(v), and right(v), the parent, left and right children of
node v ∈ N (T).

A binary multiplication tree T is called proper if for every v ∈ N (T), the set φ(left(v))
is a projection of φ(v), i.e., there exists a set S ⊆ V (φ) such that φ(v)S = φ(left(v)). Call a
node v ∈ N (T) an L-node (resp., R-node) if v is the left (resp., right) child of its parent in
T (see Figure 2). Define the right-depth of v ∈ N (T), denoted by d(v), to be one plus the
number of R-nodes in the path from the root r(T) of T to v, and define the right-depth of
T, by

d(T) = max
v∈N (T)

d(v).

Theorem 5 Let φ be a monotone CNF. If T be a proper binary multiplication tree of φ,
then we have

ν(T) ≤ |ψ∗|d(T).

Proof. For an arbitrary node v ∈ N (T), let L and R be respectively the sets of L-nodes
and R-nodes in the path from the root r(T) to v. We can assume, without loss of generality,
that v is an L-node, since otherwise, we have φv = φp(v) and we can repeatedly replace v by
p(v). We shall prove by induction on right(v) that

|(φv)∗| ≤ |φ∗|d(v). (9)

Since T is proper, for every L-node u, there is a set Su ⊆ V (φ) such that φ(p(u))Su = φ(u). In
particular, if d(v) = 1 then there exists a set S such that φv = φ(v) = φS, and hence (9) holds
by Proposition 2. If d(v) > 1, then R-nodes u in the path do not satisfy φ(p(u))Su = φ(u) in
general, and we have to argue slightly differently. Let w be the left child of the parent of the
last R-node in the path from r(T) to v (see Figure 2). Then, d(w) = d(v)− 1. We assume
by induction that

|(φw)∗| ≤ |φ∗|d(w) = |φ∗|d(v)−1. (10)

Let (φw)∗ =
∨k
j=1 tj, where k = |(φw)∗|. Then

(φv)∗ ≡ (φw)∗ ∧ φ(v) ≡
k∨
j=1

(tj ∧ φ(v)) ≡
k∨
j=1

(tj ∧ φ(v)V \tj).

– 12 –

where φ(v)V \tj = ∧{C ∈ φ(v) : C ∩ tj = ∅}. We claim that φ(v)V \tj = φS, where

S =

(⋂
u∈L

Su

)
\ tj.

Clearly, φ(v)V \tj ⊆ φS by definitions of φ(v)V \tj and S. Conversely, let C be a clause of φS.
Then C ⊆ Su for all u ∈ L and C ∩ tj = ∅. For every u ∈ L, C ∈ φ(p(u)) implies C ∈ φ(u),
since T is proper. Note that φw =

∧
u∈R φ(left(p(u))), where left(p(u)) is the left sibling of

node u in T (see Figure 2). This implies in particular that C 6∈ φw, since C is disjoint from
a term tj of (φw)∗. For every u ∈ R, C ∈ φ(p(u)) implies C ∈ φ(u). Therefore, starting
from the root, C will end up in φ(v). Since C ∩ tj = ∅, we have C ∈ φ(v)V \tj , establishing
our claim.

It follows from this claim and Proposition 2 that |(φ(v)V \tj)
∗| ≤ |φ∗|, and hence by (10),

|(φv)∗| ≤
k∑
j=1

max{|(φ(v)V \tj)
∗|, 1} ≤ k|φ∗| = |(φw)∗||φ∗| ≤ |φ∗|d(v).

This shows (9) and proves the lemma. �

r(T)

v

w

u1 u2

ui1

p(u1)

ui1+1

ui2

uih = u

uih−1+1
uih−1+2

w0

L-node

R-node

ui1+2

Figure 2: The path from r(T) to v.

– 13 –

Procedure Construct-Tree-A(φ, v):
Input: A prime monotone CNF φ and a node v of the tree.
Output: A proper binary multiplication tree for φ rooted at v.

φ(v):= φ

if |φ(v)| > 1

Construct the left and right children left(v) and right(v) of v

i:= argmin{degφ(i) : i ∈ V (φ)}
Call Construct-Tree-A(φV (φ)\{i}, left(v))

Call Construct-Tree-A(φ(i), right(v))

halt

Figure 3: Procedure Construct-Tree-A to construct a proper binary multiplication tree
for φ

4.1 Quasi-Polynomial Cases

4.1.1 Conformal CNF’s

There are several equivalent definitions for conformal CNF’s (see [3, Page 90]). The most
convenient for our purposes is the following: For an integer k ≥ 1, a monotone CNF φ is
called k-conformal if for every subset of variables X ⊆ V (φ), X is contained in a clause of
φ whenever each subset of X of cardinality at most k is contained in a clause of φ. One can
easily verify that φ ∈ A(k, r) implies that φ is (k + r)-conformal. Thus the class of CNF’s
with bounded conformality includes as a special case the CNF’s with bounded intersections
considered in the previous section.

Although the prime DNF representation of a k-conformal CNF can be computed in
polynomial time if k is constant [5], we can only show a quasi-polynomial bound for the
left-to-right multiplication.

Lemma 10 Let φ =
∧m
j=1Cj be a k-conformal prime monotone CNF. Then there exists a

proper binary multiplication tree T with d(T) ≤ k lnm+ 1.

Proof. We use a simple procedure shown in Figure 3, combined with the following claim.

Claim 1 Let φ′ ⊆ φ be a subformula of φ such that |φ′| > 1. Then there exists an infrequent
variable i ∈ V (φ′):

|φ′(i)| ≤ (1− 1

k
)|φ′|.

Proof. If every subset X ⊆ V (φ′) of size at most k is contained in some clause of φ′,
then V (φ′) is contained in some clause C of φ by the k-conformality of φ. This implies
C = V (φ′). Since φ′ is prime, we have |φ′| = 1, which is a contradiction. Thus there exists a
set X ⊆ V (φ′) of size at most k such that X is not contained in any clause of φ′. This gives
φ′ =

∧
i∈X φ

′
V (φ′)\{i}, implying that there is an i ∈ X such that |φ′V (φ′)\{i}| ≥ |φ′|/k. �

– 14 –

We now argue that the right-depth of T is logarithmic. Consider a node v ∈ N (T), and let
u1, . . . , uh be the R-nodes in the path from the root r(T) to v, ordered by increasing distance
from r(T). Then by the selection of the branching variable, |φ(u`)| ≤ (1 − 1/k)|φ(p(u`))|
for all ` = 1, . . . , h. It follows that |φ(u1)| ≤ (1 − 1/k)|φ| = (1 − 1/k)m and |φ(u`+1)| ≤
(1 − 1/k)|φ(u`)| for ` = 1, . . . , h, and hence |φ(uh)| ≤ (1 − 1/k)hm. Since |φ(uh)| ≥ 1, we
get h ≤ k lnm. �

Theorem 6 Let φ =
∧m
j=1Cj be a k-conformal prime monotone CNF. Then Procedure

Construct-Tree-A produces a permutation πT of the clauses such that ν(πT) ≤ |φ∗|k lnm+1,
and thus LR-Mult computes φ∗ in O(nm|φ∗|k lnm+1min{m, |φ∗|k lnm+1}) time.

4.1.2 CNF’s of read-once expressions

A formula ϕ is called read-once if it can be written as an ∧ − ∨ formula in which every
variable in V (ϕ) appears exactly once. A well-known equivalent definition is that φ is a
prime monotone CNF which can be represented by a read-once expression if and only if

|C ∩ t| = 1 for every clause C ∈ φ and every term t ∈ φ∗. (11)

Lemma 11 Let φ =
∧m
j=1Cj be a prime monotone CNF with a read-once expression. Then

there exists a proper binary multiplication tree T with d(T) ≤ logm+ 1.

Proof. We use the following claim to construct a tree T by the procedure shown in Figure
3.

Claim 2 Let φ′ ⊆ φ be a subformula of φ such that |φ′| > 1. Then there exists an infrequent
variable i ∈ V (φ′):

|φ′(i)| ≤
1

2
|φ′|.

Proof. If every pair of elements of V (φ′) is contained in some clause of φ′, then, by (11),
|t ∩ V (φ′)| = 1 for every t ∈ φ∗. On the other hand, φV (φ′) contains at least two distinct
clauses and hence (φV (φ′))

∗ has a term of size at least 2, which can be extended to a term of
φ∗. This contradiction shows that there must exist a pair of elements not contained in any
clause of φ′, and hence at leat one of the elements i in the pair satisfies |φ′(i)| ≤

1
2
|φ′|. �

The rest of the proof is the same as in Lemma 10. �

Theorem 7 Let φ =
∧m
j=1Cj be a prime monotone CNF which can be represented by a

read-once expression. Then Procedure Construct-Tree-A produces a permutation πT of
the clauses such that ν(πT) ≤ |φ∗|logm+1, and thus LR-Mult computes φ∗ in O(nm|φ∗|logm+1

min{m, |φ∗|logm+1}) time.

– 15 –

Procedure Construct-Tree-B(φ, v):
Input: A prime monotone CNF φ and a node v of the tree.
Output: A proper binary multiplication tree for φ rooted at v.

φ(v):= φ

if |φ(v)| > 1

Construct the left and right children left(v) and right(v) of v

φ′:=
∧
{C ∈ φ : |C| ≤ |V (φ)| −

√
|V (φ)|}

i:= argmin{degφ′(i) : i ∈ V (φ)}

Call Construct-Tree-B(φV (φ)\{i}, left(v))

Call Construct-Tree-B(φ(i), right(v))

halt

Figure 4: Procedure Construct-Tree-B to construct a proper binary multiplication tree
for φ

4.2 General Monotone CNF’s

In this section, we consider general monotone CNFs, and show that by use of the procedure
in Figure 4, the left-to-right multiplication can always be done in subexponential time. The
procedure constructs a proper binary multiplication tree for φ which is almost identical to the
procedure in Figure 3, except that the minimum-degree variable is computed with respect
to the CNF φ′ containing only small clauses of φ.

Let us begin with the following two simple lemmas.

Lemma 12 Let φ be a prime monotone CNF, and let k be a positive integer with k < n/2.
If every clause of φ has size at least n− k, then any permutation π has ν(π) ≤ nk+1.

Proof. Let φ′ be a subformula of φ and t be a term of (φ′)∗. If |t| > k+1, then any subterm
t′ ⊂ t of size |t′| = k + 1 must intersect every clause of φ′. This contradicts the primality of
t. Thus every term t of (φ′)∗ has size at most k + 1, and hence |(φ′)∗| ≤ nk+1. �

Lemma 13 Let φ be a prime monotone CNF, let k be a positive integer, and let φ′ be a
subformula of φ. If every clause of φ′ has size at most n− k, then there exists an infrequent
variable i ∈ V (φ) with respect to φ′:

|φ′(i)| ≤ (1− k

n
)|φ′|.

Proof. Let i ∈ V (φ) be a variable of minimum degree in φ′. Then

(n− k)|φ′| ≥
∑
C∈φ′
|C| =

∑
j∈V (φ)

degφ′(j) ≥ n · degφ′(i),

– 16 –

and thus degφ′(i) ≤ (1− k/n)|φ′|. �

Let us now show that the procedure in Figure 4 produces a multiplication tree with small
right-depth.

Theorem 8 Let φ =
∧m
j=1Cj be a prime monotone CNF. Then Procedure Construct-

Tree-B produces a permutation πT of the clauses such that ν(πT) ≤ n
√
n+1|φ∗|

√
n lnm, and

thus LR-Mult computes φ∗ in O(n
√
n+2m|φ∗|

√
n lnm min{m,n

√
n+1|φ∗|

√
n lnm}) time.

Proof. Consider any leaf v ∈ N (T) and let P be the path from the root r(T) to v. For a node
w in P, let V (w) = V (φ(w)) and φ′(w) =

∧
{C ∈ φ(w) : |C| ≤ |V (φ(w))| −

√
|V (φ(w))|}.

Note that there is a node w of P such that φ′(w) = ∅. Let w0 be the closest such node to
the root, and let u1, u2, . . . , uh be the R-nodes in the path P between r(T) and w0, ordered
by increasing distance from r(T).

For ` = 0, 1, . . . , h, let n` = |V (u`)|, where we assume u0 = r(T). Note that

V (u`) ⊆ V (p(u`)) ⊆ V (u`−1) and φ′(u`) ⊆ φ′(p(u`)) ⊆ φ′(u`−1),

for ` = 1, . . . , h. In particular, Lemma 13 implies

|φ′(u`)| ≤ (1− 1
√
n`−1

)|φ′(u`−1)|,

for ` = 1, . . . , h, and thus |φ′(uh)| ≤ (1 − 1/
√
n0)

h|φ′(u0)|, Since |φ′(uh)| ≥ 1, we conclude
that d(w0) = l + 1 ≤

√
n lnm+ 1, where n = n0.

From (9), we know that |(φv)∗| ≤ |φ∗|d(w0)−1|(φ′′)∗|, where φ′′ ⊆ φ(w0) consists of clauses
in φ(w0) ∩ φv. By definition of w0, we have |φ′(w0)| = 0 and thus φ(w0) consists only of
clauses of size at least |V (φ(w0))| −

√
|V (φ(w0))|. Thus |(φ′′)∗| ≤ n

√
n+1 by Lemma 12, and

hence
|(φv)∗| ≤ |φ∗|d(w0)−1n

√
n+1 ≤ n

√
n+1|φ∗|

√
n lnm.

�

References

[1] M. Anthony and N. Biggs, Computational Learning Theory, Cambridge Univ. Press,
1992.

[2] J. Bailey, T. Manoukian, and K. Ramamohanarao, A fast algorithm for computing hy-
pergraph transversals and its application in mining emerging patterns, In Proceedings of
the 3rd IEEE International Conference on Data Mining (ICDM 2003), 19-22 December
2003, Melbourne, Florida, USA, pp. 485–488. IEEE Computer Society, 2003.

[3] C. Berge, Hypergraphs, North Holland Mathematical Library, Vol. 445, 1989.

– 17 –

[4] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive
Boolean functions, Information and Computation 123 (1995), pp. 50–63.

[5] E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, Generating Maximal Indepen-
dent Sets for Hypergraphs with Bounded Edge-Intersections, in Proc. the 6th Latin
American Theoretical Informatics Conference (LATIN 2004), LNCS 2976, pp. 488–498.

[6] E. Boros, K. Elbassioni, V. Gurvich, L. Khachiyan and K. Makino, Dual-bounded gen-
erating problems: All minimal integer solutions for a monotone system of linear inequal-
ities, SIAM J. Comput., 31 (5) (2002) pp. 1624–1643.

[7] E. Boros, V. Gurvich, L. Khachiyan and K. Makino, On maximal frequent and minimal
infrequent sets in binary matrices, Ann. Math. Artif. Intell. 39 (2003), pp. 211-221.

[8] E. Boros, K. Elbassioni, V. Gurvich and L. Khachiyan, Computing Many Maximal In-
dependent Sets for Hypergraphs in Parallel, DIMACS technical report 2004-44, Rutgers
University, (http://dimacs.rutgers.edu/TechnicalReports/2004.html).

[9] E. Boros, V. Gurvich, and P.L. Hammer, Dual subimplicants of positive Boolean func-
tions, Optimization Methods and Software, 10 (1998) pp. 147–156.

[10] C. J. Colbourn, The combinatorics of network reliability, Oxford Univ. Press, 1987.

[11] E. Dahlhaus and M. Karpinski, A fast parallel algorithm for computing all maximal
cliques in a graph and the related problems, Proc. 1st Scandinavian Workshop on Al-
gorithm Theory (SWAT) , Sweden, July 5-8, 1988, LNCS 318, pp. 139–144.

[12] C. Domingo, N. Mishra and L. Pitt, Efficient read-restricted monotone CNF/DNF du-
alization by learning with membership queries, Machine learning 37 (1999) pp. 89–110.

[13] G. Dong and J. Li, Mining border descriptions of emerging patterns from dataset pairs,
Knowledge and Information Systems, 8 (2005) pp.178–202.

[14] T. Eiter, Exact Transversal Hypergraphs and Application to Boolean µ-Functions, J.
Symb. Comput. 17(3) (1994) pp. 215–225.

[15] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and
related problems, SIAM J. Comput., 24 (1995) pp. 1278–1304.

[16] T. Eiter and G. Gottlob, Hypergraph transversal computation and related problems
in logic and AI, In S. Flesca et al., editor, Proceedings 8th European Conference on
Logics in Artificial Intelligence – Journées Européennes sur la Logique en Intelligence
Artificielle (JELIA 2002), Cosenza, Italy, 2002, number 2424 in LNCS, pages 549–564.
Springer, 2002.

[17] T. Eiter, G. Gottlob and K. Makino, New results on monotone dualization and gener-
ating hypergraph transversals, SIAM J. Comput. 32(2)(2003) pp. 514–537.

– 18 –

[18] T. Eiter, K. Makino, and G. Gottlob, Computational aspects of monotone dualization:
A brief survey, KBS Research Report INFSYS RR-1843-06-01, Institute of Informa-
tion Systems, Vienna University of Technology Favoritenstraße 9-11, A-1040 Vienna,
Austria, 2006. To appear in Discrete Applied Mathematics.

[19] K. Elbassioni, On the complexity of monotone Boolean dual-
ity testing, DIMACS Technical Report 2006-1, Rutgers University
(http://dimacs.rutgers.edu/TechnicalReports/2006.html).

[20] M. L. Fredman and L. Khachiyan, On the complexity of dualization of monotone dis-
junctive normal forms. J. Algorithms, 21 (1996) pp. 618–628.

[21] H. Garcia-Molina and D. Barbara, How to assign votes in a distributed system, Journal
of the ACM, 32 (1985) pp. 841–860.

[22] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen, Data mining, hypergraph
transversals and machine learning, in Proc. the 16th ACM-SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS 1997), pp. 12–15.

[23] T. Ibaraki and T. Kameda, A theory of coteries: Mutual exclusion in distributed sys-
tems, IEEE Transactions on Parallel and Distributed Systems, 4 (1993) pp. 779–794.

[24] D. S. Johnson, Open and closed problems in NP-completeness, Lecture given at
the International School of Mathematics “G. Stampacchia”: Summer School “NP-
Completeness: The First 20 Years”, Erice (Sicily), Italy, 20 - 27 June 1991.

[25] D. S. Johnson, M. Yannakakis and C. H. Papadimitriou, On generating all maximal
independent sets, Info. Process. Lett., 27 (1988) pp. 119–123.

[26] D. J. Kavvadias, C. Papadimitriou, and M. Sideri, On Horn envelopes and hypergraph
transversals, in Proceedings of the 4th International Symposium on Algorithms and Com-
putation (ISAAC-93), LNCS 762, W. Ng, ed., Springer-Verlag, New York (1993) pp.
399–405.

[27] D. J. Kavvadias and E. C. Stavropoulos, Evaluation of an algorithm for the transver-
sal hypergraph problem, in Proc. 3rd Workshop on Algorithm Engineering (WAE’99),
LNCS 1668, (1999) pp. 72–84.

[28] D. J. Kavvadias and E. C. Stavropoulos, An efficient algorithm for the transversal hyper-
graph generation. Journal of Graph Algorithms and Applications, 9 (2005), pp.239–264.

[29] L. Khachiyan, Transversal hypergraphs and families of polyhedral cones, in N. Had-
jisavvas and P. Pardalos (Eds.), Advances in Convex Analysis and Global Optimization,
Honoring the memory of K. Carathéodory, pp. 105–118, Kluwer Academic Publishers,
Dordrecht/Boston/London, 2000.

– 19 –

[30] L Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino, Enumerating
spanning and connected subsets in graphs and matroids, in Proceedings of ESA 2006,
2006, LNCS 4168, pp.444-455.

[31] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino, On the complexity
of some enumeration problems for matroids, SIAM J. Discrete Math. 19(4) (2005) pp.
966–984.

[32] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, A new algorithm for the hypergraph
transversal problem, in the Proceedings of the Computing and Combinatorics, 11th An-
nual International Conference (COCOON 2005), Kunming, China, August 16-29, 2005,
LNCS 3595, pp. 767–776.

[33] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, K. Makino, Dual-bounded generat-
ing problems: Efficient and inefficient points for discrete probability distributions and
sparse boxes for multidimensional data, Theor. Comput. Sci., 379 (2007) pp.361-376.

[34] E. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, Generating all maximal indepen-
dent sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput., 9 (1980)
pp. 558–565.

[35] L. Lovász, Combinatorial optimization: some problems and trends, DIMACS Technical
Report 92-53, Rutgers University, 1992.

[36] H. Mannila, Global and local methods in data mining: basic techniques and open
problems, in Proceedings of the 29th International Colloquium on Automata, Languages,
and Programming (ICALP 2002), LNCS 2380, Springer-Verlag, 2002, pp.57-68.

[37] H. Mannila and K. J. Räihä, Design by example: An application of Armstrong relations,
Journal of Computer and System Science 22 (1986) pp. 126–141.

[38] C. Papadimitriou, NP-completeness: A retrospective, in Proceedings of the 24th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP ’97), LNCS
1256, Springer-Verlag, New York, 1997, pp. 2–6.

[39] N. Mishra and L. Pitt, Generating all maximal independent sets of bounded-degree
hypergraphs, in Proceedings of the 10th Annual Conference on Computational Learning
Theory (COLT), Nashville, TN, 1997, pp. 211–217.

[40] K. G. Ramamurthy, Coherent Structures and Simple Games, Kluwer Academic Pub-
lishers, 1990.

[41] K. Takata, On the sequential method for listing minimal hitting sets, in Proc. SIAM
Workshop on Discrete Mathematics and Data Mining (DM & DM), Arlington, VA,
April 2002, pp. 109–120.

– 20 –

[42] H. Tamaki, Space-efficient enumeration of minimal transversals of a hypergraph, IPSJ-
AL 75 (2000) 29–36.

[43] T. Uno, A practical fast algorithm for enumerating minimal set coverings, In Proceedings
83rd SIGAL Conference of the Information Processing Society of Japan, Toyko, March
15, 2002, pages 9–16. IPSJ, 2002. In Japanese.

