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ABSTRACT

SVM wrapper feature selection method for the classification problem, introduced in our
previous work [1], is analyzed. The method based on modification of the standard SVM
criterion by adding to the basic objective function a third term, which directly penalizes
a chosen set of variables. The criterion divides the set of all variables into three subsets:
deleted, selected and weighted features. We give more formal derivation of the saddle point
problem to which SVM wrapper method reduces. Saddle point algorithm described, proof of
its convergence and estimation for the step size of the algorithm done. Effective calculations
of projections used in the saddle point algorithm are described. The algorithm is examined
on a classification Benchmark and its ability to improve the SVM recognition results is
shown.



1 Introduction

This work is an continuation of our previous work [1]. In [1] a new type of SVMs - saddle
point SVM (SP-SVM) was introduced and investigated for the feature selection in SVM
learning classification problem.

The feature selection problem reduces to the problem of saddle point search of convex-
concave function. We presented a survey about saddle points algorithms in [1]. Proposed
saddle point search algorithm in [1] for practical computations was based on heuristics pro-
posed in [14]. In current work we propose another saddle point algorithm and prove it
convergence. Estimate of step size of the algorithm given. Saddle point search algorithm
requires to find projections on intersection of cube and plane. We describe how these pro-
jection could be calculated effectively. We show results of computations on benchmark data.
The paper is organized into 7 sections. In section 2 we remind setting of SVM problem
and prove technical lemma that we need later. In section 3 we repeat the basics of exact
wrapped methods of feature selection for classification problem. In sections 4 and 5 we
describe our saddle-point algorithm. Section 6 describes experimental results with feature
selection algorithm.

2 SVM in Learning Classification

In this section we remind standard SVM problem in learning classification. We denote by
〈x1, x2〉 inner product of vectors x1 and x2. Following [12] suppose that we have a learning
sample:

{xi, yi}, xi ∈ Rn, yi ∈ {1;−1}, i = 1, . . . , l.

Below is standard formulation of SVM problem:

min
w,b,δi

(
1

2
‖w‖2 + C

l∑
i=1

δi

)
yi(〈w, x〉+ b) ≥ 1− δi,
δi ≥ 0, C > 0, i = 1, ..., l

(1)

Solution w∗, b∗, δ∗ of the (1) gives optimal hyperplane 〈w∗, x〉+ b∗ = 0.
We need the following lemma later:

Lemma 1. Let for all vectors xi, i = 1, ..., l in problem (1) coordinate j0 is equal to 0. Let
(w∗, b∗, δ∗) - solution of the problem (1)

Then j0’s coordinate of vector w∗ equal to 0.

Proof. Let’s suppose contrary: w∗j0 6= 0. Define the following vector:

w1
j =

{
w∗j , j = 1, .., n, j 6= j0,

0 , j = j0.
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Then (w1, b∗, δ∗) - satisfy constraints of the problem and ‖w1‖2
< ‖w∗‖2. We have contra-

diction with the fact that (w∗, b∗, δ∗) gives minimum of functional of the problem (1).

Remark 1. Lemma 1 can be generalized to the case when for all vectors xi, i = 1, ..., l in
problem (1) coordinate j0 is equal to some constant. In this case j0’s coordinate of vector w∗

also equal to 0.
This property of solution of SVM problem could be seen as simple entire feature selection

ability of SVM.

Wolfe’s dual for (1) is the following problem:

max
λ

(
l∑

i=1

λi −
1

2

l∑
i=1

l∑
k=1

(
yiykx

T
i xkλiλk

))
l∑

i=1

λiyi = 0,

0 ≤ λi ≤ C, i = 1, . . . , l

(2)

Let λ∗ is a solution of (2), then optimal value of w from problem (1) calculated in the
following way:

w∗ =
l∑

i=1

yiλ
∗
ixi (3)

Vectors xi, for which λ∗i 6= 0, are support vectors.

3 Exact Wrapped Method for Feature Selection

in Learning Classification

In this section we introduce new criteria to receive a classifier with maximum margin by
searching subspaces of a given space. The methods to find saddle points related to the men-
tioned optimal classifiers we call as exact wrapped methods. The feature selection problem
considered under SVM methods is investigated in [2] - [6]. In [4],[5] was proposed an efficient
greedy-like procedure, which worked as a standard wrapped algorithm [7]. We introduce a
three terms criterion as a modification of SVM setting and define a problem as a problem of
searching for a set of variables that gives optimum to the described criterion. This problem
becomes discrete-continuous. We load our problem into a continuous one, which is searching
for a transformation of space of variables in such a way that feature selection and margin
maximization will be done together. The new problem is also not good for its effective
solution because it is not convex. We change it to a problem of successive minimization,
which has the same global optimal solutions. The last problem is a problem of non-smoothed
convex optimization, which we show using the dual form of this problem. Also the problem
could be formulated as a saddle point search problem for a convex-concave function on a
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close convex compact. In subsection 3.1 we analyze properties of the solution given by the
saddle point.

It is convenient to represent vectors xi from learning sample {xi, yi} in the form of data
matrix D. D has l rows and n columns. Rows of the data matrix represent vectors xi.
Columns of the data matrix represent features.

Let I = {1; 2; 3; . . . ;n − 1;n}- set of coordinates of vector v, Q ⊂ I - subset of set of
coordinates. Let’s denote by vQ - vector with set of coordinates Q, vQi = vi, i ∈ Q. We denote
by vQ the same vector to avoid complex notations. For example for I = {1; 2; 3; 4; 5}, v =
(10; 8; 4; 7; 6)T , Q = {2; 3; 5}, vector vQ is equal to (8; 4; 6)T .

We formulate the feature selection problem as modification of the problem (1):

min
Q⊆I,wQ,b,δ

(
1

2

∥∥wQ∥∥2
+ C

l∑
i=1

δi + A |Q|

)
yi(〈wQ, xQi 〉+ b) ≥ 1− δi,
δi ≥ 0, i = 1, ..., l, A > 0

(4)

The term A |Q| with the positive constant A is introduced in order to reduce the cardinality
of the extreme subspace that we look for. It is easy to see that this discrete-continuous
problem is very hard to be solved. Thats why let’s extend this problem to its continuous
analog. Let’s consider the following problem:

min
z,w,b,δ

(
1

2
‖w‖2 + C

l∑
i=1

δi + A
n∑
j=1

zj

)

yi

(
n∑
j=1

wjx
j
i

√
zj + b

)
≥ 1− δi,

δi ≥ 0, i = 1, ..., l, A > 0, zj ∈ {0; 1}, j = 1, ..., n

(5)

xji - is a coordinate j of vector xi, wj - is a coordinate j of vector w. This problem has
boolean variables zj. The value zj = 1 means that feature with index j is chosen, the value
zj = 0 means that feature is deleted. Operation of taking square root of zj is introduced for
convenience.

Next proposition asserts that problems (4) and (5) are equivalent in the sense that from
solution of one problem we easily get solution of other problem.

Proposition 1. Let Q,wQ, b, δ - solution of (4), values z, w in problem (5) calculated by
the following rule: {

zj = 1, wj = wQj , if j ∈ Q,
zj = 0, wj = 0 , if j /∈ Q.

(6)

then z, w, b, δ - solution of the problem (5).
Let z, w, b, δ - solution of (5), values of Q,wQ calculated by the following rule:

Q = {j|zj = 1; j = 1, . . . , n}, wQj = wj, j ∈ Q (7)
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then Q,wQ, b, δ - solution of (4).

Proof of proposition 1 uses lemma 1 and omitted as elementary.
Variables zj takes on values 0 or 1 in problem (5). Let’s allow for variables zj to take on

values from segment [0, 1]. In that way we come to continuous analog of the problem (5):

min
z,w,b,δ

(
1

2
‖w‖2 + C

l∑
i=1

δi + A

n∑
j=1

zj

)

yi(
n∑
j=1

wjx
j
i

√
zj + b) ≥ 1− δi,

δi ≥ 0, i = 1, ..., l, A > 0, zj ∈ [0, 1], j = 1, ..., n

(8)

Problem (8) has non-convex constraints on variables z, w, b, δ. We can substitute (8) by
another easier problem which solution is coincident to this one.

Let us formulate the new problem of sequential minimization:

min
0≤zj≤1,j=1,...,n

ψ(z) (9)

where the value of ψ(z) is obtained from the following problem:

ψ(z) = min
w,b,δ

(
1

2
‖w‖2 + C

l∑
i=1

δi + A
n∑
j=1

zj

)

yi(
n∑
j=1

wjx
j
i

√
zj + b) ≥ 1− δi,

δi ≥ 0, i = 1, ..., l, A > 0

(10)

Let z∗-solution of (9) and minimum in (10), when we calculate value of ψ(z∗), obtained on
w∗, b∗, δ∗. Then z∗, w∗, b∗, δ∗ is a solution of (8). Using transition from primal problem (1)
to dual problem (2), we can write (10) in dual form:

ψ(z) = max
λ

(
l∑

i=1

λi −
1

2

l∑
i=1

l∑
k=1

(
yiyk

n∑
j=1

zjx
j
ix
j
k

)
λiλk + A

n∑
j=1

zj

)
l∑

i=1

λiyi = 0, 0 ≤ λi ≤ C, i = 1, . . . , l

(11)

Very important property of function ψ(z) described by the following theorem.

Theorem 1. Function ψ(z) from problem (11) is convex.
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Proof of this theorem follows from Theorem 5.5 of book [8].
So the problem (9) is a problem of minimization of non-smooth convex function on a

convex set 0 ≤ zj ≤ 1, j = 1, ..., n. The algorithms for such optimization was analyzed in
the [1].

Let’s write function from problem (9)-(10) as function of two variables:

L(z, λ) =
l∑

i=1

λi −
1

2

l∑
i=1

l∑
k=1

(
yiyk

n∑
j=1

zjx
j
ix
j
k

)
λiλk + A

n∑
j=1

zj (12)

, defined on cartezian product of compact sets:

Z = {z|0 ≤ zj ≤ 1, j = 1, ..., n} (13)

Λ = {λ|
l∑

i=1

λiyi = 0, 0 ≤ λi ≤ C, i = 1, . . . , l} (14)

Function L(z, λ) is convex-concave function, i.e. convex by z for fixed value of λ and concave
by λ for fixed z. Let’s consider the problem of search of a saddle-point (z∗, λ∗) ∈ Z × Λ:

L(z∗, λ) ≤ L(z∗, λ∗) ≤ L(z, λ∗),∀z ∈ Z, ∀λ ∈ Λ. (15)

For a saddle point the following equality is true:

min
z∈Z

max
λ∈Λ

L(z, λ) = max
λ∈Λ

min
z∈Z

L(z, λ) = L(z∗, λ∗) (16)

Guided by this equality we can substitute minimax problem (9), (11) on saddle point
search problem (15).

Remark 2. We should emphasize that if we have (z∗, λ0) - solution of the following minimax
problem

min
z∈Z

max
λ∈Λ

L(z, λ) (17)

, then we can assert that there is λ∗ such that (z∗, λ∗) is a saddle point of function L(z, λ).
In other words, minimax solution allows to find only component z of a the saddle point and
(z∗, λ0) not necessarily is a saddle point.

Solution (z∗, λ0) of minimax problem (17) is a saddle point if subproblem

max
λ∈Λ

L(z∗, λ) (18)

has unique solution. Set of solutions of the problem (18) contains point λ∗, such, that (z∗, λ∗)
is a saddle point.
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3.1 Saddle Point Properties.

Theorem below states existence of saddle point (z∗, λ∗) of function (12) and describes con-
ditions - when coordinates of z∗ - are equal to 0 and 1.

Theorem 2. 1.There exists saddle point (z∗, λ∗) in problem (15) and the following equalities
are true:

{z∗|(z∗, λ)-saddle point} = arg min
z∈Z

max
λ∈Λ

L(z, λ) (19)

{λ∗|(z, λ∗)-saddle point} = arg max
λ∈Λ

min
z∈Z

L(z, λ) (20)

2. If in saddle point the following inequality holds
∑l

i=1

∑l
k=1 yiykx

j
ix
j
kλ
∗
iλ
∗
k > 2A, then

z∗j = 1. If in saddle point the following inequality holds
∑l

i=1

∑l
k=1 yiykx

j
ix
j
kλ
∗
iλ
∗
k < 2A, then

z∗j = 0. If 0 < z∗j < 1, then

l∑
i=1

l∑
k=1

yiykx
j
ix
j
kλ
∗
iλ
∗
k = 2A (21)

Proof. 1. According to well known theorem (see, for example, [8]), continuous convex-
concave function defined on product of compact convex sets has saddle point. All
conditions of the theorem are satisfied for function L(z, λ) and hence exists saddle
point (z∗, λ∗). Equalities (19), (20) are properties of saddle point from remark (2).

2. L(z∗, λ∗) = maxλ minz L(z, λ) = minz L(z, λ∗). For fixed λ function L(z, λ) is linear by
z. Coefficient of function L(z, λ∗) for zj is equal to A− 1

2

∑l
i=1

∑l
k=1 yiykx

j
ix
j
kλ
∗
iλ
∗
k. If

the coefficient is positive then minimum by zj achieved on zj = 0. If the coefficient is
negative then minimum by zj achieved on zj = 1. Coordinate zj can differ from 1 or 0
only if coefficient for zj is equal to zero. By the following property of a saddle point:
z∗ ∈ argz minL(z, λ∗), we prove the second part of theorem.

One could think that in case of the equality

l∑
i=1

l∑
k=1

yiykx
j
ix
j
kλ
∗
iλ
∗
k = 2A ,

we can get rid of it by small variation of parameter A or data from training set.
Below is an example where equality remains true for small variation of parameter A.

Example 1. Let training set consist of two one-dimensional vectors. First vector belong to
first class ( +1 class) and has the value of single feature equal to 1. Second vector belong
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to second class ( -1 class) and has the value of feature equal to 0. It’s easy to show that for
fixed z, problem (11) has solutions that depend on value of z:

ψ(z) =

{
(A− 2C2)z + 2C 0 ≤ z ≤ 1

2C
,

1
2z

+ Az 1
2C
≤ z ≤ 1.

If the following equalities are true: A < 2C2 A > 1
2

then minimum point of ψ(z) is
z∗ = 1√

2A
. We can see that inequalities 0 < z∗ < 1 remain for small variations of parameter

A. Hence, by theorem 1, equality (21) holds true for small variations of parameter A also.

It’s possible to generalize above example on case of linear separable classes of one-
dimensional vectors where equality (21) holds true for small variations of training data.

Next section contains description of algorithm for saddle point search that we propose to
use to solve problem (15).

4 Saddle Point Algorithm

In the previous section we formulated a problem of learning classification, which simulta-
neously maximizes margin and minimizes feature space as a saddle point problem. In this
section we describe an algorithm for saddle point search.

Let convex-concave function L(z, λ) defined on product of convex closed sets Z × Λ and
the following inequalities true for some positive constant M > 0:∣∣∣∣L(z, λ+ h)− L(z, λ)−

〈
∂L

∂λ
(z, λ), h

〉∣∣∣∣ ≤ 1

2
M ‖h‖2 (22)∣∣∣∣L(z + h, λ)− L(z, λ)−

〈
∂L

∂z
(z, λ), h

〉∣∣∣∣ ≤ 1

2
M ‖h‖2 (23)∥∥∥∥∂L∂z (z, λ+ h)− ∂L

∂z
(z, λ)

∥∥∥∥ ≤M ‖h‖ (24)

Let πZ ,πΛ - are projection operators on sets Z and Λ, i.e. πZ(z) - projection of point z
on set Z and πΛ(λ) - projection of point λ on set Λ.

Let’s consider the following algorithm, each iteration of which consists of 3 steps:

z̄n = πZ

(
zn − α

∂L

∂z
(zn, λn)

)
(25)

λn+1 = πΛ

(
λn + α

∂L

∂λ
(z̄n, λn)

)
zn+1 = πZ

(
zn − α

∂L

∂z
(zn, λn+1)

)
The following theorem is true.
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Theorem 3. Let L(z, λ)-convex-concave function on Z×Λ, sets Z and Λ-convex and closed,
function L(z, λ) satisfy to inequalities (22)-(24), for step size the following inequality true
α < 1

2M
. Then for any initial point z0 ∈ Z, λ0 ∈ Λ sequence (zn, λn), n = 1, 2, .., calculated

by formulas (25), converges to (z∗, λ∗)-saddle point of function L(z, λ).

Proof of the theorem is given in Appendix.
Lets show that function L(z, λ) from (12)-(14) satisfy inequalities (22)-(24). Lets make

estimation of Lipschitz constant for quadratic function on bounded set.
Let ‖x‖ ≤ T1, ‖y‖ ≤ T2.

‖〈Bx, x〉 − 〈By, y〉‖ = ‖〈Bx, x〉 − 〈Bx, y〉+ 〈Bx, y〉 − 〈By, y〉‖ =

‖〈Bx, x− y〉+ 〈B(x− y), y〉‖ ≤ ‖〈Bx, x− y〉‖+ ‖〈B(x− y), y〉‖ ≤
‖Bx‖ ‖x− y‖+ ‖B(x− y)‖ ‖y‖ ≤ ‖B‖ ‖x‖ ‖x− y‖+ ‖B‖ ‖x− y‖ ‖y‖ =

‖B‖ (‖x‖+ ‖y‖) ‖x− y‖ ≤ ‖B‖ (T1 + T2) ‖x− y‖ (26)

Let G is matrix obtained from data matrix by multiplying each i-row on yi . Then matrix
of quadratic form in problem (2) is equal to GGT . Let for vector z we defined the following
diagonal matrix:

Z =


√
z1 0 · · · 0
0
√
z2 · · · 0

... 0
. . .

...
0 · · · 0

√
zM


Then for fixed value of z the new data matrix obtained by multiplication of columns on

corresponding components of vector z:

F = GZ

So we can write the following formula for R-matrix of quadratic form of function L(z, λ):

R = FF T = GZZTGT = GZ2GT

and write estimate for norm of this matrix independent from z:

‖R‖ ≤ ‖G‖
∥∥Z2

∥∥∥∥GT
∥∥ ≤ ‖G‖∥∥GT

∥∥
We used the fact that all components of z are less than 1.∥∥Z2

∥∥ ≤ 1

For fixed z function L(z, λ) is quadratic with matrix of quadratic form equal to R, and
hence we get estimate (22):∣∣∣∣L(z, λ+ h)− L(z, λ)−

〈
∂L

∂λ
(z, λ), h

〉∣∣∣∣ = (Rh, h) ≤ ‖R‖ ‖h‖2
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For fixed λ, function L(z, λ) is linear function, and we get estimate (23):

L(z + h, λ)− L(z, λ)−
〈
∂L

∂z
(z, λ), h

〉
= 0

To get estimate (24) let’s write formula for partial derivative of L(z, λ) by component of
vector z:

∂L

∂zj
(z, λ) = −1

2

l∑
i=1

l∑
k=1

(yiykx
j
ix
j
k)λiλk + A (27)

Let Rj - matrix of quadratic form in formula for component j of partial derivative, i.e.

Rj
ik = yiykx

j
ix
j
k

Finally we get estimate (24):∥∥∥∥∂L∂z (z, λ+ h)− ∂L

∂z
(z, λ)

∥∥∥∥ ≤ n∑
j=1

∥∥∥∥ ∂L∂zj (z, λ+ h)− ∂L

∂zj
(z, λ)

∥∥∥∥ ≤(
1

2
(‖λ+ h‖+ ‖λ‖)

n∑
j=1

∥∥Rj
∥∥) ‖h‖

≤

(
Cl

n∑
j=1

∥∥Rj
∥∥) ‖h‖

We used estimate (26) and boundedness of components of λ and λ+ h :

0 ≤ λi ≤ C, 0 ≤ λi + hi ≤ C, i = 1, . . . , l.

For completeness let’s write formula for partial derivative by λ (25):

∂L

∂λi
(λ, z) = 1−

l∑
k=1

(
yiyk

n∑
j=1

zjx
j
ix
j
k

)
λk (28)

5 Calculation of projections

Algorithm (25) requires to calculate projections of points on sets Z and Λ.
Projection of point ẑ on Z: zpr = πZ(ẑ), Z = {0 ≤ zj ≤ 1, j = 1, . . . , n} calculated by

formula:

zprj =


0 ẑj < 0

zj 0 ≤ẑj ≤ 1

1 ẑj >1

, j = 1, . . . , n (29)
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Projection of point λ̂ on set Λ: λpr = πΛ(λ̂), Λ = {
∑l

j=1 λjyj = 0, 0 ≤ λj ≤ C, j = 1, . . . , l},
λ̂ ∈ Rl calculated by successive projections on cube {0 ≤ λj ≤ C, j = 1, . . . , l} and hyper-

plane {
∑l

j=1 λjyj = 0}.
Let’s remind that projection of point x0 ∈ RM on hyperplane cTx = 0, c ∈ RM calculated

by formula:

xpr0 = x0 −
cTx0

cT c
c (30)

So we have simple formulas to find projection on cube and hyperplane. We need to calculate
projection on their intersection.

There exists a class of algorithms for calculation projection on intersection of sets using
projections on each of the set in intersection. One of the first algorithm from this class is
Dykstra’s Alternating Projection Algorithm. Results of comparisons of Dykstra’s alternating
projection algorithm with analogous algorithms reported in [10].

Let’s describe Dykstra’s algorithm according to [9]. Let A, B convex closed subsets of
Rl, point x ∈ Rl. Let for n ≥ 1 the following consequences defined:

b0 = x p0 = q0 = 0

an = πA(bn−1 + pn−1) pn = bn−1 + pn−1 − an (31)

bn = πB(an + qn−1) qn = an + qn−1 − bn
Consequences an, bn converge to πA∩B(x) - projection of x on intersection of sets A ∩ B.
Elements of consequence an belong to set A, and elements bn belong to set B.

Lets notice that consequences an, bn, calculated by the following formulas:

b0 = x

an = πA(bn−1) (32)

bn = πB(an)

converge to some point from intersection A∩B. So elements pn qn in formulas (31) provide
convergence to projection on A ∩ B. Elements pn qn could be thought of as elements of
memory about vector x. Indeed according to [9] the following equalities hold:

x = an + pn + qn−1 (33)

x = bn + pn + qn

Let’s notice that in case sets A B are not intersected and the value of distance d(A,B)
between sets A and B achieved, i.e.:

d(A,B) = inf(‖a− b‖ : a ∈ A, b ∈ B) (34)

∃a∗ ∈ A,∃b∗ ∈ B, d(A,B) = ‖a∗ − b∗‖ , (35)

then consequences an, bn convergence to nearest points of sets A and B:

an → a1 ∈ A (36)

bn → b1 ∈ B (37)
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d(A,B) = ‖a1 − b1‖.
If set A is affine subspace(shift of subspace on vector) then we can set pn = 0 for all n in

formulas (31), see [11].
Finally algorithm for finding projection of a point x on set
Λ = {

∑l
j=1 λjyj = 0, 0 ≤ λj ≤ C, j = 1, . . . , l} is:

b0 = x q0 = 0

an = πA(bn−1) (38)

bn = πB(an + qn−1) qn = an + qn−1 − bn

where sets A and B are: A = {
∑l

j=1 λjyj = 0}, B = {0 ≤ λj ≤ C, j = 1, . . . , l} and
projections on sets A and B calculated by formulas (30) and (29).

6 Experimental Results

6.1 Experimental Framework

The proposed algorithm is time consuming. It works rather fast on data arrays with ∼ 30
observations (calculation time < 1 sec), but it takes about an hour to process real data arrays
with ∼ 1000 observations. Therefore we divide initial data set into two parts. The first part
is a training data set. The second part is a testing data set. The quality of classification
rule that was built on training data set is tested on testing data set. Initial data set is
represented by initial data matrix with N rows and n + 1 columns. Row with number i
contains information about class membership and values of coordinates of vector xi. First
column contains class membership sign: yi ∈ {+1;−1}. We compare results of classification
by decision rules obtained by feature selection algorithm and standard SVM algorithm.

Below is the scheme of algorithm testing:

Step 1. Let integer value l is randomly uniform distributed on interval [15, 30]. Take realization
of random variable l. Then l-rows are taken randomly from initial data matrix in a
way to preserve approximately proportion of members of classes as in initial data set.
These rows form data matrix in problem (9)-(10). The rest (N − l) rows of initial
data matrix form the second (testing) data set. Thus each matrix containes l objects
and all n variables.

Step 2. Parameter C is chosen according to [13], in the following way. Let’s calculate for all
vectors of training set the following value:

C0 =

(
1

l

l∑
i=1

‖xi‖

)−1

(39)
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For C = C0 the problem is solved (1). Let S- set of support vectors in problem (1) 1.
Calculate the following value of parameter C:

C =

(
1

|S|
∑
i∈S

‖xi‖

)−1

(40)

Obtained value of parameter C is used in problem (9)-(10).

Step 3. Solve problem (1), where parameter C is calculated by formula (40). Decision rule that
we obtain on that step is compared with decision rule obtained in feature selection
algorithm.

Step 4. We set variation interval [Amin, Amax] for parameter A. Feature selection problem is
solved for various values of A taken from variation interval [Amin, Amax]. The bounds of
interval [Amin, Amax] are empirical values and are chosen in such way that solutions of
feature selection problem are not trivial. For small values of A all features are selected
while for large values of A the set of selected features are empty. Based on equality
(21), the values Amin and Amax are calculated in the following way:

a. Take (z∗, λ∗) - solution of the problem (9)-(10) where A = 0.

b. Calculate sj =
∑l

i=1

∑l
k=1 yiykx

j
ix
j
kλ
∗
iλ
∗
k, j = 1, . . . , n .

c. Calculate Âmin = 0, 5 minj=1,...,n sj .

d. Calculate Âmax = 0, 5 maxj=1,...,n sj .

As starting point obtained above Âmin and Âmax are taken as bounds of variation
interval for parameter A. In general bounds of variation interval are calculated as
function of the values sj.

Step 5. Take value of A from [Amin, Amax] and solve saddle point search problem. Saddle point
training algorithm found (ẑ, λ̂) -approximation to saddle point (z∗, λ∗).

Step 6. The following 3 groups of features defined:

a. Deleted features - those numbers of coordinates i, for which the equality ẑi = 0
holds.

b. Selected features - those numbers of coordinates i, for which the equality ẑi = 1
holds.

c. Weighted features - those numbers of coordinates i, for which the inequalities
0 < ẑi < 1 hold.

Step 7. For the first (training) and second (testing) parts of initial data set the following 3
recognition quality evaluations for SVM were calculated: :

1See definition of support vectors in the end of section 2 of current report
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a. Accuracy = 100% ∗ (T1 + T2) /l

b. Precision = 100% ∗ T1/N1

c. Recall = 100% ∗ T1/ (T1 + T2),

where T1-number of true classified vectors xi-objects of first class, T2-number of true
classified vectors xi-objects of second class, N1-overall number of objects in first class,
l - overall number of objects in both classes.

Step 8. The same set of 3 evaluations is calculated for the solution of standard SVM problem,
obtained on the Step 3.

6.2 Benchmark

We applied testing scheme to various experimental data sets. We describe results of testing
feature selection algorithm to data set that characterize 11 vowels of English language.

Data set is available from website:
http://www-stat-class.Stanford.EDU/ tibs/ElemStatLearn/, in section DATA and has name
VOWEL. The features are derived from analysis of sample windowed segments of the speech
signal and are real-valued. We extracted only the first two classes from this data set. Initial
data set has 180 elements.

There were generated 20 data matrices according to step 1 of the testing scheme. Varia-
tion interval [Amin, Amax] for parameterA, calculated on step 4, is equal to [0, 17Âmin, 0, 6Âmax].
Feature selection problem was solved for 31 values of parameter A uniformly distributed on
variation interval. There was selected a solution with maximal value of Accuracy from 31
solutions.

Testing results presented in table 1. For each data matrix presented quality of results for
solution with maximal value of Accuracy. Last two columns of the table contain number of
deleted and selected features. For comparison of recognition quality the recognition quality
of solution of standard SVM problem (1) is given.

Results, presented in table 1, show that in 15 cases of 20 cases quality characteristic
Accuracy is greater than Accuracy of solutions obtained by standard SVM. For data matrices
with numbers 5,13,15 and 20 the values of Accuracy are equal for feature selection solution
and SVM. The only case when SVM solution has greater value of Accuracy is the case of
matrix number 18. There were deleted features in 14 cases of 20 cases. For example, 7
features from 10 were deleted for matrix number 4 and the value of Accuracy is 80, 13 while
Accuracy of SVM solution is 68, 59.

So results of experiments show that feature selection algorithm can delete features and
in the same time improve quality of classification. Moreover we can see from the table that
in almost all cases when there were deleted features in solution of feature selection problem
the value of Accuracy is larger than value of Accuracy for SVM solution. The only case
when it is not true is case of matrix number 20.

Table shows that even in case of such simple choice of parameter A the algorithm does
feature selection without big losses in Accuracy.
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Table 1:
Matrix
num-
ber

Number
of ob-
jects
(l)

Max.
Accu-
racy

Accuracy
SVM

Precision Precision
SVM

Recall Recall
SVM

Number
of
zi = 0

Number
of
zi = 1

1 18 79,63 75,31 97,53 95,06 61,24 63,11 4 3
2 30 80,67 75,33 81,33 76,00 50,41 50,44 5 2
3 20 53,13 52,50 22,62 25,00 22,35 25,00 3 3
4 24 80,13 68,59 92,31 70,51 57,60 51,40 7 0
5 15 50,30 50,30 4,65 4,65 4,82 4,82 0 6
6 29 77,48 74,17 84,42 84,42 55,56 58,04 4 1
7 21 84,28 80,50 98,72 93,59 57,46 57,03 5 3
8 24 67,95 67,31 51,28 51,28 37,74 38,10 0 9
9 26 72,08 68,83 100 100,0 65,77 68,87 6 3
10 21 73,58 64,78 65,43 65,43 45,30 51,46 6 1
11 28 81,58 75,66 95,89 84,93 56,45 53,91 6 1
12 24 77,56 76,28 74,07 67,90 49,59 46,22 0 6
13 15 68,94 68,94 100 100,0 71,17 71,17 0 7
14 19 77,50 71,88 75,31 64,20 49,19 45,22 4 3
15 20 76,32 76,32 74,68 74,68 50,86 50,86 0 5
16 28 76,40 72,05 79,27 89,02 52,85 62,93 6 2
17 19 75,15 74,55 75,90 74,70 50,81 50,41 3 4
18 15 82,89 84,21 84,81 83,54 53,17 51,56 0 8
19 24 79,49 76,92 82,05 80,77 51,61 52,50 6 1
20 21 58,49 58,49 84,62 84,62 70,97 70,97 2 6
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8 Appendix/Proof of theorem 3.

Let πZ ,πΛ - projection operator on sets Z and Λ, i.e. πZ(z) - projection of z on set Z and
πΛ(λ) - projection of λ on set Λ. Projection operator πX on convex set X has the property
not to increase distance:

‖πX(x)− πX(y)‖ ≤ ‖x− y‖ (41)

and the following property:

〈πX(x)− x, y − πX(x)〉 ≥ 0, ∀y ∈ X (42)

As L(z, λ) is a convex-concave, continuous function, Z Λ are closed, convex sets then
there exist saddle point (z∗, λ∗) of function L(z, λ).

Necessary and sufficient conditions for minimum of convex by z function L(z, λ∗) in point
z∗ and for maximum of concave by λ function L(z∗, λ) in λ∗ are:

z∗ = πZ

(
z∗ − α∂L

∂z
(z∗, λ∗)

)
(43)

λ∗ = πΛ

(
λ∗ + α

∂L

∂λ
(z∗, λ∗)

)
(44)

α > 0

Let’s notice that if (43)-(44) is true for some α > 0, then (43)-(44) is true for all α > 0.
From equalities (25) that describe an iteration of algorithm and property of project

operator (42) we get the following three inequalities:〈
z̄n − zn + α

∂L

∂z
(zn, λn), z − z̄n

〉
≥ 0, ∀z ∈ Z (45)〈

λn+1 − λn − α
∂L

∂λ
(z̄n, λn), λ− λn+1

〉
≥ 0,∀λ ∈ Λ (46)〈

zn+1 − zn + α
∂L

∂z
(zn, λn+1), z − zn+1

〉
≥ 0, ∀z ∈ Z (47)

Let’s substitute z = zn+1, λ = λ∗ and z = z∗ correspondingly in inequalities (45), (46)
and (47) 〈

z̄n − zn + α
∂L

∂z
(zn, λn), zn+1 − z̄n

〉
≥ 0 (48)〈

λn+1 − λn − α
∂L

∂λ
(z̄n, λn), λ∗ − λn+1

〉
≥ 0 (49)



– 17 –

〈
zn+1 − zn + α

∂L

∂z
(zn, λn+1), z∗ − zn+1

〉
≥ 0 (50)

As function L(z̄n, λ) - concave by λ, we have:〈
∂L

∂λ
(z̄n, λn), λn − λ∗

〉
≤ L(z̄n, λn)− L(z̄n, λ

∗) (51)

Let’s rewrite (49) as:

〈λn+1 − λn, λ∗ − λn+1〉+ α

〈
∂L

∂λ
(z̄n, λn), λn+1 − λ∗

〉
≥ 0 (52)

Let’s estimate inner product in the second member of inequality (52), taking in account
(51):

〈
∂L

∂λ
(z̄n, λn), λn+1 − λ∗

〉
=

〈
∂L

∂λ
(z̄n, λn), λn+1 − λn

〉
+

〈
∂L

∂λ
(z̄n, λn), λn − λ∗

〉
≤
〈
∂L

∂λ
(z̄n, λn), λn+1 − λn

〉
+ L(z̄n, λn)− L(z̄n, λ

∗)

= L(z̄n, λn+1)− L(z̄n, λ
∗) +

〈
∂L

∂λ
(z̄n, λn), λn+1 − λn

〉
+ L(z̄n, λn)− L(z̄n, λn+1) (53)

From (22) we get:∣∣∣∣〈∂L∂λ (z̄n, λn), λn+1 − λn
〉

+ L(z̄n, λn)− L(z̄n, λn+1)

∣∣∣∣ ≤ 1

2
M ‖λn+1 − λn‖2 (54)

Using (54) and estimation (53), we get inequality:

〈
∂L

∂λ
(z̄n, λn), λn+1 − λ∗

〉
≤ L(z̄n, λn+1) − L(z̄n, λ

∗) +
1

2
M ‖λn+1 − λn‖2 (55)

The next expression follows from the fact that (z∗, λ∗) is a saddle point:

L(z̄n, λ
∗) ≥ L(z∗, λ∗) ≥ L(z∗, λn+1) (56)

From (56) and (55) we get:

〈
∂L

∂λ
(z̄n, λn), λn+1 − λ∗

〉
≤ L(z̄n, λn+1) − L(z∗, λn+1) +

1

2
M ‖λn+1 − λn‖2 (57)
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From (52) and estimate (57) we have inequality we need further and that gives relation
between saddle value of variable λ and value of λ in iteration of algorithm:

〈λn+1 − λn, λ∗ − λn+1〉+ α

[
L(z̄n, λn+1)− L(z∗, λn+1) +

1

2
M ‖λn+1 − λn‖2

]
≥ 0 (58)

Let’s add (48) and (50), write the sum as following:

〈z̄n − zn, zn+1 − z̄n〉+ 〈zn+1 − zn, z∗ − zn+1〉+

α

〈
∂L

∂z
(zn, λn), zn+1 − z̄n

〉
+ α

〈
∂L

∂z
(zn, λn+1), z∗ − zn+1

〉
≥ 0 (59)

Let’s get estimate for third member of inequality (59).
At first estimate the value ‖z̄n − zn+1‖. By property of projection operator (41) and

according (24) we have:

‖z̄n − zn+1‖ ≤ α

∥∥∥∥∂L∂z (zn, λn)− ∂L

∂z
(zn, λn+1)

∥∥∥∥ ≤ αM ‖λn − λn+1‖ (60)

From (24) and (60), we have the following estimate:

α

〈
∂L

∂z
(zn, λn), zn+1 − z̄n

〉
= α

〈
∂L

∂z
(zn, λn)− ∂L

∂z
(zn, λn+1), zn+1 − z̄n

〉
+ α

〈
∂L

∂z
(zn, λn+1), zn+1 − z̄n

〉
≤ α2M2 ‖λn − λn+1‖2 + α

〈
∂L

∂z
(zn, λn+1), zn+1 − z̄n

〉
(61)

Applying estimate (61) in inequality (59), we get the following inequality:

〈z̄n − zn, zn+1 − z̄n〉+ α2M2 ‖λn − λn+1‖2 (62)

+ 〈zn+1 − zn, z∗ − zn+1〉+ α

〈
∂L

∂z
(zn, λn+1), z∗ − z̄n

〉
≥ 0

As L(z, λ) - convex by z, we have:

L(z∗, λn+1) ≥ L(zn, λn+1) +

〈
∂L

∂z
(zn, λn+1), z∗ − zn

〉
(63)

Let’s multiply this inequality on α and add to (62):

〈z̄n − zn, zn+1 − z̄n〉+ α2M2 ‖λn − λn+1‖2 + 〈zn+1 − zn, z∗ − zn+1〉 (64)

+α [L(z∗, λn+1)− L(zn, λn+1)] + α

〈
∂L

∂z
(zn, λn+1), zn − z̄n

〉
≥ 0
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Let’s add obtained inequality to (58), we have:

〈z̄n − zn, zn+1 − z̄n〉+ α2M2 ‖λn − λn+1‖2

+ 〈zn+1 − zn, z∗ − zn+1〉 − αL(zn, λn+1)

+α

〈
∂L

∂z
(zn, λn+1), zn − z̄n

〉
+ 〈λn+1 − λn, λ∗ − λn+1〉 (65)

+α

[
L(z̄n, λn+1) +

1

2
M ‖λn+1 − λn‖2

]
≥ 0

Let’s estimate the following expression with (23):

−L(zn, λn+1) +

〈
∂L

∂z
(zn, λn+1), zn − z̄n

〉
=

−L(z̄n, λn+1) + L(z̄n, λn+1)− L(zn, λn+1)− (66)〈
∂L

∂z
(zn, λn+1), z̄n − zn

〉
≤ −L(z̄n, λn+1) +

1

2
M ‖z̄n − zn‖2

From (65) and (66) we get:

〈z̄n − zn, zn+1 − z̄n〉+

(
1

2
αM + α2M2

)
‖λn − λn+1‖2

+ 〈zn+1 − zn, z∗ − zn+1〉+
1

2
αM ‖z̄n − zn‖2 (67)

+ 〈λn+1 − λn, λ∗ − λn+1〉 ≥ 0

From the next equality:

‖y1 − y2‖2 = ‖y1 − y3 + y3 − y2‖2 = ‖y1 − y3‖2 + ‖y3 − y2‖2 + 2 〈y1 − y3, y3 − y2〉

we have:

〈λn+1 − λn, λ∗ − λn+1〉 =
1

2

[
‖λ∗ − λn‖2 − ‖λn − λn+1‖2 − ‖λ∗ − λn+1‖2]

〈z̄n − zn, zn+1 − z̄n〉 =
1

2

[
‖zn − zn+1‖2 − ‖zn − z̄n‖2 − ‖z̄n − zn+1‖2] (68)

〈zn+1 − zn, z∗ − zn+1〉 =
1

2

[
‖zn − z∗‖2 − ‖zn − zn+1‖2 − ‖zn+1 − z∗‖2]

Let’s multiply (67) on 2 and use equalities (68):
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‖zn − zn+1‖2 − ‖zn − z̄n‖2 − ‖z̄n − zn+1‖2 +
(
αM + 2α2M2

)
‖λn − λn+1‖2

+ ‖zn − z∗‖2 − ‖zn − zn+1‖2 − ‖zn+1 − z∗‖2 + αM ‖z̄n − zn‖2 (69)

+ ‖λ∗ − λn‖2 − ‖λn − λn+1‖2 − ‖λ∗ − λn+1‖2 ≥ 0

Let’s reduce homogeneous members:

‖zn − z∗‖2 + ‖λ∗ − λn‖2 ≥ ‖λ∗ − λn+1‖2 + ‖zn+1 − z∗‖2 (70)

+
(
1− αM − 2α2M2

)
‖λn − λn+1‖2 + (1− αM) ‖z̄n − zn‖2 + ‖z̄n − zn+1‖2

Let’s sum the last inequality by n:

‖z0 − z∗‖2 + ‖λ∗ − λ0‖2 ≥ ‖λ∗ − λN+1‖2 + ‖zN+1 − z∗‖2 (71)

+
(
1− αM − 2α2M2

) N∑
k=0

‖λk − λk+1‖2 + (1− αM)
N∑
k=0

‖z̄k − zk‖2 +
N∑
k=0

‖z̄k − zk+1‖2

If we get α < 1
2M

, then we have (1− αM − 2α2M2) > 0 (1− αM) > 0.
Let’s notice that if equalities λn = λn+1 and z̄n = zn = zn+1 are true, we have in virtue

of (43)-(44) that (zn, λn) - is a saddle point. So according to (70), we could assume that
consequence ‖λ∗ − λN+1‖2 + ‖zN+1 − z∗‖2 - monotone decrease by N.

From (71) we have:

‖z0 − z∗‖2 + ‖λ∗ − λ0‖2 ≥ ‖λ∗ − λN+1‖2 + ‖zN+1 − z∗‖2

From the last inequality follows that consequences λN zN are bounded.∑N
k=0 ‖λk − λk+1‖2 and

∑N
k=0 ‖z̄k − zk‖

2 bounded and hence converge. From convergence
of series we have:

‖λk − λk+1‖2 → 0 (72)

‖z̄k − zk‖2 → 0 (73)

Let’s take convergent subsequences λik → λ
′
z

ik
→ z

′
.

From (72) follows: λik+1 → λ
′
.

From (73) follows: z̄
ik
→ z

′
.

According to (25) we have:
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z̄ik = πZ

(
zik − α

∂L

∂z
(zik , λik)

)
(74)

λik+1 = πΛ

(
λik + α

∂L

∂λ
(z̄ik , λik)

)
Passing to limit in (74) we get:

z
′

= πZ

(
z

′ − α∂L
∂z

(z
′
, λ

′
)

)
(75)

λ
′

= πΛ

(
λ

′
+ α

∂L

∂λ
(z

′
, λ

′
)

)
According to (43)-(44) (z

′
, λ

′
) - saddle point.

As ‖λ∗ − λN+1‖2 + ‖zN+1 − z∗‖2 - monotone decrease by N for any saddle point (z∗, λ∗)

then
∥∥λ′ − λN+1

∥∥2
+
∥∥zN+1 − z

′∥∥2
monotone decrease by N .

Finally we get λN+1 → λ
′
, zN+1 → z

′
. Theorem is proved.


