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ABSTRACT

The problem of clustering is formulated as the problem of minimization of a certain objective
function over the set of all possible clusterings. The objective function measures mathemat-
ically the quality of a clustering. According to a previously published theoretical result, if
the objective function being minimized is strictly convex, then the corresponding clustering
surface is strictly convex. As a direct implication of this result followed the construction
of a basic gradient algorithm of search for locally optimal solutions (i.e., clusterings). This
gradient procedure constitutes the core of the clustering algorithms proposed in this work
for minimization of two novel objective functions.

An important direction in statistical sampling theory deals with construction of optimal
stratified samples from a population. One of the problems addressed by stratified sampling is
the construction of a sample for estimation of the mean value of a particular scalar parameter,
such that the variance of the estimate is minimized. For this purpose, a criterion for optimal
partitioning of the population into a certain number of groups (strata) was derived. This
criterion is known as Neyman’s criterion for optimal stratified sampling.

Neyman’s criterion was originally developed for one-dimensional data. This criterion
is generalized to n-dimensional space, and is used as an objective function for clustering.
A proof of strict concavity of the generalized objective function is given. Strict concavity
provided the basis for a K-means-like gradient-based clustering algorithm proposed in this
work.

The other objective function investigated in this work, also originated in statistical sam-
pling theory, where it was derived for optimal selection of representative types for estimation
of the mean value of a certain scalar parameter. Selection of representative types differs
from stratified sampling in that, under the former sampling scheme, a single representative
is sampled from each group. A proof of non-convexity of this objective function is given. An
efficient stochastic procedure for minimization of this objective function is proposed. The
procedure uses, as an elementary operation, a modification of the basic gradient algorithm
mentioned above, and has the same computational complexity as the well-known K-means
algorithm.

The proposed clustering methods and the K-means method are similar, both intuitively
and mathematically. For this reason, a systematic comparative analysis of these methods
was performed. Experimental results obtained on synthetic data illustrate the differences in
the forms of the discriminant surfaces constructed by each of the three clustering algorithms.
In contrast to K-means, which produces linear discriminant surfaces, the other two criteria
produce quadratic discriminant surfaces. These results also help in the interpretation of
differences between clusterings produced by the three algorithms.

An application of all three methods to clustering real-world time series data is demon-
strated. In this work, time series were treated as static points in n-dimensional space. The
dataset consisted of time series of daily returns of 6671 mutual funds from May 2005 un-
til May 2006. The results obtained closely corresponded to the outcomes of an informal
financial analysis of hidden information on the funds’ management styles (dynamics of the
funds’ portfolios). By applying three different clustering methods, three different results



were obtained. The consistent part of these clusterings was interpreted as the most robust
and objectively consistent component in the existing classification of mutual funds by their
management styles.

Preliminary experimental results obtained in this work suggest that in practice it is useful
to apply all three clustering methods together in order to aid in the discovery of consistent
cores within the data.

Further plans for applications of clustering methods on time series data in the domain of
cyber security are outlined.
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1 Introduction

We consider clustering as the problem of minimization of a certain criterion (functional),
which measures mathematically the quality of a clustering. Clustering methods considered
in this work partition an n-dimensional space into K non-overlapping regions. Throughout
the rest of this paper, we will refer to these regions as classes and to partitions of the
corresponding n-dimensional space as classifications.

A theoretical result published in [3] states that if a classification criterion being minimized
is strictly convex, then the corresponding classification surface is strictly convex, as well. As
a direct implication of this result followed the construction of a basic gradient algorithm of
search for locally optimal solutions (i.e., classifications). This gradient procedure constitutes
the core of the classification algorithms proposed in this work for minimizing two novel
criteria.

An important direction in statistical sampling theory deals with construction of optimal
stratified samples from a population. One of the problems addressed by stratified sampling is
the construction of a sample for estimation of the mean value of a particular scalar parameter,
such that the variance of the estimate is minimized [4]. For this purpose, a criterion for
optimal partitioning of the population into a certain number of groups (strata) was derived
[15]. This criterion is known as Neyman’s criterion for optimal stratified sampling.

Neyman’s criterion was originally developed for one-dimensional data. In this work, we
generalize this criterion to n-dimensional space and present a proof of strict concavity of the
generalized functional. Strict concavity provided the basis for a K-means-like gradient-based
classification algorithm proposed in this work.

The other functional investigated in this work, also originated in statistical sampling
theory, where it was derived [11] for optimal selection of representative types (from one-
dimensional data) for estimation of the mean value of a certain scalar parameter. Selection
of representative types differs from stratified sampling in that, under the former sampling
scheme, a single representative is sampled from each group.

Functional [11] was first generalized to n-dimensional space in [18], where a classification
algorithm for this functional was also given. However, the computational complexity of the
algorithm [18] is exponential in n rendering the algorithm impractical for n > 2.

We prove that functional [11] is non-convex and give an efficient stochastic procedure for
minimization of this functional for n-dimensional data. The procedure uses, as an elementary
operation, a modification of the basic gradient algorithm mentioned above, and has the same
computational complexity as the well-known K-means algorithm [14].

The two classification methods proposed in this work and the K-means method are simi-
lar, both intuitively and mathematically. For this reason, we performed a systematic compar-
ative analysis of these methods. Experimental results obtained on synthetic data illustrate
the differences in the forms of the discriminant surfaces constructed by each of the three clas-
sification algorithms. In contrast to K-means, which produces linear discriminant surfaces,
the other two criteria investigated produce quadratic discriminant surfaces. These results
also help in the interpretation of differences between classifications produced by the three



algorithms.
Finally, we present a substantial real-world application of the algorithms for classification

of time series data [2, 6, 8, 10, 12, 13, 16, 17, 19]. In this work, time series were treated as
static points in n-dimensional space. The dataset consisted of time series of daily returns
of 6671 mutual funds from May 2005 until May 2006. Experimental results demonstrated
that the obtained classifications closely corresponded to the outcomes of an informal financial
analysis of hidden information on the funds’ management styles [5, 7] (dynamics of the funds’
portfolios). By applying three different classification methods, three different classifications
were obtained. The consistent part of these classifications was interpreted as the most robust
and objectively consistent component in the existing classification of mutual funds by their
management styles.

Preliminary experimental results obtained in this work suggest that in practice it is useful
to apply all three classification methods together in order to aid in the discovery of consistent
cores within the data.

In Section 2 we provide the theoretical background underlying the development of the
classification algorithms described in the succeeding sections. In Section 3 we prove convexity
properties of the criteria discussed, and give the corresponding classification algorithms.
Experimental results are described in Section 4. Concluding remarks and further plans for
applications of classification methods on time series data in the domain of cyber security are
outlined in Section 5.

2 Mathematical Foundations: Criteria of Optimality

for Constructing Classifications

In this work, we consider methods that produce non-overlapping classifications of objects
into a specified number K of classes. A classification is termed non-overlapping if every
object is assigned to exactly one of K classes. We consider objects as points in an n-
dimensional Euclidean space. A non-overlapping classification in an n-dimensional Euclidean
space is a partition of this space into K non-overlapping regions such that points within the
same region are assigned to the same class, while points of different regions are assigned
to different classes. Throughout this work, the term classification will be used to signify a
non-overlapping classification.

Formally, let X denote an n-dimensional Euclidean space where each distinct data in-
stance is uniquely characterized by a vector x ∈ X . A classification H is a partition of space
X into K non-overlapping regions, and is determined by a set of characteristic functions
H = (h1(x), . . . , hK(x)), where

hα(x) =

{
1, if x belongs to class α
0, otherwise.

We denote by H the set of all possible classifications into K non-empty classes. The key role
in this work is played by a specific type of classifications where class boundaries in space
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X are specified by smooth1 functions. We illustrate this below for classifications into two
classes (K = 2).

A classification H = (h1(x), h2(x)) is specified by a discriminant function F (x) as fol-
lows2:

h1(x) =

{
1, if F (x) ≥ 0
0, otherwise,

and h2(x) =

{
1, if F (x) < 0
0, otherwise.

(2.1)

The boundary between classes is the discriminant surface F (x) = 0. Set H consists of
all possible classifications of space X into two non-empty classes. Further, we only consider
classifications into two classes such that certain criteria (functionals) achieve extremal values
on these classifications.

Functionals considered are differentiable functions of the non-normalized class moments,
of order up to r, of the probability distribution function P (x). The non-normalized class
moments of the l-th order (l = 0, . . . , r) are defined as

M
(l)
1 =

∫
X

xlh1(x)dP (x) and M
(l)
2 =

∫
X

xlh2(x)dP (x),

where xl denotes the scalar ‖x‖l when l is even and the vector x‖x‖l−1 when l is odd. It is
assumed that the probability density function Pr(x) of occurrence of points x ∈ X exists, is
continuous and is concentrated in a compact set R of space X , i.e., Pr(x) = 0, ∀x /∈ R.

Now, we state a theorem published in [1] that characterizes the form of smooth discrim-
inant functions considered in this work.

Theorem 1. Let the quality of a classification H ∈ H be measured by a functional of the
form

I
(
M

(0)
1 , M

(1)
1 , . . . ,M

(r)
1 , M

(0)
2 , M

(1)
2 , . . . ,M

(r)
2

)
, (2.2)

where I is a differentiable function of the non-normalized class moments of order up to and
including r, and the probability density Pr(x) is a continuous function that is zero outside a
compact set R of space X . Then:

1. if functional (2.2) achieves an extremum on some discriminant function, the same
extremum is achieved on a polynomial discriminant function of degree r defined as:

F (x) = f2(x)− f1(x) =
r∑

l=0

(
c
(l)
2 , xl

)
−

r∑
l=0

(
c
(l)
1 , xl

)
=

r∑
l=0

(
c
(l)
2 − c

(l)
1 , xl

)
, (2.3)

where

c
(l)
1 =

∂I

∂M
(l)
1

and c
(l)
2 =

∂I

∂M
(l)
2

(2.4)

1As we will see later, class boundaries discussed in this work are specified by polynomial functions.
2To avoid ambiguity, points of the discriminant surface F (x) = 0 are always assigned to class “1”.
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2. the discriminant function defined by (2.3) and (2.4) endows functional (2.2) with a
stationary value.

In Theorem 1, c
(l)
α denote scalars when l is even and vectors with coordinates ∂I

∂M
(l)
α,i

when

l is odd, where α ∈ {1, 2} is the class index and M
(l)
α,i is the i-th component of vector M

(l)
α ;(

c
(l)
α , xl

)
denotes multiplication of scalars c

(l)
α and ‖x‖l when l is even and the scalar product

of vectors c
(l)
α and x‖x‖l−1 when l is odd.

We note that Theorem 1 is concerned with partitions of the compact set R of space X
rather than the entire space X .

We also note that a functional of the form (2.2) can be constructed such that classifica-
tions minimizing it are of interest. In this case, polynomial membership functions

f1(x) =
r∑

l=0

(
c
(l)
1 , xl

)
and f2(x) =

r∑
l=0

(
c
(l)
2 , xl

)
, (2.5)

are regarded as measures of distance between a point and a class. On the other hand, a
functional of the form (2.2) can be constructed such that classifications maximizing it are
sought. Under this condition, membership functions (2.5) are regarded as measures of affinity
between a point and a class. The corresponding discriminant function (2.3), in this case, has
to be taken with a negative sign in definition (2.1) of characteristic functions.

A generalization of Theorem 1 to classifications into an arbitrary number of classes (K ≥
2), follows. We consider the problem of finding a classification minimizing a functional of
the form

I
(
M

(0)
1 , M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K , M

(1)
K , . . . ,M

(r)
K

)
, (2.6)

where

M (l)
α =

∫
X

xlhα(x)dP (x), (2.7)

denotes the l-th (l = 0, . . . , r) non-normalized moment of class α (α = 1, . . . , K).

Let c =
(
c
(0)
1 , c

(1)
1 , . . . , c

(r)
1 , . . . , c

(0)
K , c

(1)
K , . . . , c

(r)
K

)
denote a vector of coefficients, where c

(l)
α

denote scalars when l is even and n-dimensional vectors when l is odd. Vector c specifies
polynomial membership functions f1(x), f2(x), . . . , fK(x), where

fα(x) =
r∑

l=0

(
c(l)
α , xl

)
. (2.8)

For a given vector c, the polynomial classification Hc = (hc
1(x), . . . , hc

K(x)) is specified via
membership functions (2.8) as follows:

hc
α(x) =

{
1, if fα(x) = min

i=1,...,K
fi(x), α = min

i=1,...,K
{i : fi(x) = fα(x)}

0, otherwise.
(2.9)
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For convenience, let µ(H) denote the vector of the non-normalized class moments under
a classification H ∈ H:

µ(H) =
(
M

(0)
1 , M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K , M

(1)
K , . . . ,M

(r)
K

)
.

Functional (2.6) can be rewritten as

I = I (µ(H)) . (2.10)

Two classifications H and H∗ are equivalent if µ(H) = µ(H∗).

Theorem 2. Let I(µ(H)) be a strictly concave functional that attains a local minimum
on a classification H∗. Then a polynomial classification Hc, equivalent to H∗, exists for

which the vector c =
(
c
(0)
1 , c

(1)
1 , . . . , c

(r)
1 , . . . , c

(0)
K , c

(1)
K , . . . , c

(r)
K

)
of coefficients is determined as

a supergradient3 of the functional I(µ(H)) at the point µ(H∗).

The proof of Theorem 2 is provided in Appendix B, and rests on the following lemma,
which is proved in Appendix A.

Lemma 1. For an arbitrary vector c and an arbitrary classification H ∈ H, the following
inequality holds:

(c, µ(Hc)− µ(H)) ≤ 0.

In Appendix B we also show that set Z = {µ(H) : H ∈ H} of vectors of the non-
normalized class moments of all possible classifications H ∈ H is bounded, closed and con-
vex. Therefore, all local minima of a strictly concave functional (2.10) are attained on the
boundary points of set Z. Lemma 1 states that polynomial classifications correspond to
the boundary points of set Z. Theorem 2 specifies the form of the polynomial classifications
minimizing a strictly concave functional (2.10). Similar generalization of Theorem 1 was first

published in [3] where maximization of a convex functional I
(
M

(0)
1 , M

(1)
1 , . . . ,M

(0)
K , M

(1)
K

)
was considered.

3 Classification Methods: Algorithms of Search for

Extrema of The Criteria

We consider functionals of the form (2.10) that are functions of the first three non-normalized

class moments M
(0)
α , M

(1)
α and M

(2)
α . These non-normalized moments allow for a clearly

interpretable characterization of the classes in terms of their weights (class probabilities),
locations of the class centers (class means), and tightness of the classes (class variances).

3A supergradient of a concave functional I at a point z∗ is a vector q satisfying the condition I(z)− I(z∗) ≤
(q, z − z∗) for any point z in the domain of functional I.
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From now on, we denote by pα the zeroth non-normalized moment M
(0)
α , i.e., the probability

of class α.
In the ensuing discussion, we denote byM(l)

α the l-th normalized class moments defined
as

M(l)
α =

M
(l)
α

pα

.

Without loss of generality, we assume that for any classification H ∈ H, class probabilities
and variances are positive, i.e.,

pα > 0

and
σ2

α =
(
M(2)

α −
(
M(1)

α

)2)
> 0,

for α = 1, . . . , K.
In this section we analyze three criteria

I1 =
K∑

α=1

pασ2
α =

K∑
α=1

pα

(
M(2)

α −
(
M(1)

α

)2)
, (3.1)

I2 =
K∑

α=1

pασα =
K∑

α=1

pα

√(
M(2)

α −
(
M(1)

α

)2
)

, (3.2)

and

I3 =
K∑

α=1

p2
ασ2

α =
K∑

α=1

p2
α

(
M(2)

α −
(
M(1)

α

)2)
. (3.3)

Intuitively and mathematically, criteria (3.1), (3.2) and (3.3) are similar. However, as will
be shown later, these criteria produce different discriminant surfaces and present different
views of the data.

Criterion (3.1) is that of the well known K-means method for which a minimization
algorithm was first given by [14]. Criteria (3.2) and (3.3) originated in statistical sampling
theory where they were proposed and studied [4, 11] for one-dimensional data.

Criterion (3.2) is known as Neyman’s criterion for stratified sampling. The novelty of our
work lies in the extension of this criterion to multi-dimensional data and in the construction
of efficient algorithms for minimization of criteria (3.2) and (3.3).

The input data for the classification algorithms is assumed to be given in the form of a
sample X = {x1, x2, . . . , xm} of points. We denote by H̃ the set of all possible classifications
into K non-empty classes constructed on the basis of the sample X. Given a classification

H = (h1(x), . . . , hK(x)), H ∈ H̃, the vector µ̃(H) =
(
p̃1, M̃

(1)
1 , M̃

(2)
1 , . . . , p̃K , M̃

(1)
K , M̃

(2)
K

)
of

the non-normalized sample class moments is estimated over the sample X as follows:

p̃α = 1
m

m∑
i=1

hα(xi) = mα

m
,

M̃
(l)
α = 1

m

m∑
i=1

xl
ihα(xi), l ∈ {1, 2},
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where mα is the number of points in class α.
In general, for a given functional I(µ(H)), we are interested in finding a classification H∗

such that
H∗ = arg min

H∈H̃
I (µ̃(H)) .

However, the number [9]

S(m, K) =
1

K!

K∑
α=1

(−1)K−α

(
K
α

)
αm

of distinct partitions of the sample X into K classes grows rapidly with K and m. For
example [9], there are S(10, 4) = 34, 105 partitions of ten objects into four classes, while
there are S(19, 4) ≈ 1010 partitions of nineteen objects into four classes. Thus, exhaustive
enumeration of all possible classifications H ∈ H̃ into K classes constructed on the basis of m
sample points is impractical in most cases. We, therefore, resort to search for classifications
that provide functional I with local minima.

Functionals (3.1), (3.2) and (3.3) are differentiable4 functions of the non-normalized class
moments. We denote by ∇I(µ(H)) the gradient

∇I =

(
∂I

∂M
(0)
1

,
∂I

∂M
(1)
1

, . . . ,
∂I

∂M
(r)
1

, . . . ,
∂I

∂M
(0)
K

,
∂I

∂M
(1)
K

, . . . ,
∂I

∂M
(r)
K

)

of a functional I evaluated at a point µ(H). From Theorem 2 follows that, in cases where
functional I is strictly concave, the Basic Gradient Descent procedure given below is guar-
anteed to converge to a classification that provides functional I with a local minimum. This
procedure constitutes the basis for the classification algorithms developed in this section.

Algorithm 1 (Basic Gradient Descent).

1. Input: Initial classification H (arbitrary)

2. Reclassify:

(a) Compute vector µ̃(H) of the non-normalized sample class moments

(b) Compute vector c = ∇I(µ̃(H))

(c) Construct classification Hc using characteristic functions hc
α(x) defined by (2.9)

(d) for α = 1, . . . , K

i. if
∑

x∈X

hc
α(x) < b, put into class α,

(
b−

∑
x∈X

hc
α(x)

)
points closest (as mea-

sured by the corresponding membership function (2.8)) to this class

4If a concave functional I is differentiable at a point z∗, then there exists a unique supergradient of I at the
point z∗, namely the gradient of functional I at the point z∗.
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b =

{
1, for functionals (3.1) and (3.3)
2, for functional (3.2)

3. Stop condition:

(a) if µ̃(H) = µ̃(Hc), go to step (4)

(b) For functional (3.3): else if I(µ̃(Hc)) > I(µ̃(H)), go to step (4)

(c) else, set H ← Hc and return to step (2)

4. Output: Classification H

In order to obtain a deeper minimum of functional I, we introduce a parameter N that
controls the number of partitions (of the sample X) examined by a classification algorithm.
A classification giving the smallest value of the functional is output by the algorithm. The
general form of the classification algorithms proposed in this work for functionals (3.2) and
(3.3) is the same as the K-means algorithm.

The difference between the three algorithms lies in the membership functions (2.8) ac-
cording to which classifications are constructed in step 2c of Algorithm 1. The precise form
of membership functions for the K-means criterion (3.1) is given in Section 3.1. Membership
functions for criteria (3.2) and (3.3) are derived in Sections (3.2) and (3.3), respectively.
Below, we give the general classification algorithm for functionals (3.1), (3.2) and (3.3).

Algorithm 2 (Classification Algorithm for Functionals (3.1), (3.2) and (3.3)).

1. Input:

(a) Sample X = {x1, x2, . . . , xm} of points

(b) Number K of classes

(c) Number N of iterations

2. for i = 1, . . . , N

(a) Generate a random assignment Hi of points to classes (for functionals (3.1) and
(3.3) each class must be non-empty; for functional (3.2) each class must contain
at least two points)

(b) Execute gradient descent Algorithm 1 initialized with Hi. Denote the resulting
classification by H∗

i

3. Output: H∗ = arg min
{H∗

i :i=1,...,N}
I(µ̃(H∗

i ))

The total computational complexity of Algorithm 2 is O(NtKmn) scalar additions and
multiplications, where t is the maximum number of iterations performed by the gradient
descent Algorithm 1 during the N iterations in Algorithm 2.
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3.1 First Criterion: Criterion of The K-means Method

Criterion (3.1) is that of the classical K-means method. In fact, functional (3.1) is indepen-

dent of the second non-normalized class moments M
(2)
α , which can be shown by rewriting

this functional as

I1 =
K∑

α=1

pασ2
α =

K∑
α=1

pα

(
M(2)

α −
(
M(1)

α

)2)
=

K∑
α=1

M (2)
α −

K∑
α=1

pα

(
M(1)

α

)2
=

K∑
α=1

∫
X

x2hπ
α(x)dP (x)−

K∑
α=1

pα

(
M(1)

α

)2
=

∫
X

x2dP (x)−
K∑

α=1

pα

(
M(1)

α

)2
,

= C −
K∑

α=1

pα

(
M(1)

α

)2
,

where C is a constant independent of a classification H ∈ H. It follows that minimization

of functional (3.1) corresponds to maximization of functional I ′1 =
K∑

α=1

pα

(
M(1)

α

)2

.

We continue the discussion regarding minimization of functional (3.1) in order to give
an example of construction of a classification algorithm based on the theoretical framework
presented in Section 2, and to draw comparisons with the other two criteria discussed in the
succeeding subsections.

Claim 1. Functional I1 is strictly concave.

Proof. We prove the claim by showing that the α-th functional I1α = pασ2
α in summation

(3.1) is strictly concave, from which it follows that functional I1 is concave.

Computing the gradient ∇I1α =
(
c
(0)
α , c

(1)
α , c

(2)
α

)
of functional I1α yields

c
(0)
α = ∂I1

∂pα
=

“
M

(1)
α

”2

p2
α

=
(
M(1)

α

)2

,

c
(1)
α = ∂I1

∂M
(1)
α

= −2M
(1)
α

pα
= −2M(1)

α ,

c
(2)
α = ∂I1

∂M
(2)
α

= 1.

(3.4)

Let the non-normalized class moments of class α under a classification H ∈ H be denoted
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by µα(H) =
(
pα, M

(1)
α , M

(2)
α

)
. For any two classifications H ∈ H and Ĥ ∈ H we have

(
∇I1α(µα(H)), µα(Ĥ)− µα(H)

)
=

(
M

(1)
α

pα

)2

(p̂α−pα)− 2

pα

(
M (1)

α , M̂ (1)
α −M (1)

α

)
+M̂ (2)

α −M (2)
α ,

and

I1α(µα(Ĥ))− I1α(µα(H)) = M̂ (2)
α −

(
M̂

(1)
α

)2

p̂α

−M (2)
α +

(
M

(1)
α

)2

pα

.

By subtracting the first equation from the second and simplifying, we have

I1α(µα(Ĥ))− I1α(µα(H))−
(
∇I1α(µα(H)), µα(Ĥ)− µα(H)

)
=

= −

(
M̂

(1)
α

)2

p̂α

−

(
M

(1)
α

pα

)2

p̂α +
2

pα

(
M (1)

α , M̂ (1)
α

)
= −p̂α

(
M

(1)
α

pα

− M̂
(1)
α

p̂α

)2

= −p̂α

(
M(1)

α − M̂(1)
α

)2

< 0, M(1)
α 6= M̂(1)

α

It follows that, by definition of a strictly concave function, functional I1α is strictly concave,
i.e.,

I1α(µα(Ĥ)) < I1α(µα(H)) +
(
∇I1α(µα(H)), µα(Ĥ)− µα(H)

)
, M(1)

α 6= M̂(1)
α

Therefore, functional I1 =
K∑

α=1

I1α is strictly concave.

Using the gradient (3.4) for specifying membership functions (2.8) yields

fα(x) = c
(0)
α +

(
c
(1)
α , x

)
+ c

(2)
α x2

=
(
M(1)

α

)2

− 2
(
M(1)

α , x
)

+ x2

=
(
x−M(1)

α

)2

,

(3.5)

where c
(2)
α x2 is a shorthand notation for scalar multiplication

(
c
(2)
α , x2

)
introduced earlier.

Note that these membership functions are independent of the second non-normalized class
moments M

(2)
α .

From the definitions of characteristic functions (2.9) and membership functions (3.5)
follows that under a polynomial classification Hc, a point is assigned to a class whose mean
vector is closest to that point, according to the squared Euclidean distance.

10



The discriminant surface formed by membership functions (3.5) between two classes α
and β is the linear equation

F (x) = fα(x)− fβ(x) =
(
x−M(1)

α

)2

−
(
x−M(1)

β

)2

= 2
(
M(1)

β −M
(1)
α , x

)
+
(
M(1)

α

)2

−
(
M(1)

β

)2

= 0.
(3.6)

In other words, the discriminant surface constructed by K-means is the hyperplane that

contains the mid point x = 1
2

(
M(1)

β +M(1)
α

)
of the line segment connecting the class means

M(1)
α andM(1)

β , and whose norm 2
(
M(1)

β −M
(1)
α

)
is collinear with that line segment.

3.2 Second Criterion: Generalization of Neyman’s Criterion for
Stratified Sampling

In stratified sampling, the population is first partitioned into K groups. A number of in-
dividuals is then sampled from each group, yielding the sample sought. A study of criteria
for constructing stratified samples for estimating the mean value ḡ of an unknown scalar
parameter g was published in [4]. Each data instance in [4] was described by a value of a
known scalar parameter x. The statistical relationship between parameters g and x was as-
sumed known. In cases of linear functional dependence between g and x (i.e., the correlation
coefficient ρ(g, x) = 1), a partitioning obtained by minimizing Neyman’s criterion (3.2) was
shown to be optimal for performing stratified sampling. However, a constructive method for
obtaining such partitioning was not described in [4].

As was stated earlier, data instances considered in this work are represented by n-
dimensional vectors. The generalization of functional (3.2) to n-dimensional data is straight-
forward and the form of functional remains the same.

Claim 2. Functional I2 is strictly concave.

Proof. We prove the claim by showing that the α-th functional I2α = pασα in summation
(3.2) is strictly concave, from which it follows that functional I2 is concave. First, we compute

the gradient ∇I2α =
(
c
(0)
α , c

(1)
α , c

(2)
α

)
of functional I2α:

c
(0)
α = ∂I2

∂pα
= M

(2)
α

2pασα
= M(2)

α

2σα
,

c
(1)
α = ∂I2

∂M
(1)
α

= −M
(1)
α

pασα
= −M(1)

α

σα
,

c
(2)
α = ∂I2

∂M
(2)
α

= 1
2σα

.

(3.7)

Let the non-normalized class moments of class α under a classification H ∈ H be denoted

11



by µα(H) =
(
pα, M

(1)
α , M

(2)
α

)
. For any two classifications H ∈ H and Ĥ ∈ H we have

(
∇I2α(µα(H)), µα(Ĥ)− µα(H)

)
=

(
M(2)

α

2σα
(p̂α − pα)− 1

σα

(
M(1)

α , M̂ (1)
α −M (1)

α

)
+

1
2σα

(
M̂ (2)

α −M (2)
α

))

=
1

2σα

(
M(2)

α p̂α −M (2)
α − 2

(
M(1)

α , M̂ (1)
α

)
+ 2pα

(
M(1)

α

)2
+ M̂ (2)

α −M (2)
α

)
=

p̂α

2σα

(
M(2)

α − 2
(
M(1)

α ,M̂(1)
α

)
+ M̂(2)

α

)
− pασα

=
p̂α

2σα

(
M(2)

α −
(
M(1)

α

)2
+
(
M(1)

α − M̂(1)
α

)2
−
(
M̂(1)

α

)2
+ M̂(2)

α

)
− pασα

=
p̂α

2σα

(
σ2

α +
(
M(1)

α − M̂(1)
α

)2
+ σ̂2

α

)
− pασα,

and
I2α(µα(Ĥ))− I2α(µα(H)) = p̂ασ̂α − pασα.

By subtracting the first equation from the second and simplifying, we obtain the following
inequality

I2α(µα(Ĥ))− I2α(µα(H))−
(
∇I2α(µα(H)), µα(Ĥ)− µα(H)

)
=

=
p̂α

2σα

(
2σ̂ασα − σ2

α −
(
M(1)

α − M̂(1)
α

)2

− σ̂2
α

)
= − p̂α

2σα

(
(σα − σ̂α)2 +

(
M(1)

α − M̂(1)
α

)2
)

< 0, µα(Ĥ) 6= µα(H).

From the definition of a strictly concave function follows that functional I2α is strictly con-

cave. Therefore, functional I2 =
K∑

α=1

I2α is strictly concave.

Using the gradient (3.7) for specifying membership functions (2.8) yields

fα(x) = c
(0)
α +

(
c
(1)
α , x

)
+ c

(2)
α x2

= M(2)
α

2σα
− 1

σα

(
M(1)

α , x
)

+ x2

2σα

= 1
2σα

(
M(2)

α −
(
M(1)

α

)2
)

+ 1
2σα

((
M(1)

α

)2

− 2
(
M(1)

α , x
)

+ x2

)2

= σα

2
+ 1

2σα

(
x−M(1)

α

)2

.

(3.8)

Membership functions (3.5) differ from (3.8) in that the latter depend not only on the squared

Euclidean distance between a point and the class meanM(1)
α , but also on the class standard

deviation σα.
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The discriminant surface specified by membership functions (3.8) between two classes α
and β is the quadratic equation

F (x) = fα(x)− fβ(x) = σα

2
+ 1

2σα

(
x−M(1)

α

)2

− σβ

2
− 1

2σβ

(
x−M(1)

β

)2

= (σβ − σα) x2 + 2
(
σαM(1)

β − σβM(1)
α , x

)
+

+σβ

(
M(1)

α

)2

− σα

(
M(1)

β

)2

+ σασβ (σα − σβ) = 0.

(3.9)

In the event when class variances are equal (σ2
α = σ2

β), discriminant surface (3.9) coincides
with the K-means discriminant surface (3.6).

3.3 Third Criterion: Generalization of The Method of Selecting
Representative Types

The model of stratified sampling used in [4] and described in Section 3.2 was also used in [11]
for studying the problem of selecting representative types from a population. This problem
differs from stratified sampling in that only a single instance is sampled from each of the K
groups in the population. According to [11], partitioning the population so as to minimize
criterion (3.3) yields an optimal grouping for selecting representative types in cases of linear
functional dependence between scalar parameters g and x.

We prove that functional (3.3) is non-convex. It follows that a situation is possible where
the value of functional (3.3) will increase as a result of constructing a new classification
on some iteration (step 2d) of Algorithm 1. In order to avoid such situations, the value of
functional (3.3) has to be explicitly checked (step 3b of Algorithm 1) during gradient descent.
We note that this check was not necessary for functionals (3.1) and (3.2) due to their strict
concavity.

Claim 3. Functional I3 is non-convex.

Proof. We prove the claim by showing that each functional I3α = p2
ασ2

α in summation (3.3)
is non-convex, from which it follows that functional I3 is non-convex. First, we compute the

gradient ∇I3α =
(
c
(0)
α , c

(1)
α , c

(2)
α

)
of functional I3α:

c
(0)
α = ∂I3

∂pα
= M

(2)
α ,

c
(1)
α = ∂I3

∂M
(1)
α

= −2M
(1)
α ,

c
(2)
α = ∂I3

∂M
(2)
α

= pα.

(3.10)

The Hessian matrix

∇2I3α =

 0 0 1
0 −2 0
1 0 0


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of functional I3α possesses a positive principal minor M1,2,3 = 2 of odd order and a negative
principal minor M2 = −2 of odd order. It follows that the Hessian matrix ∇2I3α is indefinite,

which implies that functional I3α is non-convex. Therefore, functional I3 =
K∑

α=1

I3α is non-

convex.

Using the gradient (3.10) for specifying membership functions (2.8) yields

fα(x) = c
(0)
α +

(
c
(1)
α , x

)
+ c

(2)
α x2

= M
(2)
α − 2

(
M

(1)
α , x

)
+ pαx2

= pα

(
M(2)

α −
(
M(1)

α

)2
)

+ pα

((
M(1)

α

)2

− 2
(
M(1)

α , x
)

+ x2

)
= pασ2

α + pα

(
x−M(1)

α

)2

.

(3.11)

The discriminant surface specified by membership functions (3.11) between two classes
α and β is the quadratic equation

F (x) = fα(x)− fβ(x) = pασ2
α + pα

(
x−M(1)

α

)2

− pβσ2
β − pβ

(
x−M(1)

β

)2

= (pα − pβ)x2 + 2
(
pβM(1)

β − pαM(1)
α , x

)
+

+pα

(
M(1)

α

)2

− pβ

(
M(1)

β

)2

+ pασ2
α − pβσ2

β = 0,

(3.12)

which coincides with the K-means discriminant surface (3.6) when class probabilities and
variances are equal, i.e., pα = pβ and σ2

α = σ2
β.

4 Experimental Results

4.1 Comparative Study of The Algorithms on Synthetic Data

In this section we present classification results produced by Algorithms (3.5), (3.8) and
(3.11) on a synthetic dataset. The dataset shown in Figure 1 consisted of three classes, each
generated by a Gaussian distribution. The data generator parameters were:

• Class probabilities: p1 = 0.4, p2 = 0.2, p3 = 0.4,

• Class means: µ1 = (0, 0), µ2 = (12, 6), µ3 = (12,−6),

• Class covariance matrices: Σ1 = 4.5I, Σ{2,3} = 2I.

The same set of N = 50 randomly generated initial assignments of points to classes was
used by each algorithm. Classifications yielding the smallest values of criteria (3.1), (3.2) and
(3.3) are shown in Figures 2a, 2b and 2c, respectively. This experimental result demonstrates
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Figure 1: Randomly generated dataset. Integer labels indicate the Gaussian distribution
that generated the corresponding point. Sample class means are indicated by blue squares.

(a) Criterion I1 (K-means) (b) Criterion I2 (c) Criterion I3

Figure 2: Classification results obtained on the dataset shown in Figure 1. Class means are
indicated by white squares.

the differences between discriminant surfaces specified by membership functions (3.5), (3.8)
and (3.11).

As can be seen from Figure 2a, membership functions (3.5) produced linear discriminant
surfaces regardless of class probabilities and variances. Figure 2b, on the other hand, shows
that due to larger variance of the red class, membership functions (3.8) produced quadratic
discriminant surfaces between the red class and each of the other two classes. Discriminant
surface between the blue and the green classes remained linear due to variances of these
classes being equal.

The effect class probabilities have on the discriminant surfaces produced by membership
functions (3.11) is demonstrated in Figure 2c. Under the classification shown in Figure 2c, the
red and the blue classes had nearly equal probabilities pr = 0.28 and pb = 0.3, respectively.
Therefore, the discriminant surface between the red and the blue classes approached a linear
surface. The probability (pg = 0.42) of the green class was larger than probabilities of
each of the other two classes, which resulted in the more pronounced quadratic discriminant
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surfaces.
Next, we evaluated how well did each of the algorithms reproduce the generator class

probabilities, variances and means. We denote by µ the expected generator mean

µ =
3∑

i=1

piµi,

and by d̄2 the average squared Euclidean distance between the generator class means and
the expected mean

d̄2 =
3∑

i=1

pi(µi − µ)2.

Table 1 shows that the generator class probabilities, variances and means were best repro-
duced by Algorithm (3.8), followed by Algorithms (3.5) and (3.11), in that order.

|pr−p1|
p1

|pb−p2|
p2

|pg−p3|
p3

max

I1 0.16 0.24 0.04 0.24
I2 0 0 0 0
I3 0.30 0.52 0.04 0.52

|σ2
r−σ2

1 |
σ2
1

|σ2
b−σ2

2 |
σ2
2

|σ2
g−σ2

3 |
σ2
3

max

I1 0.13 1.45 0.12 1.45
I2 0.07 0.04 0.08 0.08
I3 0.24 2.38 0.12 2.38“

M(1)
r −µ1

”2

d̄2

“
M(1)

b −µ2

”2

d̄2

“
M(1)

g −µ3

”2

d̄2 max
I1 0.05 0.08 0.0006 0.08
I2 0.03 0.006 0.0003 0.03
I3 0.09 0.24 0.0006 0.24

Table 1: Comparison of Algorithms (3.5), (3.8) and (3.11) on how well they reproduce the

generator class probabilities, variances and means. pr, pb, pg, σ2
r , σ2

b , σ2
g , M

(1)
r , M(1)

b

and M(1)
g are the probabilities, means and variances of the red, blue and green classes,

respectively.

4.2 Study of The Algorithms on Real Data: Classification of Mu-
tual Funds by Style of Management Based on Time Series of
Daily Returns

A mutual fund’s management style is reflected in continuous adjustments of the fund’s
portfolio performed by the manager in order to balance risk and profit while, at the same
time, keeping with the stated investment objectives of the fund. The information regarding
the fund’s management style is of great value to investors and other fund managers, but
is generally not available to the public. What makes the style analysis more challenging
is that, according to the current U.S. regulations, mutual funds are required to report the
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Figure 3: Time series of daily returns of two mutual funds (May 2005 – May 2006).

composition of their portfolios only four times per year (quarterly). However, the return on
a fund’s portfolio is declared daily.

The return of an individual mutual fund is generally thought of as a stochastic pro-
cess. However, we hypothesize that funds with similar dynamics of portfolio adjustments
performed by the managers would tend to have similar patterns of behavior of the returns.

In this section, we present preliminary results of experiments that test whether mutual
funds can be grouped based on time series of their returns such that funds within a group
reflect similar portfolio structures.

The dataset used in the experiments contained time series of daily returns of 6671 mutual
funds spanning the period from May 2005 until May 2006. Return rt

i of fund i at day t is
determined as

rt
i =

pt
i − pt−1

i

pt−1
i

,

where pt
i is the closing share price of fund i at day t. Sample graphs of returns of two funds

are shown in Figure 3, which demonstrates varying dynamics of returns.
Initial experiments performed directly on time series of daily returns did not give robust

results. Classes were not well-separated from each other (Euclidean distances between class
means were comparable to class standard deviations). Through further investigation, we
have learned that returns of a large portion (42%) of mutual funds in our dataset were
highly correlated (|ρ| ≥ 0.8) with the market’s return represented by Standard & Poor’s 500
(SP500) index. The corresponding histogram of correlation coefficients is shown in Figure
4.

The market trend had to be removed from the time series of daily returns of mutual
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Figure 4: Histogram of coefficients of correlation between returns of the mutual funds and
the SP500 index.

funds in order to reveal the specifics of management styles of the funds. We addressed this
problem by constructing for each fund i a least squares linear regression model

ri = ais + bi + εi, (4.1)

where s is the vector of returns of the market. The residual vector εi reflects the behavior
of the fund’s return that is not explained by the market trend, and contains a more refined
representation of the fund’s management style.

We constructed classifications into K = 20 classes by Algorithms (3.5), (3.8) and (3.11).
The same set of N = 100 randomly generated initial classifications was used by each algo-
rithm. Classifications

H1 =
(
h1

1(x), . . . , h1
20(x)

)
,

H2 =
(
h2

1(x), . . . , h2
20(x)

)
,

and
H3 =

(
h3

1(x), . . . , h3
20(x)

)
yielding the smallest values of criteria (3.1), (3.2) and (3.3), respectively, were obtained. All
three classifications were different.

An intuitive interpretation of functionals (3.1), (3.2) and (3.3) suggests that classifications
produced according to these criteria may disagree on class outlier points. Therefore, we
combined classifications H1, H2 and H3 in order to extract consistent cores (groups) of
mutual funds.
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Given a triplet (α, β, γ) of classes, where each class comes from a different classification,
the core r(α, β, γ) of funds formed by this triplet is the maximal set of funds common to all
three classes. In other words, the core r(α, β, γ) is the intersection of classes α ,β and γ:

r(α, β, γ) = {x ∈ X : h1
α(x)h2

β(x)h3
γ(x) = 1}.

Given three classifications H1, H2 and H3, we are interested in extracting a set of cores
of mutual funds, such that the total number of funds contained in these cores is maximized.
For two classifications, the extraction of optimal cores corresponds to the well-known optimal
assignment problem for which a polynomial-time algorithm exists. However, the problem of
extracting optimal cores based on three classifications is an open problem that constitutes one
of our future research directions. In this work, we applied a greedy algorithm for extracting
cores of mutual funds.

The total of fifteen cores were extracted that together contained 27% of the total number
of mutual funds in the dataset. Sizes of the cores are given in Table 2.

Core 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Total
Size 494 408 369 256 102 64 52 31 25 16 8 4 3 1 1 1834

Table 2: Sizes of the cores of mutual funds

The cores were interpreted as the most robust and objectively consistent component in
the existing portfolio- and prospectus-based classifications of mutual funds. Portfolio-based
classification of mutual funds is obtained on the basis of expert financial analysis of the
funds’ portfolios. Portfolio-based classification was provided by Lipper, a financial analytics
company, for diversified funds, i.e., those funds that invest across economic sectors (e.g.
Large Cap Growth).

Prospectus-based classification of mutual funds is provided by the fund managers. We
used prospectus-based classification for non-diversified (e.g. Real Estate) funds, since portfolio-
based classification for such funds was not available.

Figures 5, 6, 7, 8 and 9 show the mean vectors of residuals εi obtained by model (4.1) for
mutual funds comprising the corresponding cores. On these figures, each core is annotated
by either portfolio- or prospectus-based classification of the funds contained in the core.
Homogeneity of the cores with respect to expert classification of mutual funds within the
cores demonstrates the plausibility of the proposed approach to grouping funds based on
time series of daily returns such that funds within a group have similar portfolio structures.

It is interesting to note the evident downward spike at time point 68 followed by an
upward surge at time point 69 that can be seen clearly on Figures 5a and 5b. These time
points correspond to August 25 and 26, 2005 — the midst of hurricane Katrina, which made
its initial landfall in the U.S. on August 23, 2005.
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(a)

(b)

(c)

Figure 5: The extracted consistent groups of mutual funds (mean vectors are shown): (a)
Large Cap (Core, Value), Multi Cap (Core, Value); (b) Mid Cap (Core, Value); (c) Small
Cap (Core, Value).
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(a)

(b)

(c)

Figure 6: The extracted consistent groups of mutual funds (mean vectors are shown): (a)
Multi Cap Growth; (b) Large Cap Growth, Multi Cap Core; (c) Mid Cap Core, Small Cap
Core.
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(a)

(b)

(c)

Figure 7: The extracted consistent groups of mutual funds (mean vectors are shown): (a)
International Large, Small/Mid, Multi Cap (Core, Growth, Value), European Region; (b)
Emerging Markets; (c) Multi Cap Core (Domestic, International, Global).
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(a)

(b)

(c)

Figure 8: The extracted consistent groups of mutual funds (mean vectors are shown): (a)
Money Markets; (b) Municipal Debt; (c) International Income, Global Income.
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(a)

(b)

(c)

Figure 9: The extracted consistent groups of mutual funds (mean vectors are shown): (a)
Healthcare/Biotechnology; (b) Real Estate; (c) Utility.
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5 Conclusion and Future Research Directions

In this work, we have generalized functional (3.2) to multi-dimensional data and proved con-
vexity properties of functionals (3.2) and (3.3). First algorithms that work on n-dimensional
data for functionals (3.2) and (3.3) were developed.

Experimental results obtained on synthetic data, demonstrated the differences in the
forms of discriminant surfaces constructed by membership functions (3.5), (3.8) and (3.11)
under functionals (3.1), (3.2) and (3.3), respectively.

Preliminary experimental results obtained on real-world time series of daily returns of
6671 mutual funds demonstrated the plausibility of the presented approach to classification of
mutual funds by style of management. In the experiments conducted, Algorithms (3.5), (3.8)
and (3.11) produced consistent classifications of mutual funds. This suggests the usefulness
of applying all three algorithms simultaneously for extracting consistent cores of mutual
funds with similar portfolio structures.

Our future research work is comprised of three main directions all of which are related
to analysis of time series data. We intend to further study the methods of simultaneous
analysis of classifications produced according to functionals (3.1), (3.2) and (3.3).

In order to facilitate expert validation, we plan to develop visualization methods for
expert analysis of classification results on time series data, particularly in relation to mutual
funds.

We also intend to study applications of the classification methods presented here, on time
series data in the area of cyber security for intrusion detection in wireless networks. This
research will be conducted in collaboration with Dr. William Pottenger.
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APPENDIX

A Proof of Lemma 1

The proof of Lemma 1 follows from the method (2.9) of constructing polynomial classifica-
tions. Suppose, H = (h1(x), . . . , hK(x)) , H ∈ H, is an arbitrary classification whose vector of

the non-normalized class moments is µ(H) =
(
M

(0)
1 , M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K , M

(1)
K , . . . ,M

(r)
K

)
.

Then, for an arbitrary vector c =
(
c
(0)
1 , c

(1)
1 , . . . , c

(r)
1 , . . . , c

(0)
K , c

(1)
K , . . . , c

(r)
K

)
of coefficients and

the corresponding polynomial classification Hc = (hc
1(x), . . . , hc

K(x)), the scalar product
(c, µ(Hc)− µ(H)) is

(c, µ(Hc)− µ(H)) =
K∑

α=1

r∑
l=0

(
c(l)
α , M (l)c

α −M (l)
α

)
,

where µ(Hc) =
(
M

(0)c
1 , M

(1)c
1 , . . . ,M

(r)c
1 , . . . ,M

(0)c
K , M

(1)c
K , . . . ,M

(r)c
K

)
is the vector of the non-

normalized class moments under polynomial classification Hc.
By definition (2.7) of the non-normalized class moments, we obtain

(c, µ(Hc)− µ(H)) =
K∑

α=1

r∑
l=0

c(l)
α ,

∫
X

xlhc
α(x)dP (x)−

∫
X

xlhα(x)dP (x)


=

K∑
α=1

∫
X

r∑
l=0

(
c(l)
α , xl

)
hc

α(x)dP (x)−
∫
X

r∑
l=0

(
c(l)
α , xl

)
hα(x)dP (x)


=

K∑
α=1

∫
X

fα(x)hc
α(x)dP (x)−

∫
X

fα(x)hα(x)dP (x)


=

∫
X

[
K∑

α=1

fα(x)hc
α(x)−

K∑
α=1

fα(x)hα(x)

]
dP (x).

It follows from definition (2.9) of characteristic functions hc
α(x) that

(c, µ(Hc)− µ(H)) ≤ 0, ∀H ∈ H.

�

26



B Proof of Theorem 2

Before proceeding to the proof of Theorem 2, we show that set Z = {µ(H) : H ∈ H}
of vectors of the non-normalized class moments is bounded, closed and convex. A point

µ(H) =
(
M

(0)
1 , M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K , M

(1)
K , . . . ,M

(r)
K

)
belongs to set Z if and only if the

following equations are satisfied:

K∑
α=1

M (l)
α =

∫
X

xldP (x), l = 0, . . . , r. (B.1)

Set Z is bounded since the probability density function P (x) is zero outside of the
bounded region R.

Equations (B.1) imply that set Z is closed, because its complement Z̄ is defined by strict
inequalities and is therefore open.

Convexity of set Z follows from the fact that for any two points µ(H), µ(Ĥ) ∈ Z, and
any ε ∈ [0, 1], the point µε = (1− ε)µ(H) + εµ(Ĥ) also lies in set Z, i.e.,

K∑
α=1

[
(1− ε)M (l)

α − εM̂ (l)
α

]
= (1− ε)

∫
X

xldP (x) + ε

∫
X

xldP (x) =

∫
X

xldP (x),

where M
(l)
α and M̂

(l)
α are the non-normalized class moments under classifications H and Ĥ,

respectively.
It follows that all local minima of a strictly concave functional I(µ(H)) are attained on

the boundary points of set Z. Lemma 1 establishes the fact that the boundary points of set
Z correspond to polynomial classifications. Now, we prove Theorem 2, which specifies the
form of polynomial classifications minimizing the strictly concave functional I.

First, we prove that local extremality of a strictly concave functional I(µ(H)) on a
classification H∗ implies that µ(H∗) = µ(Hc), where Hc is the polynomial classification
specified using vector c determined as a supergradient of functional I at the point µ(H∗).

Suppose that classifications H∗ and Hc are not equivalent, i.e., µ(H∗) 6= µ(Hc). Then,
we can construct a point µε = (1− ε)µ(H∗) + εµ(Hc), ε ∈ (0, 1), µε ∈ Z.

By concavity of functional I, the following inequality holds:

I(µε) ≤ I(µ(H∗)) + (c, µε − µ(H∗)) .

Due to strict concavity of functional I, the equality is attained if and only if µε = µ(H∗),
which contradicts the assumption. Therefore, it follows that

I(µε)− I(µ(H∗)) < ε (c, µ(Hc)− µ(H∗)) ,

and from Lemma 1 follows that

ε (c, µ(Hc)− µ(H∗)) ≤ 0.
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Thus,
I(µε)− I(µ(H∗)) < 0,

which, given that ε was chosen arbitrarily, contradicts local extremality of H∗.
We complete the proof by showing that the existence of a polynomial classification Hc

equivalent to a classification H∗ that provides the functional I with a local minimum implies
that the vector c is a supergradient of functional I at the point µ(H∗).

Suppose that polynomial classifications Hc and Hk are not equivalent, i.e., µ(Hc) 6=
µ(Hk), for any vector k determined as a supergradient of functional I at the point µ(H∗).
Then, we can form a point µε = (1− ε)µ(Hc) + εµ(Hk), ε ∈ (0, 1), µε ∈ Z.

From concavity of functional I and equivalence of classifications H∗ and Hc follows that

I(µε) ≤ I(µ(Hc)) + (k, µε − µ(Hc)) ,

where, due to strict concavity of functional I, the equality is attained if and only if µε =
µ(Hc), which contradicts the assumption.

Therefore, it follows that

I(µε)− I(µ(Hc)) < ε
(
k, µ(Hk)− µ(Hc)

)
,

and from Lemma 1 follows that

ε
(
k, µ(Hk)− µ(Hc)

)
≤ 0.

Thus,
I(µε)− I(µ(Hc)) < 0,

which, given that ε was chosen arbitrarily, contradicts local extremality of classification H∗.
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