
DIMACS Technical Report 2008-05
April 2008

Coring Method for Clustering a Graph

by

Thang Le
Dept. of Computer Science

Rutgers University
New Brunswick, New Jersey 08903

Casimir Kulikowski
Dept. of Computer Science

Rutgers University
New Brunswick, New Jersey 08903

Ilya Muchnik
DIMACS

Rutgers University
New Brunswick, New Jersey 08903

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.

ABSTRACT

Graph clustering partitions a graph into subgraphs with strongly interconnected nodes, while
nodes belonging to different subgraphs are weakly connected. In this paper, we propose a new
clustering method applicable to either weighted or unweighted graphs in which each cluster
consists of a densely connected core region surrounded by a region with lower density. We
have developed a highly efficient and robust method to identify nodes belonging to dense
cores of clusters. The set of the nodes is then divided into groups, each of which is the
representative for one cluster. These groups are finally expanded into complete clusters
covering all the nodes of the graph. Experiments with both synthetic and real datasets for
gene expression analysis and image segmentation yield very encouraging results.

1 Introduction

Clustering classifies unlabeled data objects by partitioning them into subsets, where every object
in a subset is more similar to other objects of the same subset and less similar to the objects of
other subsets. It is used frequently for exploratory data analysis for a wide range of problems in
fields such as computer vision, bioinformatics, text mining, and market research. A major
challenge lies in deciding which of many possible clustering criteria is likely to work best for a
particular problem, given the lack of objective labels to provide validation. Usually, a criterion
function measures the quality of clustering, and optimization methods are used to find a solution
that maximizes or minimizes the defined criterion function. But, unfortunately, no criterion
function is universally better than others, and several different clustering solutions may prove
equally consistent with an expert assessment of their utility. One can always find counter
examples where the optimum solution for a criterion function does not match an intuitively
expected solution. Moreover, many of the criterion functions are NP-hard or very expensive to
solve, so it is usual to seek approximate methods that estimate solutions to these functions.

Graph clustering methods solve the clustering problem on datasets represented by a graph,
typically, a proximity graph. Let us consider an undirected graph G = (V, E, W), where V is the
set of nodes, E is the set of edges, W is a matrix with entry wij being the weight of the edge
between nodes i and j. In proximity graphs, wij represents the degree of similarity of the objects i
and j. A higher value of wij reflects a higher similarity between i and j. Proximity graphs are the
natural representation for datasets from fields such as social networks, interaction networks, web
hyperlink where pairwise relationships between data objects are explicitly provided. If data
objects are represented in a feature space, a proximity graph can be derived by computing
pairwise similarities based on Euclidean or other distance metrics between data points in the
feature space, so that the dataset can be analyzed by graph-based methods.

Graph clustering methods aim to discover dense subgraphs in an unweighted graph, or highly
weighted subgraphs in a weighted graph, such that the sum of edge weights inside subgraphs is
high, while the sum of weights of edges connecting between different subgraphs is low. Thus,
applying a graph clustering method to a proximity graph will produce a set of subgraphs, such
that each subgraph corresponds to a group of similar objects, which are dissimilar to objects of
groups corresponding to other subgraphs. There are different approaches for clustering a graph
such as maximum cliques, thresholding minimum spanning tree, random walk, and spectral
clustering. In this paper, we propose a method that finds clusters of a graph by first detecting
nodes in the densest regions of clusters, then identifying the cores of clusters, and lastly
assigning all other nodes to the nearest cluster. We discuss related works in Section 2. Section 3
describes in detail the new approach. Section 4 presents some results of our experiments with
gene expression analysis and image segmentation. Advantages of the method and future work are
discussed in Section 5.

2 Related works

In this section, we briefly summarize the layered clustering approach of B. Mirkin and I.

– 2 –

Muchnik [1], which has initiated the new clustering method. On a graph G = (V, E, W), a linkage
function π(i, H) is defined to measure the similarity of a node i with a subset of nodes H ⊆ V. An
example of the linkage function is the pairwise-based function defined by π(i, H) = Σ j∈H wij.
Usually this linkage function is used because of its intuitive meaning, simplicity and computation
advantage. Based on the defined function π, the density of H is measured by a set function F
defined as F(H) = min i∈H π(i, H). That is, the F value of H is the minimum value of the linkage
function π over all the elements of H. The largest subset H* with the global maximum value of
F(H) is called the maximizer and interpreted as the subset with the highest density, i.e.,
H* = argmax H⊆V F(H). It has been shown that the maximizer can be found efficiently by a
greedy algorithm if the function F(H) is quasi-concave, i.e., ∀ H1, H2: F(H1∪H2) ≥ min(F(H1),
F(H2)). Furthermore, F(H) is quasi-concave if the linkage function π is monotonically
increasing, meaning ∀i∈H1⊆H2: π(i, H1) ≤ π(i, H2). Therefore, we can easily find the maximizer
for F(H) if we define a monotone function for π. The pairwise-based linkage π(i, H) = Σ j∈H wij is
an example of a monotone function.

The following greedy algorithm finds the maximizer for a graph.

Input: Set V and a monotone linkage function π(i, H).
Output: The maximizer of V.
t ← 1.
Ht ← V.
While Ht is nonempty.
 Ft ← min i∈Ht π(i, Ht).
 Ht+1 ← Ht − {i | i ∈ Ht ∧ π(i, Ht) = Ft}.
 t ← t + 1.
Return the maximizer which is the largest Ht* such that Ft* = max t Ft.

The time complexity for a straightforward implementation of this procedure is O(|V|2τ),
where τ is the time for evaluating the linkage function π [8]. If we use the pairwise-based linkage
function, the running time can be improved by using more efficient data structures and sorting
algorithms.

Using the above procedure, the clustering method discovers clusters of a graph by iteratively
finding and taking the maximizer out of the graph until it is empty [7, 8]. Each connected
component in the extracted maximizers is output as a cluster of the graph.

There are several issues with the above clustering method. Firstly, if the graph is complete or
highly connected, then F(H) tends to decrease when a node is removed, so the maximizer tends
to cover a very large part of the graph (sometimes almost the whole graph). Therefore, our
expected clusters can actually exist inside the maximizer. Secondly, removing the maximizer
from the graph will likely alter or even destroy the original structure of the data and make the
remaining subgraph become unusable, e.g., many 'orphan' nodes can be left out when the
maximizer is removed. Finally, we can not cluster a dataset at different scales. Since there may
be different solutions based on different situations, we may want to cluster the same dataset from
a fine-grained level to a coarse-grained level. We will illustrate above issues by a simple
example. Fig. 1 shows an unweighted graph with 12 nodes and 21 edges. Intuitively, we expect a

– 3 –

partitioning with two clusters of the same size on the left and on the right. However, the
maximizer of this graph is a subgraph of 8 nodes consisting of two maximal cliques connected
by an edge, so it actually contains two expected clusters and should not be regarded as one
cluster. Furthermore, if the maximizer is taken out, the remaining subgraph is a set of 4 isolated
nodes which then become 4 singleton clusters. Obviously, this is not an acceptable clustering
solution.

3 Coring method for clustering a graph

3.1 Dense cores of clusters of a graph

We assume that every cluster of the input graph has a region of high density called a ‘cluster
core’, surrounded by sparser regions (non-core). The nodes in cluster cores are denoted as ‘core
nodes’, the set of core nodes as the ‘core set’, and the subgraph consisting of core nodes as the
‘core graph’. For a graph satisfying the above core assumption, the greedy procedure used in the
layered clustering method has two useful properties: (i) the least similar node is removed at each
iteration, so the nodes of the graph are arranged in an order where nodes in sparser regions are
placed ahead of nodes in denser regions. In other words, the procedure progresses from outer
layers to inner layers of the graph, (ii) density values drop significantly when the procedure
removes nodes belonging to cluster cores of the graph.

In Fig. 2, we show an example of a weighted graph of 25 nodes and 126 edges with two
dense cores. Edge weights are computed from the distances between the positions of two end

nodes in the plane:
,

(,)1
max (,)ij

x y V

dist i jw
dist x y∈

= − , where dist(x, y) is the Euclidean distance

between points x and y on the plane. So edge weights wij ∈ [0, 1] are inversely proportional to
their lengths. In the sequence of F values, we can see that the procedure goes from nodes in the
sparse regions at the boundaries to nodes in the dense regions at the center. Also, the sequence of
F values has two large downhill sections corresponding to two cluster cores.

π(i, H) = Σ j∈H wij

maximizer

Figure 1: Limitations of clustering based on the maximizer of the graph.

– 4 –

We have taken advantage of these properties to design a new clustering method for graphs in
which each cluster has a dense core. For each node i of H ⊆ V, we define the local density at i
with respect to H as:

1(,)
| | ijj H

d i H w
H ∈

= ∑ .

Function D(H) measures the local density of the weakest node of H defined by:

() min (,)i HD H d i H∈= .

D(H) can be regarded as the minimum density of H. The node argmin (,)i Hm d i H∈= is
referred to as the weakest node of H. Fig. 3 shows the sequence of D values computed from the
sequence of F values of the graph in Fig. 2. We can see that at the beginning, when some of the
weakest nodes of the graph are removed, D value increases, while F value tends to decrease. So
D(H) is better than F(H) in estimating subgraph densities.

 Figure 3: Minimum density variation sequence of the graph in Fig. 2.

Dt

t

maximizer

Figure 2: A graph with two clusters which have a dense core and its F value sequence

– 5 –

By analyzing the variation of the minimum density value D, we can identify core nodes
located in the dense cores of clusters. Specifically, if the weakest node is in a sparse region, the
D value will increase when this node is removed, in other words, the next weakest node to be
removed will be in a region with higher density. On the other hand, if the removal of the weakest
node causes a significant drop in D value, then this node is highly connected with a set of
stronger nodes in a high density region. It is potentially a core node because its removal greatly
reduces the density of nodes around it. To illustrate these points, let us consider again the graph
in Fig. 2. If we continuously remove the weakest node, D values tend to increase while we
gradually go to the first cluster core on the left. At some point, when we remove nodes from the
core (t=8→13), D values drop precipitously because the cluster core collapses. After the first
cluster is fully removed, D values raise but then drop again when the second cluster core
collapses (t=21→25). Thus the decreases of D values indicate core nodes of cluster cores.

3.2 Coring method for clustering a graph

We find clusters of a proximity graph in 4 steps. The coring method is outlined in the following
procedure.

Input: Proximity graph G.
Output: Clustering of G.
1. Compute the sequence of density variation.
2. Identify core nodes based on the density variation and two input parameters.
3. Partition the set of core nodes into groups, each of which represents a cluster core.
4. Expand the cluster cores into full clusters.

3.2.1 Step 1: Compute the density variation sequence

This is an iterative procedure that computes the sequence of density variation. In each iteration t,
we compute the minimum density Dt, and the set of the weakest nodes Mt. Then, Mt is removed
from the graph. When the graph becomes empty, the procedure returns the sequences of Dts and
Mts, which contain D values and the nodes relating to each D value, respectively.

3.2.2 Step 2: Identify the set of core nodes

Core nodes are identified based on the sequences of Dts and Mts and two parameters: α ∈ [0,1)
and β ∈ N. Elements of Mt are selected to be core nodes if Dt satisfies two conditions:

(1) Its rate of decrease Rt is greater than α. That is, Rt = (Dt – Dt+1) / Dt > α.
(2) ∃ k ∈ N such that Dt ∈ {Dk+1, Dk+2, ..., Dk+β}, where Dk+1, Dk+2, ..., Dk+β are β consecutive

density values that also satisfy the condition (1).
Therefore, elements of Mt are core nodes if the corresponding Dt has the rate of decrease Rt

greater than α, and Dt is among at least β successive D values which also have a rate of decrease
greater than α. It means α controls the rate of decrease of D values of core nodes, and β controls
the minimum size of a group of successive core nodes on the sequence of Mt.

– 6 –

Remark 1. The α parameter is an absolute value of the rate of decrease, so it is more convenient
to replace it by another parameter which specifies a relative value. To do this, we sort all positive
Rts and then set α to the Rt value located at a relative position δ of the sorted list, so specifying α
can be replaced by specifying δ. Dts can also be ranked according to the sorted list of Rts. A
larger Rt indicates a greater drop in the minimum density when Mt is removed. Therefore, high
ranking Dts corresponding to large Rts identify Mts that contain core nodes.

3.2.3 Step 3: Partition the core set into cluster cores

The set of core nodes identified in step 2 is partitioned into groups representing cluster cores. For
sparse graphs, we can find all the connected components of the core graph, and then each
component is regarded as a cluster core. When the graph is highly connected, the core graph may
be connected in only one component. In this case, before finding connected components, we can
use a preprocessing such as: (i) for unweighted graphs, step 1 is applied again to the core graph
to get a smaller set of core nodes, (ii) for weighted graphs, the histogram of edge weights can be
scanned to determine a threshold in order to remove weak edges linking core groups.

In fact, step 3 is to find a solution for another clustering problem, so any graph clustering
method can be used to partition the core set. For example, agglomerative hierarchical clustering
is an excellent method for partitioning core nodes in a highly connected weighted graph. The
dendrogram can be built for the set of core nodes. If core groups of the core set are well
separated, they will be easily recognized by visualizing the dendrogram. Note that partitioning
the core set is easier than clustering the original graph because we have a smaller set of nodes,
and the separation of cluster cores in the core set is much better than the separation of clusters in
the original graph.

3.2.4 Step 4: Expand the cluster cores into full clusters

This final step is similar to solving a supervised classification problem where unlabeled data is
classified based on a training set of previously labeled data. Here we take advantage of a
property of step 1 of going from outer to inner layers, in other words, nodes in the sequence Mt
are ranked from sparse to dense regions. Therefore, scanning the sequence backwards will go
from the centers to the boundaries of clusters. While scanning the sequence, non-core nodes are
assigned to the most similar cluster, thus expanding cluster cores to full clusters. Each non-core
node n of Mt is assigned to the cluster C* = argmaxC S(n, C), where S(n, C) measures the degree
of similarity of a node n with a cluster C. For weighted graphs, it can be defined by:

(1) S(n, C) = averagei∈C,wni>0 wni, or
(2) S(n, C) = maxi∈C wni.

For unweighted graphs, we can define S(n, C) as:
(1) S(n, C) = averagei∈C wni, or
(2) S(n, C) = Σi∈C wni.

When expanding core groups, if a node m is found to be not connected to any known
clusters, that is, ∀C: S(m, C) = 0, then a new cluster C+ will be created to accommodate m. This
can happen if the parameters are set to so high values that representatives of some strong clusters

– 7 –

are excluded from the core set.

Remark 2. To reveal the structure of clusters, we can compute a confidence degree for each
node when assigning it to a cluster. Let C1 be the most similar cluster and C2 be the second most

similar cluster of node n. The confidence degree of n is defined as:
(, 2)() 1
(, 1)

S n Cconfidence n
S n C

= − .

Fig. 4 shows the clustering result for the graph in Fig. 2 with δ=40% β=2. Red points indicate
core nodes. For each node, the cluster label and confidence degree are shown.

3.2.5 Time complexity

Using graph adjacency-list representation, the method has a similar complexity as the procedure
to find the maximizer. With π(i, H) = Σ j∈H wij and Fibonacci heaps, step 1 can be implemented
in O(|E| + |V| log |V|) time [2]. Step 2 has the complexity of O(|V|). In step 3, a bread-first or
depth-first search to find connected components runs in O(|VC| + |EC|), where VC and EC are the
set of nodes and edges of the core graph, respectively. The time complexity of step 4 is O(|E|).
The total time complexity is therefore dominated by the complexity of step 1 which varies from
O(|V| log |V|) for sparse graphs to O(|V|2) for dense graphs. An advantage of the method is step 1
has to be done only once for all the settings of δ and β. If a parameter is changed, only steps 2, 3,
and 4, which are very fast, need to be re-executed to produce a new clustering result.

3.2.6 Effects of the parameters δ and β on the set of core nodes

Since the number of nodes is finite, the parameter space is discrete and there are a limited
number of possible settings for parameters. In the previous example, to see how parameters
affect the core set, we keep β constant and increase δ from 10% to 90%, the number of core
nodes will go down from 13 to 2 nodes. With δ greater than 30%, core nodes are separated in 2
connected components. When δ is 90% there is only 1 node in each cluster core. Similarly, we
keep δ constant and increase β from 1 to 3, the core set gets smaller. As we can see in Fig. 5,

Core graph

Figure 4: Cluster labels and confidence degrees of the clustering result for the graph in Fig. 2.

– 8 –

when δ and β are increased, the core set shrinks and at the same time, core nodes are extracted
from deeper inside cluster cores. For most of the parameter settings, we get a similar clustering
result with 2 clusters. Fig. 6 shows the parameter space for this example. Generally, we avoid
setting the parameters to too low values because the core set may contain some nodes that are not
very reliable.

δ=0% β=1: 14 core nodes δ=0% β=2: 11 core nodes δ=0% β=3: 9 core nodes

δ=0% β=4: 9 core nodes δ=40% β=3: 7 core nodes δ=50% β=3: 6 core nodes

Figure 5: Effects of the parameters δ and β on the set of core nodes.

δ=10% β=1: 13 core nodes δ=20% β=1: 11 core nodes δ=30% β=1: 10 core nodes

δ=40% β=1: 8 core nodes δ=50% β=1: 7 core nodes δ=60% β=1: 6 core nodes

δ=70% β=1: 4 core nodes δ=80% β=1: 3 core nodes δ=90% β=1: 2 core nodes

– 9 –

4. Experiments

4.1 Gene expression analysis experiment

Clustering applications to gene expression analysis have been demonstrated in [3]. Here we
tackle the problem of tissue clustering which aims to find connections between gene expressions
and statuses of tissues. In other words, we want to see if it is possible to predict the status of a
tissue based on its gene expressions. The dataset used in this experiment is publicly available at
http://microarray.princeton.edu/oncology/affydata/index.html. It contains 62 samples including
40 tumor and 22 normal colon tissues. Each sample consists of a vector of 2000 gene
expressions. We will set aside the sample labels (tumor/normal) and cluster the samples based on
the similarities between their gene expressions. Ideally, we want to partition the sample set into
two clusters such that one contains only tumor tissues and the other contains only normal tissues.

The proximity graph constructed from the gene expression vectors is a complete graph of 62
nodes. Because relative values are more important than absolute values in gene expressions, edge
weights that reflect the pairwise similarities of samples are computed based on the Pearson
correlation coefficient [5]. Specifically, the weight function is defined by:

() ()2000

1

1
2000

k i k j
ij

k i j

i m j m
w

s s=

− −
= ∑ ,

where ik and jk are gene expressions of samples i and j; mi, mj, si, sj are means and standard
deviations of iks and jks.

With δ=40% and β=2, steps 1 and 2 of the coring method identify 12 core nodes. The
dendrogram of these core nodes shown in Fig. 7 exposes two well-separated groups, one contains
10 nodes and the other has 2 nodes. Thus, we cut the dendrogram at the height of 0.1 to obtain
two cluster cores. Expanding these cluster cores yields two clusters. One has 40 samples
consisting of 37 tumor and 3 normal tissues. The other contains 22 samples consisting of 3 tumor
and 19 normal tissues.

δ

β

Figure 6: Parameter space for clustering the graph in Fig. 2.

– 10 –

Fig. 8 shows the comparison of clustering results by the coring method, [3] and [4]. The

result of [4] consists of 6 clusters, but joining clusters 1, 4, 5 into one group of normal tissues
and 2, 3, 6 into another group of tumor tissues will yield a clustering similar to the result in [3].

4.2 Image segmentation experiment

In this experiment, we consider the problem of partitioning a grayscale image into regions of
nearby pixels that have similar intensities. Based on an image, we can construct a proximity
graph where each node represents a pixel. The weight of an edge between two nodes reflects the
pairwise similarity of the corresponding pixels, i.e., the likelihood that those two pixels belong to
the same segment. Therefore, edge weights are computed based on the intensities and locations
of pixels. Specifically, we use the following weight function described in [6]:

22
() () (,)

if (,)
0 otherwise

I d

I i I j dist i j

ij
e dist i j rw

σ σ
  −

− −  
   


 <= 



,

where I(i) ∈ [0, 1] is the intensity of pixel i; dist(i, j) is the Euclidean distance in pixels between i
and j. There is an edge linking two nodes only if the distance between the corresponding pixels is
less than r pixels, so the proximity graph is very sparse as πr2 << |V|. We typically set σI = 0.07,
σd = 8, and r = 11 for natural images of sizes less than 200×300. By using this weight function,

Ideal Coring [3] [4]

Figure 8: Comparison of clustering results in the gene expression analysis experiment.

Figure 7: Dendrogram of the core graph in the gene expression analysis experiment.

cut

– 11 –

strong edges exist between nodes whose corresponding pixels have the same intensity and are
close to each other. So pixels inside a region with homogeneous intensity have their nodes in the
proximity graph strongly connected. On the other hand, pixels at boundaries have neighbor
pixels of different intensity, so their corresponding nodes are weakly connected.

The segmentation of an image is obtained by clustering its proximity graph. Nodes of each
cluster of the graph correspond to pixels of a segment in the image. In Fig. 9, (a) shows a
grayscale image consisting of 7 regions of nearby pixels with similar intensities. We build and
cluster the image proximity graph with the coring method. Red pixels in (b) show the location of
the pixels corresponding to core nodes with δ=98% and β=3. The set of core pixels consists of 7
connected components representing the cores of 7 segments. Expanding these cores gives us the
expected segmentation in (c) where different segments are labeled with different colors.

A well known graph clustering method that has been used to solve the image segmentation

problem is the Normalized cut method [6]. Basically, this method partitions a graph into
subgraphs based on the minimum Normalized cut, which in case of two-way cut is defined by:

, \ , \

, ,

(,)
uv uvu A v V A u B v V B

uv uvu A v V u B v V

w w
Ncut A B

w w
∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

= +
∑ ∑
∑ ∑

,

where A and B are subgraphs of G. Finding the minimum Normalized cut of a graph is NP-hard,
but an approximation solution for the two-way cut can be estimated using the eigenvector of the
second smallest eigenvalue of the normalized Laplacian matrix L = I – D-1W, where D is the
diagonal matrix of vertex degrees. An implementation of the method developed by its author is
available on the web at http://www.cis.upenn.edu/~jshi/software/. In fact, a serious problem with
this method is that the normalizing factors in the criterion function make it favor balanced
clusters. In Fig. 10, (a) shows a grayscale baseball image, (b) shows a segmentation result by the
Normalized cut method where we can see large segments tend to break into several parts of
similar sizes. Clustering on the same proximity graph, the segmentation by the coring method
shown in (c) is much better. Our method also has a better performance by just a straightforward
implementation. For instance, the coring method took 5.5 seconds vs. about 20 seconds for the
Normalized cut method for clustering a weighted graph of 50*103 nodes and 8*106 edges.

Figure 9: Coring method segments an image by clustering its proximity graph.

(a) (b) (c)

– 12 –

5 Conclusions

The coring method proposed in this paper has several advantages. It is a simple and fast
clustering method working on both unweighted and weighted graphs. In terms of flexibility, we
are able to manipulate core nodes and control the number of core nodes using two parameters.
Core nodes produced by step 1 come from the centers of clusters so they represent informative
data objects. Furthermore, because of using core nodes the method is fairly robust to noise.
When adding noise to an image, we have seen that the set core nodes and segmentation results
remain stable. Another advantage is that cluster structures might be revealed through the ranking
of core nodes and the confidence degree of other nodes. In comparison with the approach based
on the maximizer, the method has a better time complexity because the time-consuming greedy
procedure is run only once for all parameter settings. It can cluster highly connected graphs
where the maximizer usually covers almost the whole graph. As it does not remove any part of
the graph, it does not change the graph structure and therefore does not create orphan nodes. In
addition, it provides control parameters for clustering adjustment and allows human intervention
and verification in the course of clustering (steps 2 and 3).

Our method works best if clusters of the graph have a strong dense core. If some cluster does
not have a core or only has a faint core, it may be omitted due to not having representatives in
the core set. The range of parameter settings for good clustering results is different for different
graph structures. The best range is currently learnt empirically. However, sometimes we have
prior knowledge about the data. For example, we may know beforehand the number of clusters.
This information can be used to search the parameter space to infer good settings for parameters.
It can also help the partitioning of the core set for complete or highly connected graphs.

In the future, we will study the possibility of relaxing the dense core assumption or detecting
its violations. Currently the pairwise based linkage function is used, we can test the method with
new linkage functions such as the consistent triplets [7] to exploit higher level relation of data
objects or the linkage function for multipartite graph clustering [8]. We will look for new
methods of expanding cluster cores to get better boundaries between clusters as well as ways to
detect cluster structures and recursively apply the method to cluster multi-scale data. Finally, the
method can be extended to cluster directed graphs. We just need to create a linkage function that
takes into account directions of edges when measuring similarities in directed graphs.

(b) (c) (a)
Figure 10: Image segmentation comparison.

– 13 –

References

[1] B. Mirkin and I. Muchnik, Layered clusters of tightness set functions, Applied Mathematics

Letters, 15:147-151, 2002.

[2] M. Charikar, Greedy approximation algorithms for finding dense components in a graph,

Lecture Notes in Computer Science, Springer-Verlag, 1913:84-95, 2000.

[3] U. Alon, N. Barkai, D. Notterman, K. Gish, S.Ybarra, D. Mack and A. Levine, Broad

patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide array, Proc. Natl. Acad. Sci. USA, 96(12):6745-6750,
1999.

[4] A. Ben-Dor, R. Shamir and Z. Yakhini, Clustering gene expression patterns, Journal of

Computational Biology, 1999.

[5] D. Jiang, C. Tang and A. Zhang, Cluster Analysis for Gene Expression Data: A Survey,

IEEE Transactions on Knowledge and Data Engineering, 16(11):1370-1386, 2004.

[6] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000.

[7] H. Yun, Consistent triplets in graph clustering for protein sequence analysis, PhD thesis,

Department of Computer Science, Rutgers University, 2006.

[8] A. Vashist, C. Kulikowski and I. Muchnik, Ortholog clustering on a multipartite graph,

IEEE Transactions on Computational Biology and Bioinformatics, 4(1):17-26, 2007.

