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ABSTRACT

Anomaly detection is concerned with identification of abnormal patterns of behavior of
a system. Traditional supervised machine learning methods of classification rely on training
data in the form of labeled data instances representative of each class (e.g. normal vs
anomalous data). Clustering methods, on the other hand, do not require a priori knowledge
of how anomalies are represented in the data space, and are therefore particularly suitable
for anomaly detection.

Partitional clustering methods such as K-means require the number K of clusters to be
specified by a user. Three heuristics that rely on a joint use of two partitional clustering
methods for determining an appropriate number of clusters in a dataset are proposed in this
work. The heuristics were first evaluated on synthetic data and then applied on real-world
data from the domain of computer network security. Experimental results demonstrated
that clustering methods are adequate for detection of large-scale anomalous events in the
Internet. Scalability of the heuristics across domains of application was indicated by ad-
ditional experimental results obtained on several datasets from the UCI machine learning
repository.



1 Introduction

Anomaly detection is concerned with identification of abnormal patterns of behavior of a
system. Traditional supervised machine learning methods of classification rely on training
data in the form of labeled data instances representative of each class (e.g. normal vs
anomalous data). Clustering methods, on the other hand, do not require a priori knowledge
of how anomalies are represented in the data space, and are therefore particularly suitable
for anomaly detection.

Partitional clustering methods such as K-means require the number K of clusters to be
specified by a user. Often, an appropriate value for K is estimated based on the domain
knowledge. In the context of anomaly detection, however, it may not be possible to specify
K in advance since that would require the knowledge of how many different anomalies are
expected.

We propose three heuristics for determining an appropriate number of clusters for a
dataset. The heuristics rely on a joint use of two clustering methods. One of the methods is
K-means [8, 10] whose criterion can be written [13] as

I1 =
K∑
α=1

pασ
2
α, (1)

where pα is the probability (i.e., weight) of cluster α and σ2
α is its variance. The other

clustering method, call it I2, was recently proposed by [11] and is based on a criterion
similar to (1), namely

I2 =
K∑
α=1

pασα. (2)

Unlike (1), criterion (2) produces non-linear discriminant surfaces (i.e., cluster boundaries)
when cluster standard deviations σα are unequal. A thorough study of criterion (2) and an
algorithm of its optimization can be found in [11]. Both, K-means and I2 clustering methods
aim to minimize their respective criteria (1) and (2). The minimization corresponds to
partitioning the data space so that points in the same cluster are close to each other and far
apart from points in other clusters.

The paper is organized as follows. Relevant work on determining an appropriate number
of clusters for a dataset is discussed in Section 2. The proposed heuristics are described
in Section 3. Experimental results of application of the heuristics to synthetic as well as
real-world network security data are presented in Section 4. Concluding remarks are made
in Section 5.

2 Related Work

Selection of the number K of clusters in a dataset is closely related to evaluation of cluster
validity. Two major types of indices [13] could be distinguished for assessing the validity of a
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cluster structure discovered in the data. External indices take into account (domain-specific)
information that was not directly employed by the clustering method. Such information
could, for example, be supplied in the form of true class labels of the data instances. The
adequacy of the cluster structure could then be evaluated based on a number of indices
that measure the similarity between partitions of objects. A comprehensive exposition of
partition-partition similarity measures can be found in [8, 13].

As was mentioned earlier, the distribution of data instances characterizing different types
of abnormal behavior of a system is not known in advance. Moreover, the number of types
of anomalies is itself unknown. Therefore, we cannot rely on external indices for determining
an appropriate value of K in the context of anomaly detection.

Internal indices of cluster validity rely solely on the data used by the clustering method
and measure the fit between the cluster structure and the data. Clustering criterion is
a natural internal index whose usage for determining the value of K has previously been
considered [4, 13]. In this case, value of the criterion is plotted as a function of K. The
plot is then manually examined for an apparent “elbow” in the graph and the corresponding
value of K is chosen as appropriate. Extensive reviews of other (less subjective) approaches
to automatic determination of the number of clusters using internal indices can be found in
[4, 12, 18]. However, the results of evaluations [4, 18] indicate that internal indices are often
sensitive to the overall structure of the data and can not be applied universally.

Our work differs from the index-based approaches in that we employ an ensemble of
clustering methods and consider the actual clusterings produced by each method for various
values of K. The details of our approach are presented below.

3 Determining the Number of Clusters

K-means clustering as well as I2 is sensitive to the initial settings. Given an initial partition
of the data into K clusters, each of the algorithms converges to a locally optimal solution,
i.e., to a clustering on which the corresponding clustering criterion achieves a local minimum.
A commonly used approach to reaching a deeper value of the criterion and thus finding a
better clustering involves running the clustering algorithm L times, each time starting from
a different randomly generated initial partition. Here, L is a parameter specified by the user.
Out of all the clusterings found during the L runs, a clustering giving the minimum value of
the criterion is selected as “the best” clustering.

Heuristics presented in this section for determining an appropriate number of clusters for
a given dataset are based on the following hypothesis. If the data is arranged in a (uniform)
cloud of points without any prominent clustering structure, we would expect each of the L
runs of a clustering algorithm to converge to a different solution regardless of the value of
parameter K. On the other hand, if some clustering structure is present in the data and
parameter K has been set appropriately, we would expect the algorithm to converge either
to a single solution or to a small set of solutions over the L runs.

Our approach to determining the number of clusters relies on examination of histograms
that show for each unique solution found during the L runs of an algorithm, the number of
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times the solution has been discovered, i.e., its frequency of occurrence.
We employ K-means in conjunction with I2 for determining an appropriate number of

clusters for a dataset. The two algorithms act as a committee of experts each of which has
a different preference for grouping points, but both of which strongly agree with each other
when the data has a clearly defined clustering structure. The description of the heuristics
follows.

3.1 Heuristic One

The first heuristic lies in choosing the largest number K of clusters such that histograms
for K-means and I2 contain pronounced peaks and that the most frequent solutions give
the minimum values of the corresponding clustering criteria. Figure 1 shows histograms of
frequencies of discovery of unique clusterings by K-means and I2 on a dataset comprised of
three separable clusters, each generated according to a different Gaussian distribution with
diagonal covariance matrix. As can be seen in Figs. 1c and 1d, seven and fifteen unique
solutions were found by K-means and I2, respectively, for K = 3. The most frequent solution
found by K-means appeared in 87% of the runs, while the most frequent solution found by
I2 appeared in 78% of the runs. In both cases, the most frequent solution gave the minimum
value of the corresponding clustering criterion.

Note that histograms for K 6= 3 (Figs. 1a, 1b, 1e and 1f) were much smoother than for
K = 3. A smooth histogram indicates that for a given K, the algorithm was not able to
identify a clear cluster structure within the dataset, and that a different number of clusters
may be more appropriate.

Figure 2 shows histograms that were generated on a one-cluster dataset. These his-
tograms did not exhibit the peaked behavior seen in Figure 1. Lack of peaks in the his-
tograms and a high number of unique solutions found for small values of K suggested that
the dataset did not contain any separable clusters, which in fact was the case.

3.2 Heuristic Two

The second heuristic applies in situations where for a given K, a pronounced sharp peak is
present in histograms for both clustering methods, but the solution minimizing one of the two
clustering criteria is not the most frequent in the corresponding histogram. We demonstrate
this heuristic on a dataset containing six separable clusters, each generated according to
a different Gaussian distribution with a diagonal covariance matrix. The histograms are
presented in Fig. 3.

As shown in Fig. 3c, the best clustering according to K-means criterion was ranked
third by frequency and was found in 9% of the runs. However, Fig. 3d shows that the best
clustering according to I2 was ranked first by frequency and was found in 35% of the runs.
Figures 3a and 3b show a reverse situation where the best K-means clustering was ranked
first by its frequency of 36%, while the best I2 clustering was ranked seventeenth by its
frequency of 1%.
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(a) K = 2 (b) K = 2

(c) K = 3 (d) K = 3

(e) K = 4 (f) K = 4

Figure 1: Histograms of frequencies of occurrence of unique clusterings discovered by K-
means (left column) and I2 (right column) over 100 runs on a three-cluster dataset. Clus-
terings are ranked by decreasing frequency. Rank and frequency of the clustering giving the
minimal value of the corresponding criterion for a particular value of K are marked at the
top of each histogram.
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(a) K = 2 (b) K = 2

(c) K = 3 (d) K = 3

(e) K = 4 (f) K = 4

Figure 2: Histograms of frequencies of occurrence of unique clusterings discovered by K-
means (left column) and I2 (right column) over 100 runs on a one-cluster dataset
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(a) K = 3 (b) K = 3

(c) K = 6 (d) K = 6

Figure 3: Histograms of frequencies of occurrence of unique clusterings discovered by K-
means (left column) and I2 (right column) over 100 runs on a six-cluster dataset. Clusterings
are ranked by decreasing frequency. Rank and frequency of the clustering giving the minimal
value of the corresponding criterion for a particular value of K are marked at the top of each
histogram.

Further examination of the similarity measured by Rand index [7, 16] between the best
clusterings found by the two methods for a given K helped to determine the appropriate
number of clusters for this dataset. Similarity between the best clusterings was about 0.7
for K = 3 and was close to the maximum possible value of one for K = 6. Even though
the best clustering found by K-means for K = 6 was not ranked first, it was much more
similar to the best clustering found by I2 than was the case for K = 3. Together, Fig. 3 and
pairwise similarity scores between clusterings found by K-means and I2 suggest correctly
that the appropriate number of clusters for this dataset is six. The histograms for K > 6
were smooth, did not satisfy the conditions of the heuristics proposed in this work and are
omitted due to space constraints.
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3.3 Heuristic Three

The third heuristic for determining the number of clusters is based on the following ob-
servation. K-means method takes into account only the cluster means when constructing
discriminant surfaces. I2, on the other hand, takes into account not only the cluster means,
but also standard deviations of the clusters when constructing discriminant surfaces (see
[11] for details). Sensitivity to cluster variance makes I2 more reluctant towards generating
clusters with small numbers of points and high variance in presence of neighboring points
nearby.

Contingency tables presented in Table 1 demonstrate a situation where the two methods
produced similar clusterings for K = 2 and very different clusterings for K = 3. In the latter
case, K-means split off six points into a separate cluster, while maintaining a large 316-point
cluster. I2, however, produced two clusters of nearly equal sizes of 186 and 135 points. The
third cluster under both methods was of moderate size of about 30 points. Such drastic
difference in clusterings resulted in a sharp decrease in the Rand index from about one for
K = 2 to approximately 0.6 for K = 3.

Table 1: Contingency tables for clusterings found by K-means and I2 on Blackout dataset
for K ∈ {2, 3}

I2
Cluster 2 1 Size

K-means
1 308 13 321
2 0 33 33

Size 308 46

I2
Cluster 1 3 2 Size

K-means
1 186 130 0 316
2 0 0 6 6
3 0 5 27 32

Size 186 135 33

When considered together, behavior of the two methods indicates that the data contains
a dense core of points, which should not be split into separate clusters. The fact that the
two methods produced highly different clusterings as a result of increasing the number of
clusters from K to K + 1 suggests that the appropriate number of clusters for this dataset
is no greater than K. Visualizations of clusterings of the dataset in the space of the first
two principal components are shown in Fig. 4, and support the hypothesis that K = 2 is an
appropriate number of clusters in this case.

4 Experimental Results

The heuristics described in Sect. 3 were first evaluated on a collection of nine synthetic
datasets containing 2, 3, . . . , 9 and 10 clusters, respectively. The clusters were generated
according to Gaussian distributions with different means and with one of the clusters having
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(a) K-means (b) I2

Figure 4: Plot of twenty-dimensional Blackout event dataset in the space of the first two
principal components. Clusterings for K = 2 are indicated by colors.

larger variance than the others. Using the developed heuristics, we were able to identify the
correct number of clusters in datasets with moderate number (K ≤ 7) of clusters.

We then applied the heuristics in the domain of cyber security on data collected [15] from
Border Gateway Protocol (BGP) for Internet routing. The dataset contained information
on four anomalous events: outbreak of the Slammer [14] worm, east coast power Blackout
[1] and outbreak of the WItty [17] worm. The dataset consisted of four-dimensional time
series, with each of the event data preceded by a pre-event time series reflecting the normal
behavior of BGP. The features for characterizing BGP were selected based on prior works
[6, 9] in this domain. Following [6], we used 3-second aggregate counts of the number of
BGP announcements, BGP withdrawals, announced prefixes and withdrawn prefixes.

The four-dimensional vectors within each time series were standardized, feature-wise, by
subtracting the mean value of a feature and dividing by its standard deviation. Standard-
ization brought each of the four features of a time series to the same scale, thus making the
data more suitable for clustering.

In order to capture time-local dynamics of the data, each time series was further trans-
formed into a twenty-dimensional time series by combining windows of five consecutive four-
dimensional vectors into the corresponding twenty-dimensional vectors. The resulting Slam-
mer, Blackout and Witty datasets contained 922, 741 and 447 vectors, respectively. These
twenty-dimensional vectors were used as input to K-means and I2 clustering algorithms.

In all the experiments discussed in this section, we ran K-means and I2 clustering L = 100
times, each time starting from a different randomly generated initial setting. Two sets of
experiments were conducted on BGP data. Experiments presented in Sect. 4.1 addressed
the question of differentiability of the events from normal BGP behavior by application of
clustering methods to BGP data. Section 4.2 presents the results of further identification of
internal structure within the event portions of BGP datasets using the developed heuristics.
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Preliminary experimental results on scalability across domains of the proposed heuristics are
reported in Sect. 4.3.

4.1 Detection of Anomalous Events in the Internet

In this subsection we present the results of application of the developed heuristics in order
to determine if large scale anomalous events in the Internet could be detected using clus-
tering methods. The experiments were performed on each of Slammer, Blackout and Witty
datasets.

Based on the heuristic described in Sect. 3.1, two clusters were detected in each of the
three datasets. The corresponding histograms for Slammer and Blackout datasets are shown
in Fig. 5. Clustering results obtained by K-means on Slammer and Blackout data were
superimposed for illustrative purposes on one of the four original time series features and
are shown in Fig. 6. Clusterings obtained by I2 were extremely similar to those obtained
by K-means and are not shown due to space limitations. As can be seen in Fig. 6a, the two
clusters discovered in Slammer dataset corresponded to non-event and event data.

The two surges comprising Cluster 2 and marked by cyan color in Fig. 6b happened
between 4:10pm and 4:18pm EDT on August 14, 2003 and coincided with the beginning of
the Northeast Blackout that was fully on from 4:10pm EDT1 that day.

One of the two clusters discovered in Witty dataset comprised of very few (outlier) points:
two in case of K-means and four in case of I2 clustering. The rest of the points resided inside
a dense core with no apparent clustering structure. We therefore concluded that Witty event
was not distinguishable from the normal BGP behavior based on the first-order information
used in the experiments. This result is consistent with the analysis performed by [17],
who estimated that the total size of the population vulnerable to Witty worm was on the
order of 12,000 computers, which is about one order of magnitude less than the number of
machines infected by Slammer. Additionally, Witty carried a destructive payload that would
eventually render an infected machine non-operational and thus unable to attempt to spread
the worm. Hence, the disturbance caused by Witty worm may not have been large enough
to be noticeable on the level of first-order BGP data.

Using higher-order relations within BGP data, [6] demonstrated promising results on
detection of BGP events, including Witty, in a supervised machine learning setting. The
incorporation of higher-order information into clustering (i.e., unsupervised) methods con-
stitutes one of the directions for future research.

4.2 Identification of Internal Structure of BGP Events

Results of clustering Slammer event data satisfied the conditions of the heuristic described
in Sect. 3.2. Two-cluster structure was thus discovered within Slammer event, and would
have to be further examined by a domain expert.

1http://www.tipmagazine.com/tip/INPHFA/vol-9/iss-5/p8.html
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(a) K-means (b) I2

(c) K-means (d) I2

Figure 5: Histograms of frequencies of occurrence of unique clusterings discovered by K-
means and I2 over 100 runs on Slammer (top row) and Blackout (bottom row) datasets for
K = 2

By applying the heuristic given in Sect. 3.3, a two-cluster structure was discovered within
the Blackout event data as well. Points forming the two prominent surges coinciding with
the beginning of the Northeast Blackout event in Blackout data were again placed into a
separate cluster.

The clusterings discovered by K-means and I2 within Slammer and Blackout events were
very similar. For brevity, only the clusterings by K-means are shown in Fig. 7. The results
of clustering Witty event data showed no presence of any apparent cluster structure within
that dataset.

4.3 Scalability of the Heuristics

Preliminary experiments on four additional datasets (Wine, Ecoli, Iris and Wifi) were con-
ducted in order to assess the scalability of the heuristics described in Sect. 3. Wine, Ecoli
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(a) Slammer

(b) Blackout

Figure 6: Clustering results obtained by K-means on two BGP datasets for K = 2. One
of the four original time series features is shown. Colors indicate cluster assignment. The
colored bars below the plots are projections of the cluster assignment onto the time axis.

and Iris datasets for supervised learning were obtained from the UCI repository [2] and were
comprised of three, eight and three classes, respectively. By applying the heuristics, three
clusters were detected in Wine and Ecoli data, while two clusters were detected within Iris
dataset. Even though classification was not the primary goal of our work, we were able to
evaluate classification accuracies (Table 2) of the discovered cluster structures. All points
within a cluster were assigned the majority class label. Several classes in Ecoli and Iris data
were mixed together in the space of the original features, which resulted in lower classification
accuracies.

Table 2: Classification accuracies of the cluster structures detected in three datasets

Data K-means I2
Wine 96.62 97.19
Ecoli 75.3 74.7
Iris 66.7 66.7
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(a) Slammer

(b) Blackout

Figure 7: Clustering results obtained by K-means on event portions of two BGP datasets
for K = 2. One of the four original time series features is shown. Colors indicate cluster
assignment. The colored bars below the plots are projections of the cluster assignment onto
the time axis.

Wifi (802.11) dataset was provided by the authors of [3], where it was used in the exper-
iments on detection of spoofing attacks in wireless networks. We used four subsets of Wifi
dataset with one, two, three and four clusters, respectively. In all four cases, the correct
number of clusters was detected using the heuristics described in this work.

5 Conclusion

Three heuristics for determining an appropriate number of clusters in a dataset were proposed
in this work. By applying the heuristics, we were able to correctly identify the number of
clusters in synthetic data. We then applied the developed heuristics in the domain of cyber
security on datasets from Border Gateway Protocol (BGP) and from a Wifi 802.11 wireless
network. Experimental results on BGP data demonstrated that clustering methods are
adequate for detection of large-scale anomalous events in the Internet. This is especially
encouraging since, unlike supervised approaches, clustering does not require labeled data,
obtaining which is very costly in the real world. We were also able to detect the correct
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number of clusters in four different subsets of Wifi dataset.
Additional preliminary experimental results on Wine, Ecoli and Iris datasets from the

UCI machine learning repository indicated that the proposed heuristics are scalable across
different application domains.

A situation where more than one heuristic could be applied to a dataset was never en-
countered during the experiments reported in this work. However, it is conceivable that such
situation may arise. Therefore, one direction for future research lies in the development of
methods for determining an appropriate number of clusters in cases where multiple heuristics
could be applied to a dataset.

Experimental results suggested that heuristics given in Sects. 3.1 and 3.2 are adequate
when the number K of clusters is moderate (K ≤ 7). Investigation of possible extensions of
these heuristics for larger values of K constitutes another direction for future work.

Recent studies [6, 5] demonstrated the strength of higher-order path analysis for super-
vised learning in domains of textual and of computer network security data. As a part of
an ongoing research on textual analytics for homeland security applications, we intend to
expand on the current work by incorporating higher-order information for clustering textual
data.
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