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ABSTRACT

By Shapley’s (1964) theorem, a matrix game has a saddle point whenever each of its 2 × 2
subgames have one. In other words, all minimal saddle point free (SP-free) matrices are of
size 2× 2. We strengthen this result and show that all locally minimal SP-free matrices are
of size 2× 2. In other words, if A is a SP-free matrix in which a saddle point appears after
deleting an arbitrary row or column, then A is of size 2 × 2. Furthermore, we generalize
this result and characterize the minimal and locally minimal Nash equilibrium free (NE-free)
bimatrix games.

Let us recall that a two-person game form is Nash-solvable if and only if it is tight
(Gurvich, 1975). We show that all (locally) minimal non tight game forms are of size
2 × 2. In contrast, it seems difficult to characterize the locally minimal tight game forms
(while all minimal ones are just trivial); we only obtain some necessary and some sufficient
conditions. We also recall an example from cooperative game theory: a maximal stable
effectivity function that is not self-dual and not convex.
Key words: game, game form, saddle point, Nash equilibrium, effectivity function, minimal,
locally minimal.



1 Introduction

1.1 Minimal and locally minimal Boolean vectors

Let us recall that x is a minimal true vector of a Boolean function f if f(x) = 1 and
f(x′) = 0 whenever x′ < x. Furthermore, x is a locally minimal true vector of f if f(x) = 1
and f(x′) = 0 for every immediate predecessor of x, that is, for each x′ such that x− x′ is a
unit vector. Clearly, each minimal true vector is locally minimal and these two concepts are
equivalent for monotone Boolean functions, and not only for them, as we shall see below.

If a Boolean function is given by a polynomial oracle then the local minimality of a vector
can be tested in polynomial time. In contrast, verifying the minimality can be NP-hard. For
instance if f is represented by a CNF, then testing minimality is as hard as satisfiability.

In this paper we consider Boolean functions related to the families of games and game
forms mentioned in the Abstract. The variables of these functions are the strategies of the
players, for example, the rows and columns of a matrix in case of two-person games.

In Section 5 we also consider a problem from cooperative game theory related to charac-
terizing maximal stable effectivity functions.

1.2 Minimal and locally minimal matrix games without saddle
points

A matrix (or matrix game) A = (a(i, j))j∈J
i∈I is a real valued mapping a : I×J → IR. Its rows

I and columns J are the strategies of two players: R, the maximizer, and C, the minimizer.
A situation (that is, a pair of strategies) (i, j) ∈ I × J is called a saddle point (in pure
strategies) if no player can improve the result by choosing another strategy, that is, if

a(i, j) ≥ a(k, j) ∀k ∈ I and a(i, j) ≤ a(i, `) ∀` ∈ J. (1.1)

It is well-known and easy to see that if (i, j) and (k, `) are two saddle points then (i, `)
and (k, j) are also saddle points and a(i, j) = a(k, j) = a(i, `) = a(k, `).

Furthermore, a matrix game has a saddle point if and only if its maxmin and minmax
are equal, that is,

vR = max
i∈I

min
j∈J

a(i, j) = min
j∈J

max
i∈I

a(i, j) = vC . (1.2)

It is also well-known and easy to see that vR ≤ vC holds for all real matrices.
In particular, it is easy to see that a 2 × 2 matrix (|I| = |J | = 2) has no saddle point

if and only if both entries of one diagonal are strictly larger than both entries of the other
diagonal, that is,

min{a(1, 1), a(2, 2)} > max{a(1, 2), a(2, 1)} or

min{a(1, 2), a(2, 1)} > max{a(1, 1), a(2, 2)}.
(1.3)

In 1964 Shapley proved that there are no other minimal saddle point free (SP-free) matrices.
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Theorem 1 ([16]). A matrix has a saddle point whenever each of its 2×2 submatrices have
one.

Clearly, this condition is only sufficient but not necessary. Indeed, row i and column j
uniquely define whether a situation (i, j) is a saddle point or not; the rest of the matrix is
irrelevant.

Shapley’s proof of Theorem 1 is short and elegant. Assume indirectly that a matrix A
has no saddle point. Then vR < vC . Let us choose a number v such that vR < v < vC . Since
v < vC , each column in A contains an entry strictly greater than v. Let us choose a column
j ∈ J in which the number of such entries is minimal. Still, a(i, j) > v for some row i ∈ I.
Since v > vR, each row contains an entry strictly lesser than v. In particular, a(i, j′) < v for
some j′ ∈ J . Clearly, j′ 6= j, since a(i, j) > v > a(i, j′). Moreover, these inequalities and the
choice of j imply that a(i′, j) ≤ v < a(i′, j′) for some i′ ∈ I. The obtained 2× 2 submatrix
{i, i′} × {j, j′} has no saddle point, by (1.3). �

We strengthen this theorem and show that not only all minimal but also all locally
minimal SP-free matrices are of size 2× 2.

Theorem 2 If a matrix A is SP-free but a saddle point appears after deleting an arbitrary
row or column of it, then A is of size 2× 2.

The proof will be given in Section 2. Next, we will extend these results further to arbitrary
(not necessarily zero-sum) two-person games.

1.3 Locally minimal bimatrix games without Nash equilibria

Let again I and J be two finite sets of strategies of the players R and C, respectively. A
bimatrix game (A,B) is defined as a pair of mappings a : I × J → IR and b : I × J → IR
that specify the utility (or payoff) functions of the players R and C, respectively. Now
both players can be considered as maximizers. A situation (i, j) ∈ I × J is called a Nash
equilibrium if no player can improve the result by choosing another strategy, that is, if

a(i, j) ≥ a(k, j) ∀k ∈ I and b(i, j) ≥ b(i, `) ∀` ∈ J. (1.4)

Clearly, Nash equilibria generalize saddle points that correspond to the zero-sum case:
a(i, j)+ b(i, j) = 0 for all i ∈ I and j ∈ J . However, unlike SP-free games, the minimal Nash
equilibria free (NE-free) bimatrix games may be larger than 2× 2. Let us recall an example
from [11].

Example 1 Consider a 3× 3 bimatrix game (A,B) such that
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b(i1, j1) > b(i1, j2 ≥ b(i1, j3),
b(i2, j3) > b(i2, j1) ≥ b(i2, j2),
b(i3, j2) > b(i3, j3) ≥ b(i3, j1);

a(i2, j1) > a(i1, j1) ≥ a(i3, j1),
a(i1, j2) > a(i3, j2) ≥ a(i2, j2),
a(i3, j3) > a(i2, j3) ≥ a(i1, j3).

Naturally, for situations in the same row (respectively, column) the values of b (respec-
tively, a) are compared, since player R controls rows and has utility function a, while C
controls columns and has utility function b. It is easy to see that: b(i1, j1) is the unique max-
imum in the row i1 and a(i1, j1) is the second largest in the column j1. Similarly, b(i2, j3)
is the unique maximum in i2 and a(i2, j3) is the second largest in j3; b(i3, j2) is the unique
maximum in i3 and a(i3, j2) is the second largest in j2; a(i2, j1) is the unique maximum in
j1 and b(i2, j1) is the second largest in i2; a(i1, j2) is the unique maximum in j2 and b(i1, j2)
is the second largest in i1; a(i3, j3) is the unique maximum in j3 and b(i3, j3) is the second
largest in i3.

Consequently, this game is NE-free, since no situation is simultaneously the best in its
row with respect to b and in its column with respect to a. Yet, if we delete a row or column
then a Nash equilibrium appears. For example, let us delete i1. Then the situation (i3, j2)
becomes a Nash equilibrium. Indeed, b(i3, j2) is the largest in the row i3 and a(i3, j2) was
the second largest in the column j2, after a(i1, j2) that was deleted with row i1. Similarly,
the situations (i1, j1), (i2, j3), (i1, j2), (i3, j3), (i2, j1) become Nash equilibria after deleting
i2, i3, j1, j2, j3, respectively. Thus, (A,B) is locally minimal NE-free bimatrix game. More-
over, it is also minimal. Indeed, one can easily verify that all 2× 2 subgames of (A,B) have
a Nash equilibrium and, of course, 1× 2, 2× 1, and 1× 1 games always have it.

In general, the following criterion of the local minimality holds.

Theorem 3 A bimatrix game (A,B) is a locally minimal NE-free game if and only if the
following conditions hold

(i) it is square, that is, |I| = |J | = n;

(ii) there exist two one-to-one mappings (permutations) σ : I → J and δ : J → I such that
their graphs, gr(σ) and gr(δ), are disjoint in I × J , or in other words, if (i, σ(i)) 6=
(δ(j), j) for all i ∈ I and j ∈ J ;

(iii a) the entry a(i, σ(i)) is the unique maximum in row i and the second largest (though not
necessarily unique) in column σ(i);

(iii b) the entry b(δ(j), j) is the unique maximum in column j and the second largest (though
not necessarily unique) in row δ(j).
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Obviously, in any bimatrix game at most one such pair of permutations (σ, δ) can exist and
its existence can be verified in O(n2) time. Thus, Theorem 3 provides a linear time algorithm
for verifying local minimality. Let us remark that the definition of local minimality itself
guarantees an O(n3) time recognition algorithm.

The “if” part of Theorem 3 is easy to prove. We just repeat the same arguments as
in Example 1. Suppose that conditions (i, ii, iii a, iii b) hold. Then (A,B) has no Nash
equilibria, that is, no situation (i, j) ∈ I × J is the best simultaneously in its row i (with
respect to b) and in its column j ()with respect to a. Indeed, for each situation (i, j) we
have: a(i, σ(i)) ≥ a(i, j) whenever j 6= σ(i)) and b(δ(j), j) ≥ b(i, j) whenever i 6= δ(j)).
Moreover, at least one of these two inequalities must hold, since if they both fail then
(i, σ(i)) = (δ(j), j) = (i, j) in contradiction to condition (ii).

Remark 1 In particular, 2n situations (i, σ(i)), i ∈ I and (δ(j), j), j ∈ J form so-called
strict improvement cycle. It is not surprising, since such a cycle must exist in every NE-free
bimatrix game.

Let us next consider the deletion of a row i ∈ I. Consider two columns j = σ(i) and
j′ = δ−1(i), row i′ = σ−1δ−1(i), and three situations: (i, j) = (i, σ(i)), (i, j′) = (i, δ−1(i)), and
finally, (i′, j′) = (σ−1δ−1(i), δ−1(i)). Let us show that (i′, j′) is a Nash equilibrium. Indeed,
a(i′, j′) is a unique maximum in the row i′ and b(i′, j′) is the second largest in the column
j′, by definition of σ. Yet, the unique maximum b(i, j′) in the column j′ is deleted with the
row i. Hence, (i′, j′) is a Nash equilibrium in the remaining matrix.

Similarly, if we delete a column j ∈ J , the situation (σ−1(j), δ−1σ−1(j)) becomes a Nash
equilibrium.

However, the “only if part” of Theorem 3 is more difficult and we postpone its proof till
Section 3.

1.4 Minimal Nash equilibria free bimatrix games

Clearly, every minimal NE-free bimatrix game is locally minimal and hence, it must satisfy
all conditions of Theorem 3. Yet, not vice versa. A locally minimal NE-free bimatrix game
might not be minimal for two reasons. First, I × J may contain a proper NE-free subgame
I ′ × J ′ disjoint from gr(δ) ∪ gr(σ). Second, a locally minimal NE-free game I × J might be
decomposed in two NE-free subgames. Let us consider the superpositions τ = δσ : I → I
and µ = σδ : J → J . A permutation π : S → S is called transitive if the orbit of each
element of S is the whole set S. It is obvious and well-known that τ and µ can be transitive,
or not, only simultaneously. It is also clear that if they are not transitive then I × J can be
decomposed, that is, there are two partitions I = I ′ ∪ I ′′ and J = J ′ ∪ J ′′ such that all four
sets I ′, I ′′, J ′, J ′′ are non-empty and

gr(δ) ∪ gr(σ) ⊆ (I ′ × J ′) ∪ (I ′′ ∪ J ′′).



– 5 –

Obviously, in this case both subgames I ′×J ′ and I ′′×J ′′ satisfy all conditions of Theorem
3 (in particular, they are both square, that is, |I ′| = |J ′|, |I ′′| = |J ′′|) and hence, they are
both NE-free and locally minimal. Thus, the original game I × J is not minimal, although
it is locally minimal. Summarizing, we obtain the following conditions that are necessary
for minimality.

Proposition 1 Each minimal NE-free bimatrix game is locally minimal and, in particular,
it is square. Moreover, the product τ = δσ : I → I (or equivalently, µ = σδ : J → J) of the
permutations defined by Theorem 3 is transitive. �

To verify the minimality of a locally minimal NE-free game we have to check its proper
(square) subgames. Yet, many of them can be excused from inspection.

Lemma 1 If τ and µ are transitive then a proper subgame I ′ × J ′ ⊂ I × J has a Nash
equilibrium whenever

(gr(δ) ∪ gr(σ)) ∩ (I ′ × J ′) 6= ∅. (1.5)

Proof . Assume indirectly that the subgame is NE-free, although (1.5) holds. Without loss of
generality, suppose that I ′×J ′ contains a situation (i, j) = (i, σ(i)) ∈ gr(σ). By definition of
σ, this situation (i, j) is a Nash equilibrium unless I ′×J ′ contains also (i1, j) = (δσ(i), σ(i)).
In its turn, by definition of δ, the situation (i1, j) is a Nash equilibrium unless I ′×J ′ contains
also (i1, j1) = (δσ(i), σδσ(i)), etc. We conclude that (I ′ × J ′) ⊇ gr(σ) ∪ gr(δ). Yet, in this
case I ′ × J ′ = I × J , that is, the considered subgame is not proper in contradiction to our
assumptions. �

Summarizing, we obtain the following necessary and sufficient conditions for minimality.

Proposition 2 A bimatrix game (A,B) is a minimal NE-free game if and only if there exist
two permutations δ and σ satisfying all conditions of Theorem 3 and Proposition 1 and such
that no square subgame I ′ × J ′ disjoint from gr(δ) ∪ gr(σ) is locally minimal. �

Although all subgames that are not square or intersect gr(σ) ∪ gr(δ) can be excused,
still, exponentially many subgames remain for inspection. For this reason, we conjecture
that verifying minimality is NP-hard.

Remark 2 Let us note that locally minimal (and minimal) games that have Nash equilibria
(in particular, saddle points) are trivial: each player in such a game has only one strategy.
This is true for k-person games, as well. Indeed, if (j1, . . . , jk) is a Nash equilibrium then
one can delete any other strategy of any player and still, the same situation will remain a
Nash equilibrium in the reduced subgame.
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g1 =
a1 a2

a2 a1
g2 =

a1 a1

a2 a3

Figure 1: Two 2× 2 game forms.

1.5 Tight and solvable two-person game forms

Somewhat informally, a game form is a “game in which payoffs are not yet given”. Formally,
given two finite sets of strategies I and J of players R and C, respectively, and a set of
outcomes A = {a1, . . . , ap}, a game form is a mapping g : I × J → A. It is convenient to
represent a game form by a matrix whose entries are elements of A. Consider, for example,
the two 2× 2 game forms given in Figure 1.

A game form g is called Nash-solvable if for each utility functions uR : A → IR and
uC : A→ IR, the obtained bimatrix game (g, uR, uC) has a Nash equilibrium. Furthermore,
g is called zero-sum-solvable if for each utility function u : A → IR the obtained zero-sum
game, uR = u, uC = −u, has a saddle point. Finally, g is ±1-solvable if (g, u) has a saddle
point for each u that takes only two values: +1 and −1. We will see soon that all these
properties are in fact equivalent. For example, g2 in Figure 1 is Nash-solvable, while g1 is
not.

Given g : I × J → A, let assign a Boolean variable to each outcome a ∈ A and denote
it for simplicity by the same symbol a. Furthermore, let us assign two Disjunctive Normal
Forms (DNFs) to g as follows:

DR(g) =
∨
j∈J

∧
i∈I

g(i, j) and DC(g) =
∨
i∈I

∧
j∈J

g(i, j).

Let us notice a certain similarity between these two DNFs and the maxmin and minmax.
For the above two examples we get

DR(g1)=DC(g1) = a1a2, and

DR(g2)=a1 ∨ a2a3

DC(g2)=a1a2 ∨ a2a3.

Let us denote by FR(g) and FC(g) the monotone Boolean functions defined by the DNFs
DR(g) and DC(g), respectively. A game form g is called tight if FR(g) and FC(g) are dual,
F d

R(g) = FC(g), or equivalently, F d
C(g) = FR(g). For example, g2 is tight, while g1 is not,

since

FR(g2)
d = (a1 ∨ a2a3)

d = a1(a2 ∨ a3) = a1a2 ∨ a1a3 = FC(g2),

while

FR(g1)
d = (a1a2)

d = a1 ∨ a2 6= a1a2 = FC(g1).
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The above definition of tightness can be reformulated in several equivalent ways as follows.
Given a game form g : I × J → A and two more mappings σ : I → J and δ : J → I, let
us consider two subsets of A : [σ] = g(gr(σ)) and [δ] = g(gr(δ)). In particular, let
σj : I → {j} ∈ J and δi : J → {i} ∈ I denote mappings σ and δ that take a unique value.

Proposition 3 The following properties of a game form are equivalent:

(i) g is tight;
(ii) [σ] ∩ [δ] 6= ∅ for each σ and δ;
(iii R) for each σ there is a j ∈ J such that [σj] ⊆ [σ];
(iii C) for each δ there is an i ∈ I such that [δi] ⊆ [δ]. �

All these reformulations are well-known; see for example [7, 8].
It appears that all variants of solvability defined above are equivalent, too.

Theorem 4 ([7], see also [8]). The following properties of a game form g are equivalent:
(i) g is Nash-solvable;
(ii) g is zero-sum-solvable;
(iii) g is ±1-solvable;
(iv) g is tight. �

A game form g is called solvable if it has all these equivalent properties.

Remark 3 The concepts of tightness and Nash-solvability can be naturally generalized for
the k-person game forms, see Section 5. However, they are no longer equivalent. Already for
k = 3, tightness is neither necessary nor sufficient for Nash-solvability; see [8].

Given a two-person game form g : I × J → A, let us consider the problem of deciding
whether it is tight, or not. This decision problem seems difficult, at least, no polynomial
algorithm is known. Yet, it is very unlikely that this problem is NP-complete, since there is a
quasi-polynomial algorithm by Fredman and Khachiyan [6]. Its running time is p`+ `o(log `),
where |A| = p, m = |I|, n = |J |, and ` = m+ n.

1.6 Minimal and locally minimal not tight two-person game forms

Theorem 5 All minimal and locally minimal not tight game forms are of size 2× 2.

Up to isomorphism (transposition included), there are seven 2× 2 game forms:

a1 a2

a2 a1

a1 a2

a3 a1

a1 a2

a3 a4

a1 a1

a2 a2

a1 a1

a2 a3

a1 a1

a1 a2

a1 a1

a1 a1
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The last four are tight, the first three are not. In other words, a 2 × 2 game form is tight
if and only if it contains a row or column whose two entries coincide. We derive Theorem 5
from Theorems 2 and 4. Let g be a locally minimal not tight game form. Then, by definition
of tightness, there is a utility function u : A→ IR such that the zero-sum game (g, u) has no
saddle point. Furthermore, since g is a locally minimal not tight game form, a saddle point
appears in (g, u) after deleting a strategy i ∈ I or j ∈ J . Hence, (g, u) is a locally minimal
SP-free game and, by Theorem 2, it is of size 2× 2. �

Yet, we have no characterization of minimal or locally minimal not tight k-person game
forms for k > 2.

Somewhat surprisingly, it appears difficult to characterize locally minimal tight k-person
game forms even for k = 2.

1.7 Minimal and locally minimal tight two-person game forms

At first, let us notice that all minimal tight game forms are trivial, that is, they are of size
1× 1. Moreover, for each k ≥ 2, all minimal tight k-person game forms are trivial, too.

In contrast, characterization of locally minimal tight two-person game forms seems dif-
ficult. We obtain only some necessary and some sufficient conditions for local minimality.
However, Fredman and Khachiyan’s algorithm [6] provides a quasi-polynomial oracle for
verifying tightness of a game form g. Hence, one can also verify in quasi-polynomial time
whether g is a locally minimal tight game form.

Let us recall that a game form g : I × J → A is tight if and only if its Boolean functions
FR(g) and FC(g) are dual. Furthermore, let [i] = {g(i, j) | j ∈ J} ⊆ A and [j] =
{g(i, j) | i ∈ I} ⊆ A denote the set of outcomes in the row i ∈ I and column j ∈ J of g,
respectively. Then

DR(g) =
∨
i∈I

∧
a∈[i]

a and DC(g) =
∨
j∈J

∧
a∈[j]

a.

A (monotone) DNF is called irredundant if its prime implicants do not contain one
another. In particular, DR(g) and DC(g) are irredundant if [i] ⊆ [i′] for no distinct i, i′ ∈ I
and [j] ⊆ [j′] for no distinct j, j′ ∈ J, respectively. If both these conditions hold then the
game form g itself will be called irredundant, too. Obviously, irredundancy is necessary for
local minimality.

Proposition 4 If g is a locally minimal tight game form then DR(g) and DC(g) are dual
irredundant monotone DNFs.

Proof . Indeed, DR(g) and DC(g) are dual by definition of tightness. Moreover, they are
irredundant, since otherwise one can delete a row i ∈ I or column j ∈ J and the reduced
game form remains tight. �

Given a game form g : I × J → A, row i ∈ I, column j ∈ J , and an outcome a ∈ A, let
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k(i, a) = |{j′ ∈ J | g(i, j′) = a}| and k(j, a) = |{i′ ∈ I | g(i′, j) = a}|

denote the numbers of occurrences of a in the row i and column j; if k(i, a) = 1 or k(i, a) = 1,
we will say that a is a singleton in i or j, respectively. The following conditions are sufficient
for local minimality of g.

Proposition 5 An irredundant tight game form g : I × J → A is locally minimal whenever
k(i, a) 6= 1 and k(i, a) 6= 1 for all i ∈ I, j ∈ J, and a ∈ A, or in other words, if all rows and
columns contain no singletons.

Proof . Let us delete, say, a row i ∈ I. Since DNF DR(g) is irredundant, by this, the
corresponding monotone Boolean function FR(g) will be strictly reduced. On the other
hand, FC(g) will remain the same, since k(a, j) 6= 1 for all a ∈ A and j ∈ J . Hence, although
a = g(i, j) is deleted from the column j, yet, this column contains another entry g(i′, j) = a.
Thus, the reduced game form cannot be tight, since its two DNFs are no longer dual. �

Example 2 To illustrate Proposition 5 let us consider the DNF D whose prime implicants
are assigned to the lines of the Fano plane:

D = a0a1a4 ∨ a0a2a5 ∨ a0a3a6 ∨ a1a2a3 ∨ a3a4a5 ∨ a5a6a1 ∨ a2a4a6.

It is known that D is self-dual, that is Dd = D. Let us consider an irredundant game form
g such that DR(g) = DC(g) = D. For example,

a0 a0 a0 a1 a4 a1 a4

a0 a0 a0 a2 a5 a5 a2

a0 a0 a0 a3 a3 a6 a6

a1 a2 a3 a1 a3 a1 a2

a4 a5 a3 a3 a3 a5 a4

a1 a5 a6 a1 a5 a5 a6

a4 a2 a6 a2 a4 a6 a2

Clearly, conditions of Proposition 5 hold for g, that is, k(i, a) 6= 1 and k(i, a) 6= 1 for all
i ∈ I, j ∈ J, and a ∈ A. Indeed, for each line ` of the Fano plane and a point x in it there
are another two lines that intersect ` in x. Hence, by Proposition 5 the above 7 × 7 game
form is a locally minimal tight one.

Less obvious sufficient conditions for local minimality will be given in Section 4. They
are weaker than the conditions of Proposition 5 but still not necessary.
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2 Proof of Theorems 2

Let A be a matrix game given by a mapping a : I × J → IR. Assume indirectly that A has
no saddle point but it appears whenever we delete a row or column of A.

In particular, after we delete a row i ∈ I a situation (i′, j) becomes a saddle point. By
definition, it means that the entry a(i′, j) becomes (though it was not) maximal in column
j and it is minimal in row i′. Then we conclude that a(i, j) is a unique maximum, while
a(i′, j) is the second largest entry (not necessarily unique) of column j. Indeed, it is easy to
see that otherwise (i′, j) could not become a saddle point. Furthermore, we conclude that
m = |I| ≤ |J | = n, since for each i ∈ I there exists a j ∈ J such that a(i, j) is a unique
maximum in column j.

Similarly, after we delete a column j ∈ J a situation (i, j′) becomes a saddle point. By
definition, it means that the entry a(i, j′) becomes (though it was not) minimal in row i
and it is maximal in column j′. Then we conclude that a(i, j) is a unique minimum, while
a(i, j′) is the second smallest entry (not necessarily unique) of row i. Indeed, it is easy to
see that otherwise (i, j′) could not become a saddle point. Furthermore, we conclude that
m = |I| ≥ |J | = n, since for each j ∈ J there exists a i ∈ I such that a(i, j) is a unique
minimum in row i. Thus, m = n.

Furthermore, for each row i ∈ I its unique minimum entry a(i, j) = a(i, σ(i)) is the second
maximal in the column j = σ(i). Similarly, for each column j ∈ J its unique maximum entry
a(i, j) = a(δ(j), j) is the second minimal in the row i = δ(j).

Thus, we obtain two one-to-one mappings (permutations) σ : I → J and δ : J → I.
Let us notice that for each i ∈ I and j ∈ J inequality (i, σ(i)) 6= (δ(j), j) must hold, since
otherwise the original matrix would have a saddle point. In other words, graphs of σ and δ
in I × J are disjoint, gr(σ) ∩ gr(δ) = ∅.

Let us note that |I × J | = n2, while |gr(σ) ∪ gr(δ)| = 2n. If n = |I| = |J | = 2 then
gr(σ)∪ gr(δ) = I × J, that is, these two graphs partition the matrix. In this case we obtain
a locally minimal SP-free game.

However, if m = n > 2 then there exists a situation (i, j) such that (i, j) 6∈ gr(σ)∪ gr(δ).
This case results in a contradiction, since, by definition of σ and δ, we have

a(i, j) > a(i, σ(i)) ≥ a(δ(j), σ(i) ≥ a(δ(j), j) > a(i, j).

Indeed, entry a(i, σ(i)) is a unique minimum in its row i and the second largest in its
column σ(i); respectively, a(δ(j), j) is a unique maximum in its column j and the second
smallest in its row δ(j). It remains to add that

(δ(j), σ(i)) 6∈ gr(σ) ∪ gr(δ),

since both σ : I → J and δ : J → I are one-to-one mappings. �
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3 Proof of Theorem 3

The “if part” was already proven in Introduction. Let us now prove the “only if” part.
Given a locally minimal NE-free bimatrix game (A,B) = (a : I × J → IR, b : I × J → IR),
let us denote by Ni (respectively, by N j) the set of Nash equilibria that appears after the
row i ∈ I (respectively, column j ∈ J) is deleted.

Claim 1 i. If (i′, j′) ∈ Ni then a(i, j′) is a unique maximum in column j′, while a(i′, j′)
is the second maximal entry (not necessarily unique) in this column.

Proof . Indeed, situation (i′, j′) was not a Nash equilibrium in the original matrix but it
becomes one after row i is deleted. Hence, a(i, j′) > a(i′, j′); moreover, a(i′′, j′) > a(i′, j′)
for no other i′′ ∈ I. In particular, a(i′′, j′) = a(i, j′) for no i′′ distinct from i. Hence, a(i, j′)
is a unique maximum in column j′, while a(i′, j′) is the second maximal entry (perhaps, not
unique) in this column. �

Respectively, for N j the following similar statement holds.

Claim 1 j. If (i′, j′) ∈ Nj then b(i′, j) is a unique maximum in row i′, while b(i′, j′) is
the second maximal entry (not necessarily unique) in this row. �

Let us denote by R(Ni), R(N j) ⊆ I and C(Ni), C(N j) ⊆ J , respectively, the sets of
the rows and columns of the equilibria Ni and N j. In other words, R(Ni) and R(N j)
(respectively, C(Ni) and C(N j)) are projections of sets Ni and N j in I (respectively, in J).

Claim 2 i. For every distinct i, i′ ∈ I we have C(Ni) ∩ C(Ni′) = ∅.
Proof . Assume indirectly that j ∈ C(Ni) ∩ C(Ni′). Then, by Claim 1 i, each entry a(i, j)
and a(i′, j) must be a unique maximum in j. Hence, i = i′ and we get a contradiction. �

Respectively, for columns we get a similar statement.

Claim 2 j. For every distinct j, j′ ∈ J we have R(N j) ∩R(N j′
) = ∅. �

Furthermore, Claim 2 i (respectively, Claim 2 j) immediately implies that m ≤ n (re-
spectively, n ≤ m), and hence, m = n.

Claim 3. Every locally minimal NE-free bimatrix is square, that is, n = |J | = |I| = m.
�

Claim 4. For every i ∈ I and j ∈ J we have |C(Ni)| = |R(N j)| = 1.

Proof . Indeed, this Claim easily results from Claims 2 and 3. �

Thus, we assign a unique column C(Ni) to each row i ∈ I and unique row R(Nj) to each
column j ∈ J . Claims 2,3, and 4 imply that both mappings are one-to-one. Let us denote
them by δ−1 and σ−1, respectively:

δ−1 : i→ C(Ni) ∈ J ; and ; σ−1 : j → R(N j) ∈ I.

Such a notation appears to be consistent with Section 1.3.
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Claim 5. In each row i ∈ I the payoff b(i, j) takes a unique maximum at situation
(i, σ(i)).

Respectively, in each column j ∈ J the payoff a(i, j) takes a unique maximum at situation
(δ(j), j).

Proof . All these claims follow from the definitions of σ, δ and Claim 1. �

Now we are ready to “transpose” Claim 2. Indeed, Claim 5 implies the following state-
ment.

Claim 6. For every distinct i, i′ ∈ I we have R(Ni) ∩R(Ni′) = ∅.
Respectively, for every distinct j, j′ ∈ J we have C(N j) ∩ C(N j′

) = ∅. �

Furthermore, Claims 4 and 6 imply that only one Nash equilibrium appears after deleting
a row or column.

Claim 7. For each row i ∈ I and column j ∈ J we have |Ni)| = |N j)| = 1. �

From definitions of σ, δ, and Claim 1 we derive the explicit formulas:

Ni = {(σ−1δ−1(i), δ−1(i))} and N j = {(σ−1(j), δ−1σ−1(j))}.

Finally, let us recall Claims 1 once more and derive the last statement.

Claim 8. The entry a(i, σ(i)) is the second maximal (not necessarily unique) in the
column σ(i).

Respectively, b(δ(j), j) is the second maximal (not necessarily unique) in the row δ(j).
�

This concludes the proof of Theorem 3 �

4 More about locally minimal tight game forms

Let us return to sufficient conditions of Proposition 5.

Example 3 The following game form g

a1 a3 a3 a5 a5 a1

a1 a3 a4 a4 a1 a3

a2 a2 a3 a5 a5 a3

a2 a2 a4 a4 a1 a1

satisfies these conditions. It is easy to see that g is tight and irredundant. Indeed, its DNFs

DR(g) = a1a3a5 ∨ a1a3a4 ∨ a2a3a5 ∨ a1a2a4 and
DC(g) = a1a2 ∨ a2a3 ∨ a3a4 ∨ a4a5 ∨ a5a1 ∨ a1a3
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are irredundant and dual. Furthermore, functions k(i, a) and k(j, a) take only values 0 and
2 for all i ∈ I, j ∈ J, and a ∈ A. Hence, conditions of Proposition 5 hold and g is a locally
minimal tight game form.

However, conditions of Proposition 5 are not necessary for local minimality.

Example 4 Let us consider the following game form g:

a1 a2 a3 a3 a2

a4 a2 a3 a3 a2

a4 a5 a3 a5 a4

a4 a5 a6 a5 a4

a1 a5 a6 a1 a6

a1 a2 a6 a1 a6

It is easy to see that g is tight and irredundant, since its monotone DNFs

DR(g) = a1a2a3 ∨ a2a3a4 ∨ a3a4a5 ∨ a4a5a6 ∨ a5a6a1 ∨ a6a1a2 and
DC(g) = a1a4 ∨ a2a5 ∨ a3a6 ∨ a1a3a5 ∨ a2a4a6

are irredundant and dual. Yet, conditions of Proposition 5 fail. Indeed, it is easy to see that
each row contains a singleton (rows i1, i2, i3, i4, i5, i6 contain singletons a1, a4, a3, a6, a5, a2

in columns j1, j1, j3, j3, j2, j2, respectively). Nevertheless, g is a locally minimal tight game
forms. To show it we have to verify that after deleting a row or column the reduced game form
becomes not tight. Indeed, deleting a row will strictly reduce FR(g), while FC(g) remains the
same, since no column contains a singleton. Hence, the reduced game form is not tight. For
the same reason, it cannot remain tight after deleting one of the last two columns. Hence, we
have to verify only the first three columns. Due to symmetry, all three cases are equivalent.
For example, after deleting the first column we get a reduced game form g′ with DNFs

DR(g′) = a2a3 ∨ a2a3 ∨ a3a4a5 ∨ a4a5a6 ∨ a5a6a1 ∨ a6a1a2, and
DC(g) = a2a5 ∨ a3a6 ∨ a1a3a5 ∨ a2a4a6

that are not dual, and hence, the reduced game form is not tight.

To understand this example better we need some new concepts. Given a game form
g : I × J → A, by definition, g(i, j) ∈ [i] ∩ [j]. A situation (i, j) ∈ I × J is called simple if
[i] ∩ [j] = {g(i, j)}.

Remark 4 All situations of a tight game form g are simple if and only if DR(g) and DC(g)
are dual irredundant read-once DNFs.

Remark 5 In Example 2 all situations except seven diagonal ones are simple. In Example
3 all situations are simple, except for (i1, j5), (i1, j6), (i2, j6), (i2, j3), (i3, j2), (i4, j1); for
example, [i4] ∩ [j1] = {a1, a2}. If we substitute a1 for g(i4, j1) = a2 then the obtained game
form g′ will contain the singleton a2 in the first column j1 and last row i4. Hence, conditions
of Proposition 5 do not hold for g′. Moreover, it is easy to check that g′ is tight but not
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locally minimal tight game form. In contrast, in Example 2, in which 7 diagonal situations
(i`, j`) are not simple, one can substitute arbitrary outcomes from [i`] ∩ [j`] for g(i`, j`) for
` = 1, . . . , 7 and still all obtained game forms satisfy conditions of Proposition 5 and hence
they are all locally minimal.

Proposition 6 If g is a tight game form then for every i ∈ I and a ∈ [i] there exists a j ∈ J
such that g(i, j) = a and (i, j) is simple, that is [i]∩ [j] = {a}. Respectively, for every j ∈ J
and a ∈ [j] there exists an i ∈ I such that g(i, j) = a and (i, j) is simple. �

This is a well-known property of dual DNFs; see for example [3].
Let us now return to Example 4. Note that g(i5, j1) = a1 and k(i5, a1) = 2, since

g(i5, j4) = a1, too. However, the situation (i5, j4) is not simple: [i5] ∩ [j4] = {a1, a5}.
Similarly, g(i4, j1) = a4 and k(i4, a4) = 2, since g(i4, j5) = a4, too. However, the situation
(i4, j5) is not simple: [i4] ∩ [jj] = {a4, a6}. For this reason, after we delete column j1 from
g the obtained game form is not tight. Indeed, its DNF DR contains implicants a1a5a6 and
a4a5a6 generated by rows i5 and i4, respectively, instead of a5a6, a dual implicant of DC .

A situation (i, j) will be called a hidden singleton in i (respectively, in j) if k(i, a) ≥ 2,
(respectively, k(j, a) ≥ 2), where a = g(i, j), and the situation (i, j) is simple, while any other
situations (i, j′) such that g(i, j′) = a (respectively, (i′, j)) such that g(i′, j) = a) is not simple.
A hidden singleton (i, j) in i (respectively, in j) is called effective if [i] \ {a} ⊃ [i′] \ {g(i′, j)}
for no i′ ∈ I (respectively, if [j] \ {a} ⊃ [j′] \ {g(i, j′)} for no j′ ∈ J. The sufficient conditions
of Proposition 5 we can weaken as follows.

Proposition 7 An irredundant tight game form g : I × J → A is locally minimal whenever
for each simple situation (i, j) such that g(i, j) = a and k(i, a) = 1 (respectively, k(j, a) = 1)
there exists an effective hidden singleton in j (respectively, in i).

Proof . If we delete a row i (column j) that contains no singletons, that is, k(j, g(i, j) ≥ 2 for
each j ∈ J (respectively, k(i, g(i, j) ≥ 2 for each i ∈ I then we can just repeat the arguments
from the proof of Proposition 5. If i or j contains a singleton then it must contain also an
effective hidden singleton and hence, the reduced game form still cannot be tight. �

Clearly, Propositions 7 provides sufficient conditions for local minimality that are weaker
than in Proposition 5. However, they are still not necessary. An example is pretty compli-
cated, so we start with two preliminary constructions.

Example 5 Consider the following irredundant tight game form g.

a1 a2 a1 a2

a5 a5 a1 a3

a6 a6 a1 a3

a5 a5 a4 a2

a6 a6 a4 a2

a5 a5 a4 a3

a6 a6 a4 a3
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DR(g) = a1a2 ∨ a1a3a5 ∨ a1a3a6 ∨ a2a4a5 ∨ a2a4a6 ∨ a3a4a5 ∨ a3a4a6,
DC(g) = a1a2 ∨ a1a5a6 ∨ a2a5a6 ∨ a1a4 ∨ a2a3; F d

R = FC .

If we delete the first row, the reduced game form g1 is no longer tight. Indeed,

DR(g1) = a1a3a5 ∨ a1a3a6 ∨ a2a4a5 ∨ a2a4a6 ∨ a3a4a5 ∨ a3a4a6,
DC(g1) = a5a6 ∨ a5a6 ∨ a1a4 ∨ a2a3; F d

R(g1) 6= FC(g1).

Let us note that the first row contains singletons in the first two columns, while all other
rows do not contain singletons. Yet, the last two columns contain singletons, too (in fact,
in each row, except the first one). It is easy to verify that after deleting the third or forth
column the reduced game form remains tight.

Hence, we need to modify (and substantially enlarge) this example.

Example 6 Let us consider the following irredundant tight game form g′

a′1 a′1 a′2 a′2 a′5 a′5 a′6 a′6
a′1 a′1 a′2 a′2 a′7 a′8 a′7 a′8
a′3 a′4 a′3 a′4 a′5 a′5 a′6 a′6
a′3 a′4 a′3 a′4 a′7 a′8 a′7 a′8

DR(g′) = a′1a
′
2a
′
5a
′
6 ∨ a′1a′2a′7a′8 ∨ a′3a′4a′5a′6 ∨ a′3a′4a′7a′8,

DC(g′) = a′1a
′
3 ∨ a′1a′4 ∨ a′2a′3 ∨ a′2a′4 ∨ a′5a′7 ∨ a′5a′8 ∨ a′6a′7 ∨ a′6a′8; F d

R(g′) = FC(g′).

Notice that all situations of g′ are simple, since FR(g′) and FC(g′) are dual read-once
functions:

FR(g′)=(a′1a
′
2 ∨ a′3a′4)(a′5a′6 ∨ a′7a′8),

FC(g′)=(a′1 ∨ a′2)(a′3 ∨ a′4) ∨ (a′5 ∨ a′6)(a′7 ∨ a′8).

Now let us define a game form g′′ = g + g′, where g is from Example 5:

a1a2a1a2 a1a2a1a2 a1a2a1a2 a1a2a1a2 a1a2a1a2 a1a2a1a2 a1a2a1a2 a1a2a1a2

a5a5a1a3 a5a5a1a3 a5a5a1a3 a5a5a1a3 a5a5a1a3 a5a5a1a3 a5a5a1a3 a5a5a1a3

a6a6a1a3 a6a6a1a3 a6a6a1a3 a6a6a1a3 a6a6a1a3 a6a6a1a3 a6a6a1a3 a6a6a1a3

a5a5a4a2 a5a5a4a2 a5a5a4a2 a5a5a4a2 a5a5a4a2 a5a5a4a2 a5a5a4a2 a5a5a4a2

a6a6a4a2 a6a6a4a2 a6a6a4a2 a6a6a4a2 a6a6a4a2 a6a6a4a2 a6a6a4a2 a6a6a4a2

a5a5a4a3 a5a5a4a3 a5a5a4a3 a5a5a4a3 a5a5a4a3 a5a5a4a3 a5a5a4a3 a5a5a4a3

a6a6a4a3 a6a6a4a3 a6a6a4a3 a6a6a4a3 a6a6a4a3 a6a6a4a3 a6a6a4a3 a6a6a4a3

a′1a
′
1a
′
1a
′
1 a′1a

′
1a
′
1a
′
1 a′2a

′
2a
′
2a
′
2 a′2a

′
2a
′
2a
′
2 a′5a

′
5a
′
5a
′
5 a′5a

′
5a
′
5a
′
5 a′6a

′
6a
′
6a
′
6 a′6a

′
6a
′
6a
′
6

a′1a
′
1a
′
1a
′
1 a′1a

′
1a
′
1a
′
1 a′2a

′
2a
′
2a
′
2 a′2a

′
2a
′
2a
′
2 a′7a

′
7a
′
7a
′
7 a′8a

′
8a
′
8a
′
8 a′7a

′
7a
′
7a
′
7 a′8a

′
8a
′
8a
′
8

a′3a
′
3a
′
3a
′
3 a′4a

′
4a
′
4a
′
4 a′3a

′
3a
′
3a
′
3 a′4a

′
4a
′
4a
′
4 a′5a

′
5a
′
5a
′
5 a′5a

′
5a
′
5a
′
5 a′6a

′
6a
′
6a
′
6 a′6a

′
6a
′
6a
′
6

a′3a
′
3a
′
3a
′
3 a′4a

′
4a
′
4a
′
4 a′3a

′
3a
′
3a
′
3 a′4a

′
4a
′
4a
′
4 a′7a

′
7a
′
7a
′
7 a′8a

′
8a
′
8a
′
8 a′7a

′
7a
′
7a
′
7 a′8a

′
8a
′
8a
′
8
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DR(g′′) = DR(g) ∨DR(g′)

= (a1a2 ∨ a1a3a5 ∨ a1a3a6 ∨ a2a4a5 ∨ a2a4a6 ∨ a3a4a5 ∨ a3a4a6)∨
(a′1a

′
2a
′
5a
′
6 ∨ a′1a′2a′7a′8 ∨ a′3a′4a′5a′6 ∨ a′3a′4a′7a′8),

FC(g′′) = DC(g) ∧DC(g′)

= (a1a2 ∨ a1a5a6 ∨ a2a5a6 ∨ a1a4 ∨ a2a3)∧
(a′1a

′
3 ∨ a′1a′4 ∨ a′2a′3 ∨ a′2a′4 ∨ a′5a′7 ∨ a′5a′8 ∨ a′6a′7 ∨ a′6a′8)

F d
R(g′′) = FC(g′′).

Thus, game form g′′ is tight. Furthermore, it is easy to see that there are no singletons
in the rows, while columns have singletons and they all are in the first row. Hence, to verify
local minimality of the g′′ it is enough to check that it becomes not tight after deleting the
first row. Clearly, the latter claim holds for g′′ if and only if it holds for g and this was
already verified in Example 5. Thus, g′′ is a locally minimal tight game form, indeed. Yet,
sufficient conditions of Propositions 5 and 6 fail for g′′, since all its singletons are located in
one row.

5 Maximal stable effectivity functions

Let us consider also an example from cooperative game theory.
Given a set of players (or voters) I = {1, . . . , n} and a set of outcomes (or candidates)

A = {a1, . . . , ap}, subsets K ⊆ I are called coalitions and subsets B ⊆ A blocks. An
effectivity function (EFF) is defined as a mapping E : 2I×2A → {0, 1}. We say that coalition
K ⊆ I is effective (respectively, not effective) for block B ⊆ A if E(K,B) = 1 (respectively,
E(K,B) = 0. Since 2I × 2A = 2I∪A, we can say that E is a Boolean function whose set of
variables I ∪ A is a mixture of the players and outcomes. The “complementary” function,
V(K,B) ≡ E(K,A\B), is called veto function; by definition, K is effective for B if and only if
K can veto A\B. Both names are frequent in the literature [1, 13, 12, 14, 15, 4, 9, 10, 5]. An
EFF is called monotone, superadditive, subadditive, and convex, respectively, if the following
implications hold:

E(K,B) = 1, K ⊆ K ′ ⊆ I, B ⊆ B′ ⊆ A ⇒ E(K ′, B′) = 1,

E(K1, B1) = 1, E(K2, B2) = 1, K1 ∩K2 = ∅ ⇒ E(K1 ∪K1, B1 ∩B2) = 1,

E(K1, B1) = 1, E(K2, B2) = 1, B1 ∩B2 = ∅ ⇒ E(K1 ∩K1, B1 ∪B2) = 1,

E(K1, B1) = 1, E(K2, B2) = 1, ⇒ E(K1∪K1, B1∩B2) = 1 or E(K1∩K1, B1∪B2) = 1.

Monotonicity will be always assumed. The name is consistent with Boolean terminology,
since an EFF E is monotone if and only if the corresponding Boolean function E : 2I∪A →
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{0, 1} is monotone. We will also assume that all considered EFFs satisfy the following
boundary conditions:

E(K,B) = 1 if K 6= ∅, B = A or K = I, B 6= ∅;
E(K,B) = 0 if K = ∅, B 6= A or K 6= I, B = ∅.
In particular, we assume that E(I, ∅) = 0 and E(∅, A) = 1. Hence, by monotonicity,

E(K, ∅) = 0 and E(K,A) = 1 for all K ⊆ I.

Furthermore, let Xi be a finite set of strategies of a player i ∈ I. The direct product∏
i∈I Xi is a set of situations. A mapping g : X → A is a game form. To each game form g

let us assign an EFF Eg as follows:

Eg(K,B) = 1 iff ∃ xK = (xi, i ∈ K) such that g(xK , xI\K) ∈ B ∀ xI\K = (xi, i 6∈ K).

In other words, a coalition K ⊆ I is effective for a block B ⊆ A if and only if the players
of K have strategies that guarantee that the outcome will belong to B for any strategies of
the remaining players. In 1982 Moulin and Peleg [13] proved that an EFF E is playing, i.e.,
E = Eg for a game form g, if and only if E is monotone, superadditive, and the boundary
conditions hold.

Given a utility function u : I × A → IR, its value u(i, a) is interpreted as a profit of the
player (voter) i ∈ I in case the outcome (candidate) a ∈ A is elected.

Given an EFF E , utility function u, a coalition K ⊆ I, and outcome a0 ∈ A, consider the
set of all outcomes strictly and unanimously preferred to a0 by all coalitionists of K, that is,

PR(K, a0, u) = {a ∈ A | u(i, a) > u(i, a0) ∀ i ∈ K} ⊆ A.

We say that a coalition K ⊆ I rejects an outcome a0 ∈ A if E(K,PR(K, a0, u)) = 1, that
is, if K can guarantee a strictly better result than a0 to all coalitionists.

Given E and u, the core is defined as the set of outcomes not rejected by any coalition,
that is,

C(E , u) = {a ∈ A | E(K,PR(K, a, u))) = 0 ∀ K ⊆ I} ⊆ A.

This is a natural, and surely the simplest, concept of solution in cooperative game theory.
Yet, the core is frequently empty, since there are too many, 2n, coalitions.

An EFF E is called stable if the core C(E , u) is not empty for any u.
In 1984 Peleg proved [14] that every convex EFF is stable.
It is easy to see that convex EFFs are sub- and superadditive [14, 9, 10].
By definition, stability is anti-monotone, that is, if E is stable and E ′ ≤ E then E ′ is stable,

too. Hence, maximal and locally maximal stable EFFs coincide. It is an important problem
to characterize them. Indeed, such a characterization would imply also a characterization
of stable EFFs. Let us remark that, given an EFF E , it is an NP-complete problem to
decide whether E is stable [2]. The following important family of the maximal stable EFFs
is well-known.

To each EFF E let us assign the dual EFF Ed defined by formula:

E(I \K,A \B) + Ed(K,B) = 1 ∀ K ⊆ I, B ⊆ A.
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In other words, Ed(K,B) = 1 if and only if E(I \K,A \B) = 0. Again, the name “dual”
is consistent with Boolean terminology, since two (monotone) EFFs are dual if and only if
the corresponding two (monotone) Boolean functions are dual.

Respectively, an EFF E is called self-dual if E(I \K,A \ B) + E(K,B) = 1, that is, K
is effective for B if and only if I \K is not effective for A \B.

Notice that a game form g is tight if and only if the corresponding EFF Eg is self-dual.
The stable self-dual EFFs form an interesting class. In 1982 Abdou [1] proved that they

are both sub- and superadditive. They are also convex. Moreover, it is not difficult to see
that the following three subfamilies of the self-dual EFFs coincide: stable self-dual EFFs,
convex self-dual EFFs, and sub- and superadditive self-dual EFFs, see for example, [9, 10].

Furthermore, it is easy to show that stable self-dual EFFs are the maximal stable EFFs,
in other words, an EFF E is not stable whenever E > E ′, where E ′ is a self-dual EFF. Indeed,
in this case E(K,B) = E(I \ K,A \ B) = 1 for some K ⊆ I and B ⊆ A. Let us define a
utility function u such that K prefers B to A \B, while I \K, on the contrary, prefers A \B
to B, and both preference are unanimous and strict. Clearly, in this case the core is empty,
C(E , u) = ∅, since all outcomes of A are rejected: B by I \K and A \ B by K. Thus, EFF
E is not stable.

The self-dual EFFs (and corresponding veto functions) are frequently called maximal in
the literature [1, 13, 12, 14, 15, 4, 5]. This name is logical, since, as we have just demonstrated,
the self-dual stable EFFs are maximal stable EFFs. It was conjectured that there are no
other maximal stable EFFs; see [12], Problem 25, and also [4]. However, this conjecture was
disproved in [9], see also [5].

Example 7 Given 3 players, I = {1, 2, 3}, and 6 outcomes A = {a1, a2, a3, a4, a5, a6}, let
us define a monotone EFF E as follows. Each coalition that consists of 2 players, that is,
{1, 2}, {2, 3}, or {3, 1}, is effective for blocks

{a1, a3}, {a3, a5}, {a5, a1}, {a2, a4}, {a4, a6}, {a6, a2},
as well as for every block that contains one of the listed. Each coalition that consists of 1
player, that is, {1}, {2} or {3}, is effective only for the total block A. Finally, the total
coalition I is effective for every non-empty block.

In is not difficult to show that EFF E is stable. For example, sufficient conditions of
stability obtained in [2] hold. Let us prove that E is not majorized by a stable self-dual EFF.
Assume indirectly that such an EFF exists: E ′ is stable, self-dual, and E ′ > E .

Let us show that, although EFF E is stable, but stability disappears whenever we
strengthen a coalition of cardinality 2. Let us assume, without any loss of generality, that
coalition {1, 2} becomes effective for block {a1, a4}, that is, E ′({1, 2}, {a1, a4}) = 1, while
equations
E ′({2, 3}, {a3, a5}) = E ′({3, 1}, {a2, a6}) = 1

hold too. Let us consider a utility function u such that

u(1, a1) = u(1, a4) > u(1, a2) = u(1, a6) > u(1, a3) = u(1, a5),
u(2, a3) = u(2, a5) > u(2, a1) = u(2, a4) > u(2, a2) = u(2, a6),
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u(3, a2) = u(3, a6) > u(3, a3) = u(3, a5) > u(3, a1) = u(3, a4).

Obviously, in the game (E ′, u), coalitions {1, 2}, {2, 3}, and {3, 1} reject outcomes {a2, a6}, {a1, a4},
and {a3, a5}, respectively. Hence, C(E ′, u) = ∅ and the obtained EFF E ′ is not stable.

Thus, to enlarge E it only remains to strengthen coalitions {1}, {2}, and {3} of cardinality
1. Then, to get a (unique) self-dual EFF E ′ one should make each of these 3 coalitions effective
for the following 12 blocks:
{a1, a2, a3, a4}, {a2, a3, a4, a5}, {a3, a4, a5, a6}, {a4, a5, a6, a1}, {a5, a6, a1, a2}, {a6, a1, a2, a3},
{a1, a2, a4, a5}, {a2, a3, a5, a6}, {a3, a4, a6, a1}, {a4, a5, a1, a2}, {a5, a6, a2, a3}, {a6, a1, a3, a4},

as well as for each block that contains one of the listed. Again, the obtained EFF E ′ is not
stable, since, for example,

E ′({1}, {a1, a2, a3, a4}) = E ′({3}, {a3, a4, a5, a6})
= E ′({2}, {a5, a6, a1, a2}) = 1

and

E ′({1}, {a2, a3, a5, a6}) = E ′({2, 3}, {a1, a4}) = 1.

Moreover, it is easy to see that E ′ cannot be stable, nor superadditive, nor convex, since
if it is then the total coalition I is effective for the empty block. Thus, we got a stable EFF
E that is not majorized by any stable self-dual EFF. Hence, there are maximal stable EFFs
that are not self-dual.

Similarly, we can show that the same EFF E cannot be majorized by a convex EFF,
either. Assume indirectly that there is a convex EFF E ′ such that E ′ > E . Then

E ′({1, 2}, {a1, a3}) = E ′({1, 3}, {a4, a6}) = 1

and, since E ′ is convex, we have

E ′({1}, {a1, a3, a4, a6}) = 1 or E ′({1, 2, 3}, {∅}) = 1.

In fact, the former equation must hold, since the latter one contradicts the boundary
conditions. Furthermore, due to symmetry, we get

E ′({1}, {a1, a3, a4, a6}) = E ′({2}, {a2, a4, a5, a1})
= E ′({3}, {a3, a5, a6, a2}) = 1.

It is easy to see that these 3 equations and convexity of E ′ contradict the boundary
conditions. Alternatively, copying the above arguments, we can show that E ′ is not stable
and hence, by Peleg’s theorem, it is not convex either.

Thus, the considered stable EFF E is majorized by no convex and by no stable self-dual
EFF.
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