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Dávid Papp
RUTCOR, Rutgers University

640 Bartholomew Road
Piscataway, NJ 08854-8003
(dpapp@rutcor.rutgers.edu)

1This research was partially supported by DIMACS, a collaborative project of Rutgers University,

Princeton University, AT&T Labs-Research, Bell Labs, NEC Laboratories America and Telcordia

Technologies, as well as affiliate members Avaya Labs, HP Labs, IBM Research, Microsoft Research,

Stevens Institute of Technology, Georgia Institute of Technology and Rensselaer Polytechnic Insti-

tute. DIMACS was founded as an NSF Science and Technology Center.

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs–
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as affil-
iate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute of
Technology, Georgia Institute of Technology and Rensselaer Polytechnic Institute. DIMACS
was founded as an NSF Science and Technology Center.



ABSTRACT

It is known that a two-person game form g is Nash-solvable if and only if it is tight [12, 13].
We strengthen the concept of tightness as follows: game form is called totally tight if every
its 2×2 subform is tight. (It is easy to show that in this case all, not only 2×2, subforms are
tight.) We characterize totally tight game forms and derive from this characterization that
they are tight, Nash-solvable, dominance-solvable, acyclic, and assignable. In particular,
total tightness and acyclicity are equivalent properties of two-person game forms.

Keywords: game, game form, effectivity function, improvement cycle, acyclic, assigna-
ble, tight, totally tight, Nash-solvable, dominance-solvable
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Figure 1: Tight and not tight game forms.

1 Introduction

We consider the following six classes of two-person game forms: tight (T), totally tight (TT),
Nash-solvable (NS), dominance-solvable (DS), acyclic (AC), and assignable (AS) ones, and
prove the following implications:

AS ⇐ TT ⇔ AC ⇒ DS ⇒ NS ⇔ T. (1)

Some of them are known, while others follow from a characterization of the TT game
forms obtained in this paper. We also give examples showing that no other implication holds
for the considered six properties.

1.1 Game forms and games

A (two-person) game form is a mapping g : X1×X2 → A, where X1 (rows) and X2 (columns)
are the strategies of players 1 and 2, while A is a set of outcomes. In this paper we restrict
ourselves by finite two-person game forms, that is, the above three sets, X1, X2, and A are
finite. Three examples are given in Figure 1. Furthermore, let u : {1, 2}×A → R be a utility
(or payoff) function. Given a player i ∈ {1, 2} and an outcome a ∈ A, the value u(i, a) is
interpreted as the profit of the player i in case when the outcome a is realized. The pair (g, u)
defines a normal form (bimatrix) game. A payoff u is called zero-sum if u(1, a) + u(2, a) = 0
for each a ∈ A. In this case (g, u) is a matrix game.

1.2 Nash equilibrium and Nash-solvability

The elements of the direct product X = X1 ×X2 are called situations. Given a game (g, u),
a situation x = (x1, x2) ∈ X1 × X2 = X is called a Nash equilibrium (NE) if

u(1, g(x1, x2)) ≥ u(1, g(x′
1, x2)) ∀ x′

1 ∈ X1 and u(2, g(x1, x2)) ≥ u(2, g(x1, x
′
2)) ∀ x′

2 ∈ X2;

in other words, if no player can profit until the opponent keeps the strategy unchanged.
A NE of a zero-sum game is called a saddle point.

Theorem 1. (Shapley (1964), [23]). A zero-sum game has a saddle point whenever each of
its 2 × 2 subgames has one.
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However, in general (for non-zero-sum games), the similar statement does not hold; see,
for example, [15] or [5].

A game form g is called Nash-solvable (NS) if for each payoff u the obtained game (g, u)
has a NE. Respectively, g is called zero-sum-solvable if for each zero-sum payoff u the obtained
zero-sum game (g, u) has a saddle point.

1.3 Effectivity functions, game forms, and criteria of solvability

Given a game form g : X1 ×X2 → A, we say that a player i ∈ {1, 2} is effective for a subset
of outcomes B ⊆ A if i has a strategy xi ∈ Xi such that g(xi, x3−i) ∈ B for every strategy
x3−i ∈ X3−i of the opponent. In this case we set Ei(B) = 1 and Ei(B) = 0 otherwise. Thus,
two Boolean functions E

g
i : 2A → {0, 1}, i = 1, 2, are associated with every game form g.

The pair (Eg
1 , E

g
2) is called the effectivity function (EFF) of g; see [20, 19, 21] for more detail.

Obviously, equalities E
g
1 (B) = E

g
2(A \ B) = 1 hold for no g, since every row and column

in X1 × X2 intersect. In contrast, E
g
1(B) = E

g
2(A \ B) = 0 might hold. For example, let

us consider game form g in Figure 1 and set B = {a1} (or B = {a2}). Then E
g
1(B) =

E
g
2(A \ B) = 0, since all rows and columns contain both a1 and a2.

A game form g is called tight if E
g
1(B) = 1 ⇔ E

g
2(A \ B) = 0, or in other words, if

E
g
1(B) + E

g
2(A \ B) ≡ 1 ∀B ⊆ A. (2)

For example, game forms g′ and g′′ in Figure 1 are tight, while g is not.

Given a game form g, let us assign to each outcome a ∈ A a Boolean variable and denote
it for simplicity by the same symbol a. Then, rows and columns of g naturally define two
monotone disjunctive normal forms (DNFs) that represent, respectively, E

g
1 and E

g
2 :

D
g
1 =

∨

x1∈X1

∧

x2∈X2

g(x1, x2), D
g
2 =

∨

x2∈X2

∧

x1∈X1

g(x1, x2). (3)

It is not difficult to verify that a game form g is tight if and only if its two DNFs D
g
1 and

D
g
2 are dual, D

g
1 = (Dg

2)
d. This equation is just a reformulation of (2).

For example, for the three game forms g, g′ and g′′ in Figure 1 we have:

D
g
1 = D

g
2 = a1a2; D

g
1 6= (Dg

2)
d = a1 ∨ a2;

D
g′

1 = a1 ∨ a2a3, D
g′

2 = a1a2 ∨ a1a3, D
g′

1 = (Dg′

2 )d;

D
g′′

1 = D
g′′

2 = (Dg′′

1 )d = (Dg′′

2 )d = a1a2 ∨ a2a3 ∨ a3a1.

Hence, g′ and g′′ are tight, while g is not.

Theorem 2. ([12], see also [13] and [4]). The following three properties of a game form are
equivalent: tightness, Nash-solvability, and zero-sum-solvability.

For the zero-sum case this claim was proved earlier by Edmonds and Fulkerson [7] and
independently in [11].
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To verify tightness of a game form is an exciting open problem of complexity theory, so-
called dualization. No polynomial algorithm is still known. However, it is very unlikely that
dualization is NP-hard, since there is a quasi-polynomial recognition algorithm suggested by
Fredman and Khachiyan [8]. Its complexity, No(log N) = 2o(N2) is closer to polynomials 2c log N

than to exponents 2cN , where c is a constant and N is the input complexity.

1.4 Totally tight and irreducible game forms; main theorem

We will call a game form g totally tight (TT) if each of its 2 × 2 subforms is tight.

Proposition 3. Totally tight game forms are tight.

Proof. Let g be a TT game form and g′ be an arbitrary its 2×2 subform. By definition, g′ is
tight and, by Theorem 2, it is zero-sum-solvable. Then, by Theorem 1, g is zero-sum-solvable
and, by Theorem 2, g is tight.

By definition, total tightness of a game form can be verified in polynomial time.

Given a game form g : X1 × X2 → A, a strategy x1 ∈ X1 and the corresponding row
(respectively, x2 ∈ X2 and the corresponding column) is called constant if there is an outcome
a ∈ A such that g(x1, x2) ≡ a for all x2 ∈ X2 (respectively, for all x1 ∈ X1).

A game form g is called reducible if it has a constant line, row or column.
It is easy to verify that a 2 × 2 game form is reducible if and only if it is tight.
For example, in Figure 1, game form g′ is tight and reducible (its first row is constant),

while g is not tight and not reducible.
Let us remark that, by the above definition, an m × n game form is reducible whenever

m = 1 or n = 1. Indeed, in this case each column or, respectively, row is constant. Moreover,
formally, even a 1 × 1 game form is reducible, although there is no game form to reduce it
to. By convention, let us say that it is reduced to the empty game form.

By definition, the reducibility of a game form can be verified in linear time.

A game form will be called totally reducible if it can be reduced to the empty one by
successive elimination of constant lines. In [17] these game forms are called semi-dictatorial.
For example, g′ in Figure 1 is such a game form.

Proposition 4. Totally reducible game forms are totally tight.

Proof. The induction by m + n is obvious.

More generally, given a game form g, let us eliminate successively its constant lines until
we obtain an irreducible game form g′ which might be empty or not.

Proposition 5. Game form g′ is well-defined, that is, unique. Moreover, g′ is TT if and
only if g is TT.
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Proof. Again, it is obvious.

In Section 2, we will prove that all such (non-empty irreducible TT) game forms have the
same effectivity function. This, so-called 2-majority, EFF E = E

(

3
2

)

is defined as follows:
three exist three outcomes a1, a2, a3 ∈ A such that each player i ∈ {1, 2} is effective for
any two of them, Ei({a1, a2}) = Ei({a1, a3}) = Ei({a2, a3}) = 1, and, of course, for every
superset of such a subset of cardinality 2, as well.

Theorem 6. Every non-empty irreducible TT game form g has a 2-majority effectivity
function, that is, there are outcomes a1, a2, a3 ∈ A such that E

g
1 = E

g
2 = a1a2 ∨ a2a3 ∨ a3a1.

This result clarifies the structure of a TT game form g “almost completely”: g is either
totally reducible, or it is reduced to an irreducible game form g′ with a 2-majority EFF.

Somewhat surprisingly, even under this (very strong) restriction it appears not that easy
to characterize the TT game forms explicitly. However, in Section 3 a characterization of
the following type is obtained: we construct recursively an infinite family of TT game forms
and show that each TT game form is a subform of a game form from this family.

Furthermore, in Section 4 we prove that TT game forms are (i) acyclic, (ii) dominance-
solvable, and (iii) assignable; see the next three subsections for the definitions. Recently, (i)
was proved, while (ii) and (iii)) conjectured by Kukushkin, [17].

Results (i) and (ii) are significantly strengthened and generalized in [3], see also [2].

1.5 Acyclic game forms

Given positive integral m, n and k such that 2 ≤ k ≤ min(m, n), a m × n bimatrix game
(g, u), and k distinct strategies of each player, x1

1, . . . , x
k
1 ∈ X1 and x1

2, . . . , x
k
2 ∈ X2, we say

that these strategies form a (strict improvement) cycle Ck if

u(2, g(x1
1, x

1
2))< u(2, g(x1

1, x
2
2)), u(1, g(x1

1, x
2
2))< u(1, g(x2

1, x
2
2)),

u(2, g(x2
1, x

2
2))< u(2, g(x2

1, x
3
2)), . . . ,

u(2, g(xn−1
1 , xn−1

2 ))< u(2, g(xn−1
1 , xn

2 )), u(1, g(xn−1
1 , xn

2 )) < u(1, g(xn
1 , x

n
2 )),

u(2, g(xn
1 , x

n
2 ))< u(2, g(xn

1 , x
1
2)), u(1, g(xn

1 , x
1
2))< u(1, g(x1

1, x
1
2));

or in words, if two players alternating can strictly improve their payoffs (k times each), so
that they begin and end with the same pair of strategies (x1

1, x
1
2).

A game that have no cycles is called acyclic. It is both obvious and well-known that
every acyclic game has a NE.

A game form g will be called acyclic (AC) if for any payoff u the obtained game (g, u) is
acyclic. It is clear that each acyclic game form is Nash-solvable and, hence, it is tight.

It is an easy exercise to verify that a 2 × 2 game form is tight if and only if it is acyclic.
Hence, acyclic game forms are TT. Recently, it was shown that the inverse holds, too.

Proposition 7. (Kukushkin (2007), [17]). A game form is totally tight if and only if it is
acyclic.

In Section 4 we derive this claim from Theorem 6; see also [1] for an independent proof.
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Figure 2: Adding and eliminating constant lines, rows and/or columns; g is NS (tight) but
not DS; g′ is not tight; g′′ is assignable but not tight; g′′′ is the A-extension of g′′.

1.6 Dominance-solvable game forms

Given a game (g, u) and two strategies xi, x
′
i ∈ Xi of a player i ∈ {1, 2}, we say that x′

i

is dominated by xi if u(i, g(xi, x3−i)) ≥ u(i, g(x′
i, x3−i)) for every strategy x3−i ∈ X3−i of

the opponent; in other words, if player i cannot profit by substituting x′
i for xi until the

opponent keeps the same (arbitrary) strategy.
Let us eliminate successively dominated strategies of players. Game (g, u) is called

dominance-solvable if this procedure results in a 1 × 1 terminal subgame. The obtained
situation is called domination equilibrium (DE). (In the literature, it is also called sophisti-
cated equilibrium.) It is well-known and easy to see that each DE is a NE; see, for example,
[18], [19] Chapter 5, or [9].

Although, in general, the result might depend on the order in which dominated strategies
are eliminated, yet, there are simple conditions under which the above procedure and concept
of domination are well-defined; namely, when utility functions ui : A → R of both players
are injective; in other words, when u(1, a) = u(1, a′) if and only if u(2, a) = u(2, a′) for all
a, a′ ∈ A; see [18], [19] Chapter 5, or [9] again.

A game form g is called dominance-solvable (DS) if for any payoff u the obtained game
(g, u) is DS. Obviously, DS ⇒ NS, since, as we already mentioned, each DE is a NE. Yet,
the inverse implication does not hold. For example, game form g in Figure 2 is tight and,
hence, NS but it is not DS; there is no DE if both players prefer a2 to a1.

Proposition 8. Totally tight game forms are dominance-solvable.

In Section 4, we derive this implication from Theorem 6; see [1] for an independent proof.

Up to our knowledge, the complexity of verifying if a given game form is DS is open.

1.7 Assignable game forms

Let us call a game form g : X1 ×X2 → A assignable (AS) if there are mappings g1 : X1 → A

and g2 : X2 → A such that g(x1, x2) equals g1(x1) or g2(x2) for all x1 ∈ X1, x2 ∈ X2.
It is easy to verify that all seven game forms in Figures 1 and 2 and even g′ in Figure 3

are assignable, while g is not.
The concept of assignability was suggested by Kukushkin (private communications); he

conjectured that the following implication holds.
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Figure 3: Game form g is tight and DS but not TT and not AS.
Tightness and dominance-solvability are not hereditary properties

Proposition 9. Totally tight game forms are assignable.

In Section 4 we will derive this statement from Theorem 6.

It is easy to see that all 2 × 2 game forms, as well game forms with only two outcomes,
are assignable. In particular, g′′ in Figure 2 is AS, yet, it is not tight. On the contrary, game
form g in Figure 3 is tight and DS but not AS.

Verifying whether a given game form g : X1 × X2 → A is assignable can be executed in
polynomial time, since this problem is polynomially reduced, for example, to 2-satisfyability.

Indeed, let us consider g and two more mappings g1 : X1 → A and g2 : X2 → A. Given
i ∈ I = {1, 2}, a strategy xi ∈ Xi, and an outcome a ∈ A, let us define a Boolean variable
y = y(xi, a) as follows: y = 1 if gi(xi) = a and y = 0 otherwise. Then, let us consider a
2-CNF

C(g) =
∧

a,a′∈A | a6=a′; xi∈Xi, i∈{1,2}

(ȳ(xi, a) ∨ ȳ(xi, a
′))

∧

x1∈X1, x2∈X2, a∈A

(y(x1, a) ∨ y(x2, a)). (4)

It is easily seen that this CNF C(g) is satisfiable if and only if the corresponding game form
g is assignable. Indeed, in CNF (4) the first conjunction is equal to 1 if and only if at most
one outcome a ∈ A is assigned by a mapping gi to each strategy xi ∈ Xi for i ∈ {1, 2};
respectively, the second conjunction of (4) equals 1 if and only if g(x1, x2) = g1(x1) or
g(x1, x2) = g2(x1) for every situation (x1, x2) ∈ X1 × X2).

Let us remark, however, that the above arguments hold only for two-person game forms.

As we already mentioned, all 2× 2 game forms are assignable. Moreover, for 2× 2 game
forms the following six properties are equivalent: T, TT, DS, NS, AC, and reducibility.

1.8 Hereditary properties

Given a game form g : X1 × X2 → A (respectively, a game (g, u)) and a pair of subsets
X ′

1 ⊆ X1, X ′
2 ⊆ X2, standardly a subform g′ of g and subgame (g′, u) of (g, u) is defined by

the restriction of g to X ′
1 × X ′

2 ⊆ X ′
1 × X ′

2.
A property P of a game (g, u) (game form g) is called hereditary if P holds for any

subgame (g′, u) of (g, u)) (subform g′ of g) whenever P holds for (g, u) (for g) itself.
By definitions, TT, AC, and AS are hereditary properties of game forms. In contrast,

properties T, NS, and DS can disappear even after eliminating a constant line, row or column.
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For example, game form g′′′ in Figure 2 is DS; hence, it is NS and tight, too. Yet,
eliminating its second (constant) row we obtain game form g′ that has none of these three

properties; for example, it is not tight, since its Boolean functions E
g′

1 = a1 and E
g′

2 = a1a2

are not dual.

1.9 Adding and eliminating constant lines; A-extensions

Given a game form g : X1 ×X2 → A, let us define its row A-extension gA
1 : XA

1 ×X2 → A by
setting XA

1 = X1 ∪ {xa
1, a ∈ A} and gA

1 (xa
1, x2) ≡ a for every x2 ∈ X2 and a ∈ A. In other

words, we extend X1 by adding p = |A| constant strategies xa for all ooutcomes a ∈ A. For
example, in Figure 2 game form g′′′ is the row A-extension of g′′. Similarly, we introduce the
column A-extension gA

2 : X1 × XA
2 → A of a game form g : X1 × X2 → A.

It is easy to verify that for an arbitrary game form g both its A-extensions are tight, NS,
and DS; furthermore they are TT, AC, or AS if and only if g has the corresponding property.

Let us consider three transformations of game forms: A-extension, eliminating and adding
a constant line. (For example, A-extension itself was defined as adding p = |A| constant
lines, one for each outcome a ∈ A.)

The following meta-language will simplify our statements. We say that a property P is
treated by a transformation T and consider three transformations defined above, our stan-
dard six properties partitioned in two triplets, X = {T, NS, DS} and Y = {TT, AC, AS},
and the following four types of treatment. We apply T to a game form g, obtain a trans-
formed game form g′, and say that:

P is encouraged by T if P cannot disappear (but, maybe, it can appear);

P is discouraged by T if P cannot appear (but, maybe, it can disappear);

P is respected by T if P can neither appear, nor disappear;

P is enforced by T if P cannot disappear and must appear.

P is denied by T if P cannot appear and must disappear.

Theorem 10. (i) Eliminating constant lines discourage properties of X = {T, NS, DS} and
encourage properties of Y = {TT, AC, AS}; moreover the latter properties are hereditary;

(ii) Adding constant lines encourage X and respect Y;

(iii) A-extensions enforce X and respect Y.

Proof. It is tedious, since there are very many cases, but simple.
For example, let us notice that Nash- or dominance-solvability of a game form g cannot

disappear after g is extended by a constant strategy x0
i of a player i = 1 or i = 2. Indeed,

although x0
i might “kill” a NE or DE in the game (g, u), yet obviously, in this case a new

one (related to x0
i ) must appear in the transformed game.

We leave the analysis of numerous remaining cases to the careful reader.

All cases of Theorem 10 are summarized in two tables given in Figure 4.
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∃NE, ∃DE,
T, NS, DS eliminate add A-extend

can disappear YES NO NO
can appear NO YES YES
must appear NO NO YES

TT, AC, AS eliminate add A-extend

can disappear NO NO NO
can appear YES NO NO
must appear NO NO NO

Figure 4: Eliminating and adding constant rows and columns

Remark 1. The set of properties X = {T, NS, DS} can be extended to X ′ = {T, NS, DS,

∃NE, ∃DE}, where the last two properties are related to games rather than to game forms
and mean that a game has a NE or, respectively, DE. If we substitute X ′ for X the modified
Theorem 10 will still hold.

Let us also note that all claims extend the case of n-person game forms.

1.10 Equivalent definitions and main corollaries of total tightness

Let us summarize some of the above observations.

Theorem 11. The following twelve properties of a game form g are equivalent:

every 2×2 subform of g is (1) tight, (2) Nash-solvable, (3) zero-sum-solvable, (4) dominance-
solvable, (5) acyclic; furthermore, every subform g′ of g is (1′) tight, (2′) Nash-solvable, (3′)
zero-sum-solvable, (4′) dominance-solvable, (5′) acyclic; finally, g itself is (6) acyclic, and
(7) totally tight.

In particular, total tightness and acyclicity are equivalent. In Section 4, we will prove
that total tightness implies acyclicity, assignability, and dominance-solvability.

Furthermore, it is well-known that dominance-solvability implies Nash-solvability, see,
for example, [19, 9], and that Nash-solvability is equivalent to tightness [12, 13]. Let us also
recall that total tightness implies tightness, by Proposition 3.

Relations between main classes of two-person game forms are summarized by (1).
Let us underline that no other implications hold. Indeed, in Figure 2, game form g is

tight but not DS, while g′′ is AS but not tight; furthermore, g in Figure 3 is DS but not TT
and not AS.

Remark 2. The last example is just a representative of a large family. It is well-known
that a game form g is DS whenever it is obtained from a positional game form with perfect
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information Gale (1953); see also Chapter 5 of [19]. However, in this case, g is acyclic (or
equivalently, TT) if and only if all positions of each player belong to a single play in the
corresponding tree. This result was obtained in 2002 by Kukushkin; see Theorem 1 of [16].
(Both results hold for n-person case, not only for n = 2.)

Another large family of DS but not TT game forms is related to veto-voting; see manu-
script [10] and also [1].

Let us recall that a game form g is tight if and only if the corresponding monotone
Boolean functions E

g
1 and E

g
2 are dual. In Section 2, we will prove Theorem 6: if g is TT

then E
g
1 = E

g
2 = a1a2 ∨ a2a3 ∨ a3a1. However, the inverse does not hold and it is not easy to

characterize TT game forms explicitly. In Section 3 we obtain recursively an infinite family
of them and show that each TT game form is a subform of a game form from this family.

Remark 3. Let us notice that the above important necessary conditions for acyclicity (or
equivalently, for total tightness) of a two-person game form are given in terms of its effectivity
function. Somewhat surprisingly, many properties of game forms can be characterized in such
terms. For example, a two-person game form g is Nash-solvable if and only if it is tight, that
is, its effectivity function is self-dual. More example can be found in [14].

2 Proof of Theorem 6

Let g be a totally tight game form. By Proposition 3, g is tight, that is, the corresponding
two monotone Boolean functions E

g
1 and E

g
2 are dual. Yet, Theorem 6 claims much more,

namely, all TT game forms generate the same self-dual pair: E
g
1 = E

g
2 = a1a2 ∨ a2a3 ∨ a3a1.

2.1 Game correspondences and associated game forms

A game correspondence is defined as a mapping G : X1 ×X2 → 2A. In other words, to each
situation (x1, x2) ∈ X1×X2 we assign a subset of outcomes G(x1, x2) ⊆ A. If |G(x1, x2)| = 1
for all situations (x1, x2) ∈ X1 × X2, we obtain a game form.

In general, with a game correspondence G we associate k =
∏

(x1,x2)∈X1×X2
|G(x1, x2)|

game forms g ∈ G, by choosing for each situation (x1, x2) ∈ X1 ×X2 an outcome g(x1, x2) ∈
G(x1, x2). Let us notice that k = 0 whenever G(x1, x2) = ∅ for at least one situation.

We will say that g ∈ G is associated with G and call G (totally) tight if k > 0 and at least
one g ∈ G is (totally) tight.

2.2 Game correspondences associated with pairs of dual monotone

DNFs or Boolean functions

First, let us recall the following two well-known properties of dual monotone Boolean func-
tions that will be instrumental for our analysis.



– 10 –

a1

/

a3 a1 a3

a1 a2

/

a1 a2

a3 a2 a3

/

a2

Figure 5:
(

3
2

)

majority voting game correspondence;
only 2 from 8 game forms associated with this game correspondence are TT; see, e.g., g′′ in
Figure 1.

Lemma 12. (see, for example, [6], Part I, Chapter 4).
(i) Every two dual implicants α of E and β of Ed have at least one variable in common.
(ii) Given a prime implicant α of E and a variable x of α, there is a prime implicant β

of Ed such that x is the only common variable of α and β.

Given arbitrary monotone (that is, negation-free) DNFs D1 =
∨

x1∈X1
Bx1

and D2 =
∨

x2∈X2
Bx2

over the set of variables A, let us define a game correspondence G = GD1,D2 :
X1 × X2 → 2A by setting G(x1, x2) = Bx1

∩ Bx2
for every situation (x1, x2) ∈ X1 × X2; see,

for example, GD1,D2 in Figure 5, where D1 = D2 = a1a2 ∨ a2a3 ∨ a3a1.

Lemma 13. ([13], see also [22]). If D1 and D2 are dual then game correspondence G(D1, D2)
is tight. In particular, in this case G(x1, x2) 6= ∅ for all (x1, x2) ∈ X1 × X2; moreover, all
associated game forms g ∈ G have the same Boolean functions E

g
1 and E

g
2 defined by DNFs

D1 and D2, respectively. Conversely, if at least one game form g ∈ GD1,D2 is tight then
DNFs D1 and D2 are dual.

Proof. It follows immediately from Lemma 12 (i) and (ii).

Let us recall that, by definition, G is TT if at least one g ∈ G is TT. However, in contrast
with tightness, this does not mean that all g ∈ G are TT. Let us consider, for example, game
correspondence G in Figure 5. Only two game forms associated with G are TT (one of them
is g′′ in Figure 1, while it is easy to verify that the remaining six are not TT.

Given a DNF D, let D0 denote the corresponding irredundant DNF, that is, disjunction
of all prime (irreducible) implicants of D.

Lemma 14. Game correspondence GD1,D2 is TT if and only if GD0

1
,D0

2 is TT.

Proof. The “only if part” immediately follows, since total tightness is a hereditary property
of game forms and game correspondences.

Lemma 15. A subcorrespondence G′ of G is TT whenever G is TT.

Let us prove the “if part”. By assumption, there is a TT game form g0 ∈ G0 = GD0

1
,D0

2 .
Let us extend it to a TT game form g ∈ G = GD1,D2 as follows. For i = 1, 2 to each strategy
xi ∈ Xi in G assign a strategy x0

i ∈ Xi in G0 such that Bx0

i
⊆ Bxi

. Then for each situation

x = (x1, x2) of G choose the same outcome as for x0 = (x0
1, x

0
2) in g0. Obviously, the obtained

extension g of g0 is totally tight, too.
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a1 a2 a2

a3 a2

/

a3 a2

a3 a3 a4

G

a1 a2

a3 a4

g′

Figure 6: No TT game form is associated with this game correspondence.

2.3 Totally tight Boolean functions

Thus, we can restrict ourselves by dual pairs of irredundant DNFs. In other words, keeping in
mind the characterization of TT game forms, we will take as the input a monotone Boolean
function E rather than a game form g. Given E, we set E1 = E and E2 = Ed, consider the
corresponding irredundant DNFs D0

1 and D0
2 and game correspondence G = GE = GD0

1
,D0

2 .
We will call E TT if G is TT, or in other words, if there is a TT g ∈ G. By construction, E

is TT if and only if Ed is TT. Let us consider several examples.
If E = E1 = a1a2 ∨ a3a4 then Ed = E2 = a1a3 ∨ a1a4 ∨ a2a3 ∨ a2a4. It is easy to see

that every two prime implicants, one of E and the other of Ed, have exactly one variable
in common. (This is a characteristic property of so-called monotone read-once Boolean
functions; see [6], Chapter 12.) In other words, game correspondence GE is, in fact, a game
form, since |GE(x1, x2)| = 1 for every situation (x1, x2) ∈ X1 × X2. This game form g is
shown on Figure 3. However, this game form is not TT, since it has a 2× 2 subform g′ that
is not tight, see Figure 3.

In general, GE is a game form, GE = gE, if and only if E is read-once. It is not difficult
to show that in this case E is TT if and only if gE is totally reducible; see Proposition 4.
(This is a characteristic property of so-called monotone threshold Boolean functions; see [6],
Part II, Chapter 10.) However, we are looking for irreducible TT game forms.

As another example, let us consider

E = E1 = a1a2 ∨ a2a3 ∨ a3a4 and Ed = E2 = a1a3 ∨ a3a2 ∨ a2a4.

It is easy to check that GE is not TT, since it contains a 2 × 2 subform g′; see Figure 6.
A case analysis might be needed for more difficult examples.
Let E = E

(

5
3

)

:=
∨

{i,j,k}⊆{1,2,3,4,5} aiajak, where i, j, and k are pairwise distinct triplets;
in other words, E = 1 if and only if at least 3 out of its 5 variables are equal to 1. To show
that GE is not TT let us consider its 4 × 4 subcorrespondence G given in Figure 7 (where,
to save space, we substitute only the subscript j ∈ {1, 2, 3, 4, 5} for aj). Let us choose an
arbitrary game form g ∈ G. Due to obvious symmetry, we can choose a1 from {a1, a2, a3},
without any loss of generality. Yet, in this case G already contains a 2× 2 subconfiguration
G′ that is clearly not TT; see Figure 7. Hence, g cannot be TT and, by Lemma 15, G and
GE are not TT, either.

The following Lemma is instrumental in characterizing TT Boolean functions.
Given E, let us choose two of its distinct prime implicants and denote by B, B′ ⊆ A the

corresponding two set of variables. Obviously, B \ B′ 6= ∅ and B′ \ B 6= ∅.
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123 145 245 345
123 123 1 2 3

145 1 145 45 45
245 2 45 245 45

345 3 45 45 345

G

1 3

2 45

G′

Figure 7:
(

5
3

)

majority voting, a 4 × 4 subcorrespondence;
this subcorrespondence is not TT, since no TT game form is associated with it.

B a1 a2 b1 b2

B′ b3 b4 a3 a4

a1 a2 b b

b′ b′ a3 a4

a1 a2 a2 a2

a3 a3 a3 a4

Figure 8: |B \ B′| = 1 or |B′ \ B| = 1.

Lemma 16. If E is totally tight then |B \ B′| = 1 or |B′ \ B| = 1.

Proof. Let us assume indirectly that |B \ B′| ≥ 2 and |B′ \ B| ≥ 2, say, a1, a2 ∈ B \ B′ and
a3, a4 ∈ B′ \ B, where a1, a2, a3, a4 ∈ A are four pairwise distinct outcomes, yet, E is TT.

By Lemma 12 (ii), there are four prime implicants of Ed whose sets of variables B1, B2,
B3, B4 are such that B1 ∩ B = {a1}, B2 ∩ B = {a2}, B3 ∩ B′ = {a3}, B4 ∩ B′ = {a4}.

Let us fix a game form g ∈ GE and consider the corresponding 2 × 4 subform g′ in g; it
is given in Figure 8, where the first (second) row is assigned to B (respectively, to B′) and it
contains a1 and a2 (respectively, a3 and a4). The remaining four outcomes b1, b2, b3, b4 ∈ A

are not necessarily pairwise distinct, yet, {b1, b2} ∩ {a3, a4} = {b3, b4} ∩ {a1, a2} = ∅, since
b1, b2 ∈ B and b3, b4 ∈ B′; see Figure 8.1.

By assumption, Boolean function E and game correspondence GE is TT. Hence, we can
assume that the associated game form g ∈ GE , and its subform g′ are TT, too. Then b1 = b2

and b3 = b4, since otherwise the first or the last two columns of g′ form a not tight subform.
Let us set b1 = b2 = b and b3 = b4 = b′; see Figure 8.2. Yet, b (respectively, b′) cannot be
equal to both a1 and a2 (respectively, a3 and a4), since the letter are distinct. Without loss
of generality, assume that b 6= a1 and b′ 6= a4; see Figure 8.3. Then the first and last columns
of g′ form a not tight subform (even if b = b′) and we obtain a contradiction.

2.4 Irreducible TT Boolean functions are self-dual

There is a simple characterization of reducibility of a game form in Boolean terms.

Lemma 17. Game correspondence GE contains a constant row (column) whose every entry
is an outcome a ∈ A if and only if E = a ∨ E ′ (respectively, Ed = a ∨ E ′′). In both cases,
every associated game form g ∈ GE is reducible.

Proof. It follows immediately from the definitions.
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Thus, we can reformulate Theorem 6 as follows: If E is TT then either E = a ∨ E ′ or
Ed = a ∨ E ′′ or E = Ed = a1a2 ∨ a2a3 ∨ a3a1. In first two cases we will call E reducible.

Lemma 18. If E is TT and irreducible then every two of its prime implicants have a variable
in common.

Proof. Let us assume indirectly that there are two prime implicants of E with disjoint set
of variables B, B′ ⊆ A. By Lemma 17, if E is TT then |B| = 1 or |B′| = 1, in other words,
E is reducible and we get a contradiction.

Lemma 19. If E is TT and irreducible then it is self-dual, E = Ed.

Proof. It is both obvious and well-known (see, for example, [6]) that E is dual-minor, E ≤ Ed,
if and only if every two prime implicants of E have a variable in common. Thus, by Lemma
18, if E is irreducible and TT then it is dual-minor, E ≤ Ed. Furthermore, E is irreducible
and TT if and only if Ed is irreducible and TT. To see this, it would suffice just to rename
players 1 and 2. Hence, E and Ed are both dual-minor: E ≤ Ed and Ed ≤ (Ed)d = E.
Hence, E = Ed, that is, E is self-dual.

Furthermore, we will show that only one self-dual function is TT, all other are not. For
example, let us consider the classical function associated with the Fano projective plane:

EF = a1a2a3 ∨ a3a4a5 ∨ a5a6a1 ∨ a0a1a4 ∨ a0a2a5 ∨ a0a3a6 ∨ a2a4a6.

It is well-known and not difficult to verify that EF is self-dual, EF = Ed
F . Yet, by Lemma

16, EF is not TT. Indeed, rows {a1, a2, a3}, {a3, a4, a5} and columns {a0, a1, a4}, {a0, a2, a5}
form a 2 × 2 game form that is not tight.

As another example, let us recall that the 3-majority EFF E(
(

5
3

)

) is self-dual but not
TT; see Figure 7.

2.5 The only TT self-dual Boolean functions is the 2-wheel

Let us consider one more example. The so-called k-wheel is defined for k ≥ 2 by formula

Ek = a0a1 ∨ a0a2 ∨ . . . ∨ a0ak ∨ a1a2 . . . ak.

Again, it is well-known and easy to check that Ek is self-dual, Ek = Ed
k for any k ≥ 2.

Game correspondences, GEk are given in Figure 9 for k = 2, 3, and in general. (Again, to save
space we substitute for an outcome aj only its subscript j.) Let us fix an arbitrary g ∈ GEk .
Due to obvious symmetry, without loss of generality, we can choose ak from {a1, a2, . . . , ak}.
Yet, then a 2 × 2 not tight subform g′ appears in g whenever k ≥ 3; see Figure 9.

Yet, as we already know, 2-wheel E2 is TT. There are two associated with GE2 TT game
forms; see Figure 5 (in which i + 1 is substituted for i = 0, 1 and 2).

Furthermore, we can strengthen Lemma 19 as follows.

Lemma 20. If E is TT and irreducible then it is a 2-wheel.
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01 02 12

01 01 0 1

02 0 02 2

12 1 2 12

01 02 03 123

01 01 0 0 1

02 0 02 0 2

03 0 0 03 3

123 1 2 3 123

01 02 · · · 0k 12. . . k

01 01 0 · · · 0 1

02 0 02 0 2
...

. . .
...

0k 0 0 0k k

12. . . k 1 2 · · · k 12. . .k

Figure 9: 2-wheel, 3-wheel, and k-wheel.

Proof. Let us fix a prime implicant of E with the largest set of variables, which we will
denote, without loss of generality, by B = {a1, . . . , ak} ⊆ A. Since E is irreducible, k ≥ 2.

By Lemma 19, E is self-dual, E = Ed. Then, by Lemma 12 (ii), for every j = 1, . . . , k
function E contains a prime implicant with the set of variables Bj such that B ∩Bj = {aj}.
Furthermore, by Lemma 16, |B \ Bj| = 1 or |Bj \ B| = 1.

Let us assume that k ≥ 3. Then |B \Bj | ≥ 2. Hence, |Bj \B| = 1, that is, Bj = {aj, bj}
for each j = 1, . . . , k. Moreover, by Lemma 12 (i), all bj must coincide, that is, Bj = {a0, aj}
for each j = 1, . . . , k. In other words, E is a k-wheel with k ≥ 3. Yet, as we already know,
in this case Ek is not TT. Hence, k = 2, that is, every prime implicant of E has exactly two
variables; in other words, E = a1a2 ∨ a0a1 ∨ a0a2 is the 2-wheel.

Thus, all TT irreducible game forms have the same EFF, the 2-wheel. This completes
the proof of Theorem 6.

3 Characterizing totally tight game forms

3.1 Canonical partition of a totally tight game form

Let g be a TT game form. We know that E
g
1 = E

g
2 = a1a2∨a2a3∨a3a1. Yet, the corresponding

DNFs D1 = D
g
1 and D2 = D

g
2 might be redundant. Let us consider partitions

Xi = X12
i ∪ X13

i ∪ X23
i ∪ X123

i ∪ X1234
i for i ∈ {1, 2},

where the first four sets of lines, rows (i = 1) and columns (i = 2), consist of outomes
{a1, a2}, {a1, a3}, {a2, a3}, and {a1, a2, a3}, respectively, while X1234

i is the set of lines that
contain an outcome a 6∈ {a1, a2, a3}. Let us notice that X12

i 6= ∅, X13
i 6= ∅, and X23

i 6= ∅,
while X123

i and X1234
i might be empty.

3.2 Subform {X12
1 ∪ X13

1 ∪ X23
1 } × {X12

2 ∪ X13
2 ∪ X23

2 }

It is easy to see that

g(x1, x2) = a1 when x1 ∈ X12
1 , x2 ∈ X13

2 or x1 ∈ X13
1 , x2 ∈ X12

2 ;

g(x1, x2) = a2 when x1 ∈ X12
1 , x2 ∈ X23

2 or x1 ∈ X23
1 , x2 ∈ X12

2 ;
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g(x1, x2) = a3 when x1 ∈ X13
1 , x2 ∈ X23

2 or x1 ∈ X23
1 , x2 ∈ X13

2 .

As we already mentioned in Section 2.2, only the following two assignments are feasible
in the main diagonal, see Figure 5,

(i) g(x1, x2) = a1 when x1 ∈ X13
1 , x2 ∈ X13

2 , g(x1, x2) = a2 when x1 ∈ X12
1 , x2 ∈ X12

2 ,
and g(x1, x2) = a3 when x1 ∈ X23

1 , x2 ∈ X23
2 ;

(ii) g(x1, x2) = a3 when x1 ∈ X13
1 , x2 ∈ X13

2 , g(x1, x2) = a1 when x1 ∈ X12
1 , x2 ∈ X12

2 ,
and g(x1, x2) = a2 when x1 ∈ X23

1 , x2 ∈ X23
2 .

It is not difficult to verify that any mixture of (i) and (ii) is in contradiction with total
tightness of g. Due to symmetry, we can fix either (i) or (ii) without any loss of generality.
From now on, we will assume that (i) holds, as in Figures 5, where we substitute only
subscript j for aj .

3.3 Subforms X1234
1 ×{X12

2 ∪X13
2 ∪X23

2 } and {X12
1 ∪X13

1 ∪X23
1 }×X1234

2 ;

Approximation I

Let us show that g(x1, x2) = a1 when x1 ∈ X1234
1 and x2 ∈ X13

2 .
The last inclusion implies that g(x1, x2) equals either a1 or a3. Let us assume indirectly

that g(x1, x2) = a3. Then, g(x1, x2) = a1 when x1 ∈ X12
1 ∪X13

1 and x2 ∈ X1234
2 , otherwise g is

not TT; see Figure 10. Furthermore, from total tightness of g we also derive that equalities
g(x1, x2) = a2 and g(x1, x2) = a3 hold simultaneously when x1 ∈ X1234

1 and x2 ∈ X23
2 ; see

Figure 10 again. The obtained contradiction proves our claim.
By the same arguments, we show five similar claims and obtain that

g(x1, x2) = a1 when x1 ∈ X1234
1 and x2 ∈ X13

2 ,

g(x1, x2) = a2 when x1 ∈ X1234
1 and x2 ∈ X12

2 ,

g(x1, x2) = a3 when x1 ∈ X1234
1 and x2 ∈ X23

2 ;

g(x1, x2) = a1 when x1 ∈ X13
1 and x2 ∈ X1234

2 ,

g(x1, x2) = a2 when x1 ∈ X12
1 and x2 ∈ X1234

2 ,

g(x1, x2) = a3 when x1 ∈ X23
1 and x2 ∈ X1234

2 .

The results are summarized in Figure 11. Let us notice that lines X1234
1 and X1234

2 are
filled in accordance with the majority rule, that is, each entry of the last line is the most
frequent outcome in the corresponding orthogonal line. Yet, we have to identify equal lines
before counting.

Let us also notice the following important corollary: if a line contains an outcome a 6∈
{a1, a2, a3} then this line must contain a1, a2, and a3 too. For example, no line can consist
of outcomes a1, a2, a4 or a1, a2, a4, a5 only.

3.4 Further partition of sets X123
1 and X123

2 ; Approximation II

From total tightness of g we can also derive the following implication. If g(x1, x2) = a3

for some x1 ∈ X123
1 and x2 ∈ X13

2 then g(x1, x
′
2) = a2 (respectively, g(x1, x

′
2) = a3) for the
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X13
2 X12

2 X23
2 X1234

2

X13
1 1 1 3 1 1 1 3 1

X12
1 1 2 2 2 1 2 2 1

X23
1 3 2 3 3 3 2 3

X1234
1 1 2 3 4 3 2/3 4

1 1 3 1 1 3 3

1 2 2 2 1 2 2

3 2 3 2 3 2 3 3

1/3 1 4 1/2 2 4

Figure 10: Contradictions.

X13
2 X12

2 X23
2 X123

2 X1234
2

X13
1 1 1 3 13 1

X12
1 1 2 2 12 2

X23
1 3 2 3 23 3

X123
1 13 12 23 123 123

X1234
1 1 2 3 123 1234

Figure 11: Structure of a TT game form; Approximation I.
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same x1 and arbitrary x′
2 ∈ X12

2 (respectively, x′
2 ∈ X23

2 ). Indeed, we already know that
g(x1, x

′
2) equals a1 or a2 (respectively, a2 or a3). Let us assume indirectly that g(x1, x

′
2) = a1

(respectively, g(x1, x
′
2) = a2) and choose an arbitrary x′

1 ∈ X12
1 . It is easy to verify that rows

x1, x
′
1 and columns x2, x

′
2 result in a 2 × 2 game form that is not tight. Hence, g is not TT

and we get a contradiction.

Let subset X3123
1 ⊆ X123

1 be defined by the following property: for each x1 ∈ X3123
1 there

is a x2 ∈ X13
2 such that g(x1, x2) = a3. In other words, subform g′ : X3123

1 × X13
2 → A takes

only two values a1, a3 and a3 appears in every its row. (In the next section we will show that
a1 appears in every its row, too.)

Since g is TT, g′ is also TT, that is, every 2 × 2 subform of g′ is tight. Hence, by
permutations of rows and columns we can transform g′ so that in every its row outcomes a3

go first, while a1 (if any) follow; in contrast, for each column outcomes a1 (if any) go first,
while a3 (if any) follow; see Figure 12, where standardly j substitutes for aj .

Definitely, the considered subform has a column whose every entry is a3 (we will call it an
a3-column). In contrast, a1-columns might exist or not (or, more precisely, their existence is
not proven, yet). The corresponding two cases are denoted in Figure 12 by the dashed and
dottet lines, respectively.

By symmetry, applying the same arguments, we will obtain two partitions:

X123
i = X3123

i ∪ X1223
i ∪ X1123

i ∪ X0123
i for rows, (i = 1) and columns (i = 2). (5)

To do this, first we substitute i = 2 for i = 1 to define subset of columns X3123
2 ⊆ X123

2 .
Then we introduce subsets X1223

i and X1123
i for i ∈ {1, 2}, similarly to X3123

i , using the cyclic
shift of outcomes: a3 → a2 → a1.

Finally, we define X0123
i ⊆ X123

i as the set of rows (i = 1) or columns (i = 2) such that
g(xi, x3−i) = a1 (respectively, a2 and a3) for every xi ∈ X0123

i and x3−i ∈ X13
3−i (respectively,

∈ X12
3−i and ∈ X23

3−i). The above arguments show that each line of X123
i belongs to exactly

one of the four subsets X1123
i , X1223

i , X3123
i , X0123

i . The obtained two partitions

Xi = X12
i ∪ X13

i ∪ X23
i ∪ X3123

i ∪ X1223
i ∪ X1123

i ∪ X0123
i ∪ X1234

i (6)

for rows (i = 1) and columns (i = 2) are given in Figure 12.
Let us remark that the last five sets might be empty, while the first three cannot.

Remark also that the next six subforms have pairwise disjoint sets of rows and columns:

X1123
i × X12

3−i, X1223
i × X23

3−i, X3123
i × X13

3−i; where i = 1, 2.

Hence, we can bring them simultaneously to the “staircase” form shown in Figures 12.

3.5 From Approximation II to Approximation III

3.5.1 Preliminary remarks

In this Section we analyse Figure 12 further to get the next approximation, III, whose table
is given in Figure 13. Let us notice that it contains the table of the approximation I in
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X13
2 X12

2 X23
2 X1123

2 X1223
2 X3123

2 X0123
2 X1234

2

X13
1 1 1 3 1 1

3
1

1 1

X12
1 1 2 2

1
2

2 2 2 2

X23
1 3 2 3 3

2
3

3 3 3

X1123
1 1

2
1

3

X1223
1 1 2

3
2

X3123
1

1
3

2 3

X0123
1 1 2 3 1 2 3 1 2 3

X1234
1 1 2 3 1 2 3 1 2 3 4

Figure 12: Structure of TT game forms; Approximation II

Figure 11 as a subtable; furthermore, the rest of it is uniquely defined. All these properties
we will prove in this section.

The reader should pay attention that, although the tables in Figures 12 and 13 are of
size 8 × 8, we take into account that in each of the considered two partitions (6) only three
from 8 sets are definitely non-empty, X13

i , X12
i , X23

i , for i = 1, 2, while some (or all) of the
remaining five might be empty. Of course, analyzing a subform Xa

1 × Xb
2, we also assume

that the considered parts Xa
1 and Xb

2 are non-empty-empty too.

3.5.2 On table in Figure 12

By definition, lines X13
i , X12

i , and X23
i consist of outcomes {a1, a3}, {a1, a2}, and {a2, a3},

respectively, while any other line contains all three outcomes {a1, a2, a3}. Indeed, in Section
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X13
2 X12

2 X23
2 X1123

2 X1223
2 X3123

2 X0123
2 X1234

2

X13
1 1 1 3 1 1

3
1

1 1

X12
1 1 2 2

1
2

2 2 2 2

X23
1 3 2 3 3

2
3

3 3 3

X1123
1 1

2
1

3 1 1 3 1 3 1

X1223
1 1 2

3
2

1 2 2 1 2 2

X3123
1

1
3

2 3 3 2 3 2 3 3

X0123
1 1 2 3 1 3 1 2 2 3 1 2 3 1 2 3

X1234
1 1 2 3 1 2 3 1 2 3 1 2 3 4

Figure 13: Structure of a TT game form; Approximation III contains I as a subtable.

3.3, we proved this for X1234
i , while the lines of X123

i consist of a1, a2, a3, by definition. Also
by definition, all lines of X1234

i and no others contain an outcome a 6∈ {a1, a2, a3}.
To summarize, in Section 3.4, we computed the entries of subforms

{X13
3−i ∪ X12

3−i ∪ X23
3−i} × {X13

i ∪ X12
i ∪ X23

i ∪ X1123
i ∪ X1223

i ∪ X3123
i ∪ X0123

i ∪ X1234
i }.

for i = 1 and i = 2; see Figure 12. In particular, subform X1234
3−i × X13

i (respectively,
X1234

3−i × X12
i and X1234

3−i × X23
i ) contains a unique outcome a1 (respectively, a2 and a3).

A subform whose each entry is aj will be called an aj-subform.
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X1123
2 X1223

2 X3123
2

X1123
1 1 12 31

X1223
1 12 2 23

X1223
1 31 23 3

Figure 14: On the central subform

3.5.3 Subforms X1234
3−i × {X1123

i ∪ X1223
i ∪ X3123

i }

For example, let us consider rows X13
1 ∪ X1234

1 and columns X3123
2 ∪ X1234

2 . By definition,
in every row of the subform X1234

1 × X1234
2 there is an outcome a 6∈ {a1, a2, a3}. Also by

definition, the subform X13
1 × X3123

2 contains a row whose every entry is a3 (so-called a3-
row). These two observations together with total tightness imply that g(x1, x2) = a3 for all
x1 ∈ X1234

1 and x2 ∈ X3123
2 . By symmetry, we fill subforms X1234

3−i × {X1123
i ∪ X1223

i ∪ X3123
i }

for i = 1, 2, as in Figure 13.

3.5.4 On the subforms X0123
3−i × {X1123

i ∪ X1223
i ∪ X3123

i }; i = 1, 2

For example, let us consider rows X13
1 ∪ X0123

1 and columns X12
2 ∪ X3123

2 . As we already
mentioned, the subform X13

1 × X3123
2 contains a a3-row. This observation together with

total tightness imply that g(x1, x2) equals a2 or a3 for all x1 ∈ X0123
1 and x2 ∈ X3123

2 . By
symmetry, we fill subforms X0123

3−i × {X3123
i ∪ X1223

i ∪ X1123
i }. for i = 1, 2, as in Figure 13.

Recall also that the subform X0123
3−i × X13

i (respectively, X0123
3−i × X12

i and X0123
3−i × X23

i )
contains only outcome a1 (respectively, a2 and a3), by definition of X0123

3−i .

3.5.5 On the cental subform {X1123
1 ∪ X1223

1 ∪ X3123
1 } × {X1123

2 ∪ X1223
2 ∪ X3123

2 }

Let us choose rows X13
1 ∪ X3123

1 and columns X13
2 ∪ X3123

2 . By definition, subforms X13
1 ×

X3123
2 and X3123

1 × X13
2 contain respectively an a3-row and a3-column. This observation

and total tightness imply that X3123
1 × X3123

2 is a a3-subform (that is, each its entry is a3).
By symmetry, we conclude that subforms X1223

1 × X1223
2 and X1123

1 × X1123
2 are a2- and

a1-subforms, respectively, as shown in Figure 13.

Now, let us consider rows X12
1 ∪X3123

1 and columns X13
2 ∪X1223

2 . As we already mentioned,
subform X3123

1 × X13
2 contains a a3-column. This observation together with total tightness

imply that subform X3123
1 × X1223

2 contains only outcomes a2 and a3. By symmetry we
conclude that for i = 1, 2 the subforms X1123

i × X1223
3−i , X1123

i × X3123
3−i , and X1223

i × X3123
3−i

contain only outcomes {a1, a2}, {a1, a3}, and {a2, a3}, respectively; see Figure 14.
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3.5.6 The dashed lines takes place in Figure 12

By definition, subform X3123
1 ×X13

2 contains an a3-column x3
2. Now we want to show that it

contains an a1-column x1
2, too.

First let us notice that a1 must appear in every row x1 ∈ X3123
1 , since otherwise this row

would belong to X23
1 rather than X3123

1 . Furthermore, from the obtained results it follows
that g(x1, x2) = a1 can hold only if x2 ∈ X13

2 ∪X1123
2 Assume indirectly that x1 = x3

1 ∈ X3123
1

has no a1, that is, x3
1 is an a3-row. Then if g(x1, x2) = a1 then x2 = x1

2 ∈ X1123
2 must hold.

Now, let us consider the subform X12
1 × X1123

2 . If it has an a2-row x2
1 then four lines,

x2
1, x

3
1, x

3
2 and any x2 ∈ X1123

2 form a 2 × 2 subform that is not tight. Hence, there is no
a2-row in X12

1 × X1123
2 . Yet, then there are a1-columns. Let X11231

2 ⊆ X1123
2 denote the set

of these columns.
From the above observations and total tightness it is not difficult to derive that x1

2 ∈
X11231

2 and, moreover, column x1
2 contains only a1 and a3. Yet, in this case it would belong

to X13
2 rather than X1123

2 , a contradiction.

By symmetry, we conclude that the following six subforms

X1123
i × X12

3−i, X1223
i × X23

3−i, and X3123
i × X13

3−i; i = 1,2,

contains a2-, a3-, and a1-columns (i = 1) and -rows (i = 2), respectively.
In other words, dashed lines take place in Figure 12.

3.5.7 Finalizing the cental subform {X1123
1 ∪X1223

1 ∪X3123
1 }×{X1123

2 ∪X1223
2 ∪X3123

2 }

In Section 3.5.6, we proved that subform X3123
1 × X1123

2 can contain only a1 and a3. Yet,
let x3

1 be an a3-column in X3123
1 × X13

2 and x2
2 be an a2-row in X12

1 × X1123
2 . By adding

to these two an arbitrary row x1 ∈ X3123
1 and column x2 ∈ X1123

2 , we conclude that the
considered subform X3123

1 ×X1123
2 can contain only a2 and a3. Hence, only a3 can take place.

By symmetry, we conclude that

X3123
1 × X1223

2 and X1223
1 × X3123

2 are a2-subforms; X3123
1 × X1123

2 and X1123
1 × X3123

2 are
a3-subforms; X1223

1 × X1123
2 and X1123

1 × X1223
2 are a1-subforms.

in Figure ?? the central 3 × 3 subtable must be exact copy of the 3 × 3 subtable in the
upper left corner. In other words,

In other words the following two 3 × 3 subtables have exactly the same structure:

X1123
1 ∪ X1223

1 ∪ X3123
1 × X1123

2 ∪ X1223
2 ∪ X3123

2 and X13
1 ∪ X12

1 ∪ X23
1 × X13

2 ∪ X12
2 ∪ X23

2 .

This is an important observation showing that the 3 × 3 blocks along the main diagonal
repeat themselves. However, the size of these blocks might become less than 3 × 3, since as
we already mentioned, some (or all) of the six sets X1123

i , X1223
i , and X3123

i , for i = 1, 2, can
be empty.

Still, TT game forms are not explicitly characterized, since Figure 13 contains subforms

X3−i×{(X3123
i ∪X1223

i ∪X1123
i ∪X0123

i ∪X1234
i } for i = 1, 2, which are not well-defined, yet.
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3.6 Recursive description of TT game forms; Approximation IV

The following two important properties of Approximation III form the base for a recursion.

(i) Every row of X0123
1 ∪X1234

1 and column X0123
2 ∪X1234

2 begins with a1, a2, a3; see Figure
13. More precisely, g(x1, x2) = a1, respectively, a2 and a3, whenever

x1 ∈ X0123
1 ∪ X1234

1 , x2 ∈ X13
2 or x2 ∈ X0123

2 ∪ X1234
2 , x1 ∈ X13

1 ;

x1 ∈ X0123
1 ∪ X1234

1 , x2 ∈ X12
2 or x2 ∈ X0123

2 ∪ X1234
2 , x1 ∈ X12

1 ;

x1 ∈ X0123
1 ∪ X1234

1 , x2 ∈ X23
2 or x2 ∈ X0123

2 ∪ X1234
2 , x1 ∈ X23

1 .

(ii) Given a TT game form g : X1 ×X2 → A, where X1 and X2 are partitioned as shown
in Figure 13, let us delete rows X13

1 ∪ X12
1 ∪ X23

1 from X1, columns X13
2 ∪ X12

2 ∪ X23
2 from

X2, and denote the obtained subform by g′ : X ′
1 × X ′

2 → A. This reduction results exactly
in Approximation I, as one can see by comparing Figures 13 and 11.

Let us partition the sets X0123
1 and X0123

2 in the same way as we partitioned X123
1 and

X123
2 in Section 3.4, etc. The obtained table is given in Figure 15, where

Xi =
⋃

j=0,1,...

{Xj1
i ∪ X

j2
i ∪ X

j3
i }; i = 1, 2. (7)

Let us show that all the 3×3 blocks {Xj1
1 ∪X

j2
1 ∪X

j3
1 }×{Xj1

2 ∪X
j2
2 ∪X

j3
2 } are uniquely

defined and have the same structure for all j. We already know this for j = 0, 1. Now, let
j = 2. First, analyzing X11

1 ∪X23
1 ×X11

2 ∪X23
2 we conclude that X23

1 ×X23
2 is an a3-subform.

Analyzing in a similar way two subtables X02
1 ∪X23

1 ×X11
2 ∪X22

2 and X13
1 ∪X23

1 ×X01
2 ∪X22

2

we derive that X23
1 × X22

2 is an a2-subform. Indeed, first we see that it can contain only
outcomes a2 and a3, then that only a1 and a2.

The following remarks are important. If the a3-subform X23
1 × X23

2 is not empty then,
of course, X23

1 6= ∅ and X23
2 6= ∅. Moreover, X11

1 6= ∅ and X11
2 6= ∅, either. Indeed, if X11

i is
empty then the sets of strategies X23

3−i and X13
3−i would merge. Similar arguments hold for

the a2-subform: if X23
1 × X22

2 6= ∅ then, of course, X23
1 6= ∅ and X22

2 6= ∅; moreover, X11
2 6= ∅

and X22
2 6= ∅; finally, X01

2 6= ∅ and X02
1 6= ∅, by definition.

Now, by symmetry, the whole subtable (7) is uniquely defined, as shown in Figure 15,
for j = 2. The same arguments work for all j ≥ 2, too.

Moreover, we can repeat all arguments of Sections 3.4 and 3.5, except only one, of Section
3.5.6, where we proved that the subform X02

1 ×X11
2 contains an a2-row. However, recursion

does not keep this property. For example, it is no longer the case with the next subform
X12

1 × X21
2 . Moreover, in general, the subforms Xk2

1 × X
(k+1)1
2 might contain no a2-rows

whenever k ≥ 1. In general, the subforms

Xk1
1 ×X

(k+1)3
2 , Xk2

1 ×X
(k+1)1
2 , Xk3

1 ×X
(k+1)2
2 ; Xk1

2 ×X
(k+1)3
1 , Xk2

2 ×X
(k+1)1
1 , Xk3

2 ×X
(k+1)2
1

contain, respectively, a1-, a2-, a3-rows and a1-, a2-, a3-columns if k = 0 but might not contain
them when k ≥ 1; see Figure 16.
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X01
2 X02

2 X03
2 X11

2 X12
2 X13

2 X21
2 X22

2 X23
2

X01
1 1 1 3 1 1

3
1

1 1 1 1

X02
1 1 2 2

1
2

2 2 2 2 2 2

X03
1 3 2 3 3

2
3

3 3 3 3 3

X11
1 1

2
1

3 1 1 3 1 1
3

1
1

X12
1 1 2

3
2

1 2 2
1

2
2 2 2

X13
1

1
3

2 3 3 2 3 3
2

3
3 3

X21
1 1 2 3 1

2
1

3 1 1 3 1

X22
1 1 2 3 1 2

3
2

1 2 2 2

X23
1 1 2 3

1
3

2 3 3 2 3 3

1 2 3 1 2 3 1 2 3 g′

Figure 15: Approximation IV and recursion

The above recursive procedure is shown in Figure 15, where the game form g′ might
appear after any number ℓ of recursive steps; for example, ℓ = 3 in Figure 15. Recursion
works whenever g′ is TT.

Proposition 21. Game form g is TT if and only if g′ is TT.

Proof. The “only if” part is obvious, since total tightness is a hereditary property. Let us
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1
2

2
1

2
2

3
2

3
3

2
3

a b

Figure 16: Two fragments of Approximation II

assume that g′ is TT and show that g is TT, too, that is, every 2×2 subform g′′ of g is tight,
or which is the same, has a constant line. Let g′ and g′′ have k entries in common. Obviously,
k might take values 0, 1, 2 or 4. In the last case g′′ is tight, since g′ is TT. Furthermore, let
us notice that for each line of g′, a row or column, its extension to g \ g′ has a very simple
structure: (123123 . . .). From this observation it is easily seen that g′′ is also tight when k

equals 0 or 2; see Figure 15. Let k = 1 and x = (x1, x2) be the only common situation of g′

and g′′. Although this case contains very many subcases, still it is not difficult to verify that
the 2 × 2 game form g′′ formed by two pairs of strategies x1, x

′
1 and x2, x

′
2 has a constant

line for any choice of x′
1 ∈ X1(g) \ X1(g

′) and x′
2 ∈ X2(g) \ X2(g

′); see Figure 15.

Let us underline that g′ can be an arbitrary TT game form. In particular, it might contain
constant lines and outcomes distinct from {a1, a2, a3}. Let us also remark that Figure 15
represents the case when in each iteration all six sets X1123

i , X1223
i , X3123

i ; i = 1, 2 of
approximation II in Figure 13 are not empty. Yet, some of them might be empty.

Thus, we cannot claim that all TT game forms are produced by the above recursive
procedure. Yet, it is proven that every TT game form g is a subform of a game form g′

produced by this procedure.

4 Totally tight game forms are dominance-solvable, acyclic,

and assignable; proofs of Propositions 7, 8, and 9

These three claims easily follow from Approximations III and IV. Let us recall that, by
definition, TT, AC, and AS are hereditary properties of game forms, while DS is not.

4.1 Proof of Proposition 8, TT ⇒ DS

Let us assume indirectly that a TT game form g is not DS. Then there is a payoff (or
preference profile) u such that game (g, u) is not DS. Let us eliminate successively dominated
strategies from (g, u) in an arbitrary order until we obtain a domination-free subgame (g′, u).
Yet, game form g′ is TT, since g was TT. However, g′ might be reducible. Then, let us
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successive eliminate constant lines, rows or columns, from g′ until we obtain a (unique)
irreducible game form g′′.

Clearly, game (g′′, u) is still domination-free, since elimination of a constant line respects
this property. Since g′′ is TT and irreducible, it must be of of type given in Figure 13,
Approximation III. Let us recall that sets of rows X12

i , X13
i , and X23

i are not empty for
i = 1, 2; in contrast, sets X1123

i , X1223
i , X3123

i , X0123
i , and X1234

i might be empty.
It is not difficult to verify that if a1 (respectively, a2 or a3) is the worst outcome for player

1 among {a1, a2, a3} then every row from X13
1 (respectively, from X12

1 or X23
1 ) is dominated

by each row of X23
1 (respectively, of X13

1 or X12
1 ); see Figure 13. Thus, game (g′′, u) is not

domination-free and we obtain a contradiction.

4.2 Proof of Proposition 7, TT ⇒ AC

Given a TT game form g′, assume indirectly that it is not acyclic, i.e., there is a payoff
(or preference profile) u such that game (g′, u) has a strict improvement n-cycle Cn. Let us
consider the corresponding n × n subform g; obviously, it is TT, too. Moreover, in every
line, row or column, of g there is exactly one arc of Cn. Since, a constant line cannot contain
such an arc, we conclude that g is irreducible. Furthermore, being TT and irreducible, g is
of of type given in Figure 13.

Then let us notice that every row (column) from X12
i ∪X13

i ∪X23
i , where i = 1 (respectively,

i = 2), contains exactly two outcomes: {a1, a2}, {a1, a3}, and {a2, a3}. Hence, u(i, aj′) 6=
u(i, aj′′) for all i ∈ {1, 2} and distinct j′, j′′ ∈ {1, 2, 3}. Indeed, otherwise each line of the

corresponding set X
j′j′′

i is constant and, hence, it contains no arc of Cn.
Obviously, the chain of inequalities u(i, a1) > u(i, a2) > u(i, a3) > u(i, a1) cannot hold,

by transitivity. Without loss of generality, let us assume that u(1, a1) > u(1, a3). and prove
that then u(2, a3) > u(2, a2). Assume indirectly that u(2, a3) < u(2, a2). Each column of
X13

2 contains a (unique) arc of Cn. This arc goes from a1 to a3 and this a3 is either in X23
1 or

in X3123
1 ; see Figure 13. Where the next arc of Cn can lead to? If a3 is in X3123

1 then it can
lead only to a1 in a column of X13

2 again. This column also contain a (unique) arc of Cn that
can lead only to a3, etc. Thus, sooner or later, cycle Cn will come to a3 in X23

1 . Then the
next arc can only lead to a2. Hence, u(2, a3) > u(2, a2). Thus, we proved the implication: if
u(1, a1) > u(1, a3) then u(2, a3) > u(2, a2). Exactly the same arguments prove the following
chain of similar implications:

u(1, a1) > u(1, a3) ⇒ u(2, a3) > u(2, a2) ⇒ u(1, a2) > u(1, a1) ⇒ u(2, a1) > u(2, a3) ⇒
u(1, a3) > u(1, a2) ⇒ u(2, a2) > u(2, a1) ⇒ u(2, a2) > u(2, a1).

Yet, it is easy to notice that they contradict transitivity of both u(1, ∗) and u(2, ∗); see
inequalities 1, 3, 5 and 2, 4, 6, respectively.

4.3 Proof of Proposition 9, TT ⇒ AS

Let us remark that our proofs for the acyclicity and dominance-solvability of a TT game
form were based on Approximation III (Figure 13), while to derive the assignablity we will
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need Approximation IV. Yet, the proof itself is easier. Let us recall the recursion in Figure
15. Given an assignment for the subform g′, we extend it to the whole game form g by
assigning aj to each strategy x

kj
i , where j = 1, 2, 3, i = 1, 2, and k = 0, 1, . . .

Since, as we know, both properties, TT and AS, are hereditary and each TT game form
is a subform of a game form obtained by the above recursion, our claim follows.

Acknowledgments We are thankful to N.S. Kukushkin who shared with us his results
and ideas related to TT game forms. He proved that 2-person TT game forms are acyclic
and conjectured that they are also assignable and dominance-solvable [17].
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