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ABSTRACT

In 1964 Shapley observed that a matrix has a saddle point whenever every 2×2 submatrix of
it has one. In contrast, a bimatrix game may have no Nash equilibrium (NE) even when every
2 × 2 subgame of it has one. Nevertheless, Shapley’s claim can be generalized for bimatrix
games in many ways as follows. We partition all 2 × 2 bimatrix games into fifteen classes
S = {c1, . . . , c15} depending on the preference pre-orders of the two players. A subset t ∈ S
is called a NE-theorem if a bimatrix game has a NE whenever it contains no subgame from t.
We suggest a general method for getting all minimal (that is, strongest) NE-theorems based
on the procedure of joint generation of transversal hypergraphs given by a special oracle. By
this method we obtain all (six) minimal NE-theorems.



1 Introduction, main concepts and results

1.1 Bimatrix games and Nash equilibria

Let X1 and X2 be finite sets of strategies of players 1 and 2. Pairs of strategies x = (x1, x2) ∈
X1 × X2 = X are called situations. A bimatrix game U = (U1, U2) is a pair of real-valued
matrices Ui : X → R, i = 1, 2, with common set of entries X. Value Ui(x) is interpreted
as utility function (also called profit or payoff) of player i ∈ {1, 2} in the situation x. A
situation x = (x1, x2) ∈ X1 × X2 = X is called a Nash equilibrium (NE) if

U1(x
′
1, x2) ≤ U1(x1, x2) ∀x′

1 ∈ X1 and U2(x1, x
′
2) ≤ U2(x1, x2) ∀x′

2 ∈ X2;

in other words, if no player can make a profit by choosing a new strategy if the opponent keeps
the old one. A bimatrix game U is called a zero sum or matrix game if U1(x) + U2(x) = 0
for every x ∈ X. In this case the game is well-defined by one of two matrices, say, by U1,
and a NE is called a saddle point (SP).

1.2 Locally minimal SP-free matrix and NE-free bimatrix games

Standardly, we define a subgame as the restriction of U to a subset X ′ = X ′
1 × X ′

2 ⊆
X1 × X2 = X, where X ′

1 ⊆ X1 and X ′
2 ⊆ X2. In 1964 Shapley [8] noticed that a matrix

has a saddle point whenever each of its 2 × 2 submatrices has one. Obviously, in this case,
every submatrix has a SP, too. In other words, all minimal SP-free matrices are of size 2×2.
Moreover, all locally minimal SP-free matrices are of size 2 × 2, too; in other words, every
SP-free matrix of larger size has a row or column whose elimination still results in an SP-free
submatrix; see [1]. Other generalizations of Shapley’s theorem can be found, for example, in
[6, 7]. Let us also notice that a 2 × 2 matrix has no SP if and only if one of its diagonals is
strictly larger than the other.

The “naive generalization” of Shapley’s claim to bimatrix games fails: a 3×3 game might
have no NE even if each its 2×2 subgame has one; moreover, for each n ≥ 3 a n×n bimatrix
game might have no NE even if every its subgame has one; see Example 1 in [6] or [1] and
also examples given below. However, all locally minimal NE-free games admit the following
explicit characterization [1].

For the sake of brevity, let us denote situation (xi
1, x

j
2) by xi,j , where X1 = {x1

1, x
2
1, . . .}

and X2 = {x1
2, x

2
2, . . .}.

Given an integer n ≥ 2 and a bimatrix game U with |X1| ≥ n and |X2| ≥ n, let us say that
U has the canonical strong improvement n-cycle C0

n if each situation x1,1, x2,2, . . . , xn−1,n−1, xn,n

(respectively, x1,2, x2,3, . . . , xn−1,n, xn,1) is a unique largest in its row with respect to U2 (in its
column with respect to U1) and is the second largest, not necessarily, unique, in its column
with respect to U1 (in its row with respect to U2). Any other strong improvement n-cycle
Cn is obtained from the canonical one C0 by arbitrary permutations of the rows of X1 and
columns of X2.

It is easy to see that if an n × n bimatrix game U has a strong improvement cycle then
U has no NE, yet, every proper subgame obtained from U by elimination of either one row
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or one column has a NE. In other words, U is a locally minimal NE-free bimatrix game.
Moreover, the inverse holds, too.

([1]). A bimatrix game U is a locally minimal NE-free game if and only if U is of size
n × n for some n ≥ 2 and it contains a strong improvement n-cycle.

Thus, locally minimal NE-free games can be arbitrary large. Several examples are given
in Figures 2 - 6, where each game has the canonical strong improvement cycle. Although
it seems difficult to characterize or recognize the minimal NE-free games (see [1]), yet, the
above characterization of the locally-minimal ones will be sufficient for us.

1.3 Pre-orders

Given a set Y and a mapping P : Y 2 → {<, >, =} that assigns one of these three symbols
to every ordered pair y, y′ ∈ Y , we say that y is less or worse than y′ if y < y′, respectively,
y is more or better than y′ if y > y′, and finally, y and y′ are equivalent or they make a tie
if y = y′. Furthermore, P is called a pre-order if the following standard properties (axioms)
hold for all y, y′, y′′ ∈ Y :

symmetry: y < y′ ⇔ y′ > y, y = y′ ⇔ y′ = y, and y = y;

transitivity: y < y′ & y′ < y′′ ⇒ y < y′′, y < y′ & y′ = y′′ ⇒ y < y′′,
y = y′ & y′ < y′′ ⇒ y < y′′, y = y′ & y′ = y′′ ⇒ y = y′′,

A pre-order without ties is called a (linear or complete) order.

We use standard notation: y ≤ y′ if y < y′ or y = y′ and y ≥ y′ if y > y′ or y = y′.
Obviously, transitivity and symmetry still hold:

y ≤ y′ & y′ < y′′ ⇒ y < y′′, y < y′ & y′ ≤ y′′ ⇒ y < y′′,
y ≤ y′ & y′ ≤ y′′ ⇒ y ≤ y′′, and y ≤ y′ ⇔ y′ ≥ y.

In Figures 1-6 we use the following notation: an arrow from y to y′ for y > y′, a line with
two dashes for y = y′, and an arrow with two dashes for y ≥ y′.

1.4 Configurations; fifteen 2-squares

Let us notice that to decide whether a situation x = (x1, x2) ∈ X1 × X2 = X is a NE in U ,
it is sufficient to know only two pre-orders: in the row x1 with respect to U2 and in column
x2 with respect to U1.

Given X1 and X2, let us assign a pre-order Pxi
over X3−i to each xi ∈ Xi; i = 1, 2, and

call the obtained preference profile P = {Px1
, Px2

| x1 ∈ X1, x2 ∈ X2} a configuration or
bi-pre-order.

Naturally, every bimatrix game U = (U1, U2) defines a unique configuration P = P (U),
where Pxi

is the pre-order over X3−i defined by Ui; i = 1, 2. Clearly, each configuration is
realized by infinitely many bimatrix games. Yet, it is also clear that to get all NE in game
U it is enough to know its configuration P (U).

For brevity, we will refer to a 2× 2 configuration as a 2-square. Up to permutations and
transpositions, there exist fifteen 2-squares. They are listed in Figure 1 together with the
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Figure 1: Fifteen 2-squares.

corresponding bimatrix games. Four 2-squares c1, c2, c3, c4 have no ties; another four, c5, c6,
c7, c8 and the next five, c9, c10, c11, c12, c13, have, respectively, one and two ties each; finally,
c14 and c15 have 3 and 4 ties.

Fifteen 2-squares have 0, 2, 1, 1, 1, 2, 1, 2, 3, 2, 2, 2, 2, 3, and 4 NE, respectively. Thus, only
c1 has no NE. Shapley’s theorem asserts that each c1-free zero-sum game (or configuration)
has a NE. Let us note that 2-squares c1 - c6 are frequent in the literature. For example, the
non-zero-sum bimatrix games realizing c2 and c4 may represent classical “family dispute”
and “prisoner’s dilemma”; respectively, c5 and c6 illustrate the concepts of the “promise”
and “threat”.

1.5 Dual or transversal hypergraphs

Let C be a finite set whose elements we denote by c ∈ C. A hypergraph H (on the ground
set C) is a family of subsets h ⊆ C that are called the edges of H . A hypergraph H is called
Sperner if containment h ⊆ h′ holds for no two distinct edges of H . Given two hypergraphs
T and E on the common ground set C, they are called transversal or dual if the following
properties hold:

(i) t ∩ e 6= ∅ for every t ∈ T and e ∈ E;

(ii) for every subset t′ ⊆ C such that t′ ∩ e 6= ∅ for each e ∈ E there exists an edge t ∈ T
such that t ⊆ t′;

(iii) for every subset e′ ⊆ C such that e′∩ t 6= ∅ for each t ∈ T there exists an edge e ∈ E
such that e ⊆ e′.

Property (i) means that edges of E and T are transversal, while (ii) and (iii) mean
that T contains all minimal transversals to E and E contains all minimal transversals to
T , respectively. It is well-known, and not difficult to see, that (ii) and (iii) are equivalent
whenever (i) holds. Although for a given hypergraph H there exist infinitely many dual
hypergraphs, yet, only one of them, which we will denote by Hd, is Sperner. Thus, within
the family of Sperner hypergraphs duality is well-defined; moreover, it is an involution, that
is, equations T = Ed and E = T d are equivalent. It is also easy to see that dual Sperner
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Figure 2: NE-examples.

hypergraphs have the same set of elements. For example, the following two hypergraphs are
dual:

E ′ = {(c1), (c2, c3), (c5, c9), (c3, c5, c6)}, (1)

T ′ = {(c1, c2, c5), (c1, c3, c5), (c1, c2, c6, c9), (c1, c3, c9)}; (2)

as well as the following two:

E = {(c1), (c2, c3), (c5, c9), (c3, c5, c6), (c2, c4, c5, c6)}, (3)

T = {(c1, c2, c5), (c1, c3, c5), (c1, c2, c3, c9), (c1, c2, c6, c9), (c1, c3, c4, c9), (c1, c3, c6, c9)}. (4)

1.6 Hypergraphs of examples and theorems

Let C = {c1, . . . , c15}. We call a subset e ⊆ C a NE-example if there is a NE-free configura-
tion P such that e is the set of types of 2-squares in P ; respectively, a subset t ⊆ C is called a
NE-theorem if a configuration has a NE whenever it contains no 2-squares from t. Obviously,
e∩ t 6= ∅ for any NE-example e and NE-theorem t, since otherwise e is a counterexample to
t. Moreover, it is well-known and easy to see that the hypergraphs of all inclusion-minimal
(that is, strongest) NE-examples ENE and NE-theorems TNE are transversal. Let us con-
sider c1 and four configurations in Figure 2. It is easy to verify that all five contain canonical
strong cycles and hence, they are locally minimal (in fact, minimal) NE-free configurations.
These five configurations are chosen because they contain few types of 2-squares; the corre-
sponding sets are given in Figure 2; they form the hypergraph E defined by (3). Figure 2
shows that each edge of E is a NE-example.

Let us consider the dual hypergraph T given by (4). We will prove that every edge t ∈ T
is a NE-theorem, thus, showing that the “research is complete”, that is, E = ENE and
T = TNE are the hypergraphs of all strongest NE-examples and theorems.
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Given a family of NE-examples E ′, the dual hypergraph T ′ should be viewed as a hyper-
graph of conjectures rather than theorems. Indeed, some inclusion-minimal examples might
be missing in E ′; moreover, some examples of E ′ might be reducible. In this case some
conjectures from the dual hypergraph T ′ = E

′d will fail, being too strong. For instance, let
us consider E ′ given by (1) in which the NE-example (c2, c4, c5, c6) is missing. (In fact, it is
not that easy to obtain a minimal 4 × 4 example without computer.) Respectively, conjec-
ture (c1, c3, c9) appears in T ′ = E

′d. This conjecture is too strong, so it fails. In T = TNE

we substitute for it three weaker (but correct) NE-theorems (c1, c3, c9, c2), (c1, c3, c9, c4), and
(c1, c3, c9, c6). Thus, if it seems too difficult to prove a conjecture, one should look for new
examples.

1.7 Joint generation of examples and theorems

Of course, this approach can be applied not only to NE-free bimatrix games.
In general, given a set of objects Q (in our case, configurations), list C of subsets (prop-

erties) Qc ⊆ Q, c ∈ C (in our case, c-free configurations), the target subset Q0 ⊆ Q
(configurations that have a NE), we introduce a pair of hypergraphs E = E(Q, Q0, C) and
T = T (Q, Q0, C) (examples and theorems) defined on the ground set C as follows:

(i) every set of properties assigned to an edge t ∈ T (a theorem) implies Q0, that is,
q ∈ Q0 whenever q satisfies all properties of t, or in other words, ∩c∈tQc ⊆ Q0; in contrast,

(ii) each set of properties corresponding to the complement C \ e of an edge e ∈ E (an
example) does not imply Q0, i.e., there is an object q ∈ Q \ Q0 satisfying all properties of
C \ e, or in other words, ∩c 6∈eQc 6⊆ Q0.

If hypergraphs E and T are dual then we can say that “our understanding of Q0 in terms
of C is perfect”, that is, every new example e′ ⊂ C (theorem t′ ⊆ C) is a superset of some
old example e ∈ E (theorem t ∈ T ).

Without loss of generality we can assume that examples of e ∈ E and theorems t ∈ T )
are inclusion-wise minimal in C; or in other words both hypergraphs E and T are Sperner.

Given Q, Q0 and C, we try to generate hypergraphs E and T jointly [5]. Of course, the
oracle may be a problem: Given a subset C ′ ⊆ C, it may be difficult to decide whether C ′

is a theorem (i.e., if q ∈ Q0 whenever q satisfies all properties of C ′) or an example (i.e., if
there is a q ∈ Q \ Q0 satisfying all properties of C \ C ′). However, the stopping criterion,
Ed = T , is well-defined and, moreover, it can be verified in quasi-polynomial time [3].

Let us notice that containment ∩c∈tQc ⊆ Q0 might be strict. In other words, theorem
t gives sufficient but not always necessary conditions for q ∈ Q0. We can also say that
theorems t ∈ T give all optimal “inscribed approximations” of Q0 ⊆ Q in terms of C.

In [4], this approach was illustrated by a simple model problem in which Q is the set of
4-gons, Q0 is the set of squares, C is a set of six properties of a 4-gon. Two dual hypergraphs
of all minimal theorems T and examples E were constructed. In [2], the same approach was
applied to a more serious problem related to families of Berge graphs.
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1.8 Strengthening NE-theorems; main results

We will prove all six NE-theorems t ∈ TNE . Formally, they cannot be strengthened, since t′

is not a NE-theorem whenever t′ ⊂ t ∈ TNE and the containment t′ ⊂ t is strict. Still, we
can get stronger claims in slightly different terms.

Let us notice that for any t the class of t-free configurations (games) is hereditary. Indeed,
if a configuration (game) is t-free then every subconfiguration (subgame) of it is t-free,
too. Hence, we can restrict ourselves by the locally minimal NE-free examples, which are
characterized by Theorem 1.2.

Now, let us consider NE-theorems (c1, c2, c5), (c1, c3, c5), and (c1, c2, c6, c9). Formally,
since 2-square c1 has no NE, it must be eliminated. Yet, in a sense, it is the only exception.
More precisely, we can strengthen the above three NE-theorems as follows.

The 2-square c1 is a unique locally minimal NE-free configuration that is also (c2, c5)- or
(c3, c5)-, or (c2, c6, c9)-free.

Furthermore, theorems (c1, c3, c9, c2), (c1, c3, c9, c4), (c1, c3, c9, c6) can be strengthened,
too. In fact, we will characterize explicitly the configurations that are locally minimal NE-
free and also (c3, c9)-free. This family is sparse but still infinite. In particular, we obtain
the following result. Let C(P ) denote the set of all types of 2-squares of configuration P ;
furthermore, let C ′ = {c2, c4, c5, c6, c7, c8, c13, c1} and C ′′ = C ′ ∪ {c12}.

Let P be a locally minimal NE-free n × n configuration that is also (c3, c9)-free. Then

(i) n is even unless n = 1; (ii) if n = 2 then P is c1;

(iii) if n = 4 then P is a unique (c2, c4, c5, c6)-configuration in Figure 2;

(iv) if n = 6 then C(P ) = C ′;

(v) if n = 8 then C ′ ⊆ C(P ) ⊆ C ′′ and there exist P with C(P ) = C ′;

(vi) finally, if n ≥ 10 is even then C(P ) = C ′′.
It is clear that this statement implies the remaining three NE-theorems: (c1, c3, c9, c2),

(c1, c3, c9, c4), and (c1, c3, c9, c6).

2 Proof of Theorems 1.8 and 1.8

As we already mentioned, we can restrict ourselves to the locally minimal NE-free config-
urations. By Theorem 1.2, each such configuration P is of size n × n for some n ≥ 2 and
P contains a strong improvement cycle Cn. Without loss of generality we can assume that
Cn = C0

n is canonical. In particular,

xi,i+1 ≥ xi,j , xi,i+1 > xj,i+1, for j 6= i, xj,j ≥ xi,j , xj,j > xj,i+1, for j 6= i + 1. (5)

Furthermore, if n = 2 then 2-square c1 is a unique NE-free configuration (in fact, c1 is a
strong 2-cycle). Hence, we will assume that n ≥ 3. Additionally, we assume that P is t-free
and consider successively the following subsets t : (c2, c5), (c3, c5), (c2, c6, c9), and (c3, c9).
Theorem 1.8 will follow, since in the first three cases we get a contradiction. For t = (c3, c9)
we will characterize the corresponding configurations explicitly, thus proving Theorem 1.8.
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Figure 3: Locally minimal NE-free
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not exist, except c1.
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Figure 4: Locally mini-
mal NE-free and (c2, c6, c9)-
or (c3, c5)-free configurations
do not exist, except c1.

2.1 Locally minimal NE-free and (c2, c5)-free configurations

Let us consider C0
n in Figure 3 (where n = 7). By (5), xi,i > xi,j (with respect to U2)

whenever j 6= i; in particular, xi,i > xi,i−1 for i ∈ [n] = {1, . . . , n}, where standardly, 0 ≡ n.
Similarly, xi,i ≥ xj,i whenever j 6= i − 1 (with respect to U1); in particular, xi,i ≥ xi+1,i for
i ∈ [n] = {1, . . . , n}, where standardly, n + 1 ≡ 1. Moreover, the latter n inequalities are
also strict, since otherwise c5 would appear.

By similar arguments we show that xi,i+1 > xi,i+2 and xi,i+1 > xi−1,i+1 for i = 1, . . . , n−1;
see Figure 3.

Next, let us notice that xi,i = xi−2,i for i = 2, . . . n. Indeed, xi,i ≥ xi−2,i, since Cn is a
strong cycle, and c2 would appear in case xi,i > xi−2,i.

Furthermore, xi,i+2 ≥ xi,i+3 for i = 1, . . . , n − 3, since otherwise xi,i+2, xi,i+3, xi+2,i+2,
xi+2,i+3 would form a c5.

Next, let us notice that xi,i+3 = xi+1,i+3 for i = 1, . . . , n − 3. Indeed, xi,i+3 ≤ xi+3,i+3 =
xi+1,i+3, and if xi,i+3 < xi+1,i+3 then xi,i+1, xi,i+3, xi+3,i+1, xi+3,i+3 would form a c2, by (5).

Similarly, by induction on j, we show that xi,i+j ≥ xi,i+j+1 and xi,i+j = xi+1,i+j for
1 ≤ i ≤ n − 3 and 2 ≤ i + j ≤ n − 1.

In particular, xn,n = xn−2,n = xn−3,n = . . . = x2,n = x1,n in contradiction with the strict
inequality xn,n > x1,n obtained before.

2.2 Locally minimal NE-free and (c2, c6, c9)- or (c3, c5)-free configu-

rations

These two cases are easy. Let us consider C0
n in Figures 4 (a) and (b) (where n = 3),

corresponding respectively to the two cases. By definition, in both cases x2,2 > x2,1 x1,1 ≥
x2,1. In case (b) we already got a contradiction, since four above situations form c3 or c5.

In case (a) we have to proceed a little further. Clearly, x2,3 ≥ x2,1, x1,2 ≥ x1,3, x2,3 > x1,3,
and again we get a contradiction, since situations x1,1, x1,3, x2,1, x2,3 form c9 if two equalities
hold, c6 if exactly one, and c2 if none.
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Figure 5: Locally minimal NE-free and (c3, c9)-free configurations.

2.3 Locally minimal NE-free and (c3, c9)-free configurations

Let us consider C0
n in Figure 5 (where n = 8). By (5), for all i we have:

xi,i > xi,i+1, xi,i > xi,i−1, xi,i ≥ xi+1,i, xi,i ≥ xi−2,i;

xi,i+1 > xi+1,i+1, xi,i+1 > xi−1,i+1, xi,i+1 ≥ xi,i+2, xi,i+1 ≥ xi,i−1.

Furthermore, it is not difficult to show that

xi,i = xi+1,i and xi,i+1 = xi,i+2, (6)

since otherwise c3 appears, while

xi,i > xi−2,i and xi,i+1 > xi,i−1, (7)

since otherwise c9 appears; see Figure 5.
Standardly, we prove all four claims in (6) and (7) by induction introducing situations in

the following (alternating diagonal) order:

x2,1, x1,3, . . . , xi,i−1, xi−1,i+1, . . . , xn,n−1, xn−1,1, x1,n, xn,2.

Furthermore, x1,1 = x2,1 ≥ x4,1 unless n < 5; moreover, x2,1 = x4,1, since otherwise
situations x2,1, x4,1, x2,4, and x4,4 form c3.

Similarly, we prove that x1,3 = x1,5 unless n < 5.
Then let us recall that x4,5 ≥ x4,1 and conclude that x4,5 > x4,1, since otherwise situations

x1,1, x4,1, x1,5, and x4,5 form c9.
In general, it is not difficult to prove by induction that

xi,i = xi+1,i = xi+3,i = . . . = xi+2j−1,i, while xi−1,i > xi,i > xi+2j,i; (8)

xi,i+1 = xi,i+2 = xi,i+4 = . . . = xi,i+2j , while xi,i > xi,i+1 > xi,i+2j+1. (9)

In both cases each sum is taken mod (n) (in particular, n = 0) and 1 ≤ j < n/2 (in
particular, j takes values 1, 2, and 3 for n = 7 and n = 8).
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If n > 1 is odd we immediately get a contradiction, since in this case, by (8), x1,1 = xn−1,1,
while, by (7), x1,1 > xn−1,1 for all n > 1. Yet, for each even n, the family Fn of all locally
minimal NE-free and (c3, c9)-free configurations is not empty.

Up to an isomorphism, F2 (respectively, F4) consists of a unique configuration: c1 in
Figure 1 (respectively, (c2, c4, c5, c6) in Figure 2). Two larger examples, from F6 and F8, are
given in Figures 6 (a) and (b), respectively.

We already know that each configuration P ∈ F2k must satisfy (5) - (9). Yet, P has one
more important property:

xi,i+2j+1 6= xi,i+2j′+1, xi+2j,i 6= xi+2j′,i (10)

for all i ∈ [n] and for all positive distinct j, j′ < n/2. Indeed, it is easy to see that otherwise
c9 appears; see Figure 6(a).

Let us denote by Gn the family of all configurations satisfying (5) - (10). We already
know that Fn ⊆ Gn and Fn = Gn = ∅ if n > 1 is odd. Let us show that Fn = Gn for even
n. Obviously, G4 consists of a unique configuration (c2, c4, c5, c6) in Figure 2 and G2 = {c1}.
Examples of configurations from G6 and G8 are given in Figures 6 (a) and (b). It is easy to
verify that each configuration of Gn contains eight 2-squares C ′ = {c2, c4, c5, c6, c1, c7, c8, c13}
whenever n ≥ 6; see Figure 6 (a). Moreover, c12 appears, too, when n ≥ 10.

On the other hand, no configuration P ∈ Gn contains c9, c10, c11, c14, or c15, since no
2-square in P can have two adjacent equalities. It is also easy to verify that P cannot contain
c3. Thus, P can contain only nine 2-squares of C ′′ = C ′∪{c12}. In particular, each P ∈ Gn is
(c3, c9)-free; in other words, Gn ⊆ Fn and, hence, Gn = Fn for each n. This implies Theorem
1.8 and provides an explicit characterization for family Fn of locally minimal NE-free and
(c3, c9)-free configurations.

Interestingly, for even n each configuration P ∈ Fn = Gn contains the same set of nine
2-squares C ′′ if n ≥ 10; for P ∈ G8 there are two options: C ′′ or C ′ (see example in Figure
6 (b), where c12 does not appear); for P ∈ G6 only C ′; furthermore, G4 consists of a unique
configuration (c2, c4, c5, c6) in Figure 2 and G2 only of c1; finally, Fn = Gn is empty if n > 1
is odd.

Acknowledgments. We are thankful to Kukushkin who promoted the idea of general-
izing Shapley’s (1964) theorem to bimatrix games and various concepts of solution.
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