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ABSTRACT

A friendship graph is a graph in which every two distinct vertices have exactly one
common neighbor. All finite friendship graphs are known, each of them consists of
triangles having a common vertex. We extend friendship graphs to two-graphs, a
two-graph being an ordered pair G = (G, G1) of edge-disjoint graphs Gy and G; on
the same vertex-set V(Go) = V(G1). One may think that the edges of G are colored
with colors 0 and 1. In a friendship two-graph, every unordered pair of distinct
vertices u,v is connected by a unique bicolored 2-path. Friendship two-graphs are
solutions to the matrix equation AB + BA = J — I, where A and B are n X n
symmetric 0 — 1 matrices of the same dimension, J is an n X n matrix with every
entry being 1, and [ is the identity n X n matrix.

We show that there are no finite friendship two-graph with minimum vertex degree
at most two. However, we construct an infinite such graph, and the construction
can be extended to an infinite family. Also, we find a finite friendship two-graph,
and conjecture that it is unique.

keywords: friendship two-graphs, matrix equation
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1 Introduction

A friendship graph is a graph in which every two distinct vertices have exactly
one common neighbor. Friendship graphs were characterized by Erdés, Rényi, and
S6s [3]: a friendship graph consists of triangles incident to a common vertex. Kotzig
generalized friendship graphs to graphs in which every pair of vertices is connected
by A paths of length k. His conjecture is that, for £ > 3, there is no finite graph in
which every pair of vertices is connected by a unique path, see also Bondy [1] and
Kostochka [4].



Figure 1: A friendship graph.

Here we consider another generalization. A two-graph, is an ordered pair (G, G1)
of edge-disjoint graphs G and G on the same vertex-set V(Gy) = V(G4). In other
words, a two-graph is a graph with a partition of its edges into two color classes.
The two colors will be denoted by 0 and 1. We say that vertices u and v are i-
adjacent or they are i-neighbors of each other if the edge uv has color i € {0,1}. A
2-path (u,x,v) in (G, H) is called bicolored if either ux € F(G) and zv € E(H), or
ur € E(H) and zv € E(G).

Definition 1. A two-graph (G, H) is called a friendship two-graph if, for every un-
ordered pair of distinct vertices u, v, there exists a unique bicolored 2-path connecting
u and v.

Friendship two-graphs are solutions to the matrix equation AB+ BA =J — 1,
where A and B are n x n symmetric 0 — 1 matrices of the same dimension, J is an
n X n matrix with every entry being 1, and [ is the identity n x n matrix. A related
matrix equation was considered by Chvétal, Graham, Perold, and Whitesides [2].

2 Small minimum degree

A trivial friendship two-graph has just one vertex. The only non-trivial friendship
two-graph, called F', that we know is shown in Figure 2. There are exactly 21
bicolored 2-paths in F', namely:

(1,7,2), (1,2,3), (1,7,4), (1,6,5), (1,

1 ), (1,6,7),
(2,7,3), (2,3,4), (2,7,5), (2,1,6), (2,

77 Y
1,7),

6
7



Figure 2: The friendship two-graph F'.

We conjecture that F'is a unique non-trivial friendship two-graph.

Theorem 1. Every non-trivial friendship two-graph has minimum degree at least
three.

Proof. Let G = (Gy,G1) be a non-trivial friendship two-graph having a vertex v
of degree at most two. Clearly, v cannot be an isolated vertex, so we may assume
that v is 1-adjacent to a vertex w. Consider the unique bicolored 2-path (v,u,w)
connecting v and w. If uv is a 0-edge then G does not have a bicolored 2-path
connecting u and v, since v has degree at most two (in fact, exactly two). Thus, uv
is a 1-edge and uw is a 0-edge, see Figure 3.




Figure 3: The subgraph induced by the set {u, v, w}.

A (2 + 2)-cycle is a 4-cycle that contains exactly two 0-edges and exactly two
1-edges.

Property 1. A friendship two-graph does not have (2 + 2)-cycles.

Proof. Consider a (24 2)-cycle (a, b, ¢, d), see Figure 4. If ab and cd are 0-edges then
there are two bicolored 2-paths connecting a and ¢, a contradiction. If ab and bc are
0-edges then there are two bicolored 2-paths connecting b and d, a contradiction. [

Figure 4: Two (2 + 2)-cycles.

Now consider a bicolored 2-path (u,x,w) connecting u and v. By symmetry, we
may assume that wz is a 1-edge, and ux a 0-edge. Clearly, z is non-adjacent to v.

Property 2. For every vertex z # v, exactly one of uz or wz is a 0-edge.

Proof. Indeed, either (v,u, z) or (v,w, z) is a bicolored 2-path, but not both. ]

Property 3. (i) The only 1-edge incident to u is uv.

(ii) The only 1-edges incident to w are vw and wz.
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Proof. (i) Suppose that uz is a l-edge with z # v. By Property 2 w and z are
0-adjacent. We obtain a (2 + 2)-cycle (u, z,w, x), a contradiction to Property 1.

(ii) Now let wz be a 1-edge with z # v, z. By Property 2 u and z are 0-adjacent,
and (w, z,u,x) is a (2 + 2)-cycle, a contradiction to Property 1. O

There must be a bicolored 2-path (w,y, z) connecting w and z. By Property 3,
xy is a 1-edge, and therefore wy is a 0-edge. Property 2 and Property 3 show that
y is non-adjacent to w.

Property 4. The only 1-edges incident to x are wx and xy.

Proof. Suppose that xz is a 1-edge with z # w, y. If uz is a 0-edge then (u, w, z, 2) is
a (2+2)-cycle, a contradiction to Property 1. By Property 2 w and z are 0-adjacent.
But then (w,y,z,z) is a (2 + 2)-cycle, a contradiction to Property 1. ]

The current subgraph H induced by the set {u,v,w,z,y} is shown in Figure 5.
It can be viewed as a particular snake two-graph S(5) defined below.

Figure 5: The subgraph H induced by the set {u, v, w,z,y}.

For an integer n > 1, the snake two-graph of order n, S(n), is defined by the
following:

e V(S(n)) = {s1,82,...,5,}, and we also use alternative names of the vertices:
S4k—3 = Dk, Sak—2 = Dy Sak—1 = Gk, Sak = q, for k> 1,
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e the set of 1-edges is {s152, 5283, ..., Sp_15,}, and
e the set of 0-edges is generated by the following two rules:

— every vertex p; € V(S(n)) is 0-adjacent to all ¢; and ¢} with j > i,
— every vertex ¢; € V(S(n)) is O0-adjacent to all p; and p}; with j > 4.

Figure 6 shows an example of a snake two-graph.



_ /
S2 = Py

S3 =19

Sa=(q

_ !
S12 = (43
S5 = P2

S11 = @43
— 2
S6 = Do

_ /
S10 = P3

S8 = (9 S9 = P3

Figure 6: The snake two-graph S(12).

Now we extend the induced subgraph H to an inclusion-wise maximal induced
subgraph S = S(n) of G [with V(S(n)) = {s1 = u,$2 = v,83 = w,84 = x,85 =

Y, ..., Sn}] satisfying the following condition.

Condition 1. (i) The only 1-edge of G incident to sy is $1S2.

(ii) The only 1-edges of G incident to s;, 2 <i <n—1, are s;_15; and $;S;41.

Note that the subgraph H satisfies Condition 1 according to Property 3 and
Property 4. The vertex s,, may be incident to a 1-edge distinct from s,,_1s,.
One can directly check that there exist a unique bicolored 2-path P connecting

distinct vertices s; # s, and s; # s,.
1) If s; = pg, s;, =p and @ < j, then P = (py, q/_1, P1)-
2) If s; =pg, s; =p; and i < j, then P = (pg, q1, p))-
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) If S; = Pk, Sj = qI and % S j7 then P = (plm(JZJQZ)

) It Si = Pk, S5 = q; and ¢ S ja then P = (pImQhQD

) If s; =pl, s; =p) and i < j, then P = (p}, ¢k, })-
6) If s; = p}, s; = ¢ and @ < j, then P = (p, pr, @)
) If s, =pl, s; =¢q and i < j, then P = (p, px. q))-
8) If 5, = qi, s; = ¢ and i < j, then P = (qi, pr, @1)-
9) If s; = qx, s; = q; and ¢ < j, then P = (qx, pr, q])-
10) It s; = q,, s; = ¢ and i < j, then P = (g3, px, q))-

Case 1. s, € {px, ¢, }-

In this case (¢;, $n), @ = 1,2, ...,k are the only pairs of S that are not connected
by a bicolored 2-path. In particular, there exists a vertex s,.; € V(S) such that
(q1, Snt1, Sn) 1s a bicolored 2-path. Condition 1 shows that ¢;s,.; is a 0-edge and
therefore s,.15, is a 1-edge.

Property 5. There is no vertexr z & {Sn—_1, Sp11} which is 1-adjacent to the vertex
Sn.-

Proof. Clearly, z ¢ V(S). By Property 2 exactly one of p;z or ¢;z is a 0-edge.
Then either (pi,s,_1,5n,2) or (q1, Sp+1,Sn,2) @ (2 + 2)-cycle, a contradiction to
Property 1. 0

Condition 1 shows that s, is the only vertex of S which is 1-adjacent to s,.;.
We claim that s, is 0-adjacent to all ¢; € V(S). Indeed, otherwise s, is non-
adjacent to some ¢;, and there must be a bicolored 2-path (g;, 2, s,,) with z # S,41.
It is impossible by Condition 1 and Property 5.

Finally, we note that s,.; is non-adjacent to all vertices p; and ¢, in V(S) \
{zn}. Indeed, if s,;; is adjacent to some p;, then s,.i1p; a 0-edge. We obtain
a second bicolored 2-path (p;, Spi1,S,) connecting p; and s,, a contradiction. A
similar contradiction arises with a 0-edge s,41¢;.

Thus, the set {s1, 2, ..., Sp+1} induces the snake two-graph S(n+ 1), contradic-
tion to maximality of n.

Case 2. s, € {p},, @& }-

The only pairs of S that are not connected by a bicolored 2-path are (p;, s,),
i=1,2,...,k. As in Case 1, one can extend S to the snake two-graph S(n + 1),
obtaining a contradiction to maximality of n. O]

3 Balls of snakes

If we continue the construction in the proof of Theorem 1, we obtain an infinite
two-graph S(oo) on vertex-set {si, S2,...,Sn,...}. It is easy to see that S(oc0) is a
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friendship two-graph with minimum vertex degree 6 = 2. We distinguish two-graphs
up to renaming of the two colors, that is (Go, G1) and (G, Gy) are considered as the
same two-graph. We are going to show that S(co) is not unique infinite friendship
two-graph with minimum vertex degree § < 2.

Consider and arbitrary infinite friendship two-graph G with minimum vertex
degree 6 < 2. The proof of Theorem 1 shows that G must contain H = S(00) as an
induced subgraph. As before, we denote V(H) = {s1,s2,..., 8y, ...}, see Figure 6.

First note that there are no 1-edges connecting a vertex of H with a vertex of X,
see Condition 1. Therefore X induces a friendship two-graph H’ (finite or infinite).
Using Property 2, we subdivide X into disjoint subsets A and B such that every
vertex of A (respectively, B) is 0-adjacent to the vertex s; (respectively, s3) of H.

The set of all 1-edges within A constitutes a perfect matching M, to guarantee
the existence of a bicolored 2-path connecting s; and an arbitrary vertex of A and
to avoid (2 + 2)-cycles (s1,a1,as,as), where aj,as,a3 € A. The set of all 1-edges
between A and B is a disjoint union of stars S(1),.5(2),...,5(k) centered at some
vertices of A and such that every vertex of B is a pendant vertex of a unique star
S(i). The stars provide bicolored 2-paths from s; to an arbitrary vertex of B. In
fact, every star S(i) is just a l-edge a;b;, a; € A and b; € B, otherwise there is
a (2 + 2)-cycle of the form (s3,b,a,t’), where b,0' € B are pendant vertices of a
star centered at a € A. Thus, we have a matching Map = {a1b1, asbs, ..., arbg} of
1-edges which covers B, that is B = {by, bs, ..., b;}.

The set of all 1-edges within B constitutes a matching Mpg, not necessarily
perfect and possibly empty. Indeed, 1-edges bibs and bybs, b; € B, produce a (2+ 2)-
cycle (ss3, b1, b, b3), which is impossible. Let H' = (H|, H;). The matchings M,
Msp and Mp constitute edge-set of Hf, and H] is disjoint union of paths (finite or
infinite) and/or even cycles. Every component K of H| by itself induces a friendship
two-graph.

Claim 1. If K is a cycle C,,, then n = 4k and K does not induce a friendship
two-graph.

Proof. The fact n = 4k is easy. We show that it is impossible to add 0-edges to
K = Cjy to obtain a friendship two-graph. Suppose it is possible. For ¢t > 2,
define a t-chord as a 0-edge connecting two vertices at distance ¢ along the cycle
Cyr. Let D(1) be the set of all unordered pairs of vertices at distance [ along the
cycle Cy. Clearly, |D(1)| = |D(2)| = --- = |D(2k —1)| = 4k, and |D(2k)| = 2k, and
|D(1)] = 0 for all I > 2k + 1. Every t-chord produces bicolored 2-paths connecting
two pairs in D(t — 1) and bicolored 2-paths connecting two pairs in D(t + 1). To
create 4k bicolored 2-paths for pairs in D(2) we must add 2k 3-chord. These 2-paths
automatically satisfy all pairs in D(4). Then we must add 2k 7-chord to create 4k
bicolored 2-paths for pairs in D(6). These 2-paths automatically satisfy all pairs in
D(8), and so on. Finally, we obtain a contradiction to the fact |D(2k)| = 2k, 2k
(2k — 1)-chord will create 4k bicolored 2-paths for pairs in D(2k). O
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Thus, K must be a path. We show that it is possible. For that we define an
infinite bi-snake, denoted by B(co), on vertex set

!/ / !/ / !/ /
{' e 7a—17a717b—17b717 CLO?aOvbO:bOJal?al?blabla . }

The set of 1-edges form the path (..., a_1,a" |, b_1,0" 1, ag, ay, bo, by, ar, @', by, by, .. .).
Every vertex a; is 0-adjacent to all b; and b; with j > 4. Every vertex b; is 0-adjacent
to all a; and a} with j > 4.

Claim 2. B(c0) is an infinite friendship two-graph.

Proof. Straightforward. O

The A-set (respectively, B-set) of B(co) consists of all vertices a; and a’; (re-
spectively, a; and aj).

Theorem 2. There are infinitely many infinite friendship two-graphs with minimum
vertex degree 6 = 2, and all of them contain S(oc) as an induced subgraph.

Proof. For an integer n > 0, we define a ball of snakes as an infinite friendship two-
graph G, consisting of one copy H of S(o0), n pairwise vertex-disjoint copies H,, of
B(o0) and an additional set S of 0-edges. Every vertex p; (respectively, ¢;) of H is
0-adjacent to all vertices in the A-set (respectively, B-set) of H,. For H,, and H,
with m < n, the set S has following 0-edges connecting H,, and H,: every vertex a;
(respectively, b;) of H,, is 0-adjacent to all vertices in the A-set (respectively, B-set)
of H,,

It is easy to see that G, is a friendship two-graph for every n > 0. [

4 Augmenting infinite paths

We use the proof of Claim 1 to solve the following problem: Given in infinite path
P= ( o, U2, U1, Up, UL, U, . . )

consisting of 1-edges u;u; 1, add 0-edges to P to obtain a friendship two-graph. We
show that there are uncountably many solutions. Using the terminology in the proof
of Claim 1, we first introduce a set of 2-chords to create bicolored 2-paths between
vertices at distance 1 along P. Consider uy and u;. For them, there are two variants:
either

(V1) wyg is 0-adjacent to ug, or

(V2) u_; is 0-adjacent to u;.
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These variants are inconsistent, since we have a (2 + 2)-cycle (ug, ug, u1,u_1).
Let us consider (V1). It creates a bicolored 2-paths between the vertices u; and
uo, and therefore the 2-chord wyuz should be rejected. To have a bicolored 2-paths
between the vertices us and us, we must introduce the 2-chord usuy. In turn, ugus
is forbidden. Now it is clear that we must choose exactly one of the two sets of
2-chords, namely

SQ == {u2iu2i+2 11 € Z}

and
Sé = {U21+1’U/2i+3 11 € Z}

Each of the two sets produces bicolored 2-paths between all pairs of vertices at
distance 1 and 3. It implies that there are no 4-chord at all.

A similar situation takes place for pairs of vertices at distance 2. For uy and
ug, we should introduce a 3-chord, and there are two inconsistent variants: wugus
and u_jus. The variant ugug creates also a bicolored 2-path connecting u; and us.
Hence the 3-chord wujuy is forbidden. It implies the existence of the 3-chord usus
to satisfy the pair us, uy. As before, we must choose exactly one of the two sets of
3-chords, namely

S3 = {UQZ‘UQZ‘+3 11 E Z}

and

Sé == {U21+1U2i+4 11 € Z}
Either of them produces bicolored 2-paths for all pairs at distance 2 and 4. It implies
that there are no 5-chord at all.

In general, we always have two choices, Sy._o = {ugiugiiaro : @ € Z} and
Shi_o = {ugiy1usitar—1 : 1 € Z}, for (4k — 2)-chords, k > 1. Each of them creates all
required paths between pairs of vertices at distance 4k —3 and 4k — 1, implying that
there are no 4k-chords. Similarly, there are exactly two choices Sy,_1 and Sj;,_,, for
(4k — 1)-chords, k > 1, and there are no (4k + 1)-chords for all & > 1.

Theorem 3. There are uncountably many infinite friendship two-graphs in which
the 1-edges constitute an infinite path (..., u_o,u_1,uq, U1, Uz, .. .).

5 Two-graphs having dominating vertices

A dominating vertex in a two-graph G is a vertex which is 0- or 1-adjacent to all
other vertices of G.

Theorem 4. The only friendship two-graph having a dominating vertex is the two-
graph F' of Figure 2.
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Proof. Let G = (Go,G4) be a friendship two-graph with a dominating vertex w.
Denote by Ny (respectively, N7) the set of all O-neighbors (respectively, 1-neighbors)
of u. Since w is a dominating vertex, V(G) = {u} U Ny U Nj.

Fact 1. No two vertices in Ny are 1-adjacent, and no two vertices in Ny are 0-
adjacent.

Proof. Suppose that vertices v,w € Ny are 1-adjacent, and consider a bicolored 2-
path (v, z,w). By symmetry, we may assume that vz is a 1-edge, and zw is a 0-edge.
Clearly = # ¢, and therefore either x € Ny or z € Ny. If © € Ny then (u,z,v,w)
a (2 + 2)-cycle, a contradiction. Thus, z € Ny, and (u,z,w,v) a (2 + 2)-cycle, a
contradiction.

The second statement is similar. O]

A star (z, P) consists of a central verter x and a set of pendant vertices P,
each vertex of P being adjacent to u only. Note that the set P may be empty,
in which case (x, P) has just one vertex x. Let X and Y be disjoint subsets of
vertices. A multi-star (X,Y") consists of | X| vertex-disjoint stars (z;, P;) centered at
the vertices of X, all P; are subsets of Y, and they constitute a partition of Y. An
example of a multi-star (X,Y") is shown in Figure 7 for X = {x1, x2, x3, x4, Ts5, 6}

and Y = {y1, Y2, Y3, Y4, Y5, Y6, Y7, Ys } -
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T To T3 X4 Ts  Tg
X /]\ [\ | |
Y
n Y2 Ys Yy Ys Yo Y7 Ys

Figure 7: An example of a multi-star (X,Y).

Fact 2. (i) The subgraph of Gy induced by Ny U Ny is a multi-star (N1, No).
(ii) The subgraph of Gy induced by No U Ny is a multi-star (Ngy, Ny).

Proof. (i) Let S(i) be the maximal star of 0-edges centered at an arbitrary vertex
x; € Ny. By Fact 1, all pendant vertices of each S(i) are in Ny. The stars S(i)
are pairwise vertex-disjoint. Indeed, if S(i) and S(j), ¢ # j, have a common vertex
v € Ny, then (u,;,v,x;) is a forbidden (2 + 2)-cycle. It remains to show that Ny
is covered by the pendant vertices of all S(7). For every vertex v € Ny, there must
be a bicolored 2-path (u,z,v). Clearly, uz is a 1-edge and therefore zv is a 0-edge.
Thus, v is covered by the star centered at x.

(ii) follows by symmetry. O

Now consider all bicolored 2-paths connecting a fixed vertex v € Ny with all
other vertices of Ny. By Fact 1, every such 2-path (v,z,v’) has x € N;. If vz is a
0-edge then Fact 2(i) shows that v is unique. Hence all but two vertices in Ny are
connected with v by a bicolored 2-path (v, z,v’) such that vz is a 1-edge. Let M (v)
be the set of the end-vertices v € Ny. Thus, |M(v)| = |No| — 2. Fact 2 implies that
M(v) U M(w) = emptyset whenever v # w. We obtain

|M(w)] - | No| = [Nol.

Since Ny # (), we have |M(v)| = |Nog| — 2 = 1, or |Ny| = 3. By symmetry, |N;| = 3.
Note that the conclusion |Ny| = |Ni| = 3 is valid even for infinite two graph G. It
shows that all stars in the multi-stars (Ny, N1) and (N7, Np) are just edges. There
is just one variant (up to isomorphism) for the subgraph induced by Ny U Ny, see
Figure 8, where Ny = {vy, v2,v3} and Ny = {wy, we, w3}.
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v &8 w
() 0——0w2

V3 &—————— @ Ws

Figure 8: The subgraph induced by the set Ny U Nj.

It is clear that the sets Ny and N; induce edgeless graphs. Thus, G is the
two-graph F' of Figure 2. O]

6 A criterion

For i € {0,1}, let deg;(u) denote the i-degree of a vertex u in a two-graph G =
(Go, G1), that is the total number of i-edge incident to u. The ordinary degree of u
is deg(u) = deg,(u) + deg, (u).

Theorem 5. G = (Go, G1) is a friendship two-graph if and only if

and there are no (2 + 2)-cycles in G.
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Proof. The number of bicolored 2-paths centered at a fixed vertex w is exactly
degy(u)deg;(u), so the left-hand side in (1) must be equal to the number of un-
ordered pairs of distinct vertices, that is n(n — 1)/2. Thus, (1) is equivalent to the
statement that there are exactly n(n —1)/2 bicolored 2-paths. Finally, the existence
of a (2+2)-cycle is equivalent to the statement that some unordered pairs of distinct
vertices is connected by two bicolored 2-paths. O]

Theorem 5 implies a lower bound on the maximum vertex degree A(G) of a
friendship two-graph G.

Corollary 1. If G is a friendship two-graph then

A(G) > V2n —2, (2)
where n = |V (G)|.

Proof. An arbitrary term degy(u)deg, (u) in (1) does not exceed A%(G)/4. Therefore
Theorem 5 gives nA?(G)/4 > n(n — 1)/2, which is equivalent to (2). O

For an integer k > 0, let DELT A(k) denote the class of all two-graphs G with
A(G) < k.

Corollary 2. For every k, the class DELT A(k) contains finitely many friendship
two-graphs.

Proof. Indeed, (2) implies that (k? + 2)/2 > n, that is all friendship two-graph in
DELT A(k) have a bounded number of vertices. O
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