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ABSTRACT

A friendship graph is a graph in which every two distinct vertices have exactly one
common neighbor. All finite friendship graphs are known, each of them consists of
triangles having a common vertex. We extend friendship graphs to two-graphs, a
two-graph being an ordered pair G = (G0, G1) of edge-disjoint graphs G0 and G1 on
the same vertex-set V (G0) = V (G1). One may think that the edges of G are colored
with colors 0 and 1. In a friendship two-graph, every unordered pair of distinct
vertices u, v is connected by a unique bicolored 2-path. Friendship two-graphs are
solutions to the matrix equation AB + BA = J − I, where A and B are n × n
symmetric 0 − 1 matrices of the same dimension, J is an n × n matrix with every
entry being 1, and I is the identity n× n matrix.
We show that there are no finite friendship two-graph with minimum vertex degree
at most two. However, we construct an infinite such graph, and the construction
can be extended to an infinite family. Also, we find a finite friendship two-graph,
and conjecture that it is unique.

keywords: friendship two-graphs, matrix equation
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1 Introduction

A friendship graph is a graph in which every two distinct vertices have exactly
one common neighbor. Friendship graphs were characterized by Erdős, Rényi, and
Sós [3]: a friendship graph consists of triangles incident to a common vertex. Kotzig
generalized friendship graphs to graphs in which every pair of vertices is connected
by λ paths of length k. His conjecture is that, for k ≥ 3, there is no finite graph in
which every pair of vertices is connected by a unique path, see also Bondy [1] and
Kostochka [4].



– 2 –

u u

u
u

u
u

u
�
�
� @

@
@

�
�
�
�
�
�

A
A
A
A
A
A

HH
HH

HH

A
A
A
A
A
A

�
�
�
�
�
�

��
��

��

Figure 1: A friendship graph.

Here we consider another generalization. A two-graph, is an ordered pair (G0, G1)
of edge-disjoint graphs G0 and G1 on the same vertex-set V (G0) = V (G1). In other
words, a two-graph is a graph with a partition of its edges into two color classes.
The two colors will be denoted by 0 and 1. We say that vertices u and v are i-
adjacent or they are i-neighbors of each other if the edge uv has color i ∈ {0, 1}. A
2-path (u, x, v) in (G,H) is called bicolored if either ux ∈ E(G) and xv ∈ E(H), or
ux ∈ E(H) and xv ∈ E(G).

Definition 1. A two-graph (G,H) is called a friendship two-graph if, for every un-
ordered pair of distinct vertices u, v, there exists a unique bicolored 2-path connecting
u and v.

Friendship two-graphs are solutions to the matrix equation AB + BA = J − I,
where A and B are n× n symmetric 0− 1 matrices of the same dimension, J is an
n×n matrix with every entry being 1, and I is the identity n×n matrix. A related
matrix equation was considered by Chvátal, Graham, Perold, and Whitesides [2].

2 Small minimum degree

A trivial friendship two-graph has just one vertex. The only non-trivial friendship
two-graph, called F , that we know is shown in Figure 2. There are exactly 21
bicolored 2-paths in F , namely:

(1, 7, 2), (1, 2, 3), (1, 7, 4), (1, 6, 5), (1, 7, 6), (1, 6, 7),
(2, 7, 3), (2, 3, 4), (2, 7, 5), (2, 1, 6), (2, 1, 7),
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(3, 7, 4), (3, 4, 5), (3, 7, 6), (3, 2, 7),
(4, 7, 5), (4, 5, 6), (4, 3, 7),
(5, 7, 6), (5, 4, 7),
(6, 5, 7).
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Figure 2: The friendship two-graph F .

We conjecture that F is a unique non-trivial friendship two-graph.

Theorem 1. Every non-trivial friendship two-graph has minimum degree at least
three.

Proof. Let G = (G0, G1) be a non-trivial friendship two-graph having a vertex v
of degree at most two. Clearly, v cannot be an isolated vertex, so we may assume
that v is 1-adjacent to a vertex w. Consider the unique bicolored 2-path (v, u, w)
connecting v and w. If uv is a 0-edge then G does not have a bicolored 2-path
connecting u and v, since v has degree at most two (in fact, exactly two). Thus, uv
is a 1-edge and uw is a 0-edge, see Figure 3.
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Figure 3: The subgraph induced by the set {u, v, w}.

A (2 + 2)-cycle is a 4-cycle that contains exactly two 0-edges and exactly two
1-edges.

Property 1. A friendship two-graph does not have (2 + 2)-cycles.

Proof. Consider a (2+2)-cycle (a, b, c, d), see Figure 4. If ab and cd are 0-edges then
there are two bicolored 2-paths connecting a and c, a contradiction. If ab and bc are
0-edges then there are two bicolored 2-paths connecting b and d, a contradiction.
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Figure 4: Two (2 + 2)-cycles.

Now consider a bicolored 2-path (u, x, w) connecting u and v. By symmetry, we
may assume that wx is a 1-edge, and ux a 0-edge. Clearly, x is non-adjacent to v.

Property 2. For every vertex z 6= v, exactly one of uz or wz is a 0-edge.

Proof. Indeed, either (v, u, z) or (v, w, z) is a bicolored 2-path, but not both.

Property 3. (i) The only 1-edge incident to u is uv.

(ii) The only 1-edges incident to w are vw and wx.



– 5 –

Proof. (i) Suppose that uz is a 1-edge with z 6= v. By Property 2 w and z are
0-adjacent. We obtain a (2 + 2)-cycle (u, z, w, x), a contradiction to Property 1.

(ii) Now let wz be a 1-edge with z 6= v, x. By Property 2 u and z are 0-adjacent,
and (w, z, u, x) is a (2 + 2)-cycle, a contradiction to Property 1.

There must be a bicolored 2-path (w, y, x) connecting w and x. By Property 3,
xy is a 1-edge, and therefore wy is a 0-edge. Property 2 and Property 3 show that
y is non-adjacent to u.

Property 4. The only 1-edges incident to x are wx and xy.

Proof. Suppose that xz is a 1-edge with z 6= w, y. If uz is a 0-edge then (u,w, x, z) is
a (2+2)-cycle, a contradiction to Property 1. By Property 2 w and z are 0-adjacent.
But then (w, y, x, z) is a (2 + 2)-cycle, a contradiction to Property 1.

The current subgraph H induced by the set {u, v, w, x, y} is shown in Figure 5.
It can be viewed as a particular snake two-graph S(5) defined below.
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Figure 5: The subgraph H induced by the set {u, v, w, x, y}.

For an integer n ≥ 1, the snake two-graph of order n, S(n), is defined by the
following:

• V (S(n)) = {s1, s2, . . . , sn}, and we also use alternative names of the vertices:
s4k−3 = pk, s4k−2 = p′k, s4k−1 = qk, s4k = q′k for k ≥ 1,
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• the set of 1-edges is {s1s2, s2s3, . . . , sn−1sn}, and

• the set of 0-edges is generated by the following two rules:

– every vertex pi ∈ V (S(n)) is 0-adjacent to all qj and q′j with j ≥ i,

– every vertex qi ∈ V (S(n)) is 0-adjacent to all pj and p′j with j ≥ i.

Figure 6 shows an example of a snake two-graph.
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s1 = p1

s2 = p′1

s3 = q1

s4 = q′1

s5 = p2

s6 = p′2

s7 = q2

s8 = q′2 s9 = p3

s10 = p′3

s11 = q3

s12 = q′3

Figure 6: The snake two-graph S(12).

Now we extend the induced subgraph H to an inclusion-wise maximal induced
subgraph S = S(n) of G [with V (S(n)) = {s1 = u, s2 = v, s3 = w, s4 = x, s5 =
y, . . . , sn}] satisfying the following condition.

Condition 1. (i) The only 1-edge of G incident to s1 is s1s2.

(ii) The only 1-edges of G incident to si, 2 ≤ i ≤ n− 1, are si−1si and sisi+1.

Note that the subgraph H satisfies Condition 1 according to Property 3 and
Property 4. The vertex sn may be incident to a 1-edge distinct from sn−1sn.

One can directly check that there exist a unique bicolored 2-path P connecting
distinct vertices si 6= sn and sj 6= sn.
1) If si = pk, sj = pl and i < j, then P = (pk, q

′
l−1, pl).

2) If si = pk, sj = p′l and i ≤ j, then P = (pk, ql, p
′
l).
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3) If si = pk, sj = ql and i ≤ j, then P = (pk, q
′
l, ql).

4) If si = pk, sj = q′l and i ≤ j, then P = (pk, ql, q
′
l).

5) If si = p′k, sj = p′l and i < j, then P = (p′k, qk, p
′
l).

6) If si = p′k, sj = ql and i ≤ j, then P = (p′k, pk, ql).
7) If si = p′k, sj = q′l and i ≤ j, then P = (p′k, pk, q

′
l).

8) If si = qk, sj = ql and i < j, then P = (qk, pk, ql).
9) If si = qk, sj = q′l and i ≤ j, then P = (qk, pk, q

′
l).

10) If si = q′k, sj = q′l and i < j, then P = (q′k, pk, q
′
l).

Case 1. sn ∈ {pk, q
′
k}.

In this case (qi, sn), i = 1, 2, . . . , k are the only pairs of S that are not connected
by a bicolored 2-path. In particular, there exists a vertex sn+1 6∈ V (S) such that
(q1, sn+1, sn) is a bicolored 2-path. Condition 1 shows that q1sn+1 is a 0-edge and
therefore sn+1sn is a 1-edge.

Property 5. There is no vertex z 6∈ {sn−1, sn+1} which is 1-adjacent to the vertex
sn.

Proof. Clearly, z 6∈ V (S). By Property 2 exactly one of p1z or q1z is a 0-edge.
Then either (p1, sn−1, sn, z) or (q1, sn+1, sn, z) a (2 + 2)-cycle, a contradiction to
Property 1.

Condition 1 shows that sn is the only vertex of S which is 1-adjacent to sn+1.
We claim that sn+1 is 0-adjacent to all qi ∈ V (S). Indeed, otherwise sn+1 is non-
adjacent to some qi, and there must be a bicolored 2-path (qi, z, sn) with z 6= sn+1.
It is impossible by Condition 1 and Property 5.

Finally, we note that sn+1 is non-adjacent to all vertices pi and q′i in V (S) \
{zn}. Indeed, if sn+1 is adjacent to some pi, then sn+1pi a 0-edge. We obtain
a second bicolored 2-path (pi, sn+1, sn) connecting pi and sn, a contradiction. A
similar contradiction arises with a 0-edge sn+1q

′
i.

Thus, the set {s1, s2, . . . , sn+1} induces the snake two-graph S(n+ 1), contradic-
tion to maximality of n.

Case 2. sn ∈ {p′k, qk}.
The only pairs of S that are not connected by a bicolored 2-path are (pi, sn),

i = 1, 2, . . . , k. As in Case 1, one can extend S to the snake two-graph S(n + 1),
obtaining a contradiction to maximality of n.

3 Balls of snakes

If we continue the construction in the proof of Theorem 1, we obtain an infinite
two-graph S(∞) on vertex-set {s1, s2, . . . , sn, . . .}. It is easy to see that S(∞) is a
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friendship two-graph with minimum vertex degree δ = 2. We distinguish two-graphs
up to renaming of the two colors, that is (G0, G1) and (G1, G0) are considered as the
same two-graph. We are going to show that S(∞) is not unique infinite friendship
two-graph with minimum vertex degree δ ≤ 2.

Consider and arbitrary infinite friendship two-graph G with minimum vertex
degree δ ≤ 2. The proof of Theorem 1 shows that G must contain H = S(∞) as an
induced subgraph. As before, we denote V (H) = {s1, s2, . . . , sn, . . .}, see Figure 6.

First note that there are no 1-edges connecting a vertex of H with a vertex of X,
see Condition 1. Therefore X induces a friendship two-graph H ′ (finite or infinite).
Using Property 2, we subdivide X into disjoint subsets A and B such that every
vertex of A (respectively, B) is 0-adjacent to the vertex s1 (respectively, s3) of H.

The set of all 1-edges within A constitutes a perfect matching MA to guarantee
the existence of a bicolored 2-path connecting s1 and an arbitrary vertex of A and
to avoid (2 + 2)-cycles (s1, a1, a2, a3), where a1, a2, a3 ∈ A. The set of all 1-edges
between A and B is a disjoint union of stars S(1), S(2), . . . , S(k) centered at some
vertices of A and such that every vertex of B is a pendant vertex of a unique star
S(i). The stars provide bicolored 2-paths from s1 to an arbitrary vertex of B. In
fact, every star S(i) is just a 1-edge aibi, ai ∈ A and bi ∈ B, otherwise there is
a (2 + 2)-cycle of the form (s3, b, a, b

′), where b, b′ ∈ B are pendant vertices of a
star centered at a ∈ A. Thus, we have a matching MAB = {a1b1, a2b2, . . . , akbk} of
1-edges which covers B, that is B = {b1, b2, . . . , bk}.

The set of all 1-edges within B constitutes a matching MB, not necessarily
perfect and possibly empty. Indeed, 1-edges b1b2 and b2b3, bi ∈ B, produce a (2+2)-
cycle (s3, b1, b2, b3), which is impossible. Let H ′ = (H ′0, H

′
1). The matchings MA,

MAB and MB constitute edge-set of H ′1, and H ′1 is disjoint union of paths (finite or
infinite) and/or even cycles. Every component K of H ′1 by itself induces a friendship
two-graph.

Claim 1. If K is a cycle Cn, then n = 4k and K does not induce a friendship
two-graph.

Proof. The fact n = 4k is easy. We show that it is impossible to add 0-edges to
K = C4k to obtain a friendship two-graph. Suppose it is possible. For t ≥ 2,
define a t-chord as a 0-edge connecting two vertices at distance t along the cycle
C4k. Let D(l) be the set of all unordered pairs of vertices at distance l along the
cycle C4k. Clearly, |D(1)| = |D(2)| = · · · = |D(2k−1)| = 4k, and |D(2k)| = 2k, and
|D(l)| = 0 for all l ≥ 2k + 1. Every t-chord produces bicolored 2-paths connecting
two pairs in D(t − 1) and bicolored 2-paths connecting two pairs in D(t + 1). To
create 4k bicolored 2-paths for pairs in D(2) we must add 2k 3-chord. These 2-paths
automatically satisfy all pairs in D(4). Then we must add 2k 7-chord to create 4k
bicolored 2-paths for pairs in D(6). These 2-paths automatically satisfy all pairs in
D(8), and so on. Finally, we obtain a contradiction to the fact |D(2k)| = 2k, 2k
(2k − 1)-chord will create 4k bicolored 2-paths for pairs in D(2k).
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Thus, K must be a path. We show that it is possible. For that we define an
infinite bi-snake, denoted by B(∞), on vertex set

{. . . , a−1, a
′
−1, b−1, b

′
−1, a0, a

′
0, b0, b

′
0, a1, a

′
1, b1, b

′
1, . . .}.

The set of 1-edges form the path (. . . , a−1, a
′
−1, b−1, b

′
−1, a0, a

′
0, b0, b

′
0, a1, a

′
1, b1, b

′
1, . . .).

Every vertex ai is 0-adjacent to all bj and b′j with j ≥ i. Every vertex bi is 0-adjacent
to all aj and a′j with j ≥ i.

Claim 2. B(∞) is an infinite friendship two-graph.

Proof. Straightforward.

The A-set (respectively, B-set) of B(∞) consists of all vertices aj and a′j (re-
spectively, aj and a′j).

Theorem 2. There are infinitely many infinite friendship two-graphs with minimum
vertex degree δ = 2, and all of them contain S(∞) as an induced subgraph.

Proof. For an integer n ≥ 0, we define a ball of snakes as an infinite friendship two-
graph Gn consisting of one copy H of S(∞), n pairwise vertex-disjoint copies Hn of
B(∞) and an additional set S of 0-edges. Every vertex pi (respectively, qi) of H is
0-adjacent to all vertices in the A-set (respectively, B-set) of Hn. For Hm and Hn

with m < n, the set S has following 0-edges connecting Hm and Hn: every vertex ai

(respectively, bi) of Hm is 0-adjacent to all vertices in the A-set (respectively, B-set)
of Hn.

It is easy to see that Gn is a friendship two-graph for every n ≥ 0.

4 Augmenting infinite paths

We use the proof of Claim 1 to solve the following problem: Given in infinite path

P = (. . . , u−2, u−1, u0, u1, u2, . . .)

consisting of 1-edges uiui+1, add 0-edges to P to obtain a friendship two-graph. We
show that there are uncountably many solutions. Using the terminology in the proof
of Claim 1, we first introduce a set of 2-chords to create bicolored 2-paths between
vertices at distance 1 along P . Consider u0 and u1. For them, there are two variants:
either

(V1) u0 is 0-adjacent to u2, or
(V2) u−1 is 0-adjacent to u1.
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These variants are inconsistent, since we have a (2 + 2)-cycle (u0, u2, u1, u−1).
Let us consider (V1). It creates a bicolored 2-paths between the vertices u1 and
u2, and therefore the 2-chord u1u3 should be rejected. To have a bicolored 2-paths
between the vertices u2 and u3, we must introduce the 2-chord u2u4. In turn, u3u5

is forbidden. Now it is clear that we must choose exactly one of the two sets of
2-chords, namely

S2 = {u2iu2i+2 : i ∈ Z}

and
S ′2 = {u2i+1u2i+3 : i ∈ Z}.

Each of the two sets produces bicolored 2-paths between all pairs of vertices at
distance 1 and 3. It implies that there are no 4-chord at all.

A similar situation takes place for pairs of vertices at distance 2. For u0 and
u2, we should introduce a 3-chord, and there are two inconsistent variants: u0u3

and u−1u2. The variant u0u3 creates also a bicolored 2-path connecting u1 and u3.
Hence the 3-chord u1u4 is forbidden. It implies the existence of the 3-chord u2u5

to satisfy the pair u2, u4. As before, we must choose exactly one of the two sets of
3-chords, namely

S3 = {u2iu2i+3 : i ∈ Z}

and
S ′3 = {u2i+1u2i+4 : i ∈ Z}.

Either of them produces bicolored 2-paths for all pairs at distance 2 and 4. It implies
that there are no 5-chord at all.

In general, we always have two choices, S4k−2 = {u2iu2i+4k−2 : i ∈ Z} and
S ′4k−2 = {u2i+1u2i+4k−1 : i ∈ Z}, for (4k− 2)-chords, k ≥ 1. Each of them creates all
required paths between pairs of vertices at distance 4k−3 and 4k−1, implying that
there are no 4k-chords. Similarly, there are exactly two choices S4k−1 and S ′4k−1, for
(4k − 1)-chords, k ≥ 1, and there are no (4k + 1)-chords for all k ≥ 1.

Theorem 3. There are uncountably many infinite friendship two-graphs in which
the 1-edges constitute an infinite path (. . . , u−2, u−1, u0, u1, u2, . . .).

5 Two-graphs having dominating vertices

A dominating vertex in a two-graph G is a vertex which is 0- or 1-adjacent to all
other vertices of G.

Theorem 4. The only friendship two-graph having a dominating vertex is the two-
graph F of Figure 2.
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Proof. Let G = (G0, G1) be a friendship two-graph with a dominating vertex u.
Denote by N0 (respectively, N1) the set of all 0-neighbors (respectively, 1-neighbors)
of u. Since u is a dominating vertex, V (G) = {u} ∪N0 ∪N1.

Fact 1. No two vertices in N0 are 1-adjacent, and no two vertices in N1 are 0-
adjacent.

Proof. Suppose that vertices v, w ∈ N0 are 1-adjacent, and consider a bicolored 2-
path (v, x, w). By symmetry, we may assume that vx is a 1-edge, and xw is a 0-edge.
Clearly x 6= q, and therefore either x ∈ N0 or x ∈ N1. If x ∈ N0 then (u, x, v, w)
a (2 + 2)-cycle, a contradiction. Thus, x ∈ N1, and (u, x, w, v) a (2 + 2)-cycle, a
contradiction.

The second statement is similar.

A star (x, P ) consists of a central vertex x and a set of pendant vertices P ,
each vertex of P being adjacent to u only. Note that the set P may be empty,
in which case (x, P ) has just one vertex x. Let X and Y be disjoint subsets of
vertices. A multi-star (X, Y ) consists of |X| vertex-disjoint stars (xi, Pi) centered at
the vertices of X, all Pi are subsets of Y , and they constitute a partition of Y . An
example of a multi-star (X, Y ) is shown in Figure 7 for X = {x1, x2, x3, x4, x5, x6}
and Y = {y1, y2, y3, y4, y5, y6, y7, y8}.
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Figure 7: An example of a multi-star (X, Y ).

Fact 2. (i) The subgraph of G0 induced by N0 ∪N1 is a multi-star (N1, N0).

(ii) The subgraph of G1 induced by N0 ∪N1 is a multi-star (N0, N1).

Proof. (i) Let S(i) be the maximal star of 0-edges centered at an arbitrary vertex
xi ∈ N1. By Fact 1, all pendant vertices of each S(i) are in N0. The stars S(i)
are pairwise vertex-disjoint. Indeed, if S(i) and S(j), i 6= j, have a common vertex
v ∈ N0, then (u, xi, v, xj) is a forbidden (2 + 2)-cycle. It remains to show that N0

is covered by the pendant vertices of all S(i). For every vertex v ∈ N0, there must
be a bicolored 2-path (u, x, v). Clearly, ux is a 1-edge and therefore xv is a 0-edge.
Thus, v is covered by the star centered at x.

(ii) follows by symmetry.

Now consider all bicolored 2-paths connecting a fixed vertex v ∈ N0 with all
other vertices of N0. By Fact 1, every such 2-path (v, x, v′) has x ∈ N1. If vx is a
0-edge then Fact 2(i) shows that v′ is unique. Hence all but two vertices in N0 are
connected with v by a bicolored 2-path (v, x, v′) such that vx is a 1-edge. Let M(v)
be the set of the end-vertices v′ ∈ N0. Thus, |M(v)| = |N0| − 2. Fact 2 implies that
M(v) ∪M(w) = emptyset whenever v 6= w. We obtain

|M(v)| · |N0| = |N0|.

Since N0 6= ∅, we have |M(v)| = |N0| − 2 = 1, or |N0| = 3. By symmetry, |N1| = 3.
Note that the conclusion |N0| = |N1| = 3 is valid even for infinite two graph G. It
shows that all stars in the multi-stars (N0, N1) and (N1, N0) are just edges. There
is just one variant (up to isomorphism) for the subgraph induced by N0 ∪ N1, see
Figure 8, where N0 = {v1, v2, v3} and N1 = {w1, w2, w3}.
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Figure 8: The subgraph induced by the set N0 ∪N1.

It is clear that the sets N0 and N1 induce edgeless graphs. Thus, G is the
two-graph F of Figure 2.

6 A criterion

For i ∈ {0, 1}, let degi(u) denote the i-degree of a vertex u in a two-graph G =
(G0, G1), that is the total number of i-edge incident to u. The ordinary degree of u
is deg(u) = deg0(u) + deg1(u).

Theorem 5. G = (G0, G1) is a friendship two-graph if and only if∑
u∈V (G)

deg0(u)deg1(u) = n(n− 1)/2, (1)

and there are no (2 + 2)-cycles in G.
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Proof. The number of bicolored 2-paths centered at a fixed vertex u is exactly
deg0(u)deg1(u), so the left-hand side in (1) must be equal to the number of un-
ordered pairs of distinct vertices, that is n(n− 1)/2. Thus, (1) is equivalent to the
statement that there are exactly n(n−1)/2 bicolored 2-paths. Finally, the existence
of a (2+2)-cycle is equivalent to the statement that some unordered pairs of distinct
vertices is connected by two bicolored 2-paths.

Theorem 5 implies a lower bound on the maximum vertex degree ∆(G) of a
friendship two-graph G.

Corollary 1. If G is a friendship two-graph then

∆(G) ≥
√

2n− 2, (2)

where n = |V (G)|.

Proof. An arbitrary term deg0(u)deg1(u) in (1) does not exceed ∆2(G)/4. Therefore
Theorem 5 gives n∆2(G)/4 ≥ n(n− 1)/2, which is equivalent to (2).

For an integer k ≥ 0, let DELT A(k) denote the class of all two-graphs G with
∆(G) ≤ k.

Corollary 2. For every k, the class DELT A(k) contains finitely many friendship
two-graphs.

Proof. Indeed, (2) implies that (k2 + 2)/2 ≥ n, that is all friendship two-graph in
DELT A(k) have a bounded number of vertices.
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