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Abstract  
 
Background: Almost all problems of protein analysis must inevitably be based on comparing 

the types of amino acids from which  protein sequences are composed. Similarities between amino 
acids are most commonly based on two methods derived from very different approaches: the evolu-
tionary based substitution matrixes of the PAM (Point Accepted Mutation) family, derived from 
phylogenetic trees, and the BLOSUM substitution matrixes which are statistically inferred from 
multiple alignments of groups of proteins  which, according to their  authors, S. and J. Henikoff, are 
essentially different from the PAM family of matrices.  

Results: In this paper we prove that the statistical approach for computing substitution matrixes 
of the BLOSUM family can be explained in terms of the PAM evolutionary model. This means that 
both of these approaches are actually based on similar types of evolutionary models, and the main 
difference between them lies in the different initial data for estimating their unknown model parame-
ters. We also show that all PAM substitution matrices can be represented as kernel functions in their 
mathematical structure, and lose their positive semi-definiteness only because of choice of final rep-
resentation.  

Conclusions: The fact that the PAM and BLOSUM substitution matrices are originally positive 
semidefinite, allows them to be easily used for constructing kernels over a set of proteins, so, with-
out loss of biological meaning, these similarity measures can be applied without correction. Fur-
thermore, any new substitution matrix will automatically be a kernel if, first, it is estimated by either 
the Dayhoff or  Henikoff techniques and, second, the final representation proposed in the present 
research is adopted.  
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1 Introduction  
One of the fundamental issues in bioinformatics is the problem of choosing a quantitative meas-

ure of similarity or dissimilarity between amino-acid sequences, which in turn has to be based on 
measuring the similarities between the amino acids that compose them.  

Amino acid similarity is traditionally described by a 20x20 square matrix of pairwise similarity 
values denoted as a substitution matrix. For protein analysis these substitution matrices should be 
consistent with the best knowledge available about protein amino acid sequence evolution.  

The first most commonly adopted similarity measure involves the family of Point Accepted Mu-
tation (PAM) substitution matrices, introduced by Margaret Dayhoff [1], based on a probabilistic 
model of evolution.  Parameters of this model are estimated from empirical data which generate 
phylogeny trees for families of closely related proteins.  

The second, more popular family of substitution matrices, whose advantages have been con-
firmed in a number of practical cases, was introduced by Steven and Jorjia Henikoff and called 
BLOSUM (BLOcks SUbstitution Matrices) [2]. According to the  authors these matrices differ sig-
nificantly from matrices of the PAM family in that they are inferred from local multiple alignments 
within protein families which produce blocks of conservative fragments of amino acid sequences. 

BLOSUM directly calculates frequencies of appearance of different amino acids at the same po-
sitions in an extracted block of similar fragments of sequences, requiring no knowledge of phylog-
eny but only the results of the alignment.  

In this paper we show that the family of BLOSUM substitution matrices can be explained  in 
terms of Dayhoff’s evolutionary model as was done for PAM. From this analysis one can see that 
the Henikoffs’ statistical approach, applied to their particular BLOCKs data gives exactly the same 
result which one would have got based on Dayhoff’s model using an appropriate hierarchical struc-
ture knowledge. 

Henikoff’s work, together with our explanation of how the same result can be derived through 
application of Dayhoff’s technique, gives a strong hint that it is possible and useful to calculate 
adaptive substitution matrixes which specify the substitution scale for a particular group of proteins. 
For instance, the COG-server [3] provides us with a very important classification if one is particu-
larly interested in a specific group of clusters such that each  is found in the same group of organ-
isms. These COG-clusters taken together can be considered as a separate group characterized by a 
particular substitution matrix. The specificity arises from the particular set of organisms arising from 
having already decided on a group of organisms of interest.  It is then very likely that re-
constructing COG-clusters from this group (and only within this group) will allow us to build a 
more detailed clustering. Further, if one is interested in building a classification rule to distinguish 
pairs of protein functional families, ignoring all other protein families, so one can determine a spe-
cific substitution matrix for the two families. Determining such specific substitution matrices has 
been discussed  over the last few years [4, 5] yet all have been so far restricted by heuristic-
statistical assumptions. In showing that BLOSUM matrices can be derived in a way that satisfies the 
rigorous Dayhoff PAM model of evolution,  this research can now be recast on a solid theoretical 
base.  

In parallel with discussion about the power of Dayhoff’s evolutionary model which is a funda-
mental base for constructing substitution matrices, we investigate some their algebraic properties. 
Specifically, we investigate the conditions of their derivation which guarantee that these matrices 
should be positive semi definite. This aspect we have analyzed in greatest detail, encouraged by the  
opportunity of building an automatic classifier for protein families by Support Vector Machine 
(SVM) methods [6, 7, 8]. These methods allow one to construct classifiers at any level of complex-
ity if one is able to build a corresponding similarity function for pairs of objects which satisfies the 
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property that it is an inner product function in some linear vector space. Such functions are tradi-
tionally called kernel functions. From our perspective, it means that a similarity score for pairs of 
proteins has to satisfy a particular formal property. In the last seven years many bioinformatics re-
searchers have devoted much time and effort to building corresponding kernels [9, 10, 11, 12, 13, 
14, 15, 16]. These procedures on the whole are based on similarity functions for amino acids which 
serve as the principal foundation for constructing such a function for amino acid sequences with the 
same property of being positive semi-definite. Yet, substitution matrices of the PAM and BLOSUM 
families in their traditional representation have negative eigenvalues leading numerous publications 
to attempt correcting traditional substitution matrices, but this has resulted either in the loss of their 
biological meaning [9, 10] or in revised matrices whose positive semi-definiteness was not guaran-
teed [11]. 

The present paper gives a very clear picture of the conditions under which a similarity function 
between sets of amino acids satisfies the positive semi-definite property. It proves  satisfying that 
those conditions which determine the positive semi-definite property for a matrix of substitutions is 
completely characterized by a few natural simple properties of Dayhoff’s probabilistic evolutionary 
model.  

2 Dayhoff’s PAM model and its evolutionary assumptions  
This section describes the basic probabilistic Dayhoff evolutionary model in an alternative, non-

standard form which is most convenient for further analysis and comparison with the BLOSUM ap-
proach. 

To measure the similarity or dissimilarity between amino-acid sequences requires that one adopt 
a representation for measuring the similarity of their constituent amino acids.  

Let A  be the finite set of 20 natural amino acids (AAs) such that { }(1) (20),...,A = α α .  A measure 

of similarity between two amino acids ,i j Aα α ∈  is usually understood to be their predisposition to 
having mutually exchanged by mutation from one protein sequence to another over evolutionary 
time and the simplest and most commonly applied probabilistic model of mutation is Dayhoff’s 
PAM. 

The key hypothesis underlying this model is  that evolutionary changes in the amino-acid se-
quence of a protein are the result of random independent mutations at separate points of the AA 
chain, and that the mutations observed today, were those “accepted” as result of subsequent  natural 
selection processes. 

The PAM model represents these predispositions of AAs towards mutual mutative transforma-
tions as a square matrix of conditional probabilities  
 ( , , 1,..., )ij i j n= ψ =Ψ , ( | )ij j iψ = ψ α α , ,i j Aα α ∈ , 20n= ,  (1) 

which are interpreted as the probabilities that at the next step of evolution amino acid i  will trans-
form into amino acid j . So, ( | ) 1

j

j i

Aα ∈
ψ α α =∑  for each i Aα ∈ . 

The main mathematical notion used in Dayhoff’s model is that of a Markov chain sh , 
1, 2,3,...s =  of evolution of an amino acid, which completely defined by the matrix of probabilities 

from (1), and applied independently at every separate point of an AA chain.  
It is further assumed, that this Markov chain represents an ergodic random process, which is 

characterized by a final probability distribution ( )jξ α : 
  ( ) ( | ) ( ).i j i j

i Aα ∈
ξ α ψ α α = ξ α∑   
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This  is the formalization of an assumption that evolutionary process started very long ago, with 
random processes of mutations setting in early, and as result do not depend on unknown (and em-
pirically unknowable) initial probabilities of states.  

The second fundamental supposition about PAM model is the assumption that its Markov chain 
is reversible, i.e. the condition: 
 ( ) ( | ) ( ) ( | )i j i j i jξ α ψ α α = ξ α ψ α α .  

holds true. This implies that it is impossible to determine in the process of observation which of two 
amino acids is an ancestor and which is a descendant. While involving simplification from a bio-
logical perspective, PAM models have proven remarkably good at predicting observed evolutionary 
transformations in sequences of rapidly reproducing organisms and enable mathematical tractability 
of derivations of probabilities of transformations from one AA chain to another.  

3 Similarity measures between amino acids on the basis of Dayhoff’s 
model and its interpretation  
This section gives a more mathematically rigorous introduction of the similarity functions for 

pairs of amino acids based on Dayhoff’s evolutionary model and their possible probabilistic inter-
pretations. 

Let A , as before, be the finite set of amino acids { }(1) (20),...,A = α α , which are states of ergodic 

and reversible Markov chain with a conditional probability density ( | )ij j iψ = ψ α α  and final prob-
ability distribution ( )jξ α , j Aα ∈ .  

Let us define also a two-step random transformation of amino acids i k jα →α →α :  

 [2]( | ) ( | ) ( | )i j i j

Aϑ∈
ψ α α = ψ α ϑ ψ ϑ α∑ ,  

which defines a new Markov chain, thinned out in comparison with initial one, defined by the origi-
nal transformation ( | )j iψ α α , which in contrast can be called a one-step transformation 

[1]( | )j iψ α α . 
Theorem 1. The Markov random process produced by the two-step random transformation re-

mains ergodic and reversible with the same final distribution ( )ξ α . 

Proof.  

First we show that the Markov process, defined by the two-step transformation [2]
ijψ  is ergodic 

with the same final distribution ( )ξ α .  

As it can be represented as [2] [1] [1]
1

n
ij il l j

l=
= ψ ψψ ∑ ,   

 [2] [1] [1] [1] [1] [1]
1 1 1 1 1 1

n n n n n n
i i j i il l j i il l j l l j j

i i l l i l= = = = = =

⎛ ⎞ξ ψ = ξ ψ ψ = ξ ψ ψ = ξ ψ = ξ⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑ ∑ . Thus, ergodicity is 

proved.  

The proof of the reversibility of the two-step transformation follows from the reversibility of the 
original one-step transformation i i j j j iξ ψ = ξ ψ :  
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[2]

1 1 1 1

[2]
1 1

( ) ( ) ( )

( ) .

n n n n
i i j i i l l j i i l l j l l i l j l l j l i

l l l l
n n

j j l l i j j l l i j j i

l l

= = = =

= =

ξ ψ = ξ ψ ψ = ξ ψ ψ = ξ ψ ψ = ξ ψ ψ

= ξ ψ ψ = ξ ψ ψ = ξ ψ

∑ ∑ ∑ ∑

∑ ∑
  

This completes the proof. 
 
It is natural to evaluate the similarity of two amino acids by computing the probability that they 

resulted from two independent branches of evolution followed by descendents of one and the same 
unknown amino acid 

 [2] [1] [1]
1

( , ) ( ) ( | ) ( | )i j
n

k i k j k

k
K

=
α α = ξ α ψ α α ψ α α∑ .  (2) 

However it is more convenient to represent this similarity measure in an alternative way, based 
on the property of reversibility of the Markov chain:  

 [1]

[2]

[2] [1] [1]

[1] [1] [2]

1

1

( ) ( | )

( | )

( , ) ( ) ( | ) ( | )

( ) ( | ) ( | ) ( ) ( | ),

i j k i k j k

i k i j k i j i

i k i

j i

n

k

n

k

K
=

=

ξ α ψ α α

ψ α α

ξ ξ

α α = ξ α ψ α α ψ α α =

α ψ α α ψ α α = α ψ α α

∑

∑
 (3) 

Such a representation allows us to interpret [2]( , )i jK α α  differently.  It can be considered as the 
probability that two randomly chosen immediately adjacent positions in this Markov chain with 
transition probabilities [2] ( | )j iψ α α  are occupied by two preset states ( , )i jα α .  

Besides, in a number of cases it is very convenient to use the similarity measure (3), normalized 
by the final probabilities of the amino acids being compared: 

 [2] [1] [1]
[2] ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( | ) ( | )
( , )

i j i j i j i
i j

j i j i j

K
K

ξ
= =

ξ ξ ξ ξ ξ
α α α ψ α α ψ α α

α α =
α α α α α

. (4) 

4 Dayhoff’s approach to estimating unknown parameters of the PAM 
model 
This section presents Dayhoff’s method for reconstructing the similarity functions from empiri-

cal data (substitution matrices PAM).  
For inferring an estimate ˆ ˆ( , , 1,...,20)ij i j= ψ =Ψ  of the unknown matrix of random point muta-

tions ( , , 1,...,20)ij i j= ψ =Ψ  M. Dayhoff studied 34 protein “superfamilies” of closely related pro-
teins (more than 85% identical to each another), grouped into 71 phylogenetic trees.  

From these data 1572 accepted point mutations were observed empirically, and a symmetric ma-
trix ( , , 1,...,20)ijC i j= =C of frequencies with which amino acid iα  is replaced by amino acid jα  was 
derived, together with a vector ( , 1,...,20)im i= =m  of so-called relative mutabilities of amino acids 

, 1,...,20i iα =  – the probabilities that each amino acid will change in a given small evolutionary in-
terval.  
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An estimate of a vector of occurrence frequencies of amino acids ( )ˆ ˆ( , 1,...,20)i i= ξ =ξ  was also 
computed by Dayhoff from the accepted point mutation data. 

The matrix ˆ ˆ( , , 1,...,20)ij i j= ψ =Ψ  can be calculated as 

 ˆ
j ij

ij
ij

i

m C
C

λ
ψ =

∑
 for i j≠  and ˆ 1jj jmψ = −λ  for i j= ,  

where λ  is a normalization parameter, which is equal for each column of the matrix Ψ̂  and defined 
in such a way that  
 20 ( )

1
ˆ ˆ(1 ) 0.01i ii

i=
ξ −ψ =∑ ,  (5) 

i.e. that, in average, only one amino acid among 100 randomly chosen amino acids would change. 
The value ˆ(1 )ii−ψ  is proportional to the mutability of the respective amino acid.  

The conditional mutation probabilities Ψ̂  satisfying (5) are said to define what is denoted as an 
evolutionary distance of 1 PAM. The most widely used evolutionary distance is that of 250 PAM 
associated with the 250th degree of the 1 PAM matrix: 250

250

ˆ ˆ ˆ...= × ×Ψ Ψ Ψ .  

And, if a 1 PAM matrix is multiplied by itself an infinite number of times all columns of the re-
sulting matrix will be equal to one another and to the vector of  occurrence frequencies of the amino 
acids ( )ˆ ˆ( , 1,...,20)i i= ξ =ξ , which in terms of Dayhoff’s model of evolution is the vector of final 
probabilities.  

The commonly adopted Dayhoff substitution matrices are computed from ˆ mΨ   and ξ̂  as given 
by the rule:  

 [ ] 10 [ ]10 logij ij
m md = π ,  [ ]

[ ]

ˆ
ˆ

ij
mij

m j

ψ
π =

ξ
  (6) 

and then rounded to the nearest integer value. 
It should be noticed, that the value under logarithm has the same structure as the similarity 

measure (4). 

5 Family of BLOSUM substitution matrices and statistical basis of 
the Henikoff Derivation  
This section describes the statistical method for determining, from empirical data,  the BLO-

SUM (BLOcks SUbstitution Matrices)  proposed by Steven and Jorja Henikoffs in 1992 [2] and 
widely used for protein sequence alignments.  

In contrast to the Dayhoff matrices, the BLOSUM ones are inferred not from phylogenetic trees 
but from local multiple alignments containing much more diverse protein families (starting from a 
level of 45% sequence similarity). Such multiple alignments produce blocks of evolutionarily con-
servative amino acid sequence fragments without gaps.  

Each element of a BLOSUM matrix is computed as the log-odds ratio between the observed 
probabilities of occurrence of amino acid pairs among the blocks and those expected by chance.  

Let us to consider all blocks from the Henikoff BLOCKS data base as one consolidated block 
consisting of Q  columns, involving of kN  amino acids, 1,...,k Q=  .  
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For computing the square matrix of observed probabilities ( , , 1,...,20)ijp i j= =p  of occurrence of 
amino acid pairs in accordance with the Henikoff technique, one first counts pair frequencies for 
each non-ordered pair of amino acids iα  and jα , for each column k  of the consolidated block: 

 ( 1) / 2, ,
, ,

i i
i j k k
k i j

k k

N N i jM
N N i j

⎧ − =
= ⎨ ≠⎩

 (7) 

where i
kN  и j

kN  are numbers of positions in the column k  occupied by amino acids iα  or jα  re-
spectively.  

For all columns, the pair frequencies for each non-ordered pair ( , )i jα α  is 

 
1

Q
i j i j

k
k

M M
=

= ∑   (8) 

and the total number of all ordered pairs in all columns is  

 
1 1

( 1) / 2
Q Q

k k k
k k

M M N N
= =

= = −∑ ∑ . (9) 

Probabilities ijp  are counted as 

 
ij

ij Mp
M

= . (10) 

The next step is to compute the expected probability of occurrence of amino acid iα  in the ( , )i j  
pair:  

 1
2

i ii i j

i j
q p p

≠

= + ∑ . (11) 

The resulting BLOSUM matrix of amino acid similarities ( , , 1,...,20)ijb i j= =b  is defined as 

 22log
ii

ii
i i

pb
q q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 for i j=  and 22log
2

ij
ij

i j

pb
q q

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 for i j≠ , (12) 

and rounded for nearest integer value.  
There is a series of BLOSUM substitution matrices which differ from each other by the level of 

identity required of the proteins in the multiply aligned families. So, the matrices BLOSUM 45, 
BLOSUM 50, BLOSUM 62 and BLOSUM 80 are computed from protein families with levels of 
similarity of 45%, 50%, 62% and 80%, respectively. 

6 Dayhoff’s model of evolution for BLOSUM  
The above derivation of BLOSUM substitution matrices comes from applying statistical meth-

ods to conserved amino acid blocks, and appears completely different in origin from the PAM sub-
stitution matrices.  

In this section we will show that BLOSUM expresses the same probabilistic model of amino 
acid mutations as PAM, which is based on the notion of an ergodic and reversible Markov chain de-
fined by the matrix ( , , 1,...,20)ij i j= ψ =Ψ  of conditional probabilities of transformations (1).  

Let each column position in the consolidated block { }, 1,...,k k Qα =  be associated with the hy-
pothesis that all amino acids in it are produced by the same unknown amino acid ϑ  (one-step ances-
tor) as result of independent random transformations with unknown conditional probabilities 
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( | )ψ α ϑ  resulting in an ergodic and reversible Markov chain with final distribution ( )ξ α . And fur-
ther we can assume that an ancestor for each column k  of the block is chosen independently in ac-
cordance with this distribution ( )ξ α .  

The notion of an evolutionary step, which is so important in the PAM framework does not apply 
here, but let us assume, for definiteness sake, that these conditional probabilities correspond to one 
step: [1]( | ) ( | )ψ α ϑ = ψ α ϑ .  

Let also [2] [2]( , , 1,..., )i j i j n= ψ =Ψ  be a matrix of two-step conditional probabilities, such as 

 [2] [2]
1

( | )
n

i j j i i l l j

l=
ψ = ψ α α = ψ ψ∑ ,  

which in accordance with theorem 1 defines an ergodic reversible Markov process with final distri-
bution ( )ξ α .  

Then, in accordance with (3), the observed probability of occurrence of amino acid pair ( iα , jα ) 
can be expressed as  
 [2] [2]( , )i j i j i i j j j ip p= α α = ξ ψ = ξ ψ .  (13) 

Theorem 2. Statistic (11) proposed by the Henikoffs is an unbiased estimate of  iξ . 

Proof. 
First, it should be noticed, that the statistic (11) can be represented in more convenient form: 

 

20

20
1, 11

1,

1 1
20

1, 1 11

1 1

1 ( 1)
1 1 12

1 12 2 2( 1) ( 1)
2 2

( 1)( 1)

( 1) ( 1)

QQ
ij i ji i

k kii k k
i j j j i ki ii i j k

Q Q
j
j i k k k k

k k
Q QQ

i j i i i ji i
k k k k k kk k

j j i k k jk
Q Q

k k k k
k k

M N NN N
Mq p p
M M N N N N

N N N N N NN N

N N N N

≠ = ≠ ==

=
≠

= =

= ≠ = ==

= =

−
= + = + ⋅ = + ⋅ =

− −

− +−
+ =

− −

∑ ∑ ∑∑
∑

∑ ∑

∑ ∑ ∑∑

∑ ∑

20

1 1, 1 1

1 1 1

( 1)
.

( 1) ( 1)

Q Q Q
i i

ik k k
k j i k k

Q Q Q

k k k k k
k k k

N N N
N
NN N N N N

= = ≠ = =

= = =

−
= = =

− −

∑ ∑ ∑ ∑

∑ ∑ ∑

  

So,  

 i iq N N= .  (14) 

Let’s show, that i iq N N=   is a maximum likelihood estimate of the final probability iξ .  
In accordance with the proposed model, the chance variable i

kN  is the number of occurrence of 
the event, which has probability iξ , in kN  independent tests. This chance variable is distributed ac-
cording to a Binomial distribution: 
 ( | ) ( ) (1 )

i i i
kk k k

k

i i i i
k k

N N N N
NN C −η ξ = ξ − ξ .  

Random variables ( , 1,..., )i
kN k Q=  are independent in accordance with the accepted model:  

 
1 1

( , 1,..., | ) ( | ) ( ) (1 )
i i i

kk k k
k

Q Q
i i i i i i
k k k

k k

N N N N
NN k Q N C

= =

−η = ξ = η ξ = ξ − ξ∏ ∏ .  (15) 
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For observed values ( , 1,..., )i
kN k Q=  the distribution (15) is the likelihood function relative to 

an unknown value of the probability iξ . The maximum likelihood estimate of this probability is de-
fined by the expression: 

 
( )

11

ˆ arg max log ( , 1,..., | )

arg max log log ( ) log(1 ) .
i
k
k

i i i
k

Q Q
i i k i i
k k

kk

i

i

N
N

N k Q

C N N N
==

ξ

ξ

ξ = η = ξ =

⎡ ⎤
+ ξ + − − ξ⎢ ⎥

⎣ ⎦
∑∏

 (16) 

The maximum of this likelihood function is: 

 

1 1

1 1 1

1 1

(1 ) ( )log ( , 1,..., | )
1 (1 )

1 (1 )
(1 )

1
(1 )

i k i i i i k iQ Q
i i k k k k

k ki i i i i
k k

Q Q Q
i i i i i
k k ki i

k k k

Q Q
i i i
k ki i

k k

d N N N N N NN k Q
d

N N N

N N

= =

= = =

= =

⎛ ⎞ ⎛ ⎞− − ξ − ξ −
η = ξ = − = =⎜ ⎟ ⎜ ⎟ξ ξ − ξ ξ − ξ⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− ξ − ξ + ξ =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ξ − ξ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞

− ξ⎜ ⎟ξ − ξ ⎝ ⎠

∑ ∑

∑ ∑ ∑

∑ ∑
1 1

Q Q
i i i

k k
k k

N N
= =

⎛ ⎞ ⎛ ⎞
− ξ + ξ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑

1 1

1 0,
(1 )

Q Q
i i
k ki i

k k
N N

= =

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞

− ξ =⎢ ⎥⎜ ⎟ξ − ξ ⎝ ⎠⎣ ⎦
∑ ∑

  

i.e.  

 
1 1

0
Q Q

i i
k k

k k
N N

= =

⎛ ⎞
− ξ =⎜ ⎟
⎝ ⎠

∑ ∑ .   

So, the maximum likelihood estimate for iξ  is:  

 1

1

ˆ
Q i i

ki k
Q

kk

N N
NN

=

=

ξ = =∑
∑

.  (17) 

Comparing to (14), we see that the estimate (17) is identical to the statistic (11), proposed by the 
Henikoffs. Furthermore, this estimate is unbiased: 

 ( )1
1

1 1| ( | )
i Q

Q i i i i
k kk

k

NE E N E N
N N N=

=

⎛ ⎞
= ξ = ξ⎜ ⎟

⎝ ⎠ ∑ ∑ .  

Here ( | )i i
kE N ξ  is the average of the distribution of the chance variable under a Bernoulli distri-

bution, i.e.  ( | )i i i
k kE N Nξ = ξ . So,  

 1

1

ˆ( )
Qi

ki i ik
Q

kk

NNE E
N N

=

=

⎛ ⎞
ξ = = ξ = ξ⎜ ⎟

⎝ ⎠
∑
∑

  

So, the Henikoffs’ statistic (11) is an unbiased maximum likelihood estimate of iξ :  

 ˆi i iq N N=ξ = .  

The proof is complete.  
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Theorem 3. Statistic (10) ijM M  for i j=  and 2ijM M  for i j≠  is an unbiased estimate of 
( , )ij i jp p= α α : 

 
, ,ˆ

2 ,

ij
i j

ij

M M i j
p

M M i j
⎧ =

= ⎨
≠⎩

, ˆ( | , )ij ijE p p=ξ Ψ , (18) 

Proof.  
Let us consider the two cases i j=  and i j≠  separately. 
Let i j= . 

1 1

11

1 ( 1) ( 1)2
1 ( 1)( 1)
2

Q i i Q i iii k kk k kk
QQ

k kkk kk

N N N NM
M N NN N

= =

==

− −
= =

−−

∑ ∑
∑∑

. 

The value of the random product ( 1)i i
k kN N −   in the k -th column of the consolidated block is 

associated with n  hypothesis about the random choice of amino acid { }, 1,...,i
ka A i n∈ = α =  in ac-

cordance with the probability distribution ( , 1,..., )i i n= ξ =ξ , therefore 

 
( ) ( )

( )
1

2

1

( 1) | , ) ( 1) | ,

( ) | , ( | , ) .

n
i i l i i l l
k k k k k

l
n

l i l l i l l
k k k k

l

E N N E N N a

E N a E N a

=

=

− = ξ − = α =

⎡ ⎤ξ = α − = α⎣ ⎦

∑

∑

ξ Ψ ψ

ψ ψ
 (19) 

The chance variable i
kN  is distributed under the Bernoulli Law with the probability l iψ  of oc-

currence of the event under consideration (amino acid iα  in each of kN  independent  tests). 
The mean of the Bernoulli distribution is defined as the probability of occurrence of an event in 

a separate test (in this case l iψ ) multiplied by the number of tests (in this case kN ), i.e.  
 ( | , )i l l l i

k k kE N a N= α = ψψ .  (20) 

The deviation of this distribution is the same 
 ( )2

( | , ) | , (1 )i i l l l l l i l i
k k k k kE N E N a a N⎡ ⎤− = α = α = ψ −ψ⎣ ⎦ψ ψ .  (21) 

The average of any chance variable squired is the sum of its deviation and its squared average, 
i.e.   

 ( ) { }
{ }

2 2( ) | , (1 ) ( ) 1
1 ( 1) ( 1) .

i l l l i l i l i l i l i l i
k k k k k k

l i l i l i l i l i
k k k k k

E N a N N N N
N N N N N

= α = ψ −ψ + ψ = ψ −ψ + ψ =
ψ + − ψ = − ψ ψ + ψ

ψ
 (22) 

So,  

 ( )
1

( 1) | , ( 1) ( 1)
n

i i l l i l i i i
k k k k k k

l

E N N N N N N p
=

− = − ξ ψ ψ = −∑ξ Ψ .   

Therefore,  

 1

1

( 1)ˆ( | , )
( 1)

Q
k kii i i i ik

Q
k kk

N N
E p p p

N N
=

=

−
= =

−
∑
∑

ξ Ψ .   
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Let us consider now the case i j≠ . 
Here there are n  hypotheses about the random choice of an ancestor amino acid ka A∈  for gen-

erating all amino acids of the k -th column of the consolidated block, yielding the equality 

 
1

( | , ) ( | , )
n

i j l i j l l
k k k k k

l
E N N E N N a

=

= ξ = α∑ξ Ψ ψ .   

The chance variable i
kN  can take 1kN +  values i

kN s= , 0,1,2,..., ks N=  with probabilities 

( )i
kP N s= : 

 
0

( | , ) ( ) ( | , , )
k

i j l l i j l i l
k k k k k k k

s

N
E N N a P N s sE N a N s

=

= α = = = α =∑ψ ψ .   

Here the conditional distribution of the chance variable j
kN  is Bernoulli distributed with a prob-

ability of occurrence of the event (amino acid jα ) in each of ( )kN s−  independent tests, which is 
equal to (1 )l j l iψ −ψ . The average of Bernoulli distribution is: 

 ( | , , ) ( )
1

l j
j l i l

k k k kl iE N a N s N sψ
= α = = −

−ψ
ψ ,   

consequently,  

 0

2

0 0

( | , ) ( | , ) ( )
1

( | , ) ( | , ) .
1

k

k k

l j
i j l l i l l
k k k k k kl i

s
l j

i l l i l l
k k k k kl i

s s

N

N N

E N N a P N s a s N s

N P N s a s P N s a s

=

= =

ψ
= α = = = α − =

−ψ
⎧ ⎫ψ

= = α − = = α⎨ ⎬
− ψ ⎩ ⎭

∑

∑ ∑

ψ ψ

ψ ψ
  

Here the first sum in braces is the average of the chance variable i
kN  and is equal to l i

kNψ . The 
second sum is the average of squared variable i

kN :  

 ( ){ }2( | , ) ( ) ( ) | ,
1

l j
i j l l l i i l l
k k k k k k kl iE N N a N N E N aψ

= α = ψ − = α
−ψ

ψ ψ ,   

i.e.  

 

{ }

{ } { }

2 2( | , ) ( ) (1 ) ( )
1

(1 ) (1 ) (1 )
1 1

( 1)(1 ) ( 1) .
1

l j
i j l l l i l i l i l i
k k k k k kl i

l j l i l j
l i l i l i l i l i

k k k k kl i l i

l i l j
l i l i l j

k k k kl i

E N N a N N N

N N N N N

N N N N

ψ
= α = ψ − ψ −ψ − ψ =

−ψ
ψ ψ ψ

ψ − −ψ − ψ = −ψ − −ψ =
−ψ −ψ
ψ ψ

− −ψ = − ψ ψ
−ψ

ψ

  

The full distribution over the set of values of the random variable k k
i jN N  is the linear combina-

tion  

 
1 1

( ) ( | , ) ( 1)
n n

i j l i j l l l l i l j
k k k k k k k

l l

E N N E N N a N N
= =

= ξ = α = − ξ ψ ψ∑ ∑ψ .   

It follows that 
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1 1
1

11

1

1

( ) ( 1)1 1ˆ( ) 12 2 ( 1)( 1)
2

( 1)
.

( 1)

Q Qk k k kij ni ji j k k
l li l jQ lk kQ k k

kk

Q k k
i j i jk

Q k k
k

E N N N NME p E
M N NN N

N N
p p

N N

= =
=

==

=

=

−⎛ ⎞= = ⋅ = ξ ψ ψ =⎜ ⎟
⎝ ⎠ −−

−
=

−

∑ ∑ ∑
∑∑

∑
∑

 

So, for any i  and j   

 ˆ( | , )i j i jE p p=ξ Ψ .   

The proof is complete.  
 
According to theorems 2 and 3, BLOSUM represents the same probabilistic model of amino 

acid mutations as PAM, based on the notion of an ergodic and reversible Markov chain so that each 
element of the BLOSUM matrix (12) can be expressed in corresponding terms as:  

2 2

ˆ
2log 2log ˆ ˆ

ij ii
ii

i j i i

p pb
q q

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ξ ξ⎝ ⎠ ⎝ ⎠

 for i j= ,  and 2 2

ˆ
2log 2log ˆ ˆ2

ij ij
ij

i j i j

p pb
q q

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟ξ ξ⎝ ⎠ ⎝ ⎠

 for i j≠ , 

or following (13): 

 [2] [2]
2 2 22log 2log 2log

2

i i j i jij
ij

i j i j j

pb
q q

⎛ ⎞ ⎛ ⎞ξψ ψ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟

ξ ξ ξ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (23) 

7 Mathematical properties of substitution matrices of the PAM and 
BLOSUM families: kernels in the set of amino acids on the basis of 
Dayhoff’s model of evolution 
This section is completely focused on the analysis of the semi-positive definite properties for 

substitution matrices and their relation with the original Dayhoff model of point evolution processes. 
In a number of problems of protein analysis it is useful that the similarity measure over the set 

of amino acids should possess the properties of an inner product. Functions of this kind are called 
kernel functions. For the finite set of amino acids, a kernel function is any real-valued two-argument 
function forming a positive semi-definite matrix.  Each kernel function, defined over the set of 
amino acids embeds the set of amino acids in some hypothetical linear space and lets us to consider 
each amino acid as a point in it.  

However, it should be noted that the substitution matrices of the PAM and BLOSUM families in 
their traditional log-odds representation (6) and (23) have negative eigenvalues, i.e. they are not 
valid kernels.  

In this section we prove an interesting fact:  Dayhoff’s evolutionary model based on the notion 
of an ergodic and reversible Markov chain, is sufficient for constructing a valid kernel over the set 
of amino acids. From this it follows that the PAM and BLOSUM families are kernel functions by 
mathematical structure, but have lost their natural positive definiteness simply because of an unsuit-
able choice of final representation. 

It should be noted that the similarity measure (2) can be easily represented as an inner product 

 ( )( )[2] [1] [1]
1 1

( , ) ( ) ( | ) ( ) ( | )i j T
i j

n n
k i k k j k

ik jk
k k

K x x
= =

=α α = ξ α ψ α α ξ α ψ α α =∑ ∑ x x ,  
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where ( )[1]( ) ( | ), 1,...,k i k n
i k n R= ξ α ψ α α = ∈x  can be considered as a feature vector of the i -th 

amino acid.  
So, the similarity measure (2) and its representation through two-step random transformation are 

kernels.  
It is easy to show that the normalized similarity measure (4) is also a kernel.\ as follows: 

Theorem 4. The two-argument function [2] [2]
[2] ( ) ( ) ( )

( , ) ( | )
( , )

i j j i
i j

j i j

K
K =

ξ ξ ξ

α α ψ α α
α α =

α α α
 is a kernel.  

Proof.  

[2]
[2] [1] [1]

[1] [1]

1

1 1

1
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( , )
( , ) ( ) ( | ) ( | )

( | ) ( | )

i j
i j

j i j i

k k
T
i ji j

n
k i k j k

k

n n
i k j k

ik jk
k k

K
K

x x

=

= =

= =
ξ ξ ξ ξ

⎛ ⎞⎛ ⎞ξ α ξ α⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟ξ ξ⎝ ⎠⎝ ⎠

α α
α α = ξ α ψ α α ψ α α

α α α α

ψ α α ψ α α =
α α

∑

∑ ∑ x x
  

So, the function [2] ( , )i jK α α  is a kernel.  
The proof is complete. 
 
It should be noted that the expression within the logarithm term in the definition of the BLO-

SUM substitution matrix (23) is absolutely equal to the normalized similarity measure [2] ( , )i jK α α  
and so, in accordance with theorem 4 is a kernel. 

As to the PAM substitution matrix, the expression within the logarithm in its definition (6) has 
the same structure as [2]( , )i jK α α . 

It is evident, that if 2m=  these functions [ ]
[ ]

ij
mij

m j

ψ
π =

ξ
 and [2]

[2]( , )
ij

i j
jK

ψ
ξ

α α =  are equal and, so 

[2]
ijπ  is a kernel.  

The question arises: will the functions [ ]
ij
mπ  be kernels for any m ?  

The answer is that they will, if there exists a random transformation [ / 2]( | )j i
mψ α α  such that  

 [ ] [ / 2] [ / 2]( | ) ( | ) ( | )i j i j
m m m

Aϑ∈
ψ α α = ψ α ϑ ψ ϑ α∑ .   

This transformation [ / 2]( | )j i
mψ α α  also defines an ergodic and reversible Markov random proc-

ess. If the transformation [ / 2]( | )j i
mψ α α  exists, we say that an ergodic and reversible Markov ran-

dom process [ ]( | )j i
mψ α α  is divisible.  

It should be noted that divisibility does not automatically follow from the fact that a Markov 
random process is ergodic and reversible. It is evident that [ ]

ij
mπ  is a kernel, at least for any even 

number m . As to other, non-even values of m , the divisibility of the respective Markov random 
processes [ ]( | )j i

mψ α α  can be checked experimentally.  Particularly, [1]( | )j iψ α α , which partici-
pates in forming PAM1 substitution matrix,  is divisible and so, PAM1, or rather the expression un-
der the logarithm [1]

ijπ  is also a kernel.  
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8 Results and discussions  
One of the main results of this paper consists in proving an interesting and useful fact: that the 

statistical approach for computing substitution matrices of the BLOSUM family, introduced by the 
Henikoffs, can be explained in terms of the PAM evolutionary model, proposed by M. Dayhoff. So, 
both of these commonly adopted ways of comparing amino acid sequences are based on the same 
model of evolution and the main difference between them lies only in the different initial data used 
for estimating their unknown parameters. 

Another interesting result from proving the above is that the model of PAM evolution with its 
main assumption of an ergodic and reversible Markov chain of point mutations of amino acids, is suf-
ficient for constructing kernel functions over the set of amino acids. Moreover, we have shown that the 
natural similarity measure of amino acids, based on Dayhoff’s model and commonly adopted in bioin-
formatics, which is the probability that two amino acids being compared might have resulted from two 
independent random transformations from one and the same unknown source amino acid, possesses all 
the properties of a kernel function. So, the substitution matrices of the PAM and BLOSUM families 
naturally are kernels and they have lost this property only as the result of a specific and unsuitable 
choice of final representation. The review of the traditional representation of substitution matrixes 
raises the possibility of applying more general methods for constructing kernels over the set of pro-
teins, which is often needed to obtain a positive semi-definite substitution matrix, while at the same 
time using a source similarity matrix justified from the point of view of evolution. 

From a mathematical perspective there are several interesting questions which remain to be an-
swered, but which should be solvable in the near future. One set of questions is related to the prob-
lem of how to approximate an original substitution matrix by one in simple integer form (as is done 
now) so that the new representation will conserve the positive semi-definite property. 

Other open questions arise from the above analysis which are likely to be harder to answer, but 
are important in practice. The best example is how to construct a pair-wise alignment for a couple of 
protein sequences based on the positive semi-definite substitution matrices whose score function 
also satisfies the same positive semi-definite property. There exist a few publications 
[10,11,14,15,16] which have described such alignment procedures, but these procedures don’t have 
a rigorous evolutionary foundation.  

9 Conclusions  
One of the foundations for solving many problems in bioinformatics, such as protein homology 

detection, prediction of protein-protein interactions, prediction of biological functions, secondary 
and 3D structure of proteins etc., involves using a similarity measure over the set of amino acids. 

The commonly used families of substitution matrices PAM and BLOSUM define similarity 
measures which are adequate from the biological point of view but have been here shown to fail to 
satisfy kernel properties, which has obscured the fact that they are so closely related, and only differ 
in the choice of statistical parameter choices. In numerous publications, attempts at correcting tradi-
tional substitution matrices have resulted either in the loss of their biological meaning or in revised 
matrices whose positive semi-definiteness was not guaranteed.  

In this paper we prove that all PAM substitution matrices are kernel functions by their mathemati-
cal structure and lose their positive definiteness only because of an unsuitable final representation.  

Moreover, we have proved that BLOSUM substitution matrices can also be justified in terms of 
the PAM evolutionary model. As result, the BLOSUM kernel family only needs a modified final 
representation that does not destroy the original biological rationale. 

The results obtained are especially significant in view of the growing popularity of constructing 
data-specific amino acid substitution matrices. Any new substitution matrix will automatically be a 
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kernel if, first, it is estimated by Dayhoff’s or the Henikoffs’ techniques both based on the PAM 
evolutionary model, and, secondly, if the final representation guaranteeing positive definiteness pro-
posed in the present research is applied. 
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