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ABSTRACT

Let G = (V, E) be an undirected graph and C(G) denote the set of all cycles in G. We
introduce a graph invariant cycle discrepancy, which we define as

cycdisc(G) = min
χ:V !→{+1,−1}

max
C∈C(G)

∣∣∣∣∣
∑

v∈C

χ(v)

∣∣∣∣∣ .

We show that, if G is a three-regular graph with n vertices, then

cycdisc(G) ≤ n + 2

6
.

This bound is best possible and is achieved by very simple graphs. Our proof is algorithmic
and allows us to compute in O(n2) time a labeling χ, such that

max
C∈C(G)

∣∣∣∣∣
∑

v∈C

χ(v)

∣∣∣∣∣ ≤
n + 2

6
.

Some interesting open problems regarding cycle discrepancy are also suggested.



1 Introduction

Discrepancy theory is an important and vast subject in combinatorics. One of the major
goals of this subject is to study the following problem: given a set V and a collection,
S = {S0, . . . , Sm}, of subsets of V , how can we partition the ground set V into two sets
such that each Si ∈ S is partitioned as equally as possible? More formally, the quantity of
interest in such a problem is called the discrepancy of the set system S and is given by:

disc(S) = min
χ:V !→{+1,−1}

max
S∈S

∣∣∣∣∣
∑

v∈S

χ(v)

∣∣∣∣∣ .

This fascinating quantity is the subject of many brilliant and important investigations
in combinatorics[9, 2]. We refer the interested reader to [1, 5, 7] for a more complete and
thorough introduction to this subject.

In this paper we explore discrepancy when the set system in question is obtained from
an undirected graph. More precisely, we study this quantity when the set system consists of
the set of all cycles of a graph. This defines an interesting graph invariant, which we call the
cycle discrepancy of the graph G. The set of all cycles of a graph typically has exponential
size and does not have bounded VC-dimension(See [7] for precise definition of this concept).
As we will show, the cycle discrepancy of a maximum degree three graphs can be linear
in the number of vertices. This is not the case for typical discrepancy problems which are
geometric in nature and the discrepancy is usually around O(

√
n). The problem we pose

does not seem to have any geometric roots. It is purely a graph theoretic question and our
main result is obtained by using graph-theoretic tools only.

Another invariant closely related to the discrepancy of a set system is its VC-dimension.
It is also interested to study the VC-dimension of set systems defined by graphs. This study
is conducted by Kraakis et. al. in [6]. The authors study the VC-dimension of set systems
that are defined by cycles, paths, connected subgraphs and stars. These problems are studied
from a complexity-theoretic and extremal point of view. Schaefer[8] also studies set systems
that arise from graphs from a complexity-theoretic point of view. He shows that one can
obtain rare examples of natural problems that are Σ3

p-complete.
This paper is mainly concerned about the cycle discrepancy of three-regular graphs. We

construct very simple three-regular graphs with high cycle discrepancy. The main contribu-
tion of this paper is to show that the cycle discrepancy achieved by these graphs is optimal.
It is interesting to note that our main result follows a progression. In Theorem 3 we observe
that the cycle discrepancy of a three-regular graph cannot be more that 1

3n. This result is
then improved to 3

10n in Theorem 4 and to 1
5n in Theorem 5. Finally, Theorem 6 gives an

optimal bound.
The rest of this paper is organized as follows: in the next section we give some definitions

and preliminary results. In Section 3, we construct maximum degree three graphs with high
cycle discrepancy. Section 4 is devoted to proving an upper bound on the cycle discrepancy
of three-regular graphs. In Section 5, we discuss the algorithmic aspects of Theorem 6.
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Section 6 discusses the cycle discrepancy of bounded degree graphs. In the last section we
propose some concrete open problems and give some concluding remarks.

2 Definitions and some preliminary results

All graphs we deal with are loop less, without multiple edges, and undirected. We use
standard graph theoretic notation which is mostly borrowed from Bollabás’ Monograph[3].
For a graph G = (V, E) we say that x is connected to y and denote it by x ∼G y if {x, y} ∈ E.
For any vertex v ∈ V and A ⊆ V we let

NG(v, A) = {w ∈ A : v ∼G w} and

dG(v, A) = |N(v, A)|

NG(v, A) and dG(v, A) are called the neighborhood of v in A and the degree of v in A,
respectively. NG(v, V ) and dG(v, V ) are denoted by NG(v) and dG(v), respectively. The
maximum degree, ∆(G), of a graph is given by ∆(G) = maxv∈V dG(v). The subscript G is
usually ignored from this notation when the graph in question is clear from the context.

A graph G = (V, E) is three-regular if the degree of every vertex in G is exactly three.
G is called three colorable if there exists a c : V → {red, blue, yellow} such that if x ∼ y
then c(x) '= c(y). The map c is called a tricoloring of G. A tricoloring naturally partitions
the vertex set into three color classes given by: X = c−1(red), Y = c−1(blue) and Z =
c−1(yellow). A tricoloring is characterized up to permutation of colors by the partition of
the vertex set V into its color classes. Therefore, we sometimes say that c = (X, Y, Z)
is a tricoloring of G. Furthermore, when we use this notation, we will tacitly assume that
|Z| ≤| Y | ≤ |X|.

If W ⊆ V then G[W ] will denote the graph induced by the set W . Kr denotes the
complete graph on r vertices. A path, P = v1, . . . , vt, is an ordered sequence of distinct
vertices in V such that vi ∼ vi+1 for i = 1, . . . , t − 1. A cycle C = v1, . . . , vt is an ordered
sequence of distinct vertices with vi ∼ vi+1 for i = 0, . . . , t − 1 and vt ∼ v1 with t ≥ 3. A
cycle of length t will sometimes be denoted by Ct. We let P(G) and C(G) denote the set of
all paths and the set of all cycles in G. A subgraph H , such as a path or a cycle, defines a
subset of vertices of G that appear in it. When we apply the usual set theoretic operations
to H the operations are implicitly being applied to this underlying set of vertices.

Disjoint union is denoted by *; that is, A = B * C is a short form for A = B ∪ C and
B ∩ C = ∅. A labeling, χ, of a graph G is a mapping of V to {+1,−1}. A labeling can
also be thought of as coloring of the vertices with two colors without having the restriction
that adjacent vertices get different colors. However, we will never use this terminology as it
conflicts with the notion of tricoloring. We will use + and − to denote +1 and −1. For any
S ⊆ V we define,

χ(S) =
∑

v∈S

χ(v).
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We define the cycle discrepancy of the labeling, χ by

cycdisc(χ) = max
C∈C(G)

|χ(C)|.

Finally, cycdisc(G), the cycle discrepancy of G is defined as

cycdisc(G) = min
χ:V !→{+,−}

cycdisc(χ).

2.1 Some simple facts about cycle discrepancy

Cycle discrepancy is a graph invariant; that is, isomorphic graphs have the same cycle
discrepancy. The following facts are easily established about this invariant.

Fact 1 cycdisc(G) = 0 if and only if G is bipartite.

Fact 2 If G has k connected components G1, . . . , Gk then

cycdisc(G) =
k

max
i=1

cycdisc(Gi).

Fact 3 If G1, . . . , Gk are two-connected components of G then

cycdisc(G) =
k

max
i=1

cycdisc(Gi).

Fact 4 Cycle discrepancy is monotone; that is, if H is a subgraph of G then

cycdisc(H) ≤ cycdisc(G).

When we are trying to prove an upper bound B on the cycle discrepancy of a graph G, we
only have to exhibit one labeling, χ, such that −B ≤ χ(C) ≤ B for all cycles C in G. In
most of our proofs the above inequalities are treated separately. Therefore, it is convenient
for us to define:

χ+(C) = χ(C) and χ−(C) = −χ(C).

We call a cycle C positive-heavy or negative-heavy if χ+(C) > 0 or χ−(C) > 0, respectively.
Thus to prove that cycdisc(G) ≤ B it suffices to exhibit a χ such that:

1. χ+(C) ≤ B for all positive-heavy cycles.

2. χ−(C) ≤ B for all negative-heavy cycles.
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Figure 1: The graph Gt with high cycle discrepancy: The cycles C+ and C− pick up different
z-vertices.

3 Maximum degree three graphs with high cycle dis-
crepancy

Since cycle discrepancy is a monotone graph property. Therefore, it is interesting to study
how large can the discrepancy of a graph be, if we bound its maximum degree. All maximum
degree one graphs have zero cycle discrepancy. A maximum degree two graph is a disjoint
union of paths and cycles. Thus, its cycle discrepancy is one if and only if it contains an odd
cycle. The first interesting extremal question is to determine the maximum possible cycle
discrepancy that an n vertex maximum degree three graphs. We start by constructing such
graphs with high cycle discrepancy.

Theorem 1 For every n = 3t there exists a graph such that ∆(G) ≤ 3 and

cycdisc(G) ≥ t/2.

Proof. Let Gt = (Vt, Et) be a graph on Vt = {x0, y0, z0, . . . , xt−1, yt−1, zt−1} consisting of t
triangles connected in a cycle (See Figure 1.) Let χ : Vt .→ {+,−} be any labeling of Gt.
Consider two cycles C+ and C−. The cycle C+ goes through all the vertices xi, zi and also
includes all yi such that χ(yi) = +. Similarly, C− goes through all the vertices xi, zi and
includes all the yi with χ(yi) = −. Thus

χ+(C+) + χ−(C−) = t.

This implies that χ(C+) ≥ /t/20 or χ(C−) ≥ /t/20.
Based on the above graphs, it is easy to construct three-regular graphs with high cycle

discrepancy.
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Theorem 2 For every n ≥ 6 such that n is even, there exists an three-regular graph, G, on
n vertices such that

cycdisc(G) ≥
⌊
n + 2

6

⌋
.

It is curious that the graphs constructed in Theorem 1 are not degree three maximal:
there are approximately n

3 vertices of degree less than three. It is tempting to try to improve
the above theorem by adding additional edges to these graphs. However, as we will prove,
no significant improvement in the above construction is possible.

4 The cycle discrepancy of three-regular graphs

In this section we bound the discrepancy of three-regular graphs. If a three-regular graph
contains a K4, then the K4 forms a connected component. By Fact 2 we can simply remove
the K4 from consideration and bound the discrepancy of the remaining graph.

The crux of our argument is a bound on the cycle discrepancy of K4-free, three-regular
graphs. Throughout this section we let G = (V, E) be a three-regular graph. Furthermore,
we assume that G does not contain a K4. According to a classical theorem of Brooks’[4],
G is three colorable. Let c = (X, Y, Z) be a tricoloring of G that minimizes the size of the
smallest color class; namely Z. We will now use this tricoloring to obtain our labeling.

4.1 The XYZ-labeling

Note that the minimality of Z implies the following facts:

Fact 5 For every z ∈ Z, d(z, X) ≥ 1 and d(z, Y ) ≥ 1.

Fact 6 If z, z′ are two distinct vertices in Z with d(z, X) = d(z′, X) = 2, then z and z′ do
not have a common neighbor in Y .

Proof. If z and z′ have a common neighbor y ∈ Y then note that (X, Y ∪ {z, z′} \ {y}, Z ∪
{y} \ {z, z′}) is a tricoloring that contradicts the minimality of Z.

Fact 7 If z, z′ are two distinct vertices in Z with d(z, Y ) = d(z′, Y ) = 2, then z and z′ do
not have a common neighbor in X.
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− −−−+−−−−+

X

Y

Z

Figure 2: The labeling based on a tricoloring of G: red vertices are labeled +, blue vertices
are labeled − and each yellow vertices get the label that is opposite of the majority label of
its neighbors.

We now define a labeling, χc, in which all the vertices in X are labeled + and all the vertices
in Y are labeled −. Each vertex in Z takes on the label which is the opposite of the majority
label of its neighbors. Formally,

χc =






+ if v ∈ X,
− if v ∈ Y,
+ if v ∈ Z and d(v, Y ) = 2,
− if v ∈ Z and d(v, X) = 2.

This labeling is illustrated in Figure 2. Fact 5 shows that this labeling is well defined.
Fact 6 and 7 together imply the following:

Fact 8 Each vertex v ∈ V (and not only the vertices of Z) has the color that is opposite of
the majority color of its neighbors.

This property alone is sufficient to prove the following weak bound.

Theorem 3

cycdisc(G) ≤
⌊
n

3

⌋
+ 2.

Y

X

Z

Figure 3: An illustration of Lemma 2 and Lemma 1. The bold paths shows the four cases
discussed in Lemma 1. The bold vertices belong to LC .
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Proof. For any path, P , of length three we have χc(P ) = +1 or χc(P ) = −1 This is because
no three vertices in a path can have the same label; otherwise, the middle vertex violates
Fact 8. The theorem follows.

χc is actually much better and we can improve the above theorem. Let

Z+ = {v ∈ Z : χc(v) = +} and

Z− = {v ∈ Z : χc(v) = −}.

For a path P , define LP to be the vertices having exactly one neighbor in X and Y (on the
path P ). Formally,

LP = {z ∈ Z : dP (z, X) = dP (z, Y ) = 1}.
Furthermore, we define L+

P = LP ∩ Z+ and L−
P = LP ∩ Z−. For a cycle C the sets LC , L+

C

and L−
C are defined analogously.

Lemma 1 Let P be a path starting from a vertex in X and ending at a vertex in X that
does not contain any other vertices of X. Then

χc(P ) = χc(LP ) + 1 = |L+
P |− |L−

P | + 1.

Proof. Let P be a path that starts from x and ends at x′, where x, x′ ∈ X. Furthermore,
assume that P does not contain any other vertices of X. It is easily seen that after possibly
reversing P we can classify P in one the four cases discussed below (these cases are illustrated
in Figure 3).

Case 1: P = x, y1, z1, . . . , yt, zt, yt+1, x′. Where y1, . . . , yt+1 ∈ Y, z1, . . . , zt ∈ Z and t ≥ 1.
In this case χc(zi) = + for all i ≤ t since all zi are connected to two nodes in Y ; namely yi

and yi+1. Therefore, χc(P ) = 2 − (t + 1) + t = 1. Furthermore, LP = ∅ as no vertex in Z
has any neighbors in X on P .

Case 2: P = x, y1, z1, . . . , yt, zt, x′. Where y1, . . . , yt+1 ∈ Y, z1, . . . , zt ∈ Z and t ≥ 1.
In this case, we note that χc(zi) = + for all i < t since all such zi are connected to two nodes
in Y . Thus χc(P ) = 2 − t + (t − 1) + χc(zt) = χc(zt) + 1. On the other hand LP = {zt} as
all other edges have no neighbors in X on P .

Case 3: P = x, z1, y1 . . . , zt, yt, zt+1, x′. Where y1, . . . , yt+1 ∈ Y , z1, . . . , zt+1 ∈ Z and t ≥ 1.

−+−+−−+−+−+−+−+−+ − ++

Figure 4: Another way to view Lemma 2. If we ignore the nodes in LC (shown with bold
circles) the labels of all the other nodes on a cycle cancel alternatively.
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In this case χc(zi) = + for all 2 ≤ i ≤ t and therefore, χc(P ) = 2 − t + (t − 1) + χc(z1) +
χc(zt+1) = χc(z1) + χc(zt+1) + 1 and it is easy to see that LP = {z1, zt+1}.
Case 4: P = x, z1, x′. In this case, χc(z1) = − as z1 is connected to two vertices in X.
Therefore, χc(P ) = +1. LP = ∅ as both neighbors of z1 neighbors are in X.

The next Lemma goes a long way in bounding the cycle discrepancy of the labeling χc.

Lemma 2 For any cycle C in G,

χc(C) = χc(LC) = |L+
C |− |L−

C |.

Proof. If C does not contain any vertex of X then it must alternate between the vertices
of Y and Z. All the Y vertices are labeled + and all the Z vertices must have label − as
they have at least two neighbors in Y . Thus χc(C) = 0 and in this case LC = ∅.

The proof of Lemma 1 applies to a cycle with exactly one vertex in X almost verbatim.
The only difference is that x = x′ and therefore, all quantities are adjusted by 1 and Case 4
cannot occur.

Now, we can assume |C ∩ X| = t > 1. Let x0, . . . , xt−1 be the vertices of X that appear
on C and let Pi denote the path from xi to xi+1 (indices here are modulo t). We have

χc(C) =

(
t∑

i=0

χc(Pi)

)

− t

=
t∑

i=0

χc(LPi)

= χc(LC).

The first equality is true because each xi appears on two paths; namely, Pi and Pi−1. Whereas,
all other vertices of C appear on exactly one path. The second equality holds by applying
Lemma 1 to each Pi. The last equality holds since LC =

⊎
LPi .

Figure 4 shows the cycle highlighted in Figure 3: when the vertices of LC are taken out
of consideration the labels of the remaining vertices cancel alternatively.

By Lemma 2 for every cycle C, we have

|χc(C)| ≤ max(|Z−|, |Z+|) ≤ |Z| ≤ n

3
.

This gives us an alternate proof of Theorem 3. To improve this bound we set the following
parameters:

|Z+| = r, |Y |− |Z| = q and |X|− |Y | = k.

Our first observation is that the difference in the sizes of Z− and Z+ is actually controlled
by the difference in sizes of the two sets X and Y .
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Lemma 3 If every vertex of Z has at least one neighbor in X and one neighbor in Y then

|Z−|−| Z+| = 3(|X|− |Y |) = 3k.

Proof. Counting the number of edges between Z and X in two ways gives us

2|Z−| + |Z+| = 3|X|− |E(X, Y )|.

Similarly, counting the number of edges between Z and Y in two ways yields

2|Z+| + |Z−| = 3|Y |−| E(X, Y )|.

Subtracting these two equations yields the desired result.

The above equation allows us to determine the cardinalities of X, Y, Z, Z+ and Z− in
terms of r, k and q. We have

|X| = 2r + 4k + q.
|Y | = 2r + 3k + q,
|Z| = 2r + 3k, |Z+| = r, |Z−| = r + 3k,

Critically, we obtain that
n = 6r + 10k + 2q

and we can improve our previous bound.

Theorem 4

cycdisc(G) ≤ r + 3k ≤ 3n

10
.

To further improve this bound we tinker with our labeling χc. Note that

χ+
c (C) ≤ |Z+| and χ−

c (C) ≤ |Z−|.

Since |Z−| = |Z+|+ 3k, it seems wise to change the labels of some vertices in Z− from − to
+. This change will tend to reduce the discrepancy in the negative-heavy cycles at the cost
of increase in the discrepancy in the positive-heavy cycles. Luckily, we can quantify these
gains and losses. We start with a simple fact about two labelings:

Fact 9 Let χ : V .→ {+,−} be a labeling and W ⊆ V such that χ(v) = − for all v ∈ W .
Suppose ρ is defined by switching all the labels of the vertices in W from − to +; Formally,

ρ(v) =

{
χ(v), if v ∈ V \ W and
−χ(v) = +, if v ∈ W.

For any S ⊆ V we have,
ρ(S) = χ(S) + 2|W ∩ S|.

Consequently,
ρ+(S) ≤ χ+(S) + 2|W |.
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Let us define ρc by changing the labels of exactly k vertices in Z− to a +. We now
estimate the discrepancy of ρc.

Lemma 4
cycdisc(ρc) ≤ r + 2k.

Proof. ρ+
c (C) ≤ r + 2k follows from Fact 9. To show that ρ−c (C) ≤ r + 2k we have to do

a little more work. Intuitively, the negative-heavy cycles are better off if they avoid all the
vertices whose labels have been switched to +. However, avoiding all these vertices means
that a negative-heavy cycle can now only pick up r + 3k − k = r + 2k vertices from Z−.
Formally, let z1, . . . , zk be the vertices whose label has been changed from a − to a +. Let
C be a cycle and let us assume that after appropriate relabeling z1, . . . , zt do not appear on
the cycle C and zt+1, . . . , zj appear on the cycle. By Lemma 2 we have

χc(C) = |L+
C |− |L−

C |,

and therefore,
χ−

c (C) ≤ |L−
C |.

Since L−
C ⊆ Z− \ {z1, . . . , zt}. Hence

χ−
c (C) ≤ |Z− \ {z1, . . . , zt}| ≤ r + 3k − t.

Furthermore,
ρc(C) = χc(C) + 2(k − t).

Hence we get
ρ−c (C) ≤ r + 3k − 2k + t ≤ r + 2k.

We have proved the following useful Lemma that we record for future use.

Lemma 5 Let G = (V, E) be a K4-free, three-regular graph. Let (X, Y, Z) be a tricoloring
of G such that each vertex in z ∈ Z has at least one neighbor in X and one neighbor in Y .
Define,

k = |X|− |Y | and q = |Y |− |Z|.

Then for the coloring ρc we have,

cycdisc(ρc) ≤
n + 2k − 2q

6
.

A straightforward application of this Lemma gives us the following bound:
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Theorem 5
cycdisc(G) ≤ n

5
.

In order to improve this bound we start with a simple observation about bipartite graphs.

Lemma 6 Let H = (A, B, E) be a connected bipartite graph with maximum degree three. If
α is the number of vertices of degree three in B then

|A| ≤| B| + α + 1.

Proof. The number of vertices in H is |A| + |B|. Furthermore, we have

|E| ≤ 3α + 2(|B|− α) = 2|B| + α.

As, the graph is connected |E| must be at least |A| + |B|− 1. The Lemma follows.

We are ready to give the main argument that will help us prove an optimal upper bound.

Lemma 7 Let G = (V, E) be a K4-free, three-regular graph. There is a tricoloring c =
(X, Y, Z) of G such that each vertex z ∈ Z has at least one neighbor in X and one neighbor
in Y . Furthermore,

k ≤ q + 1

where k = |X|−| Y | and q = |Y |−| Z|.

Proof. Let (X, Y, Z) be a tricoloring that minimizes |Z|. Furthermore, out of all such
tricolorings we pick the one that minimizes k = |X|− |Y |. We set q = |Y |−| Z|.

We may assume that k > 0; otherwise, there is nothing to prove. Let

Ŷ = {y ∈ Y : d(y, X) = 3}.

We note that |Ŷ | ≤ q otherwise; (X, Z ∪ Ŷ , Y \ Ŷ ) is a proper three coloring of G that
contradicts the minimality of |Z|.

We now examine G[X ∪ Y ]. The fact that |X| > |Y | implies that there must be a
component C of G[X ∪ Y ], such that |C ∩ X| > |C ∩ Y |. Define,

CX = C ∩ X and

CY = C ∩ Y.

We argue that this component must satisfy

|CX | ≥ |CY | + k. (1)
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Indeed, if |CX | < |CY | + k, then, we can invert this component to obtain a contradiction;
that is, we define

A = (X \ CX) ∪ CY ,

B = (Y \ CY ) ∪ CX .

This yields two sets A and B with |B|− k < |A| < |B|+ k. Thus (A, B, Z) or (B, A, Z) is a
tricoloring that contradicts the minimality of k.

Let ĈY be the vertices in C that have degree three. By Lemma 6

|CX | ≤ |CY | + |ĈY | + 1.

Comparing this with the inequality 1, we get k ≤ |ĈY | + 1. Our last observation is ĈY ⊆ Ŷ ,
and therefore, we have |ĈY | ≤ q.

Combining Lemma 5 and Lemma 7 we get our main result. It is also easy to see that we
can remove the restriction on G being K4 free.

Theorem 6 For every three-regular graph G with n vertices we have

cycdisc(G) ≤ n + 2

6
.

5 An O(n2) algorithm for finding a good labeling

The proof of Theorem 3 is algorithmic and can be easily converted into an O(n3) algorithm.
The algorithm takes a three-regular graph, G = (V, E), and outputs labeling ρc such that

cycdisc(ρc) ≤
n + 2

6
.

In this section we show that this can also be done in O(n2) time. We show how to obtain
a coloring that satisfies the conditions of Lemma 7. Given such a coloring, an appropriate
labeling can be easily obtained in linear time. The algorithm has two phases, which we
discuss below.

Phase I: The algorithm starts by finding a tricoloring c = (X, Y, Z) of G promised by
Brooks’ Theorem. Such a coloring can be found in linear time. Call a z ∈ Z blocked if it
is connected to an x ∈ X and a y ∈ Y such that x and y belong to the same connected
component of G[X ∪ Y ]. Furthermore, define

Ŷ = {y ∈ Y : d(y, X) = 3}.

Our algorithm maintains a coloring c and repeatedly checks if the following conditions
are satisfied.
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flip

flip

Figure 5: Moving an unblocked vertex z out of the smallest color class: all the possible cases
are not shown.

1. Each vertex z ∈ Z is blocked.

2. |Ŷ | ≤| Y |−| Z|.

If the first condition is violated by some vertex z, then by inverting some components
of G[X ∪ Y ] the vertex z can be moved into the set X or Y (See Figure 5). In case the
second condition fails we exchange Z and Y \ Ŷ (See Figure 6). In both cases the number
of vertices in the smallest class is reduced by at least one. Thus the above steps are applied
O(n) times. It is easily seen that both of these steps can be implemented in linear time thus
the entire phase takes O(n2) time.

Phase II: Let c0 = (X0, Y0, Z0) be the coloring obtained from Phase I. Let

k0 = |X0|−| Y0|, q0 = |Y0|−| Z0|, Ŷ0 = {y ∈ Y0 : d(y, Y0) = 3} and β = |Ŷ0|.

We note that β ≤ q0 and all vertices in Z0 are blocked. We may assume that k0 > 1;
otherwise, our algorithm can output (X0, Y0, Z0).

ŶŶ

X

Z ′ = Y \ ŶZ

X

Figure 6: Exchanging Z and Y \ Ŷ in case |Ŷ | > |Y | −| Z|: the size of the smallest color
class reduces.
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i0 j0

C1 C2 C3 C5 C6 C7C4

Figure 7: Flipping the connected components in G[X0 ∪ Y0] as discussed in Case 2

Let C1, . . . , Ct be the connected components of G[X0 ∪ Y0] sorted by

di := |Ci ∩ X0|− |Ci ∩ Y0|

(See Figure 7). Let i0 be the smallest index with di0 > 0. For j ≥ i0 let Xj and Yj denote the
sets obtained by flipping Ci0 , Ci0+1, . . . , Cj . For convenience, we define Xi = X0 and Yi = Y0

for all i < i0. Let us define, kj = |Xj|− |Yj| and qj = |Yj|− |Z0|. Note that,

k0 = · · · = ki0−1 > ki0 > ki0+1 > · · · > kt.

and
q0 = · · · = qi0−1 < qi0 < qi0+1 < · · · < qt.

Let j0 ≥ i0 be the first index such that |Yj0| > |Xj0| or equivalently kj0 is negative. Note
that such an index must exist as |Yt| ≥| X| and |Xt| ≤| Y |. We claim that the tricoloring
(Xj0−1, Yj0−1, Z0) satisfies constraints of Lemma 5. We discuss two cases:

Case 1: j0 = t. In this case, we have

kj0−1 = dj0 +
i0−1∑

i=0

di −
j0−1∑

i=i0

di.

As all di with 0 ≤ i < i0 are negative and all di with i0 ≤ i ≤ j0 − 1 are positive, therefore
kj0−1 ≤ dj0. We make the critical observation that the vertices of degree three in Cj0 ∩ Yj0−1

are a subset of Ŷ0. Therefore, there can be at most β vertices of degree three in Cj0 ∩ Yj0−1.
Thus by Lemma 6 we have dj0 ≤ β + 1 ≤ q0 + 1. Hence kj0−1 ≤ q0 + 1 ≤ qj0−1 + 1.

Case 2: j0 < t. In this case,
0 < kj0 = kj0−1 − 2dj0.

Hence, we have 2dj0 > kj0−1. Because di’s are sorted dj0+1 ≥ dj0. Thus,

dj0 + dj0+1 ≥ 2dj0 > kj0−1
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(Here the strictness of the inequality is important). Let β ′ and β ′′ be the number of vertices
of degree three in Cj0 ∩ Yj0−1 and Cj0+1 ∩ Yj0−1, respectively. Critically, these vertices are a
subset of Ŷ and therefore, we have β ′+β ′′ ≤ β. By Lemma 6, dj0 ≤ β ′+1 and dj0+1 ≤ β ′′+1.
Therefore, we have

dj0 + dj0+1 ≤ β + 2 ≤ q0 + 2 ≤ qj0−1 + 2.

Hence, kj0−1 ≤ qj0−1 + 1.

Thus in both cases we have kj0−1 ≤ qj0−1 + 1. Lastly, we recall that all the vertices in Z0

were blocked in (X0, Y0, Z0). Since (Xj0−1, Yj0−1, Z0) is obtained by flipping some connected
components of G[X0 ∪ Y0], therefore, each vertex in z ∈ Z0 has at least one neighbor in
Xj0−1 and one neighbor in Yj0−1. This shows that the tricoloring (Xj0−1, Yj0−1, Z0) satisfies
the conditions of Lemma 5.

5.1 Cycle discrepancy of maximum degree three graphs

Once we have established an upper bound on the maximum cycle discrepancy of three-
regular graphs, it is straightforward to extend a similar bound on graphs with maximum
degree three. We can show the following result:

Theorem 7 If G is a maximum degree three graph on n vertices, then

cycdisc(G) ≤ n + 7

6
.

Proof. We proceed by induction on the number of vertices in G. The base case n = 5
being easy to handle. Since cycle discrepancy is monotone, it suffices to study maximum
degree three graphs that are edge maximal. By Fact 3 we can further restrict our attention
to graphs that are also two connected. Let G be an edge maximal, two connected graph
with maximum degree three.

Let S be the vertices of degree at most two in G. It is easily seen that such a graph falls
into the following two cases.

Case 1: S = {a, b} and a ∼ b. Furthermore, there are two distinct vertices u and v such
that a ∼ u and b ∼ v. Removing a and b from the graph and adding the edge {u, v} in the
graph (if it is not already present) gives us a graph G′ such that

cycdisc(G′) = cycdisc(G).

Thus by induction, we have

cycdisc(G) ≤ n + 5

6
.

Case 2: S = {a} and d(a) = 2. Let N(a) = {u, v}. If {u, v} is not an edge in G then we
remove a from G and add the edge {u, v} to obtain a graph G′. G′ is three-regular and has
cycle discrepancy at most n+1

6 . It is easily seen that

cycdisc(G) ≤ cycdisc(G′) + 1 ≤ n + 7

2
.
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On the other hand, if {u, v} is already an edge in G, then we can remove {a, u, v} from G to
obtain G′. It is again easily seen that cycdisc(G) ≤ cycdisc(G′) + 1. Now, we observe that
in this case G′ is a graph that belongs to Case 1 and hence has cycle discrepancy at most
(n−3)+5

6 . The bound on the cycle discrepancy of G follows.

6 Cycle discrepancy of bounded degree graphs

An interesting question is to find a tight upper bound on the cycle discrepancy of bounded
degree graphs. In this section, we make some preliminary observations.

We define the concept of st-discrepancy that will be useful in constructing graphs of high
cycle discrepancy. Let H = (U, E) be a graph with |U | ≥ 2 and s, t ∈ U be any two fixed
vertices. Let Ps,t(H) denote the set of all st-paths in H . For any labeling χ : U .→ {+,−}
we let

st-disc(χ) = max
P∈Ps,t

χ+(P ) + max
Q∈Ps,t

χ−(Q).

Furthermore, we define
st-disc(H) = min

χ: !→{+,−}
st-disc(χ).

A consequence of the definition of st-discrepancy is that for any labeling χ there exists a
pair of paths P, Q such that

χ+(P ) + χ−(Q) ≥ st-disc(H).

Let cyclek(H, s, t) be the graph that consist of k copies of H connected in a cycle as shown in
Figure 8. The following Lemma allows us to construct high discrepancy graphs on arbitrarily
large number of vertices, provided H has large st-discrepancy.

Lemma 8 Let st-disc(H) = d then

cycdisc (cyclek(H, s, t)) ≥ dk

2
=

d

2|U |n.

Where n = k|U | is the number of vertices in cyclek(H, s, t).

Proof. Let χ be a labeling of vertices of cyclek(H, s, t). This labeling naturally induces a
labeling on all the copies of H . We can find k pairs of paths Pi, Qi in the i-th copy of H
such that

χ+(Pi) + χ−(Qi) ≥ d.

The paths Pi define a cycle in cyclek(H, s, t) that we denote by CP . Similarly, the paths Qi

define a cycle that we denote by CQ. We have,

χ+(CP ) + χ−(CQ) =
k∑

i=1

χ+(Pi) +
k∑

i=1

χ−(Qi)

=
k∑

i=1

χ+(Pi) + χ−(Qi)

= dk
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Thus, either χ+(CP ) ≥ dk/2 or χ−(CQ) ≥ dk/2.

We can find the st-discrepancy of the complete graph very easily:

Lemma 9 For any two distinct vertices s and t of Kd, we have

st-disc(Kd) = d − 2.

Proof. Let χ : Vd .→ {+,−} and P be any path from s to t that contains all the vertices
v ∈ Vd \ {s, t} such that χ(v) = +. Similarly, we let Q be the path from s to t that contains
all the vertices v with χ(v) = −. Now, it is easy to see that

χ+(P ) + χ−(Q) = |U \ {s, t}| = d − 2

Our previous theorem shows the following result.

Theorem 8

cycdisc (cyclek (Kd, s, t)) = (d − 2)k =
(d − 2)

2d
n.

Where n = dk is the number of vertices in cyclek(Kd, s, t).

It is also quite simple to estimate the st discrepancy of an odd cycle.

Lemma 10 Let s and t be two adjacent vertices on C2d+1,

st-disc(C2d+1) = 1.

Theorem 9
cycdisc (cyclek(C2d+1, s, t)) ≥ k/2 =

n

2(2d + 1)
.

Where n = (2d + 1)k is the number of vertices in cyclek(Kd, s, t).

An interesting question is to study the discrepancy of a bounded degree graph and
bounded degree graph with girth g. More precisely, let Gk,n and Gg,k,n denote the set of
all n vertex maximum degree k graphs and the set of all n vertex maximum degree k graphs
with girth g, respectively. Let

f(k, n) = max
G∈Gk,n

cycdisc(G) and h(g, k, n) = max
G∈Gg,k,n

cycdisc(G).

Furthermore, let us define:

ck = limn→∞
f(k, n)

n
and cg,k = limn→∞

f(g, n, k)

n
.

By Theorem 8 and Theorem 9 we have

cd ≥ d − 2

2d
and c2d+1,3 ≥

1

2(2d + 1)
.

The main result of this paper states that c3 = c3,3 = 1
6 . This problem is open for all other

values of k and g.
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Figure 8: The graph cyclek(H, s, t).

7 Conclusion

We have introduced cycle discrepancy as a new graph invariant. We have also found an
optimal bound on the cycle discrepancy of three-regular graphs. It would be very interesting
to study this invariant from an extremal point of view. A similar invariant, path discrepancy,
can also be defined. All our results on cycle discrepancy carry over to path discrepancy
with an adjustment of some additive constants. Many interesting problems regrading these
two invariants can be posed. We conclude our discussion with the following three concrete
problems, whose solution, we believe, will involve developing more interesting methods to
study cycle discrepancy.

Problem 1 Give a tight upper bound on the cycle discrepancy of maximum degree four
graphs; that is, determine c4.

Problem 2 Give a tight upper bound on the cycle discrepancy of maximum degree three
graphs the do not contain any triangles; that is determine c4,3.

Problem 3 Develop an approximation algorithm for estimating the cycle discrepancy of a
maximum degree three graph.
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