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ABSTRACT

This paper describes a novel approach to estimate the quality of clustering based on finding a
linear ordering for multi-dimensional data by which the clusters of the data fall into intervals
on the ordering scale. This permits assessing the result of such local clustering methods like
K-means so as to filter inhomogeneous or outlier clusters that can be produced. Preliminary
results reported here indicate that the method is valuable to determine, in two dimensions,
the number of visually perceived clusters generated by a mixture of Gaussian distribution
model, corresponding to the number of actual generating distributions when the means are
far apart, but corresponding to the reduced number of clusters arising from the perceived
admixture of overlapping distributions when means are chosen to be close.



1 Introduction

This paper presents a new type of ordering for multi-dimensional data which can help elim-
inate outliers for clustering results such as those generated by K-means procedures. It is
based on the notion that goodness of clustering is related to finding similar solutions result-
ing from very different methods. Consistency of results from different methods is considered
as an estimate of the stability of a result.

The Ordering Procedure which we have developed is taken from the preprocessing algo-
rithms developed for optimization of so-called Quasi-Concave set functions. The motivation
came our observation that K-means clustering without outliers corresponds to a partition of
continuous fragments in an ordering, such that the K-means clusters are associated with the
fragments. If such an observation proves to be reproducible, one can then map the results
from a K-means clustering onto the ordering sequence and estimate their consistency. This
consistency can then be considered as a measure of quality for the clustering.

The paper is organized into 7 parts. Section 2 presents Quasi-Concave Set Functions and
our ordering procedure (OP) taken from the optimization algorithm. A short introduction
to clustering and K-means is given in Section 3 and experiments on synthetic mixture-of-
Gaussian models are described in Section 4, including systematic performance of the K-means
procedure on these models for different K, ordering each set of data with direct comparisons
to visually detected and generating clustered distributions. Section 5 proposes a method
for estimating clustering stability. Experimental results are presented in Section 6, with
conclusions and future work in Section 7.

2 Ordered Sequence by Quasi-Concave Set Function

This section describes a procedure for ordering multi-dimensional objects into a linear se-
quence that preserves global similarity. This method is taken from the algorithm for opti-
mizing Quasi-Concave Set Function, which has been applied in the areas of bioinformatics
[5], image segmentation [6], gait recognition [4], and others. Quasi-Concave Set Functions
are introduced first, followed by a description of the procedure with a simple illustrative
example.

2.1 Quasi-Concave Set Function

Let Q denote a set of objects in r dimensional space.

Q = qi, qi ∈ �r i = 1, ..., n (1)

And H denotes a subset of Q, with F (H) for measuring the proximity among elements in
set H . An optimal subset, or the densest cluster H∗, can be defined as the subset with the
largest F (H∗).

H∗ = argmaxH⊆QF (H) (2)
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The optimal solution of (3) can be found efficiently when F (H) is Quasi-Concave[5],

F (H1

⋃
H2) ≥ min (F (H1), F (H2)) ∀H1, H2 ⊆ Q (3)

In this work, F (H) is defined as

F (H) = min
i∈H

π(i, H) (4)

with linkage function π(i, H) designed to measure the similarity of qi ∈ H to all other points
in current set H. Let dij as the Euclidean distance between qi and qj, the similarity linkage
function is defined as

π(i, H) =
∑
j∈H

e−dij/(
√

2σ) (5)

Thus, H∗ is the subset of Q with maximum of the least similarities inside each sub-
set. F (H) is Quasi-Concave if the linkage function π(i, H) is monotonically increasing[5],
π(i, H) ≥ π(i, H ′), ∀H ′ ⊆ H ⊆ Q

It is easy to show that linkage function (6) is monotone increasing. This guarantees an
efficient algorithm for computing the optimal solution.

2.2 Ordered Sequence

Let m(H) denotes an element i ∈ H that reaches F (H), that m(H) = argmini∈Hπ(i, H).
If more than one data points reach F (H), one of them can be randomly chosen for m(H).
Given Q as initial H , ordered sequence M can be generated by repeatedly removing m(Ht)
from Ht and find m(Ht+1) until Ht becomes empty.

M = {m(Hi)|i = 0, ..., n − 1} (6)

The Procedure:

Input: n data points in r dimension

Output: Ordered sequence M with length n

1. Let t = 0; Ht = Q; M = ∅
2. Find m(Ht) = argmini∈Ht

π(i, Ht)

3. M = M
⋃

m(Ht); Ht+1 = Ht − m(Ht)

4. t = t + 1 and repeat from step 2 until Ht = ∅
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Figure 1: Simple example of ordering sequence

This procedure takes the whole dataset as input and returns a sequence of ordered data
points. It is the preprocessing procedure for finding an optimal cluster H∗ that is most
compact. The sequence scans this dataset from the point that is least related to the set, to
that which is the most related point, since the closest similar point is chosen at each step.
Only the resulting ordered sequence M is of interest for present purposes in this paper.

Let us consider a simple example as shown in Figure 1 to demonstrate the procedure.
There are 8 data points A(4,4), B(5,3), C(4,2), D(1,2), E(2,2), F(1.5,1.5), G(1,1), H(2,1).
We consider them as vertices in a fully connected graph. Based on the procedure and linkage
function in (6), A is chosen in the first iteration since it is the furthest point with smallest
linkage value of 2.703, and removed from the current set. B is selected out of the remaining
seven points in the second iteration with linkage value of 2.23. C,G,H,E,F,D are removed
from the subset gradually in steps until the set is empty or the linkage function becomes
zero. The resulting sequence is A,B,C,G,H,E,F,D ordered by similarity to the set. From
this simple example, we observe that the points in the ordered sequence generally start in
one sparse cluster (A,B,C), and then move to another denser one (G,H,E,F,D) when using
similarity as linkage function. After removing the first three points, only one cluster is left
in the set. The sequence moves from the outer layer to the inner layer in this one cluster
case. A similar outcome has been observed for multi-dimensional data.

Our procedure orders any dimensional data onto one sequence which preserves its group-
ing structure by placing points from the same compact group into intervals on a line rep-
resenting the measure of compactness, or fragments of the sequence. If this observation is
reproducible, by calculating the variance of neighboring points for each point in the sequence
order, one would expect to see spikes at the group boundaries for those data points or in-
terval boundaries in the sequence, in contrast to much smaller variance for the points inside
a compact group, as will be shown in Section 6. Thus, a raw data partition (into sequence
intervals) can be obtained by applying a threshold to the variance values. Even with only
sequence instead of any knowledge of the intervals, we can evaluate clustering results by
analyzing the consistency between the ordering and visually perceived clustering in simple
two dimensional examples. K-means is compared in the paper with the different number of
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clusters generating the samples and with the visually perceived clusters when the generating
distributions overlap. A method for estimating the number of clusters K for the K-means
procedure can thus be obtained, and is discussed next.

3 Global Ordering for Estimating the Number of Clus-

ters in K-means

There are two types of clustering methods which minimize average variance for similarity-
based data partitions: those which apply a 1) global search for the partition, usually with
different types of genetic optimization algorithms [5], and 2) a search for a local optimization
for the same criterion over partitions with a predefined number of clusters. All procedures
of the last type are called K-means algorithms [1]. Because K-means procedures are very
simple in practice, they can be applied many times to the same data to form different initial
partitions, yielding a reasonably good estimate of the minimum of a criterion.

Unfortunately, there are no good ways of estimating how close a minimum reached by
such a local method is to the global minimum solution. From this perspective, practitioners
use a lot of post-processing heuristics to estimate how good a clustering is. The heuristics
can be divided into two groups. One is related to the use of additional information which
can be correlated with cluster extraction, and providesan informal estimate. The second one
focuses on building additional numerical criteria-heuristics for the estimation. Usually they
are based on an idea that ”good clustering” has to be stable. However, even though many
such heuristics exist, practitioners are always looking for new, more generalizable ones.

The K-means method [1] is a simple and fast iterative algorithm for locally searching for
K centroids of the data such that they minimize the total variance of a dataset:

V =
K∑

i=1

∑
x∈Ci

(x − μi)
2 (7)

Every data point is assigned to one of the K clusters, the center of which is the nearest
one. The local search solution is as follows.

1. Arbitrarily or heuristically select K points as initial centers μi .

2. For each i ∈ {1, .., K}, let Ci denotes the set of data points that are closer to μi than
they are to μj for any j �= i.

3. For each i ∈ {1, .., K}, set μi as the mass center of all data points in Ci; μi =
1

|Ci|
∑

x∈Ci
x.

4. Repeat to Setp 2 until C not longer change.

K-means is attractive for its simplicity and efficiency. However, as a local procedure, it
does not always result in clustering that can be confirmed by visual perception, often leading
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to cluster structures that are too sensitive to small changes in the criterion function [7]. In
this paper, it is stated that a good clustering should be stable based on two different prin-
ciples: (1) Stability to a small perturbation (Perturbation either in the data or in the basic
procedure or in both), (2) similarity of results with other results produced by very different
clustering procedures. Our ordering procedure is a totally different procedure working with
local clustering methods, which is consistent with the clusters’ order. Data points within one
cluster form an continuous fragment on the ordering sequence. But there will be much more
perturbation if the clustering is incorrect. It is possible to validate a clustering result by an-
alyzing the similarity (Stability) between the clustering and the global ordering as discussed
later. With a systematic runs of K-means for different K, the correct number of clusters can
be estimated with the quantitative evaluation of the clustering results as proposed in Section
5.

4 Experiment Data

This experiment was carried out on four two-dimensional datasets and two three-dimensional
datasets generated by combining several Gaussian models. Each data point qi in Q belongs
to one of the Gaussian generating models Gj, with the probability

p(qi, Gj) =
1

(2π)d/2|Σj |1/2
exp[−1

2
(qi − μj)

tΣ−1
j (qi − μj)] (8)

It is natural to consider the generating Gaussian models as the true structure of the clus-
ters. Thus the Gaussian models that generated the dataset are analyzed with the ordering
generated by the procedure in Section 3.2. Then K-means was applied for k=2 to 10. For
getting a deeper minimum for the variance, the clustering procedure was run 100 times to
get the best clustering result with smallest variance in (1). Using the cluster labels, the data
points can be compared with the ordered sequence. All analyses in this work are based on
the spectrum of cluster labels in a sequence order as shown in Figure 2, where the X-axis
corresponds to the ordering, and the Y-axis is the cluster label or Gaussian label. To further
verify the performance of K-means, a confusion matrix is adapted to evaluate the clustering
result.

4.1 Two-dimensional Dataset

The four datasets shown in figure 2 (a,c,e,g) are generated by Gaussian distribution with
parameters as follows:

(a). This dataset is generated by two Gaussian Models with μ1(25,35),μ2(45,20), same
covariance Σ(5,0;0,5). 100 points are in cluster 1 and 120 in cluster 2.

(b). This dataset is generated by three Gaussian Models with μ1(25,35), μ2(35,20),
μ3(45,30), same covariance Σ(5,0;0,5). 120 points for cluster 2 and 3, and 100 for cluster 1.
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(a) Dataset A with Gaussian Label
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(b) Gaussian Label(Y) for dataset A
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(c) Dataset B with Gaussian Label
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(d) Gaussian Label(Y) for dataset B
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(e) Dataset C with Gaussian Label
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(f) Gaussian Label(Y) for dataset C
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(g) Dataset D with Gaussian Label
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(h) Gaussian Label(Y) for dataset D

Figure 2: (a,c,e,g) data points with Gaussian label shown with marker; (b,d,f,h) Gaussian
label plot in sequence order corresponding to dataset ABCD
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(c). The dataset is generated by six separable Gaussian models with μ1(20,50), μ2 (60,25),
μ3 (70,5), μ4 (55,55), μ5 (75,65), μ6(75,45), same covariance as Σ(8,0;0,8). 40 points for each
cluster.

(d). In this dataset, Cluster 1,2,3 are the same as (c), but much closer and some overlap
between cluster 4,5,6. μ4(65,55), μ5 (75,60), μ6 (70,50).

It can be seen that clusters in dataset A and C are easily separable, whilesome mixture
occurs in B and D. Specifically in D, G1, G2, G3 are well separated while G4, G5, G6 show
some overlaps. Each data point is associated with a Gaussian label which indicates the
Model that generated it from a different shape marker. Figures 2(b,d,f,h) show the Gaussian
labels in the sequence order. (b,d,f) are smooth with few outliers that come from the few
points with similar linkage value as pointed out in the figures. But a lot of perturbation
or instability occurs in (h) since G4, G5, G6 overlap considerably, and it is hard to separate
them correctly. They are much more likely to be one cluster.

4.2 Three-dimensional Dataset

The most attractive feature of this method is that it can order any dimensionality of data
points, placing them into a one-dimensional ordering sequence, while preserving clusters’
structure. Only three-dimensional datasets are presented here for visualization as an exten-
sion of the two-dimensional case. However, the same result can be achieved on data with
any dimensionality. Two datasets(E,F) shown in Figure 3 were generated by 3 Gaussian
models. Here there is good separation for Dataset E, while two of the three in F are mixed.
The corresponding spectrum of Gaussian labels and sequence order is shown on the right
side. The mixture area between the two overlapping clusters causes the perturbation on the
spectrum.

An inappropriate splitting of clusters may lead to many perturbations in the spectrum.
Thus the stability of the spectrum can indicate how close the clustering is to a global solution.
In the next section, quantitative measures are presented to determine the stability of the
spectrum for evaluating the performance of clustering as well as a confusion table for verifying
clustering with Gaussian models that generated the data.

5 Spectrum Stability Measurement

5.1 Spectrum Feature Measurement

As discussed above in Section 4, clustering results can be plotted against ordered sequence
as a spectrum as shown in Figures 2 and 3. The behavior of the spectrum can suggest the
quality or correctness of the clustering. Inother words, correctly clustered points should fall
into a continuous interval, rather than jumping back and forth. This section proposes some
numerical features to measure the stability of the spectrum.

Let C denote the cluster set, C = {ci, i = 1, .., K}. Each data point will be assigned
to one of the clusters. For each cluster ci, Ii is defined as the continued spectrum interval
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(c) Dataset F with Gaussian Label
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(d) Gaussian Label(Y) for dataset F

Figure 3: (a,c) data points with Gaussian label shown with marker; (b,d) Gaussian label
plot in sequence order corresponding to dataset EF
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contains all data points in ci.

Ii = {mi0 , ..., mil−1
} (9)

with mi0 and mil−1
are the first and the last point assigned in ci. Feature vector SF containing

six elements is proposed for measuring the characteristics of the cluster labels and sequence
for each interval of I.

SF (Ii) = {�, α, ϕ, χ, β1, β2}, i = 1, .., K (10)

a)�: Length of the interval
b)α : Occupy rate of the interval by ci

αi =
ni

�i
, ni the number of points in ci (11)

This feature measures how much data in this interval belongs to ci . If the cluster-
ing is correct,αi should be larger than incorrect clustering, since ni=�i if no other clusters
interrupted into this cluster. The larger the αi is, the purer the interval is.

c)ϕ and χ :The number of clusters in Ii and which ones as well as how many.
Bij is defined to indicate the relationship between clusters cj and interval Ii:

Bij =

{
1 ∃(m ∈ Ii, m ∈ cj)
0 otherwise

(12)

Then,ϕ and χ can calculated as

ϕi =
∑

j=1,..,k

Bij (13)

χi = {(cj , ρj, θj)|Bij = 1, j = 1, .., k} (14)

, while ρj is the number of points belongs to cj in interval Ii and θj = ρj/|�i| as the percentage
of points belongs to cj in interval Ii. These two show the relationship between different
clusters, as well as their structure.

d)β1 and β2: Percentage of continued subinterval of Ii belong to ci Let m1 and m2

to be the length of longest and second longest continued subinterval in Ii clustered to ci.
βi1 = m1

ni
,βi2 = m2+m1

ni
tell the continuity of ci in Ii . The higher the β1, β2 are, the purer

and more stable the cluster is.
From the above discussion, good clustering results should have larger α, β1 ,β2 with rea-

sonable length but small ϕ and χ. For each spectrum, the average values of its measurement
can be calculated as:

(α̂, β̂1, β̂2) =
1

k

k∑
j=1

(αj, βj1, βj2) (15)

The higher the measurement is, the more stable the spectrum is.
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5.2 Confusion Table

For validating the clustering result against a true model, the confusion table CT can be
adapted to evaluate the performance.

Tkij =

{
1 mk ∈ Gi, mk ∈ cj

0 otherwise
(16)

CTij =
n∑

k=1

Tkij (17)

CTij is the number of data points that is generated by Gaussian Gi and clustered to Cj . By
manipulating the order of cluster labels to get the optimal diagonal sum, the true mapping
of Gaussian and cluster can be built. Ratio R = trace(CT )

n
is the accuracy of clustering

comparing to the generating model.
Now, clustering results, and the ordered sequence and Gaussian models can be analyzed

numerically.

6 Experimental Results

This section discusses the ordering results according to the variance of neighbors for each
data point and comparing with K-means clustering on datasets in Section 4 .

As stated in section 2, clusters are ordered in an ordering sequence. Inother words,

the sequence visits all points in one cluster and then another. Let Vi =

∑
j∈I

(xj−μi)

n+1
,I =

{mi−n/2, ..., mi+n/2}, Vi is the variance of points in the sequence fragment with length of n+1
centered at point i. Vi is small for points i in dense area, while large when points are in the
boundary of clusters. Figure 4 plots the variances of points in length of 5(n=4) for the six
dataset discussed in Section 4. From these figures, the structure of these datasets can be
clear analyzed and validated with Gaussian models.

The peaks of the variance are the boundaries of cluster intervals. There are two intervals
in Dataset A for two clusters, and three for Dataset B. In Dataset C, the figure shows that
cluster 1 is far way from others, but cluster 2 and 3 are near each other. The figures shows
that the one-dimensional ordering sequence reveals the actual clustering structure of the
data in any dimension.

The performances of the K-means procedure for K=2 to 10 are compared with the or-
dered sequence. The result shows that the clusters are well ordered in the sequence. Good
clustering has a more stable spectrum and higher stability value than the visually worse
clustering. Results of datasets are presented followed by detailed discussion of the result
for dataset D, which is more complicated. Figures(Fig. 5,6,7,8) show comparisons between
ordered sequence and K-means clustering for datasets(A,B,C,D). Clustering results for K-
means are shown in the left columns with different types of markers indicating the clusters.
Corresponding spectrums with cluster labels in the sequence order are given in the right side
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(b) Dataset B
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(c) Dataset C
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(d) Dataset D
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(e) Dataset E
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(f) Dataset F

Figure 4: Variance of consecutive points in sequence order.
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columns. Correct clusterings have stable spectrums. But there is much more perturbation
in the spectrums of incorrect clusterings (for incorrect number of clusters K). These figures
directly show that the one-dimensional ordering sequence preserves clustering structure for
multi-dimensional data.

Data in Figure 5 for two generated groups of points(Dataset A) on a plane shows that the
ordering ideally matches the K-means derived clusters for K=2, whereas for K ≥ 3 shows a
significant perturbation in the ordering. However, the perturbation appears only locally for
some clusters like the clustering for K=3 in Fig. 5b which only splits group 1. Data in Fig.
6 for three generated groups(Dataset B) on a plane shows results for K-means clustering
with K=2 and 3 with minor perturbation of the ordering spectrum. This small perturbation
for K=3 also indicates the small overlap between that two clusters. But for K ≥ 4 there
is significant perturbations of the ordering, which can be taken as a signal of an incorrect
choice of K.

We see from Fig. 7 for the case of six generated groups(Dataset C) on the plane that for
K ≤ 6 the groupings either have no perturbation of ordering or only slight ones. But for K ≥
7, the signal of ordering perturbation jumps significantly. Fig. 8 illustrates the case(Dataset
D) where there are also six generated groups, but three of these have significant overlap so
perceptually appear as a single group, for an apparent total four visually perceived clusters.
It is clear to find corresponding good clusterings lead to a stable spectrum. For K=2, data
points generated by G2, G3 are clustered to cluster 2, while data by G1 and G4, G5, G6

are clustered to cluster 1. The interrupted interval of cluster 1 by cluster 2 is because
the ordering sequence starts from G1(Cluster 1), G3, G2(Cluster 2), then G4, G5, G6(Cluster
1). It is interesting to see that our ordering procedure allows that for K-means with K ≤ 4
there are no perturbations , as matching the perceptual grouping. For K ≥ 5 in contrast, the
perturbation of ordering shows that clustering is unstable and will not extract the overlapping
and groups reliably, according with the perceptual estimate.

The stability evaluation of the spectrum proposed in Section 5 is applied to evaluate the
result of the K-means clustering. The stability value for those clusterings which are correct
should be larger than those from incorrect clustering. Tab 1 shows the measurement of the
clustering results for K=2 to 6. K-means produce good clustering for K=2 to 4, while there is
some jump between c4 and c5 for K=5. When K reaches 6, three clusters have an intersection
with each other that leads to a small value in α and β2 . (α̂, β̂1, β̂2) in (15) for k=2 to 10 are
plot in Figure 9 includes the six datasets. β̂2(Blue line) is overcome the β̂1(Green line) and
always be the larger value when the clustering is good. 2 is the best choice of K for dataset
A. Both 2 and 3 are good estimate of K for dataset B with high stability value of β̂2, while
6 and 4 for Dataset C and D. The spectrum feature of Dataset E and F shows they can
be well clustered into 3 clusters, and dataset F has smaller measurement than E due to its
overlapping. The result is exactly matching the perceptual grouping and discussion above.

As discussed above, the measurements show that the clustering for K=4 has higher feature
value than the clustering of 6. A confusion table is used to compare the Gaussian generating
models (which are the inner structure of the data) with the clustering results. Tab 2 and Tab
3 present the confusion tables for clusters generated by K-means with K=4 and 6. We can
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Figure 5: Plot of clustering result of K-means on dataset A with ordering for k=2,..,6
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Figure 6: Plot of clustering result of K-means on dataset B with ordering for k=2,..,6
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Figure 7: Plot of clustering result of K-means on dataset C with ordering for k=2,..,8
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Figure 8: Plot of clustering result of K-means on dataset D with ordering for k=2,..,8
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(a) Dataset A (b) Dataset B
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(f) Dataset F

Figure 9: Plot of (α̂, β̂1, β̂2) for k=2,..,10 corresponding to dataset A-F.
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k α ϕ (c, θ) β1 β2

2 c1 0.667 2 (c1,0.667),(c2,0.333) 0.75 1
c2 1 1 (c2,1) 1 1
c1 1 1 (c1,1) 1 1

3 c2 1 1 (c2,1) 1 1
c3 1 1 (c3,1) 1 1
c1 1 1 (c1,1) 1 1

4 c2 1 1 (c2,1) 1 1
c3 1 1 (c3,1) 1 1
c4 1 1 (c4,1) 1 1
c1 1 1 (c1,1) 1 1
c2 0.642 2 (c2,0.642),(c5,0.358) 0.30233 0.488

5 c3 1 1 (c3,1) 1 1
c4 1 2 (c4,1) 1 1
c5 0.642 2 (c2,0.358) (c5,0.642) 0.675 0.488
c1 1 1 (c1,1) 1 1
c2 0.435 3 (c2,0.435),(c3,0.118),(c4,0.447) 0.459 0.622
c3 0.358 3 (c2,0.308),(c3,0.358),(c4,0.333) 0.744 0.791

6 c4 0.597 3 (c2,0.284),(c3,0.119),(c4,0.597) 0.3 0.475
c5 1 1 (c5,1) 1 1
c6 1 1 (c6,1) 1 1

Table 1: Spectrum Feature Measurement for K-means clustering result on dataset D for
k=2,..,6

see from Tab 3 (a) that G4, G5, G6 are clustered to C4. Let’s combine these three Gaussian
models. By manipulating the order of Clusters, the maximum diagonal sum of confusion
table can achieved. R is 240/240=1 when G4, G5, G6 are combined. After optimizing the
confusion table for clusters with k=6, R is 227/240=0.946. 13 points from G4, G5, G6 are
clustered incorrectly compared to the Gaussian models. The confusion table result shows
that clustering with higher value in stability measurement is better than the smaller one.

7 Conclusion and Future Work

In this work, the relationship between ordering, generating Gaussian models and clustering
were analyzed. It has been observed that the clusters of K-means are ordered in the ordered
sequence generated by a Quasi-Concave Function with a hierarchical structure for different
levels. The numerical measurement of stability can be used to validate the clustering results
and measure the performance of a clustering method. If the K-means result is correlated with
the clustering presentation given by the ordering produced by our optimization algorithm
for Quasi-Concave Set Functions, then it is a good result. By combining the local clustering
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(a)

G c1 c2 c3 c4

G1 0 0 0 40
G2 40 0 0 0
G3 0 40 0 0
G4 0 0 40 0
G5 0 0 40 0
G6 0 0 40 0

(b)

G c4 c1 c2 c3

G1 40 0 0 0
G2 0 40 0 0
G3 0 0 40 0
G′

4 0 0 0 120

Table 2: Confusion table for clustering K=4. (a) Confusion table for six Gaussian model,
(b) Confusion table with G′

4 = G4, G5, G6.

(a)

G c1 c2 c3 c4 c5 c6

G1 0 0 0 0 40 0
G2 0 0 0 0 0 40
G3 40 0 0 0 0 0
G4 0 3 36 1 0 0
G5 0 0 3 37 0 0
G6 0 34 4 2 0 0

(b)

G c5 c6 c1 c3 c4 c2

G1 40 0 0 0 0 0
G2 0 40 0 0 0 0
G3 0 0 40 0 0 0
G4 0 0 0 36 1 3
G5 0 0 0 3 37 0
G6 0 0 0 4 2 34

Table 3: Confusion table for K=6. (a) Confusion table for six Gaussian models, (b) Confusion
table after optimizing diagonal sum.

methods with global ordering, a more accurate clustering result can be achieved.
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