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ABSTRACT

Increasing use of computers and networks in business, government, recreation, and almost
all aspects of daily life has led to a proliferation of online sensitive data about individuals
and organizations. Consequently, concern about the privacy of these data has become a top
priority, particularly those data that are created and used in electronic commerce. There
have been many formulations of privacy and, unfortunately, many negative results about the
feasibility of maintaining privacy of sensitive data in realistic networked environments. We
formulate communication-complexity-based definitions, both worst-case and average-case, of
a problem’s privacy-approximation ratio. We use our definitions to investigate the extent
to which approximate privacy is achievable in two standard problems: the 2nd-price Vickrey
auction [21] and the millionaires problem of Yao [23].

For both the 2nd-price Vickrey auction and the millionaires problem, we show that not
only is perfect privacy impossible or infeasibly costly to achieve, but even close approxi-
mations of perfect privacy suffer from the same lower bounds. By contrast, we show that,
if the values of the parties are drawn uniformly at random from {0, . . . , 2k − 1}, then, for
both problems, simple and natural communication protocols have privacy-approximation ra-
tios that are linear in k (i.e., logarithmic in the size of the space of possible inputs). We
conjecture that this improved privacy-approximation ratio is achievable for any probability
distribution.



1 Introduction

Increasing use of computers and networks in business, government, recreation, and almost
all aspects of daily life has led to a proliferation of online sensitive data about individuals
and organizations. Consequently, the study of privacy has become a top priority in many
disciplines. Computer scientists have contributed many formulations of the notion of privacy-
preserving computation that have opened new avenues of investigation and shed new light
on some well studied problems.

One good example of a new avenue of investigation opened by concern about privacy
can be found in auction design, which was our original motivation for this work. Traditional
auction theory is a central research area in Economics, and one of its main questions is how
to incent bidders to behave truthfully, i.e., to reveal private information that auctioneers
need in order to compute optimal outcomes. More recently, attention has turned to the
complementary goal of enabling bidders not to reveal private information that auctioneers
do not need in order to compute optimal outcomes. The importance of bidders’ privacy,
like that of algorithmic efficiency, has become clear now that many auctions are conducted
online, and Computer Science has become at least as relevant as Economics.

Our approach to privacy is based on communication complexity. Although originally
motivated by agents’ privacy in mechanism design, our definitions and tools can be applied
to distributed function computation in general. Because perfect privacy can be impossible
or infeasibly costly to achieve, we investigate approximate privacy. Specifically, we formulate
both worst-case and average-case versions of the privacy-approximation ratio of a function
f in order to quantify the amount of privacy that can be maintained by parties who supply
sensitive inputs to a distributed computation of f . We also study the tradeoff between
privacy preservation and communication complexity.

Our points of departure are the work of Chor and Kushilevitz [8] on characterization
of privately computable functions and that of Kushilevitz [17] on the communication com-
plexity of private computation. Starting from the same place, Bar-Yehuda et al. [2] also
provided a framework in which to quantify the amount of privacy that can be maintained
in the computation of a function and the communication cost of achieving it. Their defini-
tions and results are significantly different from the ones we present here (see discussion in
Appendix A); as explained in Section 6 below, a precise characterization of the relationship
between their formulation and ours is an interesting direction for future work.

1.1 Our Approach

Consider an auction of a Bluetooth headset with 2 bidders, 1 and 2, in which the auctioneer
accepts bids ranging from $0 to $7 in $1 increments. Each bidder i has a private value
xi ∈ {0, . . . , 7} that is the maximum he is willing to pay for the headset. The item is sold in
a 2nd-price Vickrey auction, i.e., the higher bidder gets the item (with ties broken in favor
of bidder 1), and the price he pays is the lower bid. The demand for privacy arises naturally
in such scenarios [19]: In a straightforward protocol, the auctioneer receives sealed bids from
both bidders and computes the outcome based on this information. Say, e.g., that bidder



1 bids $3, and bidder 2 bids $6. The auctioneer sells the headset to bidder 2 for $3. It
would not be at all surprising however if, in subsequent auctions of headsets in which bidder
2 participates, the same auctioneer set a reservation price of $5. This could be avoided if
the auction protocol allowed the auctioneer to learn the fact that bidder 2 was the highest
bidder (something he needs to know in order to determine the outcome) but did not entail
the full revelation of 2’s private value for the headset.
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Figure 1: The minimal knowledge requirements for 2nd-price auctions

Observe that, in some cases, revelation of the exact private information of the highest
bidder is necessary. For example, if x1 = 6, then bidder 2 will win only if x2 = 7. In other
cases, the revelation of a lot of information is necessary, e.g., if bidder 1’s bid is 5, and
bidder 2 outbids him, then x2 must be either 6 or 7. An auction protocol is said to achieve
perfect objective privacy if the auctioneer learns nothing about the private information of the
bidders that is not needed in order to compute the result of the auction. Figure 1 illustrates
the information the auctioneer must learn in order to determine the outcome of the 2nd-price
auction described above. Observe that the auctioneer’s failure to distinguish between two
potential pairs of inputs that belong to different rectangles in Fig. 1 implies his inability to
determine the winner or the price the winner must pay. Also observe, however, that the
auctioneer need not be able to distinguish between two pairs of inputs that belong to the
same rectangle.

Using the “minimal knowledge requirements” described in Fig. 1, we can now character-
ize a perfectly (objective) privacy-preserving auction protocol as one that induces this exact
partition of the space of possible inputs into subspaces in which the inputs are indistinguish-
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able to the auctioneer. Unfortunately, perfect privacy is often hard or even impossible to
achieve. For 2nd-price auctions, Brandt and Sandholm [6] show that every perfectly private
auction protocol has exponential communication complexity. This provides the motivation
for our definition of privacy-approximation ratio: We are interested in whether there is an
auction protocol that achieves “good” privacy guarantees without paying such a high price
in computational efficiency. We no longer insist that the auction protocol induce a partition
of inputs exactly as in Fig. 1 but rather that it “approximate” the optimal partition well. We
define two kinds of privacy-approximation ratio (PAR): worst-case PAR and average-case
PAR.

The worst-case PAR of a protocol P for the 2nd-price auction is defined as the maximum
ratio between the size of a set S of indistinguishable inputs in Fig. 1 and the size of a set of
indistinguishable inputs induced by P that is contained in S. If a protocol is perfectly privacy
preserving, these sets are always the same size, and so the worst-case PAR is 1. If, however,
a protocol fails to achieve perfect privacy, then at least one “ideal” set of indistinguishable
inputs strictly contains a set of indistinguishable inputs induced by the protocol. In such
cases, the worst-case PAR will be strictly higher than 1.

Consider, e.g., the sealed-bid auction protocol in which both bidders reveal their private
information to the auctioneer, who then computes the outcome. Obviously, this naive pro-
tocol enables the auctioneer to distinguish between every two pairs of private inputs, and so
each set of indistinguishable inputs induced by the protocol contains exactly one element.
The worst-case PAR of this protocol is therefore 8

1
= 8. (If bidder 2’s value is 0, then in

Fig. 1 the auctioneer is unable to determine which value in {0, . . . , 7} is x1. In the sealed
bid auction protocol, however, the auctioneer learns the exact value of x1.) The average-case
PAR is a natural Bayesian variant of this definition: We now assume that the auctioneer
has knowledge of some market statistics, in the form of a probability distribution over the
possible private information of the bidders. PAR in this case is defined as the average ratio
and not as the maximum ratio as before.

Thus, intuitively, PAR captures the effect of a protocol on the privacy (in the sense of
indistinguishability from other inputs) afforded to protocol participants—it indicates the
factor by which, in the worst case or on average, using the protocol to compute the function,
instead of just being told the output, reduces the number of inputs from which a given
input cannot be distinguished. To formalize and generalize the above intuitive definitions
of PAR, we make use of machinery from communication-complexity theory. Specifically,
we use the concepts of monochromaticity and tilings to make formal the notions of sets of
indistinguishable inputs and of the approximability of privacy. We discuss other notions of
approximate privacy in Section 6.

1.2 Our Findings

We present both upper and lower bounds on the privacy-approximation ratio for both the
millionaires problem and 2nd-price auctions with 2 bidders. Our analysis of these two envi-
ronments takes place within Yao’s 2-party communication model [22], in which the private
information of each party is a k-bit string, representing a value in {0, . . . , 2k − 1}. In the
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millionaires problem, the two parties (the millionaires) wish to keep their private information
hidden from each other. We refer to this goal as the preservation of subjective privacy. In
electronic-commerce environments, each party (bidder) often communicates with the auc-
tioneer via a secure channel, and so the aim in the 2nd-price auction is to prevent a third
party (the auctioneer), who is unfamiliar with any of the parties’ private inputs, from learn-
ing “too much” about the bidders. This goal is referred to, in this paper, as the preservation
of objective privacy.

Informally, for both the 2nd-price Vickrey auction and the millionaires problem, we obtain
the following results: We show that not only is perfect privacy impossible or infeasibly costly
to achieve, but even close approximations of perfect privacy suffer from the same lower
bounds. By contrast, we show that, if the values of the parties are drawn uniformly at
random from {0, . . . , 2k − 1}, then, for both problems, simple and natural communication
protocols have privacy-approximation ratios that are linear in k (i.e., logarithmic in the size
of the space of possible inputs). We conjecture that this improved PAR is achievable for
any probability distribution. The correctness of this conjecture would imply that, no matter
what beliefs the protocol designer may have about the parties’ private values, a protocol
that achieves reasonable privacy guarantees exists.

Importantly, our results for the 2nd-price Vickrey auction are obtained by proving a
more general result for a large family of protocols for single-item auctions, termed “bounded-
bisection auctions”, that contains both the celebrated ascending-price English auction and
the class of bisection auctions [14,15].

We show that our results for the millionaires problem also extend to the classic economic
problem of provisioning a public good, by observing that, in terms of privacy-approximation
ratios, the two problems are, in fact, equivalent.

1.3 Related Work: Defining Privacy-Preserving Computation

1.3.1 Communication-Complexity-Based Privacy Formulations

As explained above, the privacy work of Bar-Yehuda et al. [2] and the work presented in
this paper have common ancestors in [8,17]. Similarly, the work of Brandt and Sandholm [6]
uses Kushilevitz’s formulation to prove an exponential lower bound on the communication
complexity of privacy-preserving 2nd-price Vickrey auctions. We elaborate on the relation of
our work to that of Bar-Yehuda et al. [2] in Appendix A.

Similarly to [2, 8, 17], our work focuses on the two-party deterministic communication
model. We view our results as first step in a more general research agenda, outlined in
Sec. 6.

There are many formulations of privacy-preserving computation, both exact and approx-
imate, that are not based on the definitions and tools in [8,17]. We now briefly review some
of them and explain how they differ from ours.
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1.3.2 Secure, Multiparty Function Evaluation

The most extensively developed approach to privacy in distributed computation is that of se-
cure, multiparty function evaluation (SMFE). Indeed, to achieve agent privacy in algorithmic
mechanism design, which was our original motivation, one could, in principle, simply start
with a strategyproof mechanism and then have the agents themselves compute the outcome
and payments using an SMFE protocol. However, as observed by Brandt and Sandholm [6],
these protocols fall into two main categories, and both have inherent disadvantages from the
point of view of mechanism design:

• Information-theoretically private protocols, the study of which was initiated by Ben-
Or, Goldwasser, and Wigderson [4] and Chaum, Crépeau, and Damgaard [7], rely on
the assumption that a constant fraction of the agents are “honest” (or “obedient”
in the terminology of distributed algorithmic mechanism design [12]), i.e., that they
follow the protocol perfectly even if they know that doing so will lead to an outcome
that is not as desirable to them as one that would result from their deviating from
the protocol; clearly, this assumption is antithetical to the main premise of mechanism
design, which is that all agents will behave strategically, deviating from protocols when
and only when doing so will improve the outcome from their points of view;

• Multiparty protocols that use cryptography to achieve privacy, the study of which
was initiated by Yao [23,24], rely on (plausible but currently unprovable) complexity-
theoretic assumptions. Often, they are also very communication-intensive (see, e.g., [6]
for an explanation of why some of the deficiencies of the Vickrey auction cannot be
solved via cryptography). Moreover, sometimes the deployment cryptographic machin-
ery is infeasible (over the years, many cryptographic variants of the current interdo-
main routing protocol, BGP, were proposed, but not deployed due to the infeasibility
of deploying a global Internet-wide PKI infrastructure and the real-time computational
cost of verifying signatures). For some mechanisms of interest, efficient cryptographic
protocols have been obtained (see, e.g., [9, 19]).

In certain scenarios, the demand for perfect privacy preservation cannot be relaxed. In
such cases, if the function cannot be computed in a privacy-preserving manner without the
use of cryptography, there is no choice but to resort to a cryptographic protocol. There is
an extensive body of work on cryptography-based identity protocols, and we are not offering
our notion of PAR as an extension of that work.

However, in other cases, we argue that privacy preservation should be regarded as one
of several design goals, alongside low computational/communication complexity, protocol
simplicity, incentive-compatibility, and more. Therefore, it is necessary to be able to quantify
privacy preservation in order to understand the tradeoffs among the different design goals,
and obtain “reasonable” (but not necessarily perfect) privacy guarantees. Our PAR approach
continues the long line of research about information-theoretic notions of privacy, initiated
by Ben-Or et al. and by Chaum et al. Regardless of the above argument, we believe that
information-theoretic formulations of privacy and approximate privacy are also natural to
consider in their own right.
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1.3.3 Private Approximations and Approximate Privacy

In this paper, we consider protocols that compute exact results but preserve privacy only
approximately. One can also ask what it means for a protocol to compute approximate
results in a privacy-preserving manner; indeed, this question has also been studied [3,11,16],
but it is unrelated to the questions we ask here. Similarly, definitions and techniques from
differential privacy [10] (and its mechanism-design extensions [13]), in which the goal is to
add noise to the result of a database query in such a way as to preserve the privacy of the
individual database records (and hence protect the data subjects) but still have the result
convey nontrivial information, are inapplicable to the problems that we study here.

1.4 Paper Outline

In the next section, we review and expand upon the connection between perfect privacy
and communication complexity. We present our formulations of approximate privacy, both
worst case and average case, in Section 3; we present our main results in Sections 4 and 5.
Discussion and future directions can be found in Section 6.

2 Perfect Privacy and Communication Complexity

We now briefly review Yao’s model of two-party communication and notions of objective and
subjective perfect privacy; see Kushilevitz and Nisan [18] for a comprehensive overview of
communication complexity theory. Note that we only deal with deterministic communication
protocols. Our definitions can be extended to randomized protocols.

2.1 Two-Party Communication Model

There are two parties, 1 and 2, each holding a k-bit input string. The input of party i,
xi ∈ {0, 1}k, is the private information of i. The parties communicate with each other in
order to compute the value of a function f : {0, 1}k × {0, 1}k → {0, 1}t. The two parties
alternately send messages to each other. In communication round j, one of the parties sends
a bit qj that is a function of that party’s input and the history (q1, . . . , qj−1) of previously
sent messages. We say that a bit is meaningful if it is not a constant function of this input
and history and if, for every meaningful bit transmitted previously, there some combination
of input and history for which the bit differs from the earlier meaningful bit. Non-meaningful
bits (e.g., those sent as part of protocol-message headers) are irrelevant to our work here and
will be ignored. A communication protocol dictates, for each party, when it is that party’s
turn to transmit a message and what message he should transmit, based on the history of
messages and his value.

A communication protocol P is said to compute f if, for every pair of inputs (x1, x2), it
holds that P (x1, x2) = f(x1, x2). As in [17], the last message sent in a protocol P is assumed
to contain the value f(x1, x2) and therefore may require up to t bits. The communication
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complexity of a protocol P is the maximum, over all input pairs, of the number of bits
transmitted during the execution of P .

Any function f : {0, 1}k × {0, 1}k → {0, 1}t can be visualized as a 2k × 2k matrix with
entries in {0, 1}t, in which the rows represent the possible inputs of party 1, the columns
represent the possible inputs of party 2, and each entry contains the value of f associated
with its row and column inputs. This matrix is denoted by A(f).

Definition 1 (Regions, partitions) A region in a matrix A is any subset of entries in A
(not necessarily a submatrix of A). A partition of A is a collection of disjoint regions in A
whose union equals A.

Definition 2 (Monochromaticity) A region R in a matrix A is called monochromatic if
all entries in R contain the same value. A monochromatic partition of A is a partition all
of whose regions are monochromatic.

Of special interest in communication complexity are specific kinds of regions and parti-
tions called rectangles, and tilings, respectively:

Definition 3 (Rectangles, Tilings) A rectangle in a matrix A is a submatrix of A. A
tiling of a matrix A is a partition of A into rectangles.

Definition 4 (Refinements) A tiling T1(f) of a matrix A(f) is said to be a refinement
of another tiling T2(f) of A(f) if every rectangle in T1(f) is contained in some rectangle in
T2(f).

Monochromatic rectangles and tilings are an important concept in communication-com-
plexity theory, because they are linked to the execution of communication protocols. Every
communication protocol P for a function f can be thought of as follows:

1. Let R and C be the sets of row and column indices of A(f), respectively. For R′ ⊆ R
and C ′ ⊆ C, we will abuse notation and write R′×C ′ to denote the submatrix of A(f)
obtained by deleting the rows not in R′ and the columns not in C ′.

2. While R× C is not monochromatic:

• One party i ∈ {0, 1} sends a single bit q (whose value is based on xi and the
history of communication).

• If i = 1, q indicates whether 1’s value is in one of two disjoint sets R1, R2 whose
union equals R. If x1 ∈ R1, both parties set R = R1. If x1 ∈ R2, both parties set
R = R2.

• If i = 2, q indicates whether 2’s value is in one of two disjoint sets C1, C2 whose
union equals C. If x2 ∈ C1, both parties set C = C1. If x2 ∈ C2, both parties set
C = C2.
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3. One of the parties sends a last message (consisting of up to t bits) containing the value
in all entries of the monochromatic rectangle R× C.

Observe that, for every pair of private inputs (x1, x2), P terminates at some monochro-
matic rectangle in A(f) that contains (x1, x2). We refer to this rectangle as “the monochro-
matic rectangle induced by P for (x1, x2)”. We refer to the tiling that consists of all rectangles
induced by P (for all pairs of inputs) as “the monochromatic tiling induced by P”.

Figure 2: A tiling that cannot be induced by any communication protocol [17]

Remark 2.1 There are monochromatic tilings that cannot be induced by communication
protocols. For example, observe that the tiling in Fig. 2 (which is essentially an example
from [17]) has this property.

2.2 Perfect Privacy

Informally, we say that a two-party protocol is perfectly privacy-preserving if the two parties
(or a third party observing the communication between them) cannot learn more from the
execution of the protocol than the value of the function the protocol computes. (These
definition can be extended naturally to protocols involving more than two participants.)

Formally, let P be a communication protocol for a function f . The communication string
passed in P is the concatenation of all the messages (q1, q2 . . .) sent in the course of the
execution of P . Let s(x1,x2) denote the communication string passed in P if the inputs of
the parties are (x1, x2). We are now ready to define perfect privacy. The following two
definitions handle privacy from the point of view of a party i that does not want the other
party (who is, of course, familiar not only with the communication string, but also with
his own value) to learn more than necessary about i’s private information. We say that a
protocol is perfectly private with respect to party 1 if 1 never learns more about party 2’s
private information than necessary to compute the outcome.

Definition 5 (Perfect privacy with respect to 1) [8, 17] P is perfectly private with
respect to party 1 if, for every x2, x

′
2 such that f(x1, x2) = f(x1, x

′
2), it holds that s(x1,x2) =

s(x1,x′
2).

Informally, Def. 5 says that party 1’s knowledge of the communication string passed in
the protocol and his knowledge of x1 do not aid him in distinguishing between two possible
inputs of 2. Similarly:
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Definition 6 (Perfect privacy with respect to 2) [8, 17] P is perfectly private with
respect to party 2 if, for every x1, x

′
1 such that f(x1, x2) = f(x′1, x2), it holds that s(x1,x2) =

s(x′
1,x2).

Observation 2.2 For any function f , the protocol in which party i reveals xi and the other
party computes the outcome of the function is perfectly private with respect to i.

Definition 7 (Perfect subjective privacy) P achieves perfect subjective privacy if it is
perfectly private with respect to both parties.

The following definition considers a different form of privacy—privacy from a third party
that observes the communication string but has no a priori knowledge about the private
information of the two communicating parties. We refer to this notion as “objective privacy”.

Definition 8 (Perfect objective privacy) P achieves perfect objective privacy if, for
every two pairs of inputs (x1, x2) and (x′1, x

′
2) such that f(x1, x2) = f(x′1, x

′
2), it holds that

s(x1,x2) = s(x′
1,x′

2).

Kushilevitz [17] was the first to point out the interesting connections between perfect pri-
vacy and communication-complexity theory. Intuitively, we can think of any monochromatic
rectangle R in the tiling induced by a protocol P as a set of inputs that are indistinguishable
to a third party. This is because, by definition of R, for any two pairs of inputs in R, the
communication string passed in P must be the same. Hence we can think of the privacy of
the protocol in terms of the tiling induced by that protocol.

Ideally, every two pairs of inputs that are assigned the same outcome by a function f will
belong to the same monochromatic rectangle in the tiling induced by a protocol for f . This
observation enables a simple characterization of perfect privacy-preserving mechanisms.

Definition 9 (Ideal monochromatic partitions) A monochromatic region in a matrix
A is said to be a maximal monochromatic region if no monochromatic region in A properly
contains it. The ideal monochromatic partition of A is made up of the maximal monochro-
matic regions.

Observation 2.3 For every possible value in a matrix A, the maximal monochromatic re-
gion that corresponds to this value is unique. This implies the uniqueness of the ideal
monochromatic partition for A.

Observation 2.4 (A characterization of perfectly privacy-preserving protocols)
A communication protocol P for f is perfectly privacy-preserving iff the monochromatic tiling
induced by P is the ideal monochromatic partition of A(f). This holds for all of the above
notions of privacy.
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3 Privacy-Approximation Ratios

Unfortunately, perfect privacy should not be taken for granted. As shown by our results,
in many environments, perfect privacy can be either impossible or very costly (in terms of
communication complexity) to obtain. To measure a protocol’s effect on privacy, relative to
the ideal—but perhaps impossible to implement—computation of the outcome of a problem,
we introduce the notion of privacy-approximation ratios (PARs).

3.1 Worst-Case PARs

For any communication protocol P for a function f , we denote by RP (x1, x2) the monochro-
matic rectangle induced by P for (x1, x2). We denote by RI(x1, x2) the monochromatic region
containing A(f)(x1,x2) in the ideal monochromatic partition of A(f). Intuitively, RP (x1, x2)
is the set of inputs that are indistinguishable from (x1, x2) to P . RI(x1, x2) is the set of
inputs that would be indistinguishable from (x1, x2) if perfect privacy were preserved. We
wish to asses how far one is from the other. The size of a region R, denoted by |R|, is the
cardinality of R, i.e., the number of inputs in R.

We can now define worst-case objective PAR as follows:

Definition 10 (Worst-case objective PAR of P ) The worst-case objective privacy-ap-
proximation ratio of communication protocol P for function f is

α = max
(x1,x2)

|RI(x1, x2)|
|RP (x1, x2)|

.

We say that P is α-objective-privacy-preserving in the worst case.

Definition 11 (i-partitions) The 1-partition of a region R in a matrix A is the set of
disjoint rectangles Rx1 = {x1} × {x2 s.t. (x1, x2) ∈ R} (over all possible inputs x1). 2-
partitions are defined analogously.

Intuitively, given any region R in the matrix A(f), if party i’s actual private information
is xi, then i can use this knowledge to eliminate all the parts of R other than Rxi

. Hence,
the other party should be concerned not with R but rather with the i-partition of R.

Definition 12 (i-induced tilings) The i-induced tiling of a protocol P is the refinement
of the tiling induced by P obtained by i-partitioning each rectangle in it.

Definition 13 (i-ideal monochromatic partitions) The i-ideal monochromatic parti-
tion is the refinement of the ideal monochromatic partition obtained by i-partitioning each
region in it.

For any communication protocol P for a function f , we use RP
i (x1, x2) to denote the

monochromatic rectangle containing A(f)(x1,x2) in the i-induced tiling for P . We denote by
RI

i (x1, x2) the monochromatic rectangle containing A(f)(x1,x2) in the i-ideal monochromatic
partition of A(f).
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Definition 14 (Worst-case PAR of P with respect to i) The worst-case privacy-ap-
proximation ratio with respect to i of communication protocol P for function f is

α = max
(x1,x2)

|RI
i (x1, x2)|

|RP
i (x1, x2)|

.

We say that P is α-privacy-preserving with respect to i in the worst case.

Definition 15 (Worst-case subjective PAR of P ) The worst-case subjective privacy-
approximation ratio of communication protocol P for function f is the maximum of the
worst-case privacy-approximation ratio with respect to each party.

Definition 16 (Worst-case PAR) The worst-case objective (subjective) PAR for a func-
tion f is the minimum, over all protocols P for f , of the worst-case objective (subjective)
PAR of P .

3.2 Average-Case PARs

As we shall see below, it is also useful to define an average-case version of PAR. As the
name suggests, the average-case objective PAR is the average ratio between the size of the
monochromatic rectangle containing the private inputs and the corresponding region in the
ideal monochromatic partition.

Definition 17 (Average-case objective PAR of P ) Let D be a probability distribution
over the space of inputs. The average-case objective privacy-approximation ratio of commu-
nication protocol P for function f is

α = ED [
|RI(x1, x2)|
|RP (x1, x2)|

].

We say that P is α-objective privacy-preserving in the average case with distribution D
(or with respect to D).

We define average-case PAR with respect to i analogously, and average-case subjective
PAR as the maximum over all players i of the average-case PAR with respect to i. We
define the average-case objective (subjective) PAR for a function f as the minimum, over all
protocols P for f , of the average-case objective (subjective) PAR of P .

4 The Millionaires Problem and Public Goods: Bounds

on PARs

In this section, we prove upper and lower bounds on the privacy-approximation ratios for
two classic problems: Yao’s millionaires problem and the provision of a public good.
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4.1 Problem Specifications

The millionaires problem. Two millionaires want to know which one is richer. Each
millionaire’s wealth is private information known only to him, and the millionaire wishes to
keep it that way. The goal is to discover the identity of the richer millionaire while preserving
the (subjective) privacy of both parties.

Definition 18 (The Millionaires Problemk)
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: the identity of the party with the higher value, i.e., arg maxi∈{0,1} xi (breaking ties
lexicographically).

There cannot be a perfectly privacy-preserving communication protocol for The Mil-
lionaires Problemk [17]. Hence, we are interested in the PARs for this well studied
problem.

The public-good problem. There are two agents, each with a private value in {0, . . . , 2k−
1} that represents his benefit from the construction of a public project (public good), e.g.,
a bridge.1 The goal of the social planner is to build the public project only if the sum of the
agents’ values is at least its cost, where, as in [1], the cost is set to be 2k − 1.

Definition 19 (Public Goodk)
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: “Build” if x1 + x2 ≥ 2k − 1, “Do Not Build” otherwise.

It is easy to show (via Observation 2.4) that for Public Goodk, as for The Million-
aires Problemk, no perfectly privacy-preserving communication protocol exists. There-
fore, we are interested in the PARs for this problem.

4.2 The Millionaires Problem

The following theorem shows that not only is perfect subjective privacy unattainable for
The Millionaires Problemk, but a stronger result holds:

Theorem 4.1 (A worst-case lower bound on subjective PAR) No communication

protocol for The Millionaires Problemk has a worst-case subjective PAR less than 2
k
2 .

Proof: Consider a communication protocol P for The Millionaires Problemk. Let
R represent the space of possible inputs of millionaire 1, and let C represent the space of
possible inputs of millionaire 2. In the beginning, R = C = {0, . . . , 2k − 1}. Consider the
first (meaningful) bit q transmitted in course of P ’s execution. Let us assume that this bit
is transmitted by millionaire 1. This bit indicates whether 1’s value belongs to one of two

1This is a discretization of the classic public good problem, in which the private values are taken from an
interval of reals, as in [1, 5].
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disjoint subsets of R, R1 and R2, whose union equals R. Because we are interested in the
worst case, we can choose adversarially to which of these subsets 1’s input belongs. Without
loss of generality, let 0 ∈ R1. We decide adversarially that 1’s value is in R1 and set R = R1.
Similarly, if q is transmitted by millionaire 2, then we set C to be the subset of C containing
0 in the partition of 2’s inputs induced by q. We continue this process recursively for each
bit transmitted in P .

Observe that, as long as both R and C contain at least two values, P is incapable of
computing The Millionaires Problemk. This is because 0 belongs to both R and C,
and so P cannot eliminate, for either of the millionaires, the possibility that that millionaire
has a value of 0 and the other millionaire has a positive value. Hence, this process will go
on until P determines that the value of one of the millionaires is exactly 0, i.e., until either
R = {0} or C = {0}. Let us examine these two cases:

• Case I: R = {0}. Consider the subcase in which x2 equals 0. Recall that 0 ∈ C,
and so this is possible. Observe that, in this case, P determines the exact value of x1,
despite the fact that, in the 2-ideal-monochromatic partition, all 2k possible values of
x1 are in the same monochromatic rectangle when x2 = 0 (because for all these values
1 wins). Hence, we get a lower bound of 2k on the subjective privacy-approximation
ratio.

• Case II: C = {0}. Let m denote the highest input in R. We consider two subcases.

If m ≤ 2
k
2 , then observe that the worst-case subjective privacy-approximation ratio is

at least 2
k
2 . In the 2-ideal-monochromatic partition, all 2k possible values of x1 are in

the same monochromatic rectangle if x2 = 0, and the fact that m ≤ 2
k
2 implies that

|R| ≤ 2
k
2 .

If, on the other hand, m > 2
k
2 , then consider the case in which x1 = m and x2 = 0.

Observe that, in the 1-ideal-monochromatic partition, all values of millionaire 2 in
{0, . . . ,m − 1} are in the same monochromatic rectangle if x1 = m. However, P will
enable millionaire 1 to determine that millionaire 2’s value is exactly 0. This implies a
lower bound of m on the subjective privacy-approximation. We now use the fact that
m > 2

k
2 to conclude the proof.

By contrast, we show that fairly good privacy guarantees can be obtained in the average
case. We define the Bisection Protocol for The Millionaires Problemk as follows:
Ask each millionaire whether his value lies in [0, 2k−1) or in [2k−1, 2k); continue this binary
search until the millionaires’ answers differ, at which point we know which millionaire has
the higher value. If the answers never differ the tie is broken in favor of millionaire 1.

We may exactly compute the average-case subjective PAR with respect to the uniform
distribution for the Bisection Protocol applied to The Millionaires Problemk.
Figure 3 illustrates the approach. The far left of the figure shows the ideal partition (for
k = 3) of the value space for The Millionaires Problemk; these regions are indicated
with heavy lines in all parts of the figure. The center-left shows the 1-partition of the
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regions in the ideal partition; the center-right shows the 1-induced tiling that is induced by
the Bisection Protocol. The far right illustrates how we may rearrange the tiles that
partition the bottom-left region in the ideal partition (by reflecting them across the dashed
line) to obtain a tiling of the value space that is the same as the tiling induced by applying
the Bisection Auction to 2nd-Price Auctionk.

Figure 3: Left to right: The ideal partition (for k = 3) for The Millionaires Prob-
lemk; the 1-partition of the ideal regions; the 1-induced tiling induced by the Bisection
Protocol; the rearrangement used in the proof of Thm. 4.2

Theorem 4.2 (The average-case subjective PAR of the bisection protocol) The
average-case subjective PAR with respect to the uniform distribution for the Bisection
Protocol applied to The Millionaires Problemk is k

2
+ 1.

Proof: Given a value of i, consider the i-induced-tiling obtained by running the Bisection
Protocol for The Millionaires Problemk (as in the center-right of Fig. 3 for i = 1).
Rearrange the rectangles in which player i wins by reflecting them across the line running
from the bottom-left corner to the top-right corner (the dashed line in the far right of Fig. 3).
This produces a tiling of the value space in which the region in which player 1 wins is tiled
by tiles of width 1, and the region in which player 2 wins is tiled by tiles of height 1; in
computing the average-case-approximate-privacy with respect to i, the tile-size ratios that
we use are the heights (widths) of the tiles to the height (width) of the tile containing all
values in that column (row) for which player 1 (2) wins. This tiling and the tile-size ratios
in question are exactly as in the computation of the average-case objective privacy for 2nd-
Price Auctionk; the argument used in Thm. 5.8 (for g(k) = k) below completes the proof.

Consider the case in which a third party is observing the interaction of the two million-
aires. How much can this observer learn about the private information of the two million-
aires? We show that, unlike the case of subjective privacy, good PARs are unattainable even
in the average case.

Because the values (i, i) (in which case player 1 wins) and the values (i, i+ 1) (in which
player 2 wins) must all appear in different tiles in any tiling that refines the ideal partition
of the value space for The Millionaires Problemk, any such tiling must include at least

14



2k tiles in which player 1 wins and 2k−1 tiles in which player 2 wins. The total contribution
of a tile in which player 1 wins is the number of values in that tile times the ratio of the ideal
region containing the tile to the size of the tile, divided by the total number (22k) of values

in the space. Each tile in which player 1 wins thus contributes (1+2k)2k

22k+1 to the average-case
PAR under the uniform distribution; similarly, each tile in which player 2 wins contributes
2k(2k−1)

22k+1 to this quantity. This leads directly to the following result.

Proposition 4.3 (A lower bound on average-case objective PAR) The average-case
objective PAR for The Millionaires Problemk with respect to the uniform distribution
is at least 2k − 1

2
+ 2−(k+1).

There are numerous different tilings of the value space that achieve this ratio and that
can be realized by communication protocols. For the Bisection Protocol, we obtain the
same exponential (in k) growth rate but with a larger constant factor.

Proposition 4.4 (The average-case objective PAR of the bisection protocol) The
Bisection Protocol for The Millionaires Problemk obtains an average-case objec-
tive PAR of 3 · 2k−1 − 1

2
with respect to the uniform distribution.

Proof: The bisection mechanism induces a tiling that refines the ideal partition and that
has 2k+1− 1 tiles in which the player 1 wins and 2k− 1 tiles in which the player 2 wins. The
contributions of each of these tiles is as noted above, from which the result follows.

Finally, Table 1 summarizes our average-case PAR results (with respect to the uniform
distribution) for The Millionaires Problemk.

Average-Case Obj. PAR Average-Case Subj. PAR

Any Protocol ≥ 2k − 1
2

+ 2−(k+1)

Bisection Protocol 3
2
2k − 1

2
k
2

+ 1

Table 1: Average-case PARs for The Millionaires Problemk

4.3 The Public-Good Problem

The government is considering the construction of a bridge (a public good) at cost c. Each
taxpayer has a k-bit private value that is the utility he would gain from the bridge if it were
built. The government wants to build the bridge if and only if the sum of the taxpayers’
private values is at least c. In the case that c = 2k − 1, we observe that x̂2 = c− x2 is again
a k-bit value and that x1 + x2 ≥ c if and only if x1 ≥ x̂2; from the perspective of PAR,
this problem is equivalent to solving The Millionaires Problemk on inputs x1 and x̂2.
We may apply our results for The Millionaires Problemk to see that the public-good
problem with c = 2k − 1 has exponential average-case objective PAR with respect to the
uniform distribution. Appendix B discusses average-case objective PAR for a truthful version
of the public-good problem.
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5 2nd-Price Auctions: Bounds on PARs

In this section, we present upper and lower bounds on the privacy-approximation ratios for
the 2nd-price Vickrey auction.

5.1 Problem Specification

2nd-price Vickrey auction. A single item is offered to 2 bidders, each with a private value
for the item. The auctioneer’s goal is to allocate the item to the bidder with the highest
value. The fundamental technique in mechanism design for inducing truthful behavior in
single-item auctions is Vickrey’s 2nd-price auction [21]: Allocate the item to the highest
bidder, and charge him the second-highest bid.

Definition 20 (2nd-Price Auctionk)
Input: x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: the identity of the party with the higher value, i.e., arg maxi∈{0,1} xi (breaking ties
lexicographically), and the private information of the of the other party.

Brandt and Sandholm [6] show that a perfectly privacy-preserving communication pro-
tocol exists for 2nd-Price Auctionk. Specifically, perfect privacy is obtained via the
ascending-price English auction: Start with a price of p = 0 for the item. In each time step,
increase p by 1 until one of the bidders indicates that his value for the item is less than p
(in each step first asking bidder 1 and then, if necessary, asking bidder 2). At that point,
allocate the item to the other bidder for a price of p− 1. If p reaches a value of 2k − 1 (that
is, the values of both bidders are 2k − 1) allocate the item to bidder 1 for a price of 2k − 1.

Moreover, it is shown in [6] that the English auction is essentially the only perfectly
privacy-preserving protocol for 2nd-Price Auctionk. Thus, perfect privacy requires, in
the worst-case, the transmission of Ω(2k) bits. 2k bits suffice, because bidders can simply
reveal their inputs. Can we obtain “good” privacy without paying such a high price in
communication?

5.2 Objective Privacy PARs

We now consider objective privacy for 2nd-Price Auctionk (i.e., privacy with respect to
the auctioneer). Bisection auctions [14, 15] for 2nd-Price Auctionk are defined similarly
to the Bisection Protocol for The Millionaires Problemk: Use binary search to
find a value c that lies between the two bidders’ values, and let the bidder with the higher
value be bidder j. (If the values do not differ, we will also discover this; in this case, award
the item to bidder 1, who must pay the common value.) Use binary search on the interval
that contains the value of the lower bidder in order to find the value of the lower bidder.
Bisection auctions are incentive-compatible in ex-post Nash [14,15].

More generally, we refer to an auction protocol as a c-bisection auction, for a constant
c ∈ (0, 1), if in each step the interval R is partitioned into two disjoint subintervals: a lower
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subinterval of size c|R| and an upper subinterval of size (1 − c)|R|. Hence, the Bisection
Auction is a c-bisection auction with c = 1

2
. We prove that no c-bisection auction for The

Millionaires Problemk obtains a subexponential objective PAR:

Theorem 5.1 (A worst-case lower bound for c-bisection auctions) For any con-
stant c > 1

2k , the c-bisection auction for 2nd-Price Auctionk has a worst-case PAR of at

least 2
k
2 .

Proof: Consider the ideal monochromatic partition of 2nd-Price Auctionk depicted
for k = 3 in Fig. 1. Observe that, for perfect privacy to be preserved, it must be that bidder
2 transmits the first (meaningful) bit, and that this bit partitions the space of inputs into
the leftmost shaded rectangle (the set {0, . . . , 2k − 1} × {0}) and the rest of the value space
(ignoring the rectangles depicted that further refine {0, . . . , 2k− 1}×{1, . . . , 2k− 1}). What
if the first bit is transmitted by player 2 and does not partition the space into rectangles
in that way? We observe that any other partition of the space into two rectangles is such
that, in the worst case, the privacy-approximation ratio is at least 2

k
2 (for any value of c): If

c ≤ 1− 2−
k
2 , then the case in which x1 = c2k − 1 gives us the lower bound. If, on the other

hand, c > 1− 2−
k
2 , then the case that x1 = 0 gives us the lower bound. Observe that such a

bad PAR is also the result of bidder 1’s transmitting the first (meaningful) bit.

By contrast, as for The Millionaires Problemk, reasonable privacy guarantees are
achievable in the average case:

Theorem 5.2 (The average-case objective PAR of the bisection auction) The av-
erage-case objective PAR of the Bisection Auction is k

2
+ 1 with respect to the uniform

distribution.

Proof: This follows by taking g(k) = k in Thm. 5.8.

We note that the worst-possible approximation of objective privacy comes when the each
value in the space is in a distinct tile; this is the tiling induced by the sealed-bid auction.
The resulting average-case privacy-approximation ratio is exponential in k.

Proposition 5.3 (Largest possible objective PAR) The largest possible (for any pro-
tocol) average-case objective PAR with respect to the uniform distribution for 2nd-Price
Auctionk is

1

22k

2k−1∑
j=0

j2 +
2k−1∑
j=1

j2

 =
2

3
2k +

1

3
2−k

5.3 Subjective Privacy PARs

We now look briefly at subjective privacy for 2nd-Price Auctionk. For subjective privacy
with respect to 1, we start with the 1-partition for 2nd-Price Auctionk; Fig. 4 shows the
refinement of the 1-partition induced by the Bisection Auction for k = 4. Separately
considering the refinement of the 2-partition for 2nd-Price Auctionk by the Bisection
Auction, we have the following results.
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Figure 4: The Bisection-Auction-induced refinement of the 1-partition for 2nd-Price
Auctionk (k = 4)

Theorem 5.4 (The average-case PAR with respect to 1 of the bisection auction)
The average-case PAR with respect to 1 of the Bisection Auction is

k + 3

4
− k − 1

2k+2

with respect to the uniform distribution.

Proof: This follows by taking g(k) = k in Thm. 5.10.

Theorem 5.5 (The average-case PAR with respect to 2 of the bisection auction)
The average-case PAR with respect to 2 of the Bisection Auction is

k + 5

4
+
k − 1

2k+2

with respect to the uniform distribution.

Proof: This follows by taking g(k) = k in Thm. 5.11.

Corollary 5.6 (The average-case subjective PAR of the bisection auction) The
average-case subjective PAR of the Bisection Auction with respect to the uniform distri-
bution is

k + 5

4
+
k − 1

2k+2
.

As for objective privacy, the sealed-bid auction gives the largest possible average-case
subjective PAR.

Proposition 5.7 (Largest possible subjective PAR) The largest possible (for any pro-
tocol) average-case subjective PAR with respect to the uniform distribution for 2nd-Price
Auctionk is

2k

3
+ 1− 1

3 · 2k
.
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Proof: For the sealed-bid auction, the average-case PAR with respect to 1 is

1

22k

 2k∑
j=1

j +
2k−1∑
j=1

j2

 =
2k

3
+

1

3 · 2k−1
.

For the sealed-bid auction, the average-case PAR with respect to 2 is

1

22k

 2k∑
j=1

j2 +
2k−1∑
j=1

j

 =
2k

3
+ 1− 1

3 · 2k
.

5.4 Bounded-Bisection Auctions

We now present a middle ground between the perfectly-private yet highly inefficient (in terms
of communication) ascending English auction and the communication-efficient Bisection
Auction whose average-case objective PAR is linear in k (and is thus unbounded as k goes
to infinity): We bound the number of bisections, using an ascending English auction to
determine the outcome if it is not resolved by the limited number of bisections.

We define the Bisection Auctiong(k) as follows: Given an instance of 2nd-Price
Auctionk, and a integer-valued function g(k) such that 0 ≤ g(k) ≤ k, run the Bisection
Auction as above but do at most g(k) bisection operations. (Note that we will never do
more than k bisections.) If the outcome is undetermined after g(k) bisection operations, so
that both players’ values lie in an interval I of size 2k−g(k), apply the ascending-price English
auction to this interval to determine the identity of the winning bidder and the value of the
losing bidder.

As g(k) ranges from 0 to k, the Bisection Auctiong(k) ranges from the ascending-
price English auction to the Bisection Auction. If we allow a fixed, positive number of
bisections (g(k) = c > 0), computations show that for c = 1, 2, 3 we obtain examples of pro-
tocols that do not provide perfect privacy but that do have bounded average-case objective
PARs with respect to the uniform distribution. We wish to see if this holds for all positive
c, determine the average-case objective PAR for general g(k), and connect the amount of
communication needed with the approximation of privacy in this family of protocols. The
following theorem allows us to do these things.

Theorem 5.8 For the Bisection Auctiong(k), the average-case objective PAR with respect
to the uniform distribution equals

g(k) + 3

2
− 2g(k)

2k+1
+

1

2k+1
− 1

2g(k)+1
.

Proof: Fix k, the number of bits used for bidding, and let c = g(k) be the number of
bisections; we have 0 ≤ c ≤ k, and we let i = k − c. Figure 5 illustrates this tiling for
k = 4, c = 2, and i = 2; note that the upper-left and lower-right quadrants have identical
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Figure 5: Illustration for the proof of Thm. 5.8

structure and that the lower-left and upper-right quadrants have no structure other than that
of the ideal partition and the quadrant boundaries (which are induced by the first bisection
operation performed).

Our general approach is the following. The average-case objective PAR with respect to
the uniform distribution equals

PAR =
1

22k

∑
(x1,x2)

|RI(x1, x2)|
|RP (x1, x2)|

,

where the sum is over all pairs (x1, x2) in the value space; recall that RI(x1, x2) is the region in
the ideal partition that contains (x1, x2), and RP (x1, x2) is the rectangle in the tiling induced
by the protocol that contains (x1, x2). We may combine all of the terms corresponding to
points in the same protocol-induced rectangle to obtain

PAR =
1

22k

∑
R

|R| |R
I(R)|
|R|

=
1

22k

∑
R

|RI(R)|, (1)

where the sums are now over protocol-induced rectangles R (we will simplify notation and
write R instead of RP ), and RI(R) denotes the ideal region that contains the protocol-
induced rectangle R. Each ideal region in which bidder 1 wins is a rectangle of width 1 and
height at most 2k; each ideal region in which bidder 2 wins is a rectangle of height 1 and
width strictly less than 2k. For a protocol-induced rectangle R, let jR = 2k − |RI(R)|. Let
ac,i be the total number of tiles that appear in the tiling of the k-bit value space induced by
the Bisection Auctiong(k) with g(k) = c, and let bc,i =

∑
R jR (with this sum being over

the protocol-induced tiles in this same partition). Then we may rewrite (1) as

PARc,i =
1

22k

∑
R

(2k − jR) =
ac,i2

k − bc,i
22k

. (2)

(Note that (1) holds for general protocols; we now add the subscripts “c, i” to indicate the
particular PAR we are computing.) We now determine ac,i and bc,i.

Considering the tiling induced by c+1 bisections of a c+ i+1-bit space (which has ac+1,i

total tiles), the upper-left and lower-right quadrants each contain ac,i tiles while the lower-left
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and upper-right quadrants (as depicted in Fig. 5) each contribute 2c+i tiles, so ac+1,i = 2ac,i+
2c+i+1. When there are no bisections, the i-bit value space has a0,i = 2i+1−1 tiles, from which
we obtain ac,i = 2c (2i(c+ 2)− 1). The sum of jR over protocol-induced rectangles R in the
upper-left quadrant is bc,i. For a rectangle R in the lower-right quadrant, jR equals 2c+i plus
jR′ , where R′ is the corresponding rectangle in the upper-left quadrant; there are ac,i such R,
so the sum of jR over protocol-induced rectangles R in the upper-left quadrant is bc,i+ac,i2

c+i.

Finally, the sum of jR over R in the lower-left quadrant equals
∑2c+i−1

h=0 h and the sum over

R in the top-right quadrant equals
∑2c+i

h=1 h. Thus, bc+1,i = 2bc,i + ac,i2
c+i + 22(c+i); with

b0,i =
∑2i−1

h=0 h +
∑2i−1

h=1 h, we obtain bc,i = 2c+i−1 ((1 + 2c) (−1 + 2i) + 2c+ic). Rewriting (2),
we obtain

PARc,i =
c+ 3

2
− 2c

2c+i+1
+

1

2c+i+1
− 1

2c+1
.

Recalling that k = c+ i, the proof is complete.

For the protocols corresponding to values of g(k) ranging from 0 to k (ranging from
the ascending-price English auction to the Bisection Auction), we may thus relate the
amount of communication saved (relative to the English auction) to the effect of this on the
PAR.

Corollary 5.9 Let g be a function that maps non-negative integers to non-negative integers.
Then the average-case objective PAR with respect to the uniform distribution for the Bisec-
tion Auctiong(k) is bounded if g is bounded and is unbounded if g is unbounded. We then
have that the Bisection Auctiong(k) may require the exchange of Θ(k + 2k−g(k)) bits, and
it has an average-case objective PAR of Θ(1 + g(k)).

5.4.1 Subjective privacy for bounded-bisection auctions

Theorem 5.10 (The average-case PAR w.r.t. 1 of the bounded-bisection auction)

The average-case PAR with respect to 1 of the Bisection Auctiong(k) is

g(k) + 5

4
− 1

2g(k)+2
− 1

2k−g(k)+1
− g(k)− 2

2k+2

with respect to the uniform distribution.

Proof: The approach is similar to that in the proof of Thm. 5.8. We start by specializing (1)
to the present case.

Each ideal region in which bidder 1 wins is a rectangle of size 1; each ideal region in
which bidder 2 wins is a rectangle of height 1 and width strictly less than 2k. For a protocol-
induced rectangle R, let jR = 2k − |RI(R)|. Let c = g(k) and let i = k − c ≥ 0. Let T 1

c,i be
the refinement of the 2nd-Price-Auctionk 1-partition of the k-bit value space induced by
the Bisection-Auctiong(k). Let xc,i be the number of rectangles in T 1

c,i in which bidder 2
(the column player) wins, and let yc,i be the sum, over all rectangles R in which bidder 2
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wins, of the quantity 2c+i − |RI(R)|. Let zc,i be the number of rectangles R in which bidder
1 (the row player) wins.

Using PAR1
c,i to denote the PAR w.r.t. bidder 1 in this case (c bisections and i = k − c),

we may rewrite (1) as

PAR1
c,i =

1

22(c+i)

 ∑
RP in which 1 wins

|RI(RP )|

+

 ∑
RP in which 2 wins

|RI(RP )|


=

1

22(c+i)

[
(zc,i) +

(
2c+ixc,i − yc,i

)]
.

We now turn to the computation of xc,i, yc,i, and zc,i.
Following the same approach as in the proof of Thm. 5.8, we have xc+1,i = 2xc,i + 2c+i,

yc+1,i = 2yc,i +
∑2c+i

j=1 j+ 2c+ixc,i, and zc+1,i = 2zc,i + 22(c+i). With x0,i = 2i−1, y0,i =
∑2i−1

j=1 j,

and z0,i =
∑2c+1

j=1 j, we obtain

xc,i = 2c−1
(
2ic+ 2i+1 − 2

)
,

yc,i = 2c+i−2
(
2c+ic+ 2c+i + 2i − 2c+1 + c

)
, and

zc,i = 2c+i−1(2c+i + 1).

Using these in our expression for PAR1
c,i, we obtain

PAR1
c,i =

c+ 5

4
+

2− c
2c+i+2

− 1

2i+1
− 1

2c+2
.

Recalling that k = c+ i and g(k) = c completes the proof.

Theorem 5.11 (The average-case PAR w.r.t. 2 of the bounded-bisection auction)

The average-case PAR with respect to 1 of the Bisection Auctiong(k) is

g(k) + 5

4
− 1

2g(k)+2
+
g(k)

2k+2

with respect to the uniform distribution.

Proof: The approach is essentially the same as in the proof of Thm. 5.10, although the
induced partition differs slightly.

Let c = g(k) and let i = k − c ≥ 0. Let T 2
c,i be the refinement of the 2nd-Price-Auc-

tionk 2-partition of the k-bit value space induced by the Bisection-Auctiong(k). Let uc,i

be the number of rectangles in T 2
c,i in which bidder 1 (the row player) wins, and let vc,i be

the sum, over all rectangles R in which bidder 1 wins, of the quantity 2c+i−|RI(R)|. Let wc,i

be the number of rectangles R in which bidder 2 (the column player) wins. Using PAR2
c,i to
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denote the PAR w.r.t. bidder 2 in this case (c bisections and i = k − c), we may rewrite (1)
as

PAR2
c,i =

1

22(c+i)

[(
2c+iuc,i − vc,i

)
+ (wc,i)

]
.

Mirroring the approach of the proof of Thm. 5.10, we have uc+1,i = 2uc,i + 2c+i, vc+1,i =
2vc,i + 2c+i−1(2c+i − 1) + 2c+iuc,i, and wc,i = 2c+i−1(2c+i − 1). With u0,i = 2i and v0,i =
2i−1(2i − 1), we obtain

uc,i = 2c+i−1(c+ 2),

vc,i = 2c+i−2
(
2c+i(c+ 1) + 2i − c− 2

)
, and

wc,i = 2c+i−1(2c+i − 1).

Using these in our expression for PAR2
c,i, we obtain

PAR2
c,i =

c+ 5

4
− 1

2c+2
+

c

2c+i+2
.

Recalling that k = c+ i and g(k) = c completes the proof.

Because g(k) ≥ 0, the average-case PAR with respect to 2 is at least as large as the
average-case PAR with respect to 1; this gives the average-case subjective PAR of the Bi-
section Auctiong(k) as follows.

Corollary 5.12 (Average-case subjective PAR of the bounded-bisection auction)

The average-case subjective PAR of the Bisection Auctiong(k) is

g(k) + 5

4
− 1

2g(k)+2
+
g(k)

2k+2

with respect to the uniform distribution.

Finally, Table 2 summarizes the average-case PAR results (with respect to the uniform
distribution) for 2nd-Price Auctionk.

Avg.-Case Obj. PAR Avg.-Case Subj. PAR
English Auction 1 1

Bisection Auctiong(k)
g(k)+3

2
− 2g(k)

2k+1 + 1
2k+1 − 1

2g(k)+1

g(k)+5
4
− 1

2g(k)+2 + g(k)
2k+2

Bisection Auction k
2

+ 1 k+5
4

+ k−1
2k+2

Sealed-Bid Auction 2k+1

3
+ 1

3·2k
2k

3
+ 1− 1

3·2k

Table 2: Average-case PARs (with respect to the uniform distribution) for 2nd-Price Auc-
tionk
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6 Discussion and Future Directions

6.1 Other Notions of Approximate Privacy

By our definitions, the worst-case/average-case PARs of a protocol are determined by the

worst-case/expected value of the expression |RI(x1,x2)|
|RP (x1,x2)| , where RP (x1, x2) is the monochro-

matic rectangle induced by P for (x1, x2), and RI(x1, x2) is the monochromatic region con-
taining A(f)(x1,x2) in the ideal monochromatic partition of A(f). That is, informally, we
are interested in the ratio between the size of the monochromatic rectangle induced by the
protocol for a specific pair of inputs, and the size of the ideal monochromatic region cor-
responding to that pair. More generally, we can define worst-case/average-case PARs with

respect to a function g by considering the ratio g(RI(x1,x2))
g(RP (x1,x2))

. Our definitions of PARs set g to
be the cardinality function.

R

(a) (b)

x x 

0

k
2  − 1

.

.

.

0

k
2  − 1

.

.

.

Figure 6: Example showing the deficiencies of PAR definitions based on probability mass.

Given a probability distribution D over the parties’ inputs, a seemingly natural choice of g
is the probability mass. That is, for any region R, g(R) = PrD(R), the probability (according
to D) that the input corresponds to an entry in R. However, the following simple example
illustrates that this intuitive choice of g is problematic: Consider the monochromatic region
R in Fig. 6(a). Let P be the communication protocol that consists of a single communication
round in which party 1 reveals whether his value is 0 or not. The monochromatic tiling of
R induced by P is shown in Fig. 6(b). Now, let D1 and D2 be the probability distributions
over inputs of party 1 in which Pr[x1 = 0] = ε, and Pr[x1 = 0] = 1 − ε, respectively (for
some small ε > 0). Intuitively, any reasonable definition of PAR should imply that for D1,
P provides “bad” privacy guarantees (because w.h.p. it learns the exact value of party 1),
and for D2, P provides “good” privacy (because w.h.p. it learns almost nothing about party
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1). In sharp contrast, choosing g to be the probability mass results in the same average-case
PAR in both cases.

Our definitions of PARs capture the intuitive notion of the indistinguishability of inputs,
that is natural to consider in the context of privacy preservation. Other definitions of PARs
may be conducive in analyzing other aspects of privacy preservation, and in addressing other
privacy-related desiderata. For example, if there is a natural notion of “distance” between
inputs (as is the case in the examples considered in this paper), one might prefer protocols
that cannot distinguish between a few inputs that are far from each other, over protocols
that cannot distinguish between many inputs that are all relatively close. This necessitates
different definitions of PARs, and suggests many interesting avenues for future work.

6.2 Open Questions

There are many interesting directions for future research:

• As discussed in the previous subsection, the definition and exploration of other notions
of PARs is a challenging and intriguing direction for future work.

• We have shown that, for both The Millionaires Problemk and 2nd-Price Auc-
tionk, reasonable average-case PARs with respect to the uniform distribution are
achievable. We conjecture that our upper bounds for these problems extend to all
possible distributions over inputs.

• An interesting open question is proving lower bounds on the average-case PARs for
The Millionaires Problemk and 2nd-Price Auctionk.

• It would be interesting to apply the PAR framework presented in this paper to other
functions.

• The extension of our PAR framework to the n-party communication model is a chal-
lenging direction for future research.

• Starting from the same place that we did, namely [8,17], Bar-Yehuda et al. [2] provided
three definitions of approximate privacy. The one that seems most relevant to the study
of privacy-approximation ratios is their notion of h-privacy. It would be interesting to
know exactly when and how it is possible to express PARs in terms of h-privacy and
vice versa.
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[7] David Chaum, Claude Crépeau, and Ivan Damgaard. Multiparty, unconditionally secure
protocols. In Proceedings of the ACM Symposium on Theory of Computing, pages 11–19,
1988.

[8] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM J. Discrete
Math, 4:36–47, 1991.

[9] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a game-
theoretic problem. In Advances in Cryptology—Crypto 2000, Springer Verlag LNCS.

[10] Cynthia Dwork. Differential privacy. In Proceedings of the International Colloquium on
Automata, Languages and Programming, pages 1–12, 2006.

[11] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and Re-
becca N. Wright. Secure multiparty computation of approximations. ACM Transactions
on Algorithms, 2(3):435–472, 2006.

[12] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design: Recent
results and future directions. In Proceedings of the ACM Mobicom Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, pages 1–13, 2002.

[13] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-
maximizing privacy mechanisms. In Proceedings of the ACM Symposium on Theory
of Computing, pages 351–360, 2009.

[14] Elena Grigorieva, P. Jean-Jacques Herings, and Rudolf Müller. The communication
complexity of private value single-item auctions. Oper. Res. Lett., 34(5):491–498, 2006.

26



[15] Elena Grigorieva, P. Jean-Jacques Herings, Rudolf Müller, and Dries Vermeulen. The
private value single item bisection auction. Economic Theory, 30(1):107–118, January
2007.

[16] Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. Private ap-
proximation of NP-hard functions. In Proceedings of the ACM Symposium on Theory
of Computing, pages 550–559, 2001.

[17] Eyal Kushilevitz. Privacy and communication complexity. SIAM J. Discrete Math.,
5(2):273–284, 1992.

[18] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

[19] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and mech-
anism design. In Proceedings of the ACM Conference on Electronic Commerce, pages
129–139, 1999.

[20] Noam Nisan. Introduction to mechanism design (for computer scientists). In Noam
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A Relation to the Work of Bar-Yehuda et al. [2]

While there are certainly some parallels between the work here and the Bar-Yehuda et al.
work [2], there are significant differences in what the two frameworks capture. Specifically:

1. The results in [2] deal with what can be learned by a party who knows one of the
inputs. By contrast, our notion of objective PAR captures the effect of a protocol on
privacy with respect to an external observer who does not know any of the players
private values.
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2. More importantly, the framework of [2] does not address the size of monochromatic
regions. As illustrated by the following example, the ability to do so is necessary to
capture the effects of protocols on interesting aspects of privacy that are captured by
our definitions of PAR.

Consider the function f : {0, . . . , 2n − 1} × {0, . . . , 2n − 1} → {0, . . . , 2n−2} defined by
f(x, y) = floor(x

2
) if x < 2n−1 and f(x, y) = 2n−2 otherwise. Consider the following

two protocols for f : in P , player 1 announces his value x if x < 2n−1 and otherwise
sends 2n−1 (which indicates that f(x, y) = 2n−2); in Q, player 1 announces floor(x

2
) if

x < 2n−1 and x if x = 2n−1. Observe that each protocol induces 2n−1 + 1 rectangles.

Intuitively, the effect on privacy of these two protocols is different. For half of the
inputs, P reduces by a factor of 2 the number of inputs from which they are indis-
tinguishable while not affecting the indistinguishability of the other inputs. Q does
not affect the indistinguishability of the inputs affected by P , but it does reduce the
number of inputs indistinguishable from a given input with x ≥ 2n−1 by at least a
factor of 2n−2.

Our notion of PAR is able to capture the different effects on privacy of the protocols P
and Q. (The average-case objective PARs are constant and exponential in n, respec-
tively.) By contrast, the three quantifications of privacy from [2]—Ic, Ii, and Ic−i—do
not distinguish between these two protocols; we now sketch the arguments for this
claim.

For each protocol, any function h for which the protocol is weakly h-private must take
at least 2n−1 + 1 different values. This bound is tight for both P and Q. Thus, Ic
cannot distinguish between the effects of P and Q on f .

The number of rectangles induced by P that intersect each row and column equals the
number induced by Q. Considering the geometric interpretation of IP and IQ, as well
as the discussion in Sec. VII.A of [2], we see that Ii and Ic−i (applied to protocols)
cannot distinguish between the effects of P and Q on f .

B Truthful Public-Good Problem

B.1 Problem

As in Sec. 4.3, the government is considering the construction of a bridge at cost c. Each
taxpayer has a private value that is the utility he would gain from the bridge if it were
built, and the government wants to build the bridge if and only if the sum of the taxpayers’
private values is at least c. Now, in addition to determining whether to build the bridge,
the government incentivizes truthful disclosure of the private values by requiring taxpayer i
to pay c −∑j 6=i xj if

∑
j 6=i xj < c but

∑
i xi ≥ c (see, e.g., [20] for a discussion of this type

of approach). The government should thus learn whether or not to build the bridge and
how much, if anything, each taxpayer should pay. The formal description of the function is
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as follows; the corresponding ideal partition of the value space is shown in Fig. 7, in which
regions for which the output is “Build” are just labeled with the appropriate value of (t1, t2).

Definition 21 (Truthful Public Goodk,c)
Input: c, x1, x2 ∈ {0, . . . , 2k − 1} (each represented by a k-bit string)
Output: “Do Not Build” if x1 +x2 < c; “Build” and (t1, t2) if x1 +x2 ≥ c, where ti = c−x3−i

if x3−i < c and x1 + x2 ≥ c, and ti = 0 otherwise.

Do Not Build

(3,1) (2,1)

(2,2)

(1,1)

(1,2)

(1,3)

(0,4)

(0,3)

(0,2)

(0,1)

(1,0)(2,0)(3,0)(4,0) (0,0)

Figure 7: Ideal partition of the value space for Truthful Public Goodk,c with k = 3 and
c = 4.

B.2 Results

Proposition B.1 (Average-case objective PAR of Truthful Public Goodk,c)
The average-case objective PAR of Truthful Public Goodk,c with respect to the uniform
distribution is

1 +
c3

22k+1
(1− 1

c2
).

Proof: We may rewrite Eq. 1 as (adding subscripts for the values of k and c in this
problem):

PARk,c =
1

22k

∑
RDNB

|RI(RDNB)|+
∑
RB

|RI(RB)|

 ,
where the first sum is taken over rectangles RDNB for which the output is “Do Not Build”
and the second sum is taken over rectangles RB for which the output is “Build” together
with some (t1, t2). Using the same argument as for The Millionaires Problemk, the first
sum must be taken over at least c rectangles; the ideal region containing these rectangles has
size

∑c
i=1 i = c(c + 1)/2. Considering the second sum, each of the ideal regions containing

a protocol-induced rectangle is in fact a rectangle. If the protocol did not further partition
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these rectangles (and it is easy to see that such protocols exist) then the total contribution
of the second sum is just the total number of inputs for which the output is “Do Not Build”
together with some pair (t1, t2), i.e., this contribution is 4k−c(c+1)/2. We may thus rewrite
PARk,c as

PARk,c =
1

22k

[
c
c(c+ 1)

2
+ 4k − c(c+ 1)

2

]
= 1 +

c3

22k+1
(1− 1

c2
)

Unsurprisingly, if we take c = 2k − 1 (as in Public Goodk in Sec. 4.3), we obtain
PARk,2k−1 = 2k−1 − 1

2
+ 1

2k , which is essentially half of the average-case PAR for The Mil-
lionaires Problemk.
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