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ABSTRACT

In optimization-based classification model selection, for example when using linear program-
ming formulations, a standard approach is to penalize the L1 norm of some linear func-
tional in order to select sparse models. Instead, we propose a novel integer linear program
for sparse classifier selection, generalizing the minimum disagreement hyperplane problem
whose complexity has been investigated in computational learning theory. Specifically, our
mixed-integer problem is that of finding a separating hyperplane with minimum empirical
error subject to an L0 penalty. We show that common “soft margin” linear programming
formulations for robust classification are equivalent to a continuous relaxation of our model.
Since the initial continuous relaxation is weak, we suggest a tighter relaxation, using novel
cutting planes, to better approximate the integer solution. We describe a boosting algorithm,
based on linear programming with dynamic generation of cuts and columns, that solves our
relaxation. We demonstrate the classification performance of our proposed algorithm with
experimental results, and justify our selection of parameters using a minimum description
length, compression interpretation of learning.



1 Introduction

Consider a binary classification problem with M training samples, each consisting of N
real-valued attributes, represented as a matrix A ∈ RM×N whose rows correspond to ob-
servations and whose columns correspond to attributes. We are also given a vector of la-
bels y ∈ {−1, 1}M , defining a partition of the observations into a “positive” class Ω+ =
{i ∈ {1, . . . ,M} | yi = 1} and a “negative” class Ω− = {1, . . . ,M} \ Ω+. We suppose
we have potentially large set of base classifiers hu : RN → {−1, 0, 1} indexed by the set
U = {1, . . . , U}, and would like to train a weighted voting classifier

g(x) =
∑
u∈U

λuhu(x),

for 0 ≤ λ ∈ RU . We classify any new observation x ∈ RN as either positive or negative based
on sgn(g(x)).

The literature of learning algorithms for classification has considered various loss func-
tions as classification performance measures. Common loss functions include the empirical
0/1 loss

`(yi, g, Ai) = I(yg(Ai) ≤ 0), (1)

where I(·) is the 0/1 indicator function and Ai is the ith row of A, and the soft margin loss
(with margin fixed to 1):

`(yi, g, Ai) = (1− yg(Ai))+, where (·)+ = max{·, 0}. (2)

The empirical risk minimization strategy calls for minimization of the average loss (or
equivalently the sum of losses) over the given data in order to determine λ. However, empir-
ical risk minimization can result in overfitting and significantly larger losses with respect to
(unseen) test data. Robust algorithms for classification mitigate this problem by considering
other initial loss functions, regularizing, or adding a model complexity penalty. Everything
else being the same, it seems desirable to follow Occam’s principle and select models for
which λu > 0 for the smallest possible subset of U .

The L0 norm of a vector is defined as its number of nonzero coefficients (and is thus
not a true Lp norm). Optimally sparse classification models may be obtained by directly
minimizing or penalizing the L0 norm of λ. In order to avoid a hard combinatorial opti-
mization problem, the authors of various methods such as LP-Boost, Lasso, and Support
Vector Machines (SVMs) [17, 21, 16, 9] suggest using the L1 or L2 norms of λ instead of
L0. Provided one is using an appropriate loss function, such strategies have the computa-
tional advantage of involving only convex optimization problems. For example, minimizing
the observation-wise sum of the loss function (2), plus an Lp penalty, for p ≥ 1, yields the
convex optimization problem

min
λ

M∑
i=1

(1− yig(Ai))+ + ‖λ‖p .



Greedy algorithms have also been proposed for sparse feature and model selection [38, 43, 27].
The Minimum Description Length (MDL) approach attempts to balance the sparsity

of a model against its accuracy by addressing the problem of model selection as a data
compression optimization problem. The optimal model minimizes the sum of the size of an
efficient encoding of the model and the size of encoding the observations which the model
misclassifies. MDL is difficult to apply exactly in practice due to the difficulty of proving the
efficiency of encoding schemes for a model. We assume that the encoded size of our model
is linear with respect to the support of λ, the 0-1 vector with 1’s in precisely the coordinates
u for which λu 6= 0. This assumption allows us to take into account that some features may
be more complex than others, and therefore may be assigned a greater complexity penalty.
We find that the MDL principle and the compression interpretation are helpful in choosing
the penalty parameters that otherwise might only be determined by experiment and cross-
validation. Below, we derive and demonstrate the application of such penalty parameters
for the case of Boolean monomial base classifiers.

The typical current methodology of robust voting classification methods is to allow for
some outliers, observations which do not necessarily lie on the correct side of the hyperplane
g(x) = 0, and to use regularization, penalizing either the L1 or L2 norms of λ. Robust
linear separation formulations have been suggested by several authors such as Bennett and
Mangasarian [10] and Cortes and Vapnik [16]. Cortes and Vapnik suggest maximizing a
“soft margin” (4) in one of their papers first introducing Support Vector Machines (SVMs).
SVM models find g(·) by maximizing the L2 margin of separation on the space of features
corresponding to U . By “soft margin” it is meant that not all observations need to be
separated and satisfy the same requirement of distance from the hyperplane. Graepel et
al. [24] and Ratsch et al. [34] adapted the quadratic optimization formulation of SVMs using
“soft margins” to a linear programming formulation.

In their LP-Boost algorithm, Demiriz, Bennett and Shawe-Taylor [17] use the following
linear programming formulation based on the formulation of Graepel et al. [24] and Ratsch
et al. [34]:

max ρ−D
M∑
i=1

ξi (3a)

s.t. yiHiλ+ ξi ≥ ρ i = 1, ...,M (3b)

U∑
u=1

λu = 1 (3c)

ξi, λu ≥ 0 i = 1, ...,M , u = 1, ..., U. (3d)

In this formulation, each observation i ∈ {1, ...,M} has a variable ξi which allows it to
have a margin smaller than ρ. The margin of observation i is equal to yiHiλ, where Hi is the
ith row of H, an M×U matrix whose elements are hiu = hu(Ai). The parameter D penalizes
the magnitude of each margin deviation ξi = ρ − yiHiλ; these deviations are illustrated in
Figure 1. The matrix H, in which each column corresponds to a column of labels (−1, 0, 1 in
our case) assigned by a base classifier u ∈ U , usually has too many columns to be written in
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Figure 1: The margin ρ and margin deviations ξi illustrated in the “soft margin” LP for-
mulation. The separating hyperplane is the solid line, and the maximum margin planes are
the parallel dotted lines. Any point with ξi > 0 is called a margin error ; points between the
maximum margin lines are necessarily margin errors.

full as a part of the LP . Instead Demiriz et al. [17] propose a column generation procedure as
a solution technique of the LP-Boost algorithm (to be exact, they in fact propose to generate
cuts for the dual formulation).

In the formulation (3), the objective function is to maximize the L1 margin of separation
less a misclassification penalty. It has been shown by Bennett and Bredensteiner [9] that
formulation (3) is equivalent to, for some appropriate choice of the constant D′, the problem

min

{
U∑
u=1

λu +D′
M∑
i=1

ξi | diag(y)Hλ+ ξ ≥ 1, and λ, ξ ≥ 0

}
. (4)

The matrix H, in which each column corresponds to a column of labels (−1, 0, 1 in our
case) assigned by a base classifier u ∈ U , usually has too many columns to be represented ex-
plicitly, motivating the use of column generation procedures such as LP-Boost [17]. Column
generation methods solve LPs with large numbers of variables by incrementally generating
variables as they are needed; the generation of variables to append to the formulation in-
volves a subsidiary optimization subproblem known as the pricing problem. In LP-Boost,
the pricing problem coincides with the optimization problem to be solved by the base learning
procedure, which is also known as the weak learner in the boosting literature [20, 32, 36].
Column generation has been used to solve large LPs since the early sixties, with a wide
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variety of applications starting with the seminal application of Gilmore and Gomory to the
cutting stock problem [22, 30]. The method starts by solving a restricted master problem
(RMP) that includes only a subset of the variables, and uses dual variable information to
iteratively generate additional (primal) variables by solving a “pricing” subproblem. The
algorithm appends the newly generated variables to the RMP and re-solves until no addi-
tional variables can be generated. The method is successful in practice when there are many
more columns than rows, and the number of variables that need to be generated tends to be
small.

2 Statistical learning theory justifications for our op-

timization formulation

We now motivate our approach by a brief appeal to statistical learning theory, which attempts
to quantify prediction risk — the probability of error on the test (unseen) data for a given
model. Freund and Schapire [20], drawing on work by Baum and Haussler [6] for neural
networks, have bounded the prediction risk of weighted voting classifiers in terms of the
L0-norm of λ and the Vapnik-Chervonenkis (VC) dimension of the base classifiers; see for
example [40]. Following later results by Bartlett [4], Schapire et al. [37], and Vapnik (see [38]
section 5.5.6), algorithms for finding weighted voting classifiers that maximize the margin
of separation, such as boosting and Support Vector Machines (SVMs), have been motivated
by other risk bounds expressed in terms of the margin of separation, or equivalently the L1

or L2 norm of λ.
Luxburg, Bousquet, and Schölkopf have investigated the connection between statistical

learning theory and compression for SVMs [42]. Although SVMs are designed to maximize
the margin of separation in the space of features subject to a soft margin penalty, Luxburg et
al. find that their compression-based bounds often perform better that margin-based bounds.
Their analysis relates the idea of compression to the notion of separation margin by showing
that the larger the L2 margin of separation, the lower the precision needed to encode the
voting weights λ, and the more the classifier description may be compressed.

While Luxburg et al. help to illuminate the relation between L2 margin of separation and
compression, their work raises the question whether there can be more direct approaches to
“compressing” weighted voting classifiers. For example, are there efficient methods that more
directly optimize sparsity and attempt to minimize the length of the classifier description?

Here, we adopt a strategy inspired by the MDL conception of learning: an imaginary
sender and receiver are assumed to share the unlabeled data A and to agree in advance on
the set of candidate features. The sender has access to the labels, and wishes to minimize the
length of a two-part code intended to transmit them to the receiver: the first part of the code
describes the classifier g, and the second part encodes which observations are misclassified
by g. An “optimal” g minimizes the total length of this code.

MDL can be related to statistical learning theory through the compression interpretation
of Vapnik [40], as well as that of Blum and Langford [11]. Vapnik gives a risk bound in
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terms of the compression coefficient in a scheme for encoding the labels of the training data
[40]. Vapnik’s bound requires that the set of classifier functions is finite and independent of
the training data. Blum and Langford [11] avoid these conditions, but they require instead
a code that can be used to encode both the training and test data labels. Let L̄(y, g) denote
the length function of a code that can be used to encode the training and test data labels
using g. The risk bound of Blum and Langford [11] applies also for infinite sets of functions
F , as long as the code of length L̄[y, g] can be used to encode the training labels y, without
error, and is also able to encode an equal number of test labels y′ ∈ {−1, 1}M . Let us denote
the corresponding observable attributes of the test data by A′ ∈ RM ′×N . The resulting
bound on the risk of g ∈ F holds with probability 1− δ:

R̃[g] =
M ′∑
i=1

I(y′ig(A′i) ≤ 0)/M ′ ≤ L̄[y, g]

M
+

ln δ

M
. (5)

Let L̇(g) denote the model code length of the weighted voting classifier g. We consider an
upper bound on the code length that is a function of subsets of U . Let G be the set of all
weighted voting classifier models. Our objective then is to select a g that minimizes the
sum of the model code length function (or an upper bound) L̇ of g and the length of the
misclassified data labels given g, that is,

min
g∈G

L̄(y, g) = min
g∈G
{L̇(g) + L(y|g)},

where L(y|g) is the length of a code that encodes the labels of observations that are misclas-
sified by g, requiring at most

∑M
i=1 I(yig(Ai))dlogMe bits.

We further suppose that the base classifiers are partitioned into K subsets Uk, k =
1, . . . , Q, with each Uk representing the classifiers that have equal complexity or “risk”; this
notion is related to the concept of structural risk minimization (SRM) [40, 39]. The corre-
sponding weighted voting classifiers can then be decomposed into subsets Sj = conv({hu | u ∈⋃j
k=0 Uj}), for j = 1, . . . , K, where conv(U) denotes the convex hull of set U . Each of the

sets Uk corresponds to one of K tables in a code book [40], present at both the sender and
receiver, and an element of the kth table can be identified using dlog |Uk|e bits.

To describe the classifier g, we must specify ‖λ‖0 such table indices, and also specify which
table each element of {u | λu > 0} corresponds to, the latter requiring at most ‖λ‖0 dlogKe
bits. Having thus identified the features, one must finally encode the numerical values of the
separating hyperplane weights λ ∈ [0, 1]M , which we show below requires at most (‖λ‖0 +
1)dlogMe bits to encode a set of affinely independent support vectors. The support vectors
(as in SVM) are data points that lie on one of the hyperplanes given by

∑U
u=1 λuhu(x) = ±1.

Theorem 2.1. For a given set of points represented by the rows of A ∈ RM×N , there is a
two-part encoding of the hyperplane g(x) = λuhu(x) = 0 that adds at most (‖λ‖0 +1)dlogMe
bits to the code length of {u ∈ U | λu > 0}.

Proof. Consider the ‖λ‖0-dimensional space defined by the features in {u ∈ U | λu > 0}.
The number of affinely independent vectors in this space can be at most ‖λ‖0 + 1. Thus
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at most ‖λ‖0 + 1 support vectors are needed to define one of the supporting hyperplanes∑U
u=1 λuhu(x) = ±1 as their affine combination. The parallel plane going through the origin

is
∑U

u=1 λuhu(x) = 0. For any two-part code where the sender and receiver share Ai for
i = 1, . . . ,M , a data point vector can be identified using dlogMe bits.

Using this information, a receiver can decode λ. The total length of the resulting encoded
representation of g is:

L̇[g] = ‖λ‖0 dlogKe+
∑

u∈U :λu>0

dlog
∣∣Uk(u)

∣∣e+ (‖λ‖0 + 1)dlogMe

= ‖λ‖0 (dlogKe+ (1 + 1/ ‖λ‖0)dlogMe) +
∑

u∈U :λu>0

dlog
∣∣Uk(u)

∣∣e (6)

≤ ‖λ‖0 (dlogKe+ 2dlogMe) +
∑

u∈U :λu>0

dlog
∣∣Uk(u)

∣∣e (7)

≤ ‖λ‖0

(
dlogKe+ 2dlogMe+ max

u∈U :λu>0
dlog

∣∣Uk(u)

∣∣e) (8)

where k : U → {1, . . . , K} and ‖λ‖0 ≥ 1. Thus, by (8), minimizing ‖λ‖0 is equivalent to
minimizing an upper bound on the code length L̇[g]. Also, it follows from (7) that there is
a tighter bound on the code length which can be written as a function that is linear in the
support of λ.

3 The sparse minimum disagreement hyperplane

problem

3.1 Problem formulation

The problem of finding a hyperplane g that minimizes the sum of (1) over i = 1, . . . ,M is
known as the minimum disagreement halfspace problem (MDH) [26, 1]. For the 0/1 loss (1),
it turns out that even when a complete description of U is part of the input, the problem of
finding a loss-minimizing hyperplane is NP-hard [26, 7]. Mangasarian [31] and Bennett and
Bredensteiner [8] have proposed heuristic approaches to this problem, based on nonlinear
programming; both of these works refer to a hardness result appearing in the Ph.D. thesis
of Heath [25]. The problem of minimizing the classification error is also known to be a case
of maximum feasible subsystem problem: finding a feasible subsystem containing as many
inequalities as possible from a given infeasible system Ax ≤ b [33].

We would like to extend the minimum disagreement hyperplane problem to penalize
the L0 norm of λ. We call the more general problem including an L0 penalty the sparse
minimum disagreement hyperplane problem (SMDH). In the basic version of the problem,
we penalize all non-zero components of λ uniformly through the same penalty parameter C.
The problem can be stated as:
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Sparse Minimum Disagreement Hyperplane (SMDH)

Input: A matrix H ∈ {−1, 0, 1}M×U of base classifier labels, a corresponding
vector y ∈ {−1, 1}M of sample labels, and a penalty 0 ≤ C < M

Problem: To find a separating hyperplane, as specified by λ ∈ RU
+, such that∑M

i=1 I(yiHiλ < 1) + C ‖λ‖0 is minimized.

Note that we exclude the case that C ≥M because it leads to the trivial solution λ = 0.
We now formulate SMDH as a Mixed Integer Program (MIP), using binary variables µu to
indicate whether feature u is used, and binary variables ξi to indicate whether observation i
is misclassified:

min
ξ,µ,λ

{
M∑
i=1

ξi + C

U∑
u=1

µu
∣∣ (ξ, µ, λ) ∈ QH,y ∩

(
{0, 1}M × {0, 1}U × RU

+

)}
, (9)

where QH,y is a “soft margin” classification polytope defined as

QH,y =

{
(ξ, µ, λ) ∈ [0, 1]M × [0, 1]U × RU

+

∣∣∣∣ diag(y)Hλ+ (MK + 1)ξ ≥ 1

λ ≤ Kµ

}
,

K being a suitably large constant and diag(y) the diagonal matrix with entries y1, . . . , yM .
We show that (9) is correct for all large enough K. Note that SMDH and formulation (9)
always have a feasible solution. Therefore, since the objective value of any feasible solution
to either SMDH or formulation (9) must be a nonnegative integer, each must always have an
optimal solution. Thus, to prove the equivalence of (9) and SMDH, it is sufficient to show
in the following theorem that the optimal solution values of SMDH and (9) are equal.

Theorem 3.1. If K ≥ MM/2, then for any optimal solution (ξ∗, µ∗, λ∗) of (9), it must be
that

M∑
i=1

ξ∗i + C
∑
u∈U

µ∗u = min
λ∈RN+

M∑
i=1

I(yiHiλ ≤ 0) + C ‖λ‖0 =
M∑
i=1

I(yiHiλ
∗ ≤ 0) + C ‖λ∗‖0 .

To prove this result, we will require the following two Lemmas.

Lemma 3.2. If there exists a hyperplane g(x) =
∑

u∈Γ λuxu = 0 that separates S+ ⊆ Ω+

and S− ⊆ Ω−, for some Γ ⊆ U , then there exists λ∗ such that λ∗u ≤MM/2 for all u ∈ Γ, and
g(x) =

∑
u∈Γ λ

∗
uxu = 0 also separates S+ and S−.

Proof. Let ŷ denote the subvector of y with elements S+ ∪ S− and Ĥ the submatrix of H
with rows S+∪S− and columns Γ. The points S+ and S− are linearly separable if the linear
system diag(ŷ)Ĥλ ≥ 1 has a feasible solution. The system of inequalities diag(ŷ)Ĥλ ≥ 1

has a solution if it has a basic feasible solution λ∗. Let B denote a basis corresponding to a
submatrix of diag(ŷ)Ĥ. The basic feasible solution λ∗ must satisfy the linear system

Bλ∗ = 1.
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Now, by Cramer’s rule and the non-negativity constraints, we have

λ∗u =
det
(
B(u)

)
det(B)

≥ 0

where B(u) is the matrix B with column u replaced by 1. Since the rank of B is bounded by
|S+ ∪ S−| ≤M , we have using Hadamard’s bound [13] that

∣∣det
(
B(u))

)∣∣ ≤MM/2. Since B
is a basis, det(B) 6= 0. Thus, by the definition of a determinant and since Bij ∈ {−1, 0, 1},

|det(B)| =

∣∣∣∣∣∑
σ∈Sn

sgn(σ)
n∏
i=1

Biσ(i)

∣∣∣∣∣ ≥ 1,

and the claim follows.

Lemma 3.3. If there exists a hyperplane
∑

t∈Γ λtht(x) = 0 that separates S+ ⊆ Ω+ and
S− ⊆ Ω−, then there exists λ∗ such that

∑
t∈Γ λ

∗
tht(x) = 0 separates S+ and S− and ‖λ∗‖0 ≤

rank(H̃) ≤ |S+|+ |S−|, where H̃ is the submatrix of H with columns Γ and rows S+ ∪ S−.

Proof. Let

Y =

 yi1H̃i1
...

yikH̃ik

 ,
where {i1, . . . , ik} = S+ ∪ S−. By feasibility of λ, the polyhedron{

λ ∈ RT
+

∣∣∣∣∣ ∑
t∈Γ

yiHitλt ≥ 1 for i ∈ S+ ∪ S−
}

(10)

has a vertex corresponding to a basic feasible solution λ∗.
The number of nonzero components of each basic feasible solution is at most the rank of

the constraint matrix, rank(Y ), and rank(Y ) = rank(H̃) since the rank of H̃ will not change
if one simply negates some rows. Thus,

‖λ∗‖0 = |{t ∈ Γ | λ∗t > 0}| ≤ rank(Y ) = rank(H̃) ≤ |S+|+ |S−|.

Proof of Theorem 3.1. By the constraints λ∗u ≤ Kµ∗u of formulation (9),

‖λ∗‖0 ≤
∑
u∈U

µ∗u.

By the constraint diag(y)Hλ∗ + (MK + 1)ξ ≥ 1, it follows that
∑M

i=1 I(yiHiλ
∗ ≤ 0) ≤∑M

i=1 ξ
∗
i . Thus, by optimality of λ for SMDH, it follows that

M∑
i=1

I(yiHiλ ≤ 0) + C ‖λ‖0 ≤
M∑
i=1

I(yiHiλ
∗ ≤ 0) + C ‖λ∗‖0 ≤

M∑
i=1

ξ∗i + C
∑
u∈U

µ∗u. (11)
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We now prove the reverse inequality between the first and last quantities. The feasibility
of λ for SMDH implies the linear separability of the subsets S+ = {i ∈ Ω+ | I(yiHiλ > 0)}
and S− = {i ∈ Ω− | I(yiHiλ > 0)}.

Now by Lemma 3.3, there exists λ′ such that ‖λ′‖0 ≤ |S+|+ |S−| ≤M and λ′ separates
S+ and S−. By the optimality of λ for SMDH, we also have ‖λ‖0 ≤M .

By Lemma 3.2 with Γ = {u ∈ U | λ′u > 0}, there exists λ′′, with λ′′u ≤ MM/2 ≤ K for
all u ∈ U , with the same support as λ′, separating S+ and S−. Thus, |yiHiλ

′′| ≤ MM/2+1

for all i = 1, . . . ,M . Now let

ξ′′i =

{
1 if yiHiλ

′′ < 1

0 otherwise
,

and

µ′′u =

{
1 if λ′′u > 0

0 otherwise
.

Then, for all i ∈ {1, . . . ,M},

yiHiλ
′′ +

(
MM/2+1 + 1

)
ξ′′i ≥ 1.

Thus, (ξ′′, µ′′, λ′′) is feasible for (9), and
∑M

i=1 ξ
′′
i =

∑M
i=1 I(yiHiλ < 1), so, by the optimality

of (ξ∗, µ∗, λ∗),

M∑
i=1

ξ∗i + C
∑
u∈U

µ∗u ≤
M∑
i=1

ξ′′i + C
∑
u∈U

µ′′u ≤
M∑
i=1

I(yiHiλ < 1) + C ‖λ‖0 .

Thus, all the relations in (11) hold with equality, and thus λ∗ is also an optimal solution to
SMDH.

We next show that the continuous relaxation of (9), which can be stated as

min
{∑M

i=1 ξi + C
∑U

u=1 µu | (ξ, µ, λ) ∈ QH,y

}
, (12)

is equivalent to the soft margin formulation (4) with appropriate choices of the penalties
C and D. Formulation (4) is known to be equivalent to the soft margin maximization
formulation (3) by the results of Ratsch et al. [35] and Bennett et al. [9], so that it follows
that (3) is also equivalent to the relaxation of the SMDH problem relaxation (12). The
theorem will also enable us to claim in Section 5 that our continuous relaxation formulation
provides a tightened relaxation of the discrete SMDH formulation (9), by introducing novel
cutting planes for the “soft margin” formulation.

Theorem 3.4. (ξ, λ) is an optimal solution of (4) if and only if (ξ/(MK + 1), λ/K, λ) is
an optimal solution of (12) with penalty C = 1/(D(M + 1/K)).
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Proof. First we show that every feasible solution (ξ, λ) of (4) corresponds to a feasible

solution (ξ/(MK+1), λ/K, λ) of (12) with objective value 1
D(MK+1)

(∑
i=1 Dξi +

∑U
u=1 λu

)
.

Assume (ξ, λ) is a feasible solution of (4). Now,

diag(y)Hλ+ ξ = diag(y)Hλ+ (MK + 1)Iξ/(MK + 1) ≥ 1, (13)

and µ = λ/K imply that (ξ/(MK + 1), λ/K, λ) is feasible for (12).
Letting C = 1/(D(M + 1/K)), the objective value of the solution (ξ/(MK + 1), λ/K, λ)

of (12) is

M∑
i=1

ξi/(MK + 1) +
1

D(M + 1/K)

U∑
u=1

λu/K =
1

D(MK + 1)

(
D

M∑
i=1

ξi +
U∑
u=1

λu

)
. (14)

Since the map (ξ, λ,D) 7→ (ξ/(MK + 1), λ, 1/(D(M + 1/K))) is a bijection (where
µ = λ/K is fixed), and following the equality in (13) and (14), the converse also follows.

In (12), since the nonnegative variables µu have positive objective coefficients, each ap-
pears only in the constraint µu ≥ λu/K, and the objective is being minimized, all optimal
solutions of (12) must satisfy µ = λ/K. The claim then follows since the objective value
of all feasible solutions under the bijective correspondence given by (ξ, λ,D) 7→ (ξ/(MK +
1), λ, 1/(D(M + 1/K))), where µ = λ/K, is scaled by the constant 1/(D(MK + 1)).

The objective function of (9) minimizes misclassification plus a complexity penalty pro-
portional to the number of features used. Thus, the SMDH formulation (9) corresponds
to minimizing an upper bound on the total code length when the features being combined
have equal complexity penalties. However, we may wish to assign different penalties cu to
different features u ∈ U (but most likely use the same cu for all u in the same Uk). Moreover,
the SMDH formulation (9) may have many alternate solutions: even with respect to a fixed
ξ and µ, there may be multiple feasible hyperplanes

∑
u∈U :µu=1 λuhu(x) = 0; we may wish to

distinguish between these hyperplanes on the basis of the margin of separation 0 < ρ ≤ 1.
We therefore generalize our formulation to include penalties that vary with u and to accept
the margin ρ as a parameter; to make this parameterization sensible, we must normalize the
weights λ, which requires an additional constraint. Finally, for reasons that should become
clear in course, we give the formulation with respect to some subset of features Γ ⊆ U :

min

{
M∑
i=1

ξi +
∑
u∈Γ

cuµu

∣∣∣ (ξ, µ, λ) ∈ QH,y,ρ(Γ) ∩
(
{0, 1}M × {0, 1}|Γ| × R|Γ|+

)}
, (15)

where QH,y,ρ(·) is a soft margin classification polytope with a required margin ρ:

QH,y,ρ(Γ) ={
(ξ, µ, λ) ∈ [0, 1]M × [0, 1]|Γ| × R|Γ|+

∣∣∣∣ ∑
u∈Γ yiHiuλu + (1 + ρ)ξi ≥ ρ , i = 1, . . . ,M∑
u∈Γ λu = 1 λ ≤ µ

}
.
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3.2 Computational complexity

The SMDH problem generalizes the MDH problem, so that it is at least as hard to solve
computationally. Specifically, the MDH problem is solved by (9) with C = 0. In the following
we will refer to a solution (ξ, µ, λ) of (9), with C = 0, as an MDH solution. Höffgen, Simon
and Van Horn [26] show that the MDH problem is not possible to approximate within a
factor better than (1 − ε) logM for any ε > 0 unless NP ⊆ DTIME(M log logM), where
DTIME(n) is the class of problems that can be solved in deterministic time n. Arora,
Babai, Stern and Sweedyk [1] improved the inapproximability factor to 2log0.5−εM , making
the weaker assumption that NP * DTIME(Mpoly(logM)). By the restriction of SMDH
with C = 0, the inapproximability result of Arora et al. directly applies. We state in the
following theorem a more general result for SMDH with constant penalties, based on the
inapproximability of MDH [1]. Note that if C ≥ M , then SMDH has the trivial solution
λ = 0 and ξi = 1 for all i ∈ {1, . . . ,M}. We will require the following Lemmas to derive our
inapproximability result:

Lemma 3.5. Given an MDH instance with input H ∈ {−1, 0, 1}M×U , y ∈ {−1, 1}M , and
some constant C, then for all k ≥ dCeM + 1, there exists an O(k poly(M,U)) reduction
to an SMDH instance H ′ ∈ {−1, 0, 1}Mk×U and y′ ∈ {−1, 1}Mk, such that MDH has an
optimal solution (ξ̂, µ̂, λ̂) if and only if SMDH has an optimal solution (ξ∗, µ∗, λ∗), where∑Mk

i=1 ξ
∗
i = k

∑M
i=1 ξ̂i and

∑U
u=1 µ

∗
u ≤M .

Proof. Given the input (H, y) of MDH, and a constant C, construct an instance of SMDH
(H ′, y′), by creating k duplicates of Hi in the matrix H ′, and k duplicates of yi in the vector
y′, for each row Hi of H. Without loss of generality, assume that the rows of H ′ and y′

are indexed such that Hi = H ′i and yi = y′i for i = 1, . . . ,M . Let (ξ∗, µ∗, λ∗) be an optimal
SMDH solution for the input (H ′, y′) with penalty C. Let (ξ̂, µ̂, λ̂) be an optimal solution of
MDH, corresponding to formulation (9) for the input (H, y) with penalty C = 0, and value
zMDH =

∑M
i=1 ξ̂i + 0

∑U
u=1 µ̂u =

∑M
i=1 ξ̂i.

Now, since feasible solutions of MDH and SMDH must always exist, we only need to prove
zMDH =

∑M
i=1 ξ̂i =

∑Mk
i=1 ξ

∗
i /k. Assume to the contrary

zMDH 6=
Mk∑
i=1

ξ∗i /k.

First, we note that we must have zMDH ≤
∑Mk

i=1 ξ
∗
i /k, for otherwise

∑M
i=1 ξ

∗
i < zMDH, which

contradicts the optimality of zMDH. On the other hand, if zMDH <
∑Mk

i=1 ξ
∗
i /k, then

zMDH ≤
Mk∑
i=1

ξ∗i /k − 1 (16)

By Lemma 3.3, since the sets {i ∈ Ω+ | ξ̂i = 0} and {i ∈ Ω− | ξ̂i = 0} are linearly
separable, there exists λ corresponding to a hyperplane that separates {i ∈ Ω+ | ξ̂i = 0}
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and {i ∈ Ω− | ξ̂i = 0}, with ‖λ‖0 ≤M . Let

µu =

{
1 if λu 6= 0

0 otherwise
.

Then the optimal SMDH solution value zSMDH must satisfy

zSMDH =
Mk∑
i=1

ξ∗i + C
U∑
u=1

µ∗u

≤ k
M∑
i=1

ξ̂i + C

U∑
u=1

µu [by optimality of SMDH]

≤ kzMDH + CM

< k (zMDH + 1) [by k ≥ dCeM + 1]

≤
Mk∑
i=1

ξ∗i [by (16)]

≤ zSMDH

From this contradiction, we conclude that zMDH =
∑Mk

i=1 ξ
∗
i /k =

∑M
i=1 ξ

∗
i .

Lemma 3.6. An α(M) approximation factor for SMDH with constant penalty parameter
C, for some α : N+ → R+ implies an α(M(dCeM + 1))β approximation of MDH for some
β ∈ O(1).

Proof. We will reduce and MDH instance (H, y) to SMDH with a constant C using the
reduction of Lemma 3.5, making k = dCeM + 1 duplicates of each row of H and y, in H ′

and y′ respectively.
Suppose there is an α(kM) = α(M(dCeM + 1))-factor approximation algorithm for

SMDH. Let (ξ, µ, λ) and (ξ∗, µ∗, λ∗) denote an SMDH solution of the approximation algo-
rithm and optimal solution, respectively. Let (ξ̂, µ̂, λ̂) denote an optimal MDH solution, and
zMDH denote its value. Without loss of generality we may assume

∑M
i=1 ξ̂i ≥ κ, for a con-

stant κ ∈ N+. Otherwise, we can solve MDH exactly by excluding each subset up to size κ
and finding the corresponding separating hyperplanes by linear programming in polynomial
time. Now,

zMDH =
M∑
i=1

ξ̂i =

M(dCeM+1)∑
i=1

ξ∗i /(dCeM + 1) [by Lemma 3.5 ]

≤

M(dCeM+1)∑
i=1

ξ∗i + C

U∑
u=1

µ∗u

 /(dCeM + 1)

≤

M(dCeM+1)∑
i=1

ξi + C
U∑
u=1

µu

 /(dCeM + 1)
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≤ α(M(dCeM + 1))

M(dCeM+1)∑
i=1

ξ∗i + C
U∑
u=1

µ∗u

 /(dCeM + 1) [by assumption]

≤ α(M(dCeM + 1))

(
(dCeM + 1)

M∑
i=1

ξ̂i + CM

)
/(dCeM + 1) [by Lemma 3.5 ]

≤ α(M(dCeM + 1))(
M∑
i=1

ξ̂i + 1)

≤ α(M(dCeM + 1))(1 + 1/κ)
M∑
i=1

ξ̂i,

which yields an α(M(dCeM + 1))(1 + 1/κ) = α(M(dCeM + 1))β-factor approximation for
MDH, with β ∈ O(1).

Theorem 3.7. The SMDH problem, with a constant C, cannot be approximated to within
any constant factor, assuming P 6= NP.

Proof. By Lemma 3.6 a constant factor approximation for SMDH yields a constant factor
approximation for MDH and thus a contradiction [26, 1].

Theorem 3.8. For any constant penalty C and ε > 0, the SMDH problem cannot be ap-
proximated within a factor of 2log0.5−εM unless NP ⊆ DTIME(Mpoly(logM)).

Proof. By Lemma 3.6, a 2log0.5−εM -factor approximation for SMDH, for some ε > 0, yields
a β2log0.5−ε(M(dCeM+1))-factor approximation for MDH, for some β ∈ O(1). Now, because
C ≤M ,

β2log0.5−ε(M(dCeM+1)) ≤ β2log0.5−εM4

β240.5−ε log0.5−εM ≤ 2log0.5−ε′M

for some 0 < ε′ ≤ ε, M0 ∈ N+ and all M ≥ M0. This is a contradiction with the inapprox-
imability of MDH [1].

The continuous relaxations of models (9) and (15) can be quite weak. First we elaborate
the on the weakness of the relaxation, and then we suggest novel cutting planes for the
purpose of strengthening the relaxation.

4 Relaxing the hard problem and strengthening the

relaxation

The weakness of the continuous relaxations of models (9) and (15) is reflected in their large
integrality gaps. The integrality gap of our MIP formulation of SMDH may be defined as
supH,y z(H, y)/zR(H, y), where z(H, y) and zR(H, y) are the optimal solution values of the
SMDH MIP and its continuous relaxation, respectively; see Vazirani [41].
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In order to show a lower bound for the integrality gap we will consider a particular
construction of a simple SMDH instance with C = 1 and diag(y)H = I (the identity matrix),
meaning that each base classifier covers only a single observation. Since each observation
i ∈ {1, . . . ,M} must be either classified correctly by the single classifier u with yiHiu = 1
and µu = 1, or otherwise ξi = 1, this instance has an optimal integer solution of value M ,
where M of the µu and ξi variables assume a value of one and all of the remaining variables
are zero. The relaxation of MDH, however, has the feasible solution ξi = 1/(MK + 1) for
i = 1, . . . ,M , and µ = 0, with value M/(MK + 1). In Lemma 3.2, we proved a large upper
bound for the required constant K, i.e., that formulation (9) is correct for all K ≥ MM/2.
Smaller values of K that maintain the correctness of (9) may be possible. However, we can
show a lower bound for any constant K that maintains the correctness of the formulation by
constructing the following SMDH instance (different than the simple instance above used to
demonstrate the gap): let

diag(y)H =


1 0 . . . 0
−1 1 0 . . . 0

0 −1
. . . 0
−1 1 0

−1 . . . −1 1

 .

Now, in order to admit the feasible SMDH solution λ1 = 1, λ2 = 3, . . . ,λM−1 = M − 1,
λM = 0, ξ1 = . . . = ξM−1 = 0, ξM = 1 formulation (9) must have K ≥ M(M − 1)/2. Thus,
the integrality gap of SMDH satisfies

sup
H,y

z(H, y)

zR(H, y)
≥ M

M/(M(M(M − 1)/2) + 1)
≥M2(M − 1)/2.

Using the same simple SMDH instance, with C = 1 and diag(y)H = I, we can also show
a large lower bound factor of M for the MIP formulation (15). In the case of (15), due to the
normalization constraint, the relaxation solution may have µu = 1

M
for all u ∈ U , compared

with the integer solution having µu = 1 for all u ∈ U . This instance, therefore, proves the
integrality gap lower bound for (15), with

supH,y z(H, y)

zR(H, y)
≥

∑M
i=1 1∑M

i=1 1/M
= M.

We now consider adding valid inequalities to (15) in order to strengthen its relaxation.
We say that a base classifier h distinguishes between a pair (i, i′) if it classifies them dif-
ferently but classifies at least one of them correctly, e.g., hu(Ai) = yi 6= hu(Ai′). Let
Si,i′ = {u ∈ U | hu(Ai) = yi 6= hu(Ai′)} denote the set of base classifiers that correctly clas-
sify observation i and distinguish it from i′. We consider the following inequality for each
pair of observations (i, i′) ∈ (Ω+ × Ω−) ∪ (Ω− × Ω+):

ξi + ξi′ +
∑

u∈Si,i′∩Γ

µu ≥ 1. (17)
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Intuitively, such a cutting plane implies that either we misclassify at least one of the of the
observations i or i′, or we need to distinguish between the two using at least one of the
distinguishing features in Si,i′ .

Theorem 4.1. The inequalities (17) are valid, that is, they hold for all integer-feasible
solutions of (15).

Proof. Take any (i, i′) ∈ Ω+ ×Ω−. If ξi + ξi′ ≥ 1 then (17) clearly holds. Otherwise, i ∈ Ω+

and ξi = 0 imply that
∑

t∈Γ Hitλu ≥ ρ. Now, ρ > 0 implies that hu(Ai)λu > 0 for some
t ∈ Γ; λu ≥ 0 and hu(Ai) = 1 imply µu > 0. The proof for (i, i′) ∈ Ω− × Ω+ is similar.

In the following, we will denote by A some subset of pairs in (Ω+ × Ω−) ∪ (Ω− × Ω+).
Now, we let

R(A,Γ) =
{

(ξ, µ, λ) ∈ [0, 1]M × [0, 1]|Γ| × R|Γ|+

∣∣∣ ξi + ξi′ +
∑

u∈Si,i′∩Γ µu ≥ 1, ∀(i, i′) ∈ A
}

denote the polyhedron implied by the cutting planes (17) corresponding to the pairs of
observations in A.

As a direct consequence of Theorem 4.1,

QH,y,ρ(Γ) ∩ {0, 1}M × {0, 1}|Γ| ⊆ QH,y,ρ(Γ) ∩R(A,Γ) ⊆ QH,y,ρ(Γ)

Similarly, it can be shown by letting ρ = 1 that the inequalities (17) are valid for (9), so that

QH,y ∩ {0, 1}M × {0, 1}U ⊆ QH,y ∩R(A,U) ⊆ QH,y.

Finally, we note that following work done on characterization of the set cover polytope [3, 15],
or equivalently by applying a special case of Chvatal-Gomory cuts, the inequalities (17) can
be further strengthened by introducing certain inequalities derived from triples of observation
pairs. However, we have not pursued this line of research further.

5 L0-Relaxed Boosting: a boosting formulation with

relaxed L0 complexity penalties

We now describe a boosting algorithm for the continuous relaxation of SMDH, strengthened
by inequalities of the form (17). Our algorithmic approach is similar to Demiriz et al. [17]:
We use column generation to iteratively generate the columns of U as needed. At each
iteration, the set of features is restricted to the subset Γ ⊆ U of the columns that have been
generated so far. At each iteration, the base learner algorithm generates a new feature from
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U \ Γ. Given a current set of features Γ and set of pairs A, we arrive at the relaxation

min
λ,µ,ξ

M∑
i=1

ξi +
U∑
u=1

cuµu (18a)

s.t.:
∑
u∈Γ

yiHiuλu + (1 + ρ)ξi ≥ ρ i = 1, ...,M (18b)∑
u∈Γ

λu = 1 (18c)

ξi + ξi′ +
∑

u∈Sii′∩Γ

µu ≥ 1 (i, i′) ∈ A (18d)

µu − λu ≥ 0 u ∈ Γ (18e)

λu, µu, ξi ≥ 0 u ∈ Γ, i = 1, ...,M (18f)

5.1 Dual formulation, base learning problem, and termination

We next derive the dual formulation of (18) in order to formulate the pricing/base learning
problem. The dual formulation is also useful in proving the algorithm’s termination condi-
tion, which guarantees an optimal solution, or an approximately optimal solution. Let wi,
α, vii′ , and qu correspond respectively to the dual variables (or Lagrange multipliers) of ith

constraint (18b), (18c), constraint (18d) of pair (i, i′), and the uth constraint (18e).

max
w,v,α,q

M∑
i=1

ρwi +
∑

(i,i′)∈A

vii′ + α (19a)

s.t.: ∑
(k,l):i∈{k,l}

vkl + (1 + ρ)wi ≤ 1 i ∈ {1, . . . ,M} (19b)

∑
(k,l)∈A:
k=i∨l=i

vii′ + qu ≤ cu u ∈ Γ (19c)

α +
M∑
i=1

yiĤitwi − qu ≤ 0 u ∈ Γ (19d)

w ≥ 0, qu, vii′ ≥ 0 (i, i′) ∈ A, u ∈ Γ (19e)

Substituting qu = cu −
∑

(i,i′)∈A:Sii′3t
vii′ , which is that largest value of qu that satis-

fies (19c), will preserve all feasible solutions, since choosing qu as large as possible must
satisfy the corresponding inequality (19d), for any given feasible (α,w), and qu does not
appear in the objective or any constraint other than (19c) or (19d). Thus, we can state the
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dual LP of (18) as

max
u,v,α

M∑
i=1

ρwi +
∑

(i,i′)∈A

vii′ + α (20a)

s.t.:
∑

(k,l)∈A:
k=i∨l=i

vkl + (1 + ρ)wi ≤ 1 i ∈ {1, . . . ,M} (20b)

α +
∑

(i,i′)∈A:Si,i′3u

vii′ +
M∑
i=1

yiHiuwi ≤ cu u ∈ Γ (20c)

w ≥ 0, vii′ ≥ 0 (i, i′) ∈ A. (20d)

At each iteration, boosting algorithms invoke a base learning algorithm to find the best
hypothesis to add to the classifier. The base learning problem that arises with our new
formulation (18) involves finding u ∈ U that produces the most violated constraint of the
form (20c), and is similar to the base learning problem of LP-Boost, but involves an additional
weight measure v : (Ω+×Ω−)∪ (Ω−×Ω+)→ R+ corresponding to the Lagrange multipliers
of the constraints (18d); it takes the form

c̄ = min
u∈U

cu −
M∑
i=1

yiHiuwi −
∑

(i,i′)∈A:u∈Sii′

vii′ − α

 , (21)

The minimizer of c̄ can be determined irrespective of the constant α, which may be moved
outside the “min” operation. In the general case, it is unsurprising that the problem (21)
is NP-hard. This fact is confirmed in Section 6 in the special case where the columns of
H correspond to vertices of subcubes of the binary hypercube. Whenever c̄ ≥ 0, the dual
constraints (20c) must be satisfied for all u ∈ U , and the dual LP (20) becomes feasible.
Thus, c̄ ≥ 0 proves optimality of a selection of base classifiers (and columns) Γ ⊆ U , and
defines our termination condition. It is also possible to terminate early while guaranteeing
an approximate solution of the relaxation [30], although in the experiments of Section 7 we
did not find this necessary.

Let us denote the optimal solution value of the SMDH problem (15) by z(Γ), and its
relaxation (18) optimal value by zR(Γ) (for a particular fixed instance (H, y, ρ)). Having
solved the relaxation (18) for a set of columns Γ ⊆ U , it may be possible terminate the
column generation procedure early while guaranteeing a lower bound on the solution value.
The following lower bound is based on a general lower bound commonly used for early
termination of column generation [30].

Suppose b is an upper bound on the number of features in the optimal solution, i.e.,∑U
u=1 µ

∗
u ≤ b for the optimal solution (ξ∗, µ∗, λ∗) of (18), with value zR(Γ). By

Lemma 3.3, a trivial choice is b = M , but it may be possible to find smaller values in
terms of M and c, for example if cu = C ≥ 1 for all u ∈ U , then b = dM/Ce. If c̄ is the
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optimal reduced cost computed by (21), then the optimal solution value can improve by at
most |c̄b|, so that the following bounds are guaranteed for the solution of zR(U):

zR(Γ) + c̄b ≤ zR(U) ≤ zR(Γ). (22)

Further, for the integer optimal solution of the master problem z(U), we can derive a
tighter lower bound when cu are integer for all u ∈ U , namely

dzR(Γ) + c̄be ≤ dzR(U)e ≤ z(U) ≤ ẑ, (23)

where ẑ is any upper bound on z(U). The upper bound ẑ can be computed by simply
rounding up any non-integer variables in the solution (ξ, µ, λ) of (18), or by any other
rounding that maintains feasibility for (18). Note that we can rewrite (15), whenever the
coefficients cu are rational, as an equivalent optimization problem with integer coefficients
cu.

Finally, we note that in order to compute a risk upper bound such as (5), we can use any
feasible rounding of an intermediate solution (ξ, µ, λ), with value û, as an upper bound for
z(U) and thus for the code length ming∈G L̄[y, g].

Algorithm 1 L0-RBoost

1: Input: M ×N matrix A and labels y ∈ {−1, 1}M
2: Output: (ξ, µ, λ)
3: Let Γ← {1, 2}, where h1(Ai) = 1 and h2(Ai) = −1 for all i ∈ {1, . . . ,M}, A ← ∅
4: repeat
5: Solve (18) and obtain the solution (ξ, µ, λ) and Lagrange multipliers (w, v, α)
6: Solve the base learning problem:

u∗ = argminu∈U cu −
∑

(i,i′)∈A:Sii′3u

vii′ −
M∑
i=1

yiHiuwi − α

c̄ = cu∗ −
∑

(i,i′)∈A:Sii′3u∗
vii′ −

M∑
i=1

yiHiu∗wi − α

7: Γ← Γ ∪ {u∗}
8: A ← A∪ {(i, i′) ∈ (Ω +×Ω−) ∪ (Ω− × Ω+) | hu∗(Ai) 6= hu∗(Ai′)}
9: Let V =

{
(i, i′)

∣∣∣ ξi + ξi′ +
∑

u∈Si,i′∩Γ µu < 1
}

10: if c̄ ≥ 0 and V 6= ∅ then
11: A ← A∪ V
12: end if
13: until c̄ ≥ 0 and V = ∅
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5.2 The boosting algorithm

Algorithm 1 is our proposed L0-RBoost algorithm. We generate columns for the primal for-
mulation (18), rather than (equivalently) generating cuts for a dual formulation as suggested
by Demiriz et al. for LP-Boost. An attractive property of the dual formulation is the ease
of finding an initial feasible solution by assigning the observations equal weights wi = 1/M .
In our case, however, we are interested in the integrality of the solution vectors ξ and µ,
so we prefer to work in the primal space. We initialize Γ to contain two columns that are
both “simple” and easy to compute, corresponding to the constant base classifiers: we take
Γ = {1, 2}, where h1(Ai) = 1 and h2(Ai) = −1 for all i ∈ {1, ...,M}. Next, we iterate by
solving the relaxation (18), and then solving a base learning problem (21) to find the best
pair of variables λu and µu to be added. Note that it may be beneficial in practice to add
more than a single column u in each iteration, though we did not experiment with such
strategies. We terminate when the dual becomes feasible, i.e., when (20c) is satisfied for all
u ∈ U , implying an optimal solution.

If the number of observations is not too large, we may simply solve (18) using all possible
cuts, that is, start with A = (Ω+×Ω−)∪ (Ω−×Ω+). The number of possible cutting planes
(17) is 2|Ω+||Ω−|, which is polynomial in M , but may be prohibitively large for some datasets.
In order to handle large input datasets, we dynamically generate the cutting planes; for each
newly added column u, we add the cutting planes (17) that correspond to pairs of positive
and negative observations that are distinguished by u, that is, pairs in the set{

(i, i′) ∈ (Ω +×Ω−) ∪ (Ω− × Ω+) | hu(Ai) 6= hu(Ai′)
}
\ A. (24)

These cutting planes are designed to push up the value of the newly generated variable µu
as close as possible to 1; they might otherwise be as small as λu. Note that, in the interest
of speed, we may choose to add some heuristically determined subset of the possible cutting
planes corresponding to (24), rather than all of them. One approach we have found beneficial
uses a similarity measure between the observation vectors Ai and Ai′ ; we will elaborate on
this idea in Section 7. Finally, before terminating, we make sure to add all remaining
violated cuts in step 11 of Algorithm 1. This step prevents premature termination, and is
especially effective in increasing the value of the variables ξi for any remaining misclassified
observations. Initially, the number of misclassified observations is large, but it drops as the
algorithm progresses; delaying step 11 thus allows fewer cuts to be generated.

5.3 Analysis and margin maximization with L0 relaxation penal-
ties

Algorithm 1 solves a tighter relaxation of the (generalized) SMDH problem than the straight-
forward relaxation that minimizes the L1-norm of λ (i.e., as used by LP-Boost). Alterna-
tively, using any polynomial time algorithm to solve the LP in step 5, since the number of
cuts (18d) is at most |Ω+||Ω−|, the running time of Algorithm 1 can be shown to be poly-
nomial in the dimensions M and U , and the size of the encoding of the coefficients ρ and
c [29].
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A disadvantage of our formulation may be that we may not know how to set the required
margin ρ. An alternative may be to try to maximize the margin within the optimization
problem. Let z(ρ) denote the optimal solution value of (18) with parameter ρ. The following
formulation maximizes ρ subject to a (relaxed) code length penalty proportional to z(ρ):

max
ξ,µ,λ,ρ

{
ρ− β

(
M∑
i=1

ξi +D

U∑
u=1

µu

)
| (ξ, µ, λ) ∈ QH,y,ρ(Γ) ∩R(A,Γ)

}
(25)

Making ρ a variable on both the left and right-hand side of the constraint yiHiλ +
(1 + ρ)ξi ≥ ρ results in a quadratic optimization problem. Alternatively, one may fix the
coefficient 1+ρ on the left-hand side to be a large upper bounding constant such as 2 ≥ 1+ρ.
However, this results in a poorer relaxation of the integer solution. We proceed to show
that (25) can be solved in polynomial time in the input (when the input includes U).

Lemma 5.1. Suppose (ξ, µ, λ) is a feasible solution of (18) with ρ = ρ′ > 0. Then there
exists λ∗ ≥ 0 such that (ξ, µ, λ∗) is feasible for (18), with ρ = ρ′′ ≥M−(M/2+1).

Proof. Let Γ = {u ∈ U | λu > 0}. The feasibility of (ξ, µ, λ) for (15) implies the linear
separability of S+ = {i ∈ Ω+ | ξi = 0} and S− = {i ∈ Ω− | ξi = 0}. By Lemmas 3.2
and 3.3, there exists a λ′ ≥ 0 that separates S+ and S−, satisfies λ′u ≤ MM/2 for all u ∈ U ,
and has ‖λ′‖0 ≤M . We then have∑

u∈Γ

yiHiuλ
′
u +

(
U∑
u=1

λ′u + 1

)
ξi ≥ 1,

for all i ∈ {1, . . . ,M}.
Dividing by

∑
u∈U λ

′
u and substituting the variable λ∗u = λ′uP

u∈U λ
′
u
, we have

∑
u∈U λ

∗
u = 1

and ∑
u∈Γ

yiHiuλ
∗
u +

∑
u∈U λ

′
u + 1∑

u∈U λ
′
u

ξi ≥ 1/
∑
u∈U

λ′u.

Now, letting ρ′′ = 1/
∑

u∈U λ
′
u,∑

u∈Γ

yiHiuλ
∗
u + (1 + ρ′′)ξi ≥ ρ′′.

where ρ′′ = 1/
∑U

u=1 λ
′
u ≥ M−(M/2+1), for all i ∈ {1, . . . ,M}. Thus, (ξ, µ, λ∗) is feasible

for (18), with ρ = ρ′′.

Lemma 5.2. The optimal solution value of (18), z(ρ), is a convex function of ρ.

Proof. Consider the solutions (ξ′, µ′, λ′) with ρ = ρ1 and (ξ′′, µ′′, λ′′) with ρ = ρ2 to (18).
Then, by adding α times the ith constraint (18b) of QH,y,ρ1 and (1−α) times constraint (18b)
of QH,y,ρ1 for α ∈ [0, 1],

αyiĤiλ
′ + α(1 + ρ1)ξ′i + (1− α)yiĤiλ

′′ + (1− α)(1 + ρ2)ξ′′i

= yiĤi(αλ
′ + (1− α)λ′′) + (1 + αρ1 + (1− α)ρ2) ξi ≥ αρ1 + (1− α)ρ2,
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and thus constraint (18b) is feasible for

(ξ̄, µ̄, λ̄) = (αξ′ + (1− α)ξ′′, αµ′ + (1− α)µ′′, αλ′ + (1− α)λ′′)

in (18) with ρ = αρ1 + (1 − α)ρ2. Clearly, the constraints (18c), (18d) and (18e) are also
feasible for (ξ̄, µ̄, λ̄). We then have:

z (αρ1 + (1− α)ρ2) ≤
M∑
i=1

ξ̄i +
U∑
u=1

cuµ̄u

=
M∑
i=1

(αξ′i + (1− α)ξ′′i ) +
U∑
u=1

cu (αµ′u + (1− α)µ′′u)

= αz(ρ1) + (1− α)z(ρ2)

Theorem 5.3. Maximizing the L1 margin subject to a relaxed L0 penalty, as specified by (25),
can be approximated to within a factor of 1 − ε, for any ε > 0, in time polynomial in the
input size M , U , the encoding size of the coefficients c and ρ, and 1/ε.

Proof. By Lemma 5.2 the optimal solution of (18), z(ρ), is a convex function of ρ. Thus,
ρ − βz(ρ) is a concave function of ρ, for any β ≥ 0. By Lemma 5.1, it suffices to consider
ρ within the interval [1/MM/2+1, 1]. We consider approximately maximizing ρ − βz(ρ) by
binary search.

The number of evaluations needed in order to approximate the optimal margin ρ∗ within

1− ε, for any given ε > 0, is log
(

1−M−M/2−1

ε

)
. Each such evaluation can be done by solving

a linear program, which is solvable in time polynomial in M , T , and the encoding size of c
and ρ.

6 Application using Boolean monomial base classifiers

Now, assuming that our data matrix A is binary, we consider a specific class of base classifiers
corresponding to Boolean monomials. Note that any given data matrix A ∈ RM×N ′ can be
binarized using a number of binary attributes that is at most polynomially larger in M and
N ′ than N ′ [12, 23]. A monomial on {0, 1}N is simply a function m : {0, 1}N → {0, 1} of
the form

mJ,C(x) =
∏
j∈J

xj
∏
c∈C

(1− xc), (26)

where J and C are disjoint subsets of {1, . . . , N}. To each monomial (J,C), we associate two
features: a positive feature u+ and a negative feature u−; the corresponding base classifiers
are hu+(J,C)(x) = mJ,C(x) and hu−(J,C) = −mJ,C(x). Boolean monomials also correspond
to subcubes of the binary hypercube. A monomial mJ,C is said to cover (or contain) a

vector x ∈ {0, 1}N if mJ,C(x) = 1. We define the coverage of a monomial mJ,C to be
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Cover(J,C) = {i | mJ,C(Ai) = 1}. Let the positive reward associated with a monomial
(J,C) be

f+(J,C) = w(Ω+ ∩ Cover(J,C))− w(Ω− ∩ Cover(J,C)) +
∑

i∈Ω+∩Cover(J,C)

i′∈Ω−\Cover(J,C)

vii′ ,

and the negative reward associated with (J,C) be

f−(J,C) = w(Ω− ∩ Cover(J,C))− w(Ω+ ∩ Cover(J,C)) +
∑

i∈Ω−∩Cover(J,C)

i′∈Ω+\Cover(J,C)

vii′ ,

where w(S) =
∑

i∈S wi. The base learning problem is then to find (J,C) such that

f(J,C) = max
{
f+(J,C), f−(J,C)

}
− c(|J |+ |C|) (27)

is maximized, where c(k) denotes the complexity penalty of a monomial of order k. Here,
we focus on base classifiers that correspond to Boolean monomials. The problem of finding
a monomial of arbitrary order that maximizes f(J,C) is a generalization of the maximum
monomial agreement problem [28, 18], and thus it trivially follows by the restriction vii′ = 0
for all (i, i′) that the problem is NP-hard. However, in many learning applications, it is
reasonable to bound the order of the monomials by a small constant. Clearly, if the order of
monomials is bounded by a constant K, then the monomial that maximally agrees with the
data can be found in polynomial time by simple enumeration.

The MDL/compression approach discussed in Section 2 suggests one way of determining
c(k): the code book contains K tables, and the table for monomials of order k contains |Uk| =
2k
(
N
k

)
entries. Based on the code length upper bound (7), normalizing by the approximate

logM cost of a misclassified observation, we may define the cost of a Boolean monomial of
order k = |J |+ |C| as:

c(k) =
log
(
2k
(
N
k

))
+ logK

logM
+ κ =

k + log
(
N
k

)
+ logK

logM
+ κ, (28)

where κ is a constant that accounts for the bits that encode the weights λ. We can approxi-
mate the additional cost associated with the term (‖λ‖0 +1)/ ‖λ‖0 in (7), which is associated
with the cost of encoding λ, by choosing κ ∈ [1 + 1/M, 2].

7 Experimental work and discussion

We compare the classification performance of L0-RBoost (Algorithm 1) with LP-Boost with
a Boolean monomial base classifier. The formulation used in LP-Boost is the ν-LP formu-
lation (3), where D = 1

νM
[17, 35]. The parameter ν also corresponds to an upper bound

on the fraction of margin errors, i.e., |{i | ξi > 0}| /M . In our experiments, we consider
base learning problems comprising either of all Boolean monomials of order k = 1, or all
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monomials up to order k = 5. Although the order of monomials that we consider is bounded
by constant, so that the maximum monomial agreement can be solved in polynomial time,
it may be too computationally intensive to enumerate all monomials up to k = 5. There-
fore, in order to find the monomial that best agrees with the data, we adapted our earlier
branch-and-bound algorithm for maximum monomial agreement [19]; see also [23].

In our implementation of Algorithm 1, we have found it beneficial to add only a subset of
the possible cuts in step 8 of the algorithm. From our experiments with binary data matrices
A, we have found a small Hamming distance between the vectors Ai and Ai′ to be a good
indication of the potential of the corresponding cut to tighten the relaxation. Specifically,
for fast processing of the cuts, after adding a base classifier u∗, we scan in quadratic time the
pairs (i, i′) ∈ Ω+×Ω− for which hu∗(Ai) 6= hu∗(Ai′) and add only those cuts corresponding to
pairs whose Hamming distance is less than a fixed factor of the minimum Hamming distance
found.

That we are better able to minimize ‖λ‖0 than the solution of (3), for a given margin
of separation, is suggested by Theorem 4.1. The theorem implies that adding the valid
inequalities (17) should strengthen the “soft margin” formulations (4) and (3), considering
them as continuous relaxations of (9). The LP formulation (3) is known to find sparse
classifiers, but is also sensitive to the choice of the tunable penalty parameter D. By assigning
a small enough penalty D (large ν) in (3), it is possible to find a “degenerate” classifier with
large ρ by assigning many observations to be outliers.

In our experiments with L0-RBoost, we fixed the parameters cu of formulation (18) to
equal the code length penalty of Boolean monomial base classifiers (28). The approximating
constant κ in (28) was set to 1.5. We then investigated the dependence of L0-RBoost and
LP-Boost on the tunable parameters ρ and ν, with respect to classification performance and
sparsity.

Figures 2-6 display the the training accuracy, testing accuracy, and ‖λ‖0 attained by
L0-RBoost and LP-Boost, in relation to the algorithms’ tunable parameters, for monomials
of degree K = 1 or up to K = 5. Each point of the plots corresponds to 10 replications of
10-fold experiment. k-fold experiments involve a partitioning of the dataset into 10 parts,
each of which is used as a test set in an experiment, while the remaining 9/10 of the data
is used to train a classifier. The classification performance results are then averaged over
the total 100 experiments. We can see that for both algorithms, the models selected tend to
overfit the training data for small value of the parameters. The overfitting is most apparent
with LP-Boost and K = 5. The experiments show that, over the entire range of parameter
values, L0-RBoost generalizes well compared with LP-Boost. We also find that L0-RBoost
is robust with respect to a wide range of choices of the parameter ρ. Specifically, even with
very small values of ρ, we obtain classification models that generalize well. In LP-Boost, the
performance of the algorithm is highly sensitive to the choice of the parameter ν. When the
input data is not linearly separable by the set of base classifiers U , as is typically the case
when U is the set of monomial classifiers with K = 1, a constant base classifier with zero
margin (classifying all to be in a single class) becomes optimal. Further, the value of ν that
may be considered too small varies for the different datasets; in Figure 6, the performance
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Figure 2: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the BCW dataset. Each point of the plot is computed by a
averaging the accuracies of a 10-replication, 10-fold experiment.
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Figure 3: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the VOTE dataset. Each point of the plot is computed by a
averaging the accuracies of a 10-replication, 10-fold experiment.
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Figure 4: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the CLVHEART dataset. Each point of the plot is computed
by a averaging the accuracies of a 10-replication, 10-fold experiment.
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Figure 5: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers for the HUHEART dataset. Each point of the plot is computed by
a averaging the accuracies of a 10-replication, 10-fold experiment.
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Figure 6: The classification performance and sparsity of LP-Boost versus L0-RBoost with
monomial base classifiers up to order K = 1 and K = 5 for the SONAR dataset. Each point
of the plot is computed by averaging the accuracies of a 10-replication, 10-fold experiment.
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Figure 7: Test accuracy vs. ‖λ‖0 on the BCW dataset
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Figure 8: Test accuracy vs. ‖λ‖0 on the VOTE dataset

of LP-Boost with K = 1 is poor or mediocre for ν ≤ 0.5, while in Figure 4 we can see that
the classification performance of LP-Boost on the CLHEART dataset, for K = 1, peaks at
ν ≈ 0.4.

Figures 7-11 plot accuracy on the test set versus ‖λ‖0, summarizing the classification
performance of the experiments depicted in Figures 2-6. As in Figures 2-6, each point
corresponds to an average over ten replications of a 10-fold experiment. In general, the ‖λ‖0

values produced by L0-RBoost are bounded within a smaller interval, which is to be expected,
given that the cost coefficients cu and κ are fixed in all of the experiments. However, it is
apparent that the classifiers computed by L0-RBoost are more accurate than LP-Boost’s for
all but a few values of ‖λ‖0.

Table 1 shows the results of experiment using the fixed parameter value ρ = 20/M for five
binarized UCI datasets [2]. The top part of the table compares L0-RBoost with monomial
base classifiers of maximum degree K = 1 or K = 5 to LP-Boost using the same base
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Figure 9: Test accuracy vs. ‖λ‖0 on the CLVHEART dataset
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Figure 10: Test accuracy vs. ‖λ‖0 on the HUHEART dataset
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Figure 11: Test accuracy vs. ‖λ‖0 on the SONAR dataset
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Method Datasets

BCW VOTE CLVHEART HUHEART SONAR
Acc ‖λ‖0 Acc ‖λ‖0 Acc ‖λ‖0 Acc ‖λ‖0 Acc ‖λ‖0

L0RBoost K = 1 0.963 9.1 0.950 6.0 0.846 10.3 0.812 10.4 0.712 7.2
L0RBoost K = 5 0.950 9.4 0.960 3.0 0.833 38.9 0.807 27.4 0.725 21.3
LPBoost K = 1 0.925 3.8 0.957 2 0.774 7.6 0.803 3.8 0.735 8.6
LPBoost K = 5 0.937 5.5 0.957 2.1 0.810 25.3 0.797 11.2 0.734 30.8
SLIPPER 0.959 19.5 0.952 3.9 0.802 14 0.802 14.7 0.674 18.8
SLIPPER [14] 0.958 0.752 0.806 0.745
LPBoost stumps [17] 0.966 0.795 70.8 0.870 85.7
LPBoost C4.5 [17] 0.959 0.959 0.791 0.817

Table 1: Average accuracy and ‖λ‖0 for 20 replications of 10 folds each. The bottom three
rows are as reported for SLIPPER [14] and LP-Boost [17]. Gray cells indicate that the
corresponding data are unavailable from the corresponding publication.

classifiers, and to SLIPPER. These data were obtained by 20 replications of 10-folding, with
all three algorithms using the same training and testing sets. The bottom portion of the
table shows a practical comparison of our results with the previously published results of
LP-Boost with C4.5 and stump decision trees [17], and the previously published performance
of the SLIPPER algorithm [14]. For LP-Boost, Demiriz et al. fine-tuned the parameter ν
for the different datasets, so that we did not expect to match all of their classification results
here. The SLIPPER algorithm uses AdABoost with a heuristic (greedy) monomial base
learner. In order to prevent overfitting, the SLIPPER algorithm uses cross-validation to
simplify (prune) some of the monomials that are initially generated by the greedy algorithm.
We ran the SLIPPER algorithm using the publicly available version with all parameters set
to their default values. The apparent discrepancy in the results of the SLIPPER algorithm
in our runs may be due to the binarization of the datasets in our experiments. Finally, we
expect to be able to improve the performance of L0-RBoost by using cross validation to
optimize the parameter ρ or the penalty parameters cu.

The LP-Boost results reported in the top portion of Table 1 use ν = 0.50 for K = 5,
and ν = 0.56 for K = 1. These LP-Boost parameters were chosen so that the resulting
classifiers were quite sparse, while achieving good classification performance on the SONAR
and CLHEART datasets. The results of Table 1 indicate that L0-RBoost finds classifiers
that are approximately as sparse as the classifiers found by LP-Boost, but usually achieve
superior classification performance. Both algorithms seem to outperform SLIPPER. Some of
the possible deficiencies of L0-RBoost in fact occur with the less restricted class of monomials
K = 5, suggesting that overfitting may be occurring in some cases. The possibility of
overfitting may motivate us to evaluate other types of penalty functions in place of (28),
along with different values of the penalty constants, in future work. Particularly, complexity
measures that can be computed based on the input data, such as Rademacher complexity [5],
could be the subject of further investigation.
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