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ABSTRACT

In previous work (arXiv:0910.5714), we introduced the Privacy Approximation Ratio (PAR)
and used it to study the privacy of protocols for second-price Vickrey auctions and Yao’s
millionaires problem. Here, we study the PARs of multiple protocols for both the disjointness
problem (in which two participants, each with a private subset of {1, . . . , k}, determine
whether their sets are disjoint) and the intersection problem (in which the two participants,
each with a private subset of {1, . . . , k}, determine the intersection of their private sets).

We show that the privacy, as measured by the PAR, provided by any protocol for each
of these problems is necessarily exponential (in k). We also consider the ratio between the
subjective PARs with respect to each player in order to show that one protocol for each of
these problems is significantly fairer than the others (in the sense that it has a similarly bad
effect on the privacy of both players).



1 Introduction

Widespread use of computers and networks in almost all aspects of daily life has led to a
proliferation of sensitive electronic data records and thence to extensive study of privacy-
preserving computation. One fruitful approach is based on the combinatorial characteriza-
tion of privately computable functions put forth by Chor and Kushilevitz [4] and the sub-
sequent communication-complexity analysis of privately computable functions by Kushile-
vitz [11]. Using this approach, one can show, for example, that Yao’s millionaires’ prob-
lem [15] is not perfectly privately computable [4] and that the two-bidder, 2nd-price Vickrey
auction is perfectly privately computable but only at the cost of and exponential amount of
communication by the bidders [3].

Motivated by the fact that functions of interest may not be perfectly privately computable
or may be so only by impractically costly protocols, we began in [8] a communication-
complexity-based investigation of approximate privacy. We formulated both worst-case and
average-case versions of the privacy-approximation ratio (PAR) of a function f in order
to quantify the amount of privacy that can be preserved by a protocol that computes f
and studied the tradeoff between approximate privacy and communication complexity in
protocols for the millionaires’ problem and the two-bidder, 2nd-price Vickrey auction.

Informally, a two-party protocol is perfectly privacy-preserving if the two parties (or
a third party observing the communication between them) cannot learn more from the
execution of the protocol than the value of the function the protocol computes. (This
notion can be extended naturally to protocols involving more than two participants, but
we do not consider the more general notion in this paper.) Chor and Kushilevitz [4, 11]
formalize this notion of privacy using the communication-complexity-theoretic notions of
the ideal monochromatic regions of a function f and the monochromatic rectangles of a
protocol P that computes f . Every two-input function f can be represented by a two-
dimensional matrix A(f) in which A(f)(x1,x2) = f(x1, x2). In the partition of A(f) into
the ideal monochromatic regions of f , the entries A(f)(x1,x2) and A(f)(y1,y2) are in the same
region if and only if f(x1, x2) = f(y1, y2); if f is perfectly privately computable, then there
is a protocol P for f that partitions A(f) into a set of monochromatic rectangles that is
exactly equal to the set of ideal monochromatic regions of f . For functions that are not
perfectly privately computable, our notions of approximate privacy [8] quantify the worst-
case and average-case ratios between the size of an ideal monochromatic region of f and the
corresponding monochromatic rectangle in the partition induced by a maximally privacy-
preserving protocol for f .

In this paper, we apply our PAR framework to the intersection problem (in which party
1’s input is a set S1, party 2’s input is a set S2, and the goal of the protocol is to compute
S1 ∩ S2) and to its decision version disjointness (in which f(S1, S2) = 1 if S1 ∩ S2 = ∅,
and f(S1, S2) = 0 otherwise). From both the privacy perspective and the communication-
complexity perspective, these are extremely natural problems to study. The intersection
problem has served as a motivating example in the study of privacy-preserving computation
for decades; in a typical application, two organizations wish to compute the set of members
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that they have in common without disclosing to each other the people who are members of
only one of the organizations. The disjointness problem plays a central role in the theory and
application of communication complexity, where the fact that n + 1 bits of communication
are required to test disjointness of two subsets of {1, . . . , n} is used to prove many worst-case
lower bounds.

1.1 Our Findings

In applying our PAR framework to the disjointness and intersection problems, we consider
three natural protocols that apply to both problems. We compute the objective and sub-
jective PARs for all three protocols for both problems. The objective and subjective PARs
are exponential in all cases, but we show that the protocol that is intuitively the best is
quantifiably (and significantly) more fair than the others in the sense described below; to do
this, we consider the ratios of the subjective PARs (as described in Sec. 2.3) and argue that
this captures some intuitive sense of fairness. Table 1 in Sec. 3 summarizes our results for
PAR values for the various problems and protocols that we consider here; the corresponding
theorems and proofs are in Secs. 4 and 5.

1.2 Related Work: Defining Privacy-Preserving Computation

In addition to Brandt and Sandholm [3], who used Kushilevitz’s formulation of privacy-
preserving computation to prove an exponential lower bound on the communication com-
plexity of privacy-preserving 2nd-price Vickrey auctions, the privacy work of Bar-Yehuda et
al. [1] is also based on the communication-complexity framework of [4, 11].

Among other approaches to privacy-preserving computation, the most extensively devel-
oped is that of secure, multiparty computation (SMC). As observed by Brandt and Sand-
holm [3], bidders’ privacy in online auctions, which was our original motivation as well as
theirs, could in principle be achieved by starting with a strategyproof mechanism and then
having the agents themselves compute the outcome and payments using an SMC protocol.
This approach has been followed successfully by, for example, Dodis, Halevi, and Rabin [5]
and Naor, Pinkas, and Sumner [14] but, as discussed in more detail [3, 8], can in general
require assumptions about the strategic nature of the computational nodes that do not ap-
ply to bidders in auctions, unproven cryptographic assumptions, or excessive communication
costs. Thus, non-SMC approaches are worth pursuing.

In our study of PAR, we consider protocols that compute exact results but preserve
privacy only approximately. Several works, including [2, 7, 10], have considered protocols
that compute approximate results in a privacy-preserving manner, but they are unrelated to
the questions we ask here. Similarly, definitions and techniques from differential privacy [6]
(and its mechanism-design extensions [9, 13]) are aimed at computing approximate results
and are inapplicable to the problems that we study here.
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1.3 Paper Outline

In Sec. 2, we review the PAR framework of [8] and discuss the ratios of average-case subjective
PARs. Section 3 gives formal definitions of the problems we study, describes the protocols
for these problems that we consider, and gives a summary and discussion of our PAR results.
Sections 4 and 5 give the full statements and proofs of our PAR results. Section 6 discusses
avenues for future work. Appendix A provides additional background about our approach,
and App. B. Sections 2.1 and 2.2 and Apps. A and B are drawn from [8]; we include them
here for the convenience of the reader.

2 Privacy Approximation Ratios

We now review our formulations of Privacy Approximation Ratios (PARs) [8]. We refer
readers to Section A.2 of the Appendix below for a more thorough explanation. We assume
that the reader is familiar with Yao’s model of two-party communication. Readers unfamiliar
with this material should refer to Section A.1 of the Appendix below or, for a more in-depth
treatment, to Kushilevitz and Nisan [12].

Chor and Kushilevitz [4,11] put forth definitions and characterizations of perfectly private
communication protocols. Their framework was further developed in [8], where we introduced
the notion of PARs. In this paper, as in [8], we deal only with deterministic communication
protocols, but the framework can be extended to randomized protocols.

As explained in the previous section, there are natural problems for which perfect privacy
is either impossible or very costly (in terms of communication complexity) to obtain. Privacy-
approximation ratios (PARs) allow us to quantify how well a protocol preserves privacy
relative to the ideal (but perhaps impossible to implement) computation of the outcome of
a problem. Approximate privacy has both worst-case and average-case formulations.

2.1 Worst-Case PARs

Any function f : {0, 1}k×{0, 1}k → {0, 1}t can be visualized as a 2k×2k matrix with entries
in {0, 1}t, in which the rows represent the possible inputs of party 1, the columns represent
the possible inputs of party 2, and each entry contains the value of f associated with its row
and column inputs. This matrix is denoted A(f).

For any communication protocol P for a function f , let RP (x1, x2) denote the monochro-
matic rectangle in A(f) induced by P for the pair of inputs (x1, x2). Let RI(x1, x2) denote
the maximal monochromatic region in A(f) containing A(f)(x1,x2), i.e., the maximal set of
entries in A(f) that contain the value f(x1, x2). Intuitively, RP (x1, x2) is the set of inputs
that are indistinguishable from (x1, x2) to this particular protocol P . Similarly, RI(x1, x2)
is the set of inputs that would be indistinguishable from (x1, x2) to a perfectly private pro-
tocol if such a protocol existed. We wish to quantify how far P is from a hypothetical ideal
protocol in terms of indistinguishability of inputs. Let |R| denote the size or cardinality of
R, i.e., the number of inputs in R.
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Definition 2.1 (Worst-case objective PAR of P ). The worst-case objective privacy-approx-
imation ratio of communication protocol P for function f is

α = max
(x1,x2)

|RI(x1, x2)|
|RP (x1, x2)|

.

We say that P is α-objective-privacy-preserving in the worst case.

Given any region R in the matrix A(f), if party 1’s private input is x, then party 1
can use this knowledge to eliminate all entries in R outside of row x; similarly, party 2 can
eliminate all parts of R outside of the appropriate column. Hence, the other parties should
be concerned not with all of R but rather with what we call the i-partitions of R.

Definition 2.2 (i-partitions). The 1-partition of a regionR in a matrix A is the set of disjoint
rectangles Rx1 = {x1} × {x2 s.t. (x1, x2) ∈ R} (over all possible inputs x1). 2-partitions are
defined analogously.

Definition 2.3 (i-induced tilings). The i-induced tiling of a protocol P is the refinement of
the tiling induced by P obtained by i-partitioning each rectangle in it.

Definition 2.4 (i-ideal monochromatic partitions). The i-ideal monochromatic partition is
the refinement of the ideal monochromatic partition obtained by i-partitioning each region
in it.

If P is a communication protocol for the function f , then we let RP
i (x1, x2) denote

the monochromatic rectangle containing A(f)(x1,x2) in the i-induced tiling for P . Similarly,
we let RI

i (x1, x2) denote the monochromatic rectangle containing A(f)(x1,x2) in the i-ideal
monochromatic partition of A(f).

Definition 2.5 (Worst-case PAR of P with respect to i). The worst-case privacy-approxi-
mation ratio with respect to i of communication protocol P for function f is

α = max
(x1,x2)

|RI
i (x1, x2)|

|RP
i (x1, x2)|

.

We say that P is α-privacy-preserving with respect to i in the worst case.

Definition 2.6 (Worst-case subjective PAR of P ). The worst-case subjective privacy-approx-
imation ratio of communication protocol P for function f is the maximum, over i = 1, 2, of
the worst-case privacy-approximation ratio with respect party i.

Definition 2.7 (Worst-case PAR). The worst-case objective (subjective) PAR for a function
f is the minimum, over all protocols P for f , of the worst-case objective (subjective) PAR
of P .
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2.2 Average-Case PARs

As we showed in [8], good approximate privacy may be just as unobtainable as perfect
privacy if one insists on worst-case bounds. Thus, we also consider average-case PAR, i.e.,
the average ratio between the size of the monochromatic rectangle containing the private
inputs and the corresponding region in the ideal monochromatic partition.

Definition 2.8 (Average-case objective PAR of P ). Let D be a probability distribution over
the space of inputs. The average-case objective privacy-approximation ratio of communica-
tion protocol P for function f is

α = ED [
|RI(x1, x2)|
|RP (x1, x2)|

].

We say that P is α-objective privacy-preserving in the average case with distribution D
(or with respect to D).

We define average-case PAR with respect to i analogously and average-case subjective
PAR as the maximum over i of the average-case PAR with respect to player i. Finally, we
define the average-case objective (subjective) PAR for a function f as the minimum, over all
protocols P for f , of the average-case objective (subjective) PAR of P .

In computing the average-case PAR (either objective or subjective) with respect to the
uniform distribution, we may simplify the previous expressions for PAR values. If each
player’s value space has k bits, then the average-case objective PAR with respect to the
uniform distribution equals

PARk =
∑

(x1,x2)

1

22k

|RI(x1, x2)|
|RP (x1, x2)|

,

where the sum is over all pairs (x1, x2) in the value space. We may combine all of the terms
corresponding to points in the same protocol-induced rectangle to obtain

PARk =
∑
S

|S|
22k

|RI(S)|
|S|

=
1

22k

∑
S

|RI(S)|, (1)

where the sums are now over protocol-induced rectangles S. Note also that the average-case
PAR with respect to i and with respect to the uniform distribution is obtained by replacing
RI(S) with RI

i (S) in Eq. 1.
It may seem that a probability-mass-based definition of average-case PAR should be used

instead, i.e., that the occurrences of set cardinality in the quantity considered in Def. 2.8
should be replaced by the probability measure of the regions in question. However, as we
discuss in [8], such a definition is unable to distinguish between examples that should be
viewed as having very different levels of privacy; by contrast, the definition that we consider
here is able to distinguish between such cases.
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2.3 Ratios of Subjective PARs

Here we introduce a new quantity that we did not consider in [8]. Given some protocol P for
a function f , let PARiD(k) be the average-case subjective PAR of P with respect to protocol
participant i and distribution D on the k-bit input space. We then let

PARmax
D (k) = max

i
PARiD(k) and PARmin

D (k) = min
i

PARiD(k),

where the max and min are taken over all protocol participants. We then define the ratio of
(average-case) subjective PARs to be

PARmax
D (k)

PARmin
D (k)

≥ 1.

Intuitively, in a two-participant protocol, this captures how much greater a negative effect
the protocol P can have on one participant than on the other participant. The average-
case subjective PAR of a protocol P identifies the maximum effect that P can have on the
privacy with respect to a participant. However, it does not capture whether this effect is
similar for both players, and in fact this effect can be quite different. Below we show that, for
both the disjointness and intersection problems, there are protocols that have exponentially
large subjective PARs; for some protocols, the subjective PAR with respect to one player
is exponentially larger than that with respect to the other player, while for one protocol
for each problem, the subjective PARs with respect to the different players differ only by a
constant (asymptotic) factor. We argue that this is an important distinction and that the
ratio of average-case subjective PARs captures some intuitive notion of the fairness of the
protocol. If a protocol has a much larger PAR with respect to player 2 than with respect to
player 1, an agent might agree to participate in a protocol run only if he is assigned the role
of player 2 (so that he learns much more about the other player than the other player learns
about him). Thus, from the perspective of the protocol implementer who needs to induce
participation, protocols with small ratios of average-case subjective PARs would likely be
more desirable.

3 Overview of Problems, Results, and Protocols

We now provide an overview of our PAR results and discuss their significance. We start with
technical definitions of the problems and protocols that we consider here.

3.1 Problems

We define the Disjointnessk problem as follows:
Problem: Disjointnessk
Input: Sets S1, S2 ⊆ {1, . . . , k} encoded by x1 and x2.
Output: 1 if S1 ∩ S2 = ∅, 0 if S1 ∩ S2 6= ∅.
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Figure 1 illustrates the ideal monochromatic partition of the 3-bit value space; inputs for
which S1 and S2 are disjoint are white, and inputs for which these sets are not disjoint are
black.
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Figure 1: Ideal monochromatic partition for Disjointnessk with k = 3.

We define the Intersectionk problem as follows:
Problem: Intersectionk
Input: Sets S1, S2 ⊆ {1, . . . , k}.
Output: The set S1 ∩ S2.

Figure 2 shows the ideal monochromatic partition of the 3-bit value space for Inter-
sectionk. The key at the right indicates the output set. (Here, as throughout this paper,
we encode S ⊆ {1, . . . , k} as bitstring of length k in which the most significant bit is 1 if
k ∈ S, etc., so that 1011 encodes {1, 2, 4} ⊂ {1, 2, 3, 4}; we will abuse notation and identify
x ∈ {0, 1}k with the subset of {1, . . . , k} that it encodes.)
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3.2 Protocols

For each problem, we identify three possible protocols for computing the output of the
problem. We describe these protocols here; in Secs. 4 and 5 we discuss the structure of the
tilings that these protocols induce and illustrate these tilings for k = 1, 2, 3.

Trivial protocol In the trivial protocol, player 1 (w.l.o.g.) sends his input to player 2,
who determines computes the output and sends this back to player 1. This requires the
transmission of k + 1 bits for Disjointnessk and 2k bits for Intersectionk.

1-first protocol In the 1-first protocol, player 1 announces a bit, and player 2 replies with
his corresponding bit if its value might affect the output (i.e., if player 1’s value for this
bit is 1); this continues until the output is determined. In detail, player 1 announces the
most significant (first) bit of x1. After player 1 announces his jth bit, if this bit is 0 and
j < k, then player 1 announces his (j + 1)st bit. If this bit is 0 and j = k, then the protocol
terminates (with, if computing Disjointnessk, output 1). If this bit is 1, then player 2
announces the value of his jth bit. If player 2’s jth bit is also 1, then for Disjointnessk
the protocol terminates with output 0, and for Intersectionk the protocol continues (with
k + 1 − j in the output set); if player 2’s bit is 0 and j < k, then player 1 announces his
(j + 1)st bit, while if j = k, then the protocol terminates.

Alternating protocol In the alternating protocol, the role of being the first player to
announce the value of a particular bit alternates between the players whenever the first
player to announce the value of his jth bit announces “0” (in which case the other player
does not announce the value of his corresponding bit). This continues until the output is
determined. In detail, player 1 starts by announcing the most significant (first) bit of x1.
After player i announces the value of his jth bit, if this bit is 0 and j < k, then the other
player announces his j + 1st bit; if i’s jth bit is 0 and j = k, the protocol terminates (with
output 1 if computing Disjointnessk).

If i’s jth bit is 1 and the other player had previously announced his jth bit (which
would necessarily be 1, else player i would not be announcing his jth bit), then the protocol
terminates with output 0 if computing Disjointnessk, or it continues with the other player
announcing his (j + 1)st bit (and with k + 1− j being part of the output set). If i’s jth bit
is 1 and the other player had not previously announced his jth bit, then the other player
announces his jth bit; if that bit is 0, then player i proceeds as above. If that bit is 1 and
Disjointnessk is being computed, the protocol terminates with output 0; if the bit is 1 and
Intersectionk is being computed, then player i proceeds as above (and k + 1 − j will be
in the output set).
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3.3 Results

Table 1 summarizes our PAR results for the Disjointnessk and Intersectionk problems.
The rows labeled with “All” describe bounds for all protocols for that problem (as reflected
by the inequalities). Asymptotic results are for k → ∞; entries of “—” for bounds on
subjective PARs indicate that we do not have results beyond those implied by the PARs for
specific protocols. For Intersectionk, the results for the trivial and 1-first protocols are
shown together; as shown in Lemma 5.1, these protocols induce the same tiling, so the PAR
results are the same. All of these results are for average-case objective PARs with respect
to the uniform distribution. These include objective and subjective PARs and the ratio of
the subjective PARs.

Problem Protocol Objective PAR Subjective PAR Ratio of
Subj. PARs

Disjointnessk All ≥
(

3
2

)k — —
Trivial ∼ 2k ∼ 2k ∼ 2k

1 First ∼ 2k ∼
(

3
2

)k ∼ 2
k

(
3
2

)k
Alternating ∼ 2k ∼ 3+2

√
2

2

(
1+
√

2
2

)k
∼
√

2

Intersectionk All ≥
(

7
4

)k — —
Trivial/1 First

(
7
4

)k (
3
2

)k (
3
2

)k
Alternating

(
7
4

)k 6
5

(
5
4

)k 3
2

Table 1: Summary of results. Asymptotic results are for k →∞.

3.3.1 Discussion of results for Disjointnessk

All three protocols have the lowest possible average-case objective PAR for Disjointnessk.
They also have average-case subjective PARs that are exponential in k, although the bases
differ. When considering these protocols (and the tilings they induce as depicted in Sec. 4),
however, our intuition is that players are much less likely to participate in the trivial and
1-first protocols (if they do so as player 1) than they are to participate in the alternating
protocol. This is captured by the comparison of the average-case subjective PAR with respect
to the two players in each protocol: In the trivial and 1-first protocols, the subjective PAR
with respect to player 2 is exponentially worse than the subjective PAR with respect to player
1; by contrast, in the alternating protocol the subjective PARs differ (asymptotically) by a
constant factor. We do not have any absolute lower bound for the average-case subjective
PAR for Disjointnessk. However, we conjecture that this grows exponentially.

Conjecture 3.1. The average-case subjective PAR for Disjointnessk with respect to the
uniform distribution grows exponentially in k.
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3.4 Discussion of results for Intersectionk

From a high-level perspective, the PAR results for Intersectionk are very similar to those
for Disjointnessk. As for their Disjointnessk variants, all three protocols have exponen-
tially large average-case objective PAR for Intersectionk; we show that the average-case
objective PAR for Intersectionk is also exponential in k, and we conjecture that this
bound can be tightened to match the 2k asymptotic growth of the average-case objective
PAR for all three of these protocols.

Conjecture 3.2. The average-case objective PAR for Intersectionk is asymptotic to 2k.

All three protocols also have average-case subjective PARs that are exponential in k,
although the bases differ. Our intuition that the alternating protocol is significantly better
is not captured by the average-case objective and subjective PARs, but we again see it
when we consider the ratio of the subjective PARs: In the trivial and 1-first protocols, the
subjective PAR for player 1 is exponentially worse than the subjective PAR for player 2; by
contrast, in the alternating protocol the subjective PARs differ by a constant factor of 3

2
.

We do not have any absolute lower bound for the average-case subjective PAR for Inter-
sectionk. However, as for Disjointnessk, we conjecture that this grows exponentially.

Conjecture 3.3. The average-case subjective PAR for Intersectionk with respect to the
uniform distribution grows exponentially in k.

4 PARs for Disjointnessk

4.1 Structure of Protocol-Induced Tilings

The tiling induced by the trivial protocol is straightforward. For every input S1 6= 0k held
by player 1, there are two monochromatic rectangles in the corresponding row of the input
space: {(S1, S2)|S2 ∩ S1 6= ∅} and {(S1, S2)|S2 ∩ S1 = ∅}. The row corresponding to S1 = 0k

forms a single monochromatic rectangle.
Figure 3 depicts the 1-first-protocol-induced tiling of the 1-, 2-, and 3-bit input spaces.

Each tile is labeled with the transcript produced by the protocol on inputs from that tile;
note that some tiles are depicted as non-contiguous regions. When the input space is depicted
as in Fig. 3 (i.e., with the possible values of S1 and S2 arranged in increasing lexicographic
order from the top-left corner), the tiling of the k + 1-bit input space induced by the 1-first
protocol can be obtained as follows. Let Tk be the 1-first-protocol-induced tiling of the k-
bit input space. The top-left and top-right quadrants of Tk+1 are copies of Tk; in each of
these quadrants, a trace in Tk+1 is the corresponding trace in Tk prepended with 0. The
bottom-left quadrant of Tk+1 is another copy of Tk, with each trace in this part of Tk+1 being
obtained by prepending 10 to the corresponding trace in Tk. The bottom-right quadrant of
Tk+1 is a single rectangle whose trace is 11.

Figure 4 shows the partition of the 1-, 2-, and 3-bit input spaces induced by the alternating
protocol; each induced rectangle is labeled with the corresponding transcript (note that some



– 11 –

11

000

11

10111010

100

00

011011 010010

0011

1011

101011101010

10100

10011100101001110010

1000

01011010100101101010

011 011

01000100

0011001000110010001100100010

0

1110

1S
S

1

2S 2

1
S

S

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

2

1
S

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

0

1

0

11

01

000

011

010

001

111110101100011010001000

111

110

101

10000

10

11100100

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 3: Partition of the value space for k = 1 (top left), 2 (bottom left), and 3 (right) in-
duced by the 1-first protocol for Disjointnessk; each rectangle is labeled with the transcript
output by the protocol when run on inputs in the rectangle.

rectangles appear as non-contiguous regions in the figure). If we denote by Tk the tiling of
the k-bit space induced by the alternating protocol as depicted in Fig. 4, then the bottom-
left quadrant of Tk+1 has the same structure as Tk, with the transcript for a tile in Tk+1

obtained by prepending 10 to the transcript for the corresponding tile in Tk. Each of the top
quadrants has the same structure as the reflection of Tk across the top-left-to-bottom-right
diagonal; the corresponding rectangles in these quadrants actually form single rectangles, and
the associated transcript is obtained by prepending 0 to the transcript for the corresponding
rectangle in Tk. Finally, the bottom-right quadrant is a single rectangle that always has the
transcript 11.

4.2 Objective PAR

4.2.1 Objective PAR for the Disjointnessk problem

Lemma 4.1. In the ideal partition induced by Disjointnessk, at least 2k rectangles are
required to tile the region f−1(1).

Proof. As shown in, e.g., [12], the 2k input pairs (S, {1, . . . , k} \S) form a “fooling set”—no
two of these input pairs can belong to the same monochromatic rectangle.

Corollary 4.2. The average-case objective PAR of Disjointnessk with respect to the uni-

form distribution is at least
(

3
2

)k
.

Proof. The contribution to the sum in Eq. 1 from the protocol-induced tiles S ⊂ f−1(1) must
be at least 2k ·3k, so the average-case objective PAR with respect to the uniform distribution

is at least
(

3
2

)k
.
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Figure 4: Partition of the value space for k = 1 (top left), 2 (bottom left), and 3 (right)
induced by the alternating protocol for Disjointnessk; each rectangle is labeled with the
transcript output by the protocol when run on inputs in the rectangle.

4.2.2 Objective PAR for specific protocols

Lemma 4.3. If a protocol P for Disjointnessk tiles f−1(1) with 2k tiles and tiles f−1(0)
with 2k − 1 tiles, then the average-case objective PAR of P with respect to the uniform
distribution equals

2k − 1 +

(
3

4

)k
.

Proof. By the argument for Cor. 4.2, the contribution to this PAR value from those S ⊂
f−1(1) is

(
3
2

)k
. The contribution to this PAR value from those S ⊂ f−1(0) is 4−k · (4k− 3k) ·

(2k − 1). Summing these together, we obtain the claimed value.

Proposition 4.4. The average-case objective PAR of the trivial protocol for Disjointnessk
with respect to the uniform distribution is

2k − 1 +

(
3

4

)k
.

Proof. The trivial protocol tiles f−1(1) with 2k tiles (one for each set S1 that player 1 might
have), and it tiles f−1(0) with 2k−1 tiles (one for each non-empty set S1 that player 1 might
have). We may then apply Lemma 4.3.

Proposition 4.5. The average-case objective PAR of the 1-first protocol for Disjointnessk
with respect to the uniform distribution is

2k − 1 +

(
3

4

)k
.
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Proof. The protocol-induced tiles of f−1(1) correspond bijectively to the 2k possible protocol
transcripts {0, 10}k, while the protocol-induced tiles of f−1(0) correspond bijectively to the

2k−1 possible protocol transcripts {{0, 10}i × {11}}k−1
i=0 . We may then apply Lemma 4.3.

Proposition 4.6. The average-case objective PAR of the alternating protocol for Disjoint-
nessk with respect to the uniform distribution is

2k − 1 +

(
3

4

)k
.

Proof. The protocol-induced tiles of f−1(1) correspond bijectively to the 2k possible protocol
transcripts {0, 10}k, while the protocol-induced tiles of f−1(0) correspond bijectively to the

2k−1 possible protocol transcripts {{0, 10}i × {11}}k−1
i=0 . We may then apply Lemma 4.3.

4.3 Subjective PAR

4.3.1 Subjective PAR for the trivial protocol

Proposition 4.7. The average-case PAR with respect to player 1 of the trivial protocol for
Disjointnessk is 1. The average-case PAR with respect to player 2 of the trivial protocol
for Disjointnessk, and thus the average-case subjective PAR for the protocol, is

2k − 2

(
3

2

)k
+ 2

(
5

4

)k
∼ 2k (k →∞).

Proof. The 1-partition induced by the trivial protocol is exactly the ideal 1-partition, from
which the first claim follows.

The 2-partition induced by the trivial protocol distinguishes between every pair of distinct
inputs. To compute the average-case PAR with respect to player 2, we use v0

k and v1
k to

denote the contributions (in the k-bit version of the problem) to the sum in Eq. 1 from tiles
in f−1(0) and f−1(1), respectively, so the average-case PAR with respect to player 2 is then
(v0
k + v1

k) /4
k.

Let S be a 2-rectangle induced by the trivial protocol in the k + 1-bit value space (so
S is 1 × 1). If S is in either the bottom-left or the top-left quadrant, then the size of
the ideal rectangle containing S is twice the size of the ideal rectangle that contains the
corresponding induced rectangle in the k-bit value space (i.e., the point in the k-bit space
obtained by omitting the first bit of each input in S when the value space is depicted as in
Fig. 1). This holds regardless of whether S ⊂ f−1(0) or S ⊂ f−1(1). If S is in the top-right
quadrant and S ⊂ f−1(1), then the size of the ideal rectangle containing S is the same as
that of the ideal rectangle containing the corresponding input in the k-bit value space; note
that the bottom-right quadrant does not contain any points in f−1(1). If S is in the top-right
quadrant and S ⊂ f−1(0), then the size of the ideal rectangle containing S is that of the
ideal rectangle containing the corresponding input in the k-bit value space plus 2k; the extra
contribution of 2k is added on for each of the 4k − 3k protocol-induced 2-rectangles in the
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top-right quadrant. If S is in the bottom-right quadrant (so that it is necessarily contained
in f−1(0)), then the size of the ideal rectangle containing S is at least 2k (the part of the
containing rectangle that is in the bottom-right quadrant); the amount by which this exceeds
2k equals the size of the ideal 2-rectangle (for f−1(0)) containing the corresponding point
in the k-bit value space. In particular, each of the 2-rectangles for the k-bit value space is
counted for exactly 2k induced rectangles in the bottom-right quadrant, so the entire excess
contribution is 2k(4k − 3k).

We thus obtain the following recurrences (the terms are grouped by quadrant, clockwise
from the bottom left).

v0
k+1 = 2v0

k + 2v0
k +

(
v0
k + 2k(4k − 3k)

)
+
(
4k · 2k + 2k · (4k − 3k)

)
v0

1 = 1

v1
k+1 = 2v1

k + 2v1
k + v1

k + 0 v1
1 = 5

From these, we obtain v1
k = 5k and

v0
k = 23k − 21+k3k + 5k,

from which it follows that the average-case subjective PAR with respect to player 2 (and
thus for the trivial protocol) is

1

4k
(8k − (2k+13k) + 2 · 5k) = 2k − 2

(
3

2

)k
+ 2

(
5

4

)k
.

Corollary 4.8. If PARtrivial
i denotes the average-case PAR w.r.t. i of the trivial protocol for

Disjointnessk w.r.t. the uniform distribution, then

PARtrivial
2

PARtrivial
1

∼ 2k (k →∞).

4.3.2 Subjective PAR for the 1-first protocol

Theorem 4.9. The average-case PAR with respect to player 1 of the 1-first protocol for
Disjointnessk with respect to the uniform distribution is

k

2
− k

3

(
3

4

)k
+

(
3

4

)k
∼ k

2
(k →∞).

The average-case PAR with respect to player 2 of the 1-first protocol for Disjointnessk with
respect to the uniform distribution is(

3

2

)k
+

1

2

(
5

4

)k
− 1 +

1

2

(
3

4

)k
∼
(

3

2

)k
(k →∞).
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Proof. To compute the average-case PAR with respect to player 1, we use h0
k and h1

k to
denote the contributions (in the k-bit version of the problem) to the sum in Eq. 1 from the
1-induced tiles in f−1(0) and f−1(1), respectively, so the average-case PAR with respect to
player 1 is then (h0

k + h1
k) /4

k.
Let S ⊂ f−1(1) be a 1-rectangle induced by the 1-first protocol in the (k + 1)-bit value

space. If S is in the bottom-left quadrant, the ideal 1-rectangle containing S is the same
size as the ideal rectangle that contains S in the k-bit value space (because there are no
inputs in the bottom-right quadrant in f−1(1)). If S is in one of the top quadrants, then
the ideal 1-rectangle containing S is twice the size of the rectangle containing the rectangle
that corresponds to S in the partition of the k-bit value space. Observe that each point in
the top-left quadrant is in the same rectangle as the corresponding point in the top-right
quadrant; in particular, this means that the induced 1-rectangles in the top two quadrants
correspond bijectively to the induced 1-rectangles in the k-bit value space. S cannot be in
the bottom-right quadrant, which contains no points in f−1(1). We thus have (separating
the contributions of the bottom-left, top, and bottom-right quadrants)

h1
k+1 = h1

k + 2h1
k + 0 = 3h1

k.

By inspection, h1
1 = 1 + 2 + 0 = 3; so h1

k = 3k.
Now let S ⊂ f−1(0) be a 1-rectangle induced by the 1-first protocol in the (k+1)-bit value

space. If S is in the bottom-left quadrant, then the size of the ideal 1-rectangle containing S
equals the size of the ideal 1-rectangle containing S in the k-bit value space plus 2k (because
all of the inputs in the bottom-right quadrant in the same 1-rectangle as S are in the same
ideal 1-rectangle as S). If nH0

k denotes the number of induced 1-rectangles S ⊂ f−1(0) in
the bottom-left quadrant (this is the same as the total number of such 1-rectangles in the
k-bit space), then the total extra contribution is 2knH0

k . If S is in the top two quadrants,
the same arguments as before apply. If S is in the bottom-right quadrant (so that the size
of S is 2k), then the ideal 1-rectangle containing S has size 2k plus the size of whatever part
of the ideal 1-rectangle lies in the bottom-left quadrant. If we sum over all 2k rectangles S
in the bottom-right quadrant, the extra contribution from the bottom-left quadrant equals
the total size of f−1(0) in the k-bit value space, i.e., 4k− 3k. This leads to (again separating
the contributions of the bottom-left, top, and bottom-right quadrants)

h0
k+1 = (h0

k + 2knH0
k) + 2h0

k + ((4k − 3k) + 4k).

By inspection, h0
1 = 1. Because the bottom-left quadrant is a copy of the tiling of the k-bit

space, the top two quadrants have the same number of rectangles, and the bottom-right
quadrant has 2k 1-rectangles, we have

nH0
k+1 = nH0

k + nH0
k + 2k,

with nH0
1 = 1. From this, we obtain

nH0
k = k · 2k−1,
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which we then use to obtain

h0
k =

k

6

(
3 · 4k − 2 · 3k

)
.

Using PAR1 to denote the average-case PAR with respect to 1, we have

PAR1 =
1

4k
(h0

k + h1
k)

=
1

4k

(
k

6
3 · 4k − k

6
2 · 3k + 3k

)
=

k

2
− k

3

(
3

4

)k
+

(
3

4

)k
as claimed.

We now turn to the computation of the average-case PAR with respect to player 2. We
use v0

k and v1
k to denote the contributions (in the k-bit version of the problem) to the sum in

Eq. 1 from the 2-induced tiles in f−1(0) and f−1(1), respectively, so the average-case PAR
with respect to player 2 is then (v0

k + v1
k) /4

k.
Let S ⊂ f−1(1) be a 2-rectangle induced by the 1-first protocol in the (k + 1)-bit value

space. If S is in the bottom-left quadrant, the ideal 2-rectangle containing S is twice as big
as the ideal 2-rectangle that contains S in the k-bit value space. The same holds true if S is
in the top-left quadrant. If S is in the top-right quadrant, the ideal 2-rectangle containing
S is the same size as in the k-bit value space. Finally, the bottom-right quadrant does not
contain any values in f−1(1). Thus, we have (again listing contributions clockwise from the
bottom-left quadrant)

v1
k+1 = 2v1

k + 2v1
k + v1

k + 0 = 5v1
k.

By inspection, v1
1 = 5; so, v1

k = 5k.
Now let S ⊂ f−1(0) be a 2-rectangle induced by the 1-first protocol in the (k + 1)-bit

value space. If S is in the bottom-left or top-left quadrant, the ideal 2-rectangle containing
S is twice as big as in the k-bit value space. If S is in the top-right quadrant, the size of the
ideal 2-rectangle containing S equals 2k plus the size of the ideal 2-rectangle that contains S
in the k-bit value space. Finally, if we sum over all S in the bottom-right quadrant, the total
sizes of the ideal 2-rectangles containing these S is 2k · 2k plus the total size of f−1(0) in the
k-bit value space. Combining all of these relations, and using nV 0

k to denote the number of
2-rectangles in f−1(0) in the k-bit value space, we have

v0
k+1 = 2v0

k + 2v0
k + (v0

k + 2k · nV 0
k ) + (4k + 4k − 3k).

(As above, contributions are grouped by quadrant clockwise from the bottom right.) We
also have

nV 0
k+1 = nV 0

k + nV 0
k + nV 0

k + 2k = 3nV 0
k + 2k.

By inspection, v0
1 = 1 and nV 0

1 = 1. From this, we obtain

nV 0
k = 3k − 2k
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and then

v1
k = −4k +

1

2
3k + 6k − 1

2
5k.

Using PAR2 to denote the average-case PAR with respect to 2, we have

PAR2 =
1

4k
(v0
k + v1

k)

=
1

4k

(
5k + 6k − 1

2
5k − 4k +

1

2
3k
)

=

(
3

2

)k
+

1

2

(
5

4

)k
− 1 +

1

2

(
3

4

)k
as claimed.

Corollary 4.10. The average-case subjective PAR of the 1-first protocol for Disjointnessk
with respect to the uniform distribution is(

3

2

)k
+

1

2

(
5

4

)k
− 1 +

1

2

(
3

4

)k
∼
(

3

2

)k
(k →∞).

Corollary 4.11. If PAR1−first
i denotes the average-case PAR w.r.t. i of the 1-first protocol

for Disjointnessk w.r.t. the uniform distribution, then

PAR1−first
2

PAR1−first
1

∼ 2

k

(
3

2

)k
(k →∞).

4.3.3 Subjective PAR for the alternating protocol

We let PARik denote the PAR w.r.t. i for the alternating protocol for Disjointnessk. We let
h1
k and v1

k be the contributions of f−1(1) to the sums analogous to that in Eq. 1 for objective
PAR, i.e.,

h1
k =

∑
S⊆f−1(1)

|RI(S)| v1
k =

∑
T⊆f−1(1)

|RI(T )|,

where the sum for h1
k is taken over protocol-induced “horizontal” rectangles S (in the induced

1-partition) on which f takes the value 1, and the sum for v1
k is taken over protocol-induced

“vertical” rectangles T (in the induced 2-partition) on which f takes the value 1. Using the
structure of the induced tiling, we may obtain recurrences for h1

k and v1
k as follows.

h1
k = h1

k−1 + 2v1
k−1 + 0 h1

1 = 3 (2)

v1
k = 2v1

k−1 +
(
2h1

k−1 + h1
k−1

)
+ 0 v1

1 = 5 (3)

In each recurrence, the first summand is the contribution from the bottom-left quadrant, the
second summand is the contribution from the two top quadrants, and the third summand
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is the contribution from the bottom-right quadrant. From these recurrences, we obtain

h1
k = 4

5
22k + (−1)k

5
and v1

k = 6
5
22k − (−1)k

5
.

We define h0
k and v0

k analogously to capture the contributions of f−1(0) to the sums under
consideration; we will also keep track of the number of tiles in the 1- and 2-induced partitions
on which f takes the value 0 (the “horizontal” and “vertical” tiles, which we denote as nH0

k

and nV 0
k , respectively).

We start with the following recurrences for nH0
k and nV 0

k .

nH0
k+1 = nH0

k + nV 0
k + 2k nH0

1 = 1

nV 0
k+1 = nV 0

k +
(
nH0

k + nH0
k

)
+ 2k nV 0

1 = 1

From these, we obtain

nH0
k = −2k+1 + (1− 3/(2

√
2)) · (1−

√
2)k + ((1 +

√
2)k · (4 + 3

√
2))/4

nV 0
k = −3 · 2k + (1−

√
2)k · (3/2−

√
2) + (1 +

√
2)k · (3/2 +

√
2)

We obtain the following recurrences for h0
k and v0

k.

h0
k+1 =

(
h0
k + nH0

k · 2k
)

+ 2v0
k +

(
4k + 4k − 3k

)
h0

1 = 1

v0
k+1 = 2v0

k + 2h0
k +

(
h0
k + nH0

k · 2k
)

+
(
4k + 4k − 3k

)
v0

1 = 1

From these, we may obtain

h0
k =

1

20
√

2

(
5 · 2k+1 · (1−

√
2)k · (−3 + 2

√
2) + 5 · 2k+1 · (1 +

√
2)k · (3 + 2

√
2)

+
√

2((−1)k − 7 · 22k+3 + 5 · 3k+1)

)

v0
k =

1

20

(
− (−1)k + 25 · 3k − 21 · 4k+1 − 5 · 2k+1(1−

√
2)k(−3 + 2

√
2)

+ 5 · 2k+1(1 +
√

2)k(3 + 2
√

2)

)
We may now compute the PAR with respect to each of the two players as

PARalt
1 (k) =

h0
k + h1

k

22k
and PARalt

2 (k) =
v0
k + v1

k

22k
.

Theorem 4.12. The average-case PAR with respect to player 1 of the alternating protocol
for Disjointnessk with respect to the uniform distribution is

PARalt
1 (k) =

1

4k+1

(
(−1)k − 22k+3 + 3k+1

+ (4− 3
√

2)(2− 2
√

2)k + (2 + 2
√

2)k(4 + 3
√

2)

)
∼ 4 + 3

√
2

4

(
1 +
√

2

2

)k

(k →∞)
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The average-case PAR with respect to player 2 of the alternating protocol for Disjointnessk
with respect to the uniform distribution is

PARalt
2 (k) =

1

4k+1

(
− (−1)k + 5 · 3k − 3 · 4k+1

+ 2k+1(3− 2
√

2)(1−
√

2)k + 2k+1(3 + 2
√

2)(1 +
√

2)k
)

∼ 3 + 2
√

2

2

(
1 +
√

2

2

)k

(k →∞)

Corollary 4.13. The average-case subjective PAR of the alternating protocol for Disjoint-
nessk with respect to the uniform distribution is

1

4k+1

(
− (−1)k + 5 · 3k − 3 · 4k+1 + 2k+1(3− 2

√
2)(1−

√
2)k + 2k+1(3 + 2

√
2)(1 +

√
2)k
)

∼ 3 + 2
√

2

2

(
1 +
√

2

2

)k

(k →∞)

Corollary 4.14. If PARalt
i (k) denotes the average-case PAR w.r.t. i of the 1-first protocol

for Disjointnessk w.r.t. the uniform distribution, then

PARalt
2 (k)

PARalt
1 (k)

∼
√

2 (k →∞).

5 PARs for Intersectionk

5.1 Structure of Protocol-Induced Tilings

First, we observe that for Intersectionk, the trivial and 1-first protocols induce the same
tiling.

Lemma 5.1. The tilings induced by the trivial and 1-first protocols for Intersectionk are
identical.

Proof. Given two input pairs (S1, S2) and (T1, T2), each of these protocols cannot distinguish
between the pairs if and only if (1) S1 = T1 and (2) S2 and T2 differ only on elements that
are not in S1 = T1.

Figure 5 depicts the tilings of the 1-, 2-, and 3-bit value spaces induced by the trivial and
1-first protocols for Intersectionk. If we denote by Tk the 1-first-protocol-induced tiling
of the k-bit input space, then when we depict Tk+1 as in Fig. 5, the bottom-left quadrant is
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Figure 5: Partition of the value space for k = 1 (top left), 2 (bottom left), and 3 (right)
induced by the trivial and 1-first protocols for Intersectionk; each rectangle is labeled
with the transcript output by the protocol when run on inputs in the rectangle.

10Tk (i.e., the k-bit tiling with 10 prepended to each transcript), each of the top quadrants
is 0Tk, and the bottom-right quadrant is 11Tk.

Figure 6 depicts the tilings of the 1-, 2-, and 3-bit value spaces induced by the alternating
protocol for Intersectionk. If we denote by Tk the alternating-protocol-induced tiling of
the k-bit value space and depict Tk+1 as in Fig. 6, the bottom-left quadrant is 10Tk (i.e., the
k-bit tiling with 10 prepended to each transcript), each of the top quadrants is 0TT

k (i.e.,
the k-bit tiling reflected across the top-left–bottom-right diagonal), and the bottom-right
quadrant is 11Tk.

5.2 Objective PAR

5.2.1 Lower bound

We obtain the following result for the average-case objective PAR of the Intersectionk
problem.

Theorem 5.2. The average-case objective PAR of the Intersectionk problem with respect

to the uniform distribution is
(

7
4

)k
.

Proof. We show that PARk+1 = 7
4
PARk and that PAR1 = 7

4
.

Using Eq. 1, we may write PARk+1 as

PARk+1 =
1

22(k+1)

 ∑
R=f−1(0...)

|RI(R)|+
∑

R=f−1(1...)

|RI(R)|

 , (4)
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Figure 6: Partition of the value space for k = 1 (top left), 2 (bottom left), and 3 (right)
induced by the alternating protocol for Intersectionk; each rectangle is labeled with the
transcript output by the protocol when run on inputs in the rectangle.

where the first sum is over induced rectangles R in which the intersection set does not
contain k+ 1 (i.e., the encoding of the set starts with 0) and the second sum is over induced
rectangles R in which the intersection set does contain this element. Observe that the ideal
monochromatic partition of the region corresponding to inputs in which k + 1 ∈ S1 ∩ S2

(the bottom-right quadrant when depicted as in Fig. 2) has the same structure as the ideal
monochromatic partition of the entire space when only k elements are used. Similarly, the
three regions corresponding to k+1 /∈ S1∪S2 (top-left quadrant), k+1 ∈ S1\S2 (bottom-left
quadrant), and k + 1 ∈ S2 \ S1 (top-right quadrant) all have this same structure, although
each input in these regions belongs to the same monochromatic region as the corresponding
inputs in the other two quadrants.

The first observation allows us to rewrite Eq. 4 as

PARk+1 =
1

4

 1

22k

∑
R=f−1(0...)

|RI(R)|

+
1

4
PARk. (5)

We now turn to rewriting the term in parentheses.
Consider an input (0x1, 0x2) ∈ f−1(0x) (i.e., x, xi ∈ {0, 1}k and x1 ∩ x2 = x) in the top-

left quadrant of the (k + 1)-bit input space (when depicted as in Fig. 2). In any monochro-
matic tiling of this space, (0x1, 0x2) may be in the same tile as at most one of the inputs
(0x1, 1x2) (top-right quadrant) and (1x1, 0x2) (bottom-left quadrant)—if both (0x1, 1x2) and
(1x1, 0x2) were in the same tile, then (1x1, 1x2) ∈ f−1(1x) would also be in this tile, violating
monochromaticity. If ax is the minimum number of monochromatic tiles needed to tile the
region f−1(x) in the k-bit input space, then at least 2ax monochromatic tiles are needed to
tile the region f−1(0x) in the (k + 1)-bit input space. For any x ∈ {0, 1}k, the size of the
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ideal monochromatic region f−1(0x) is 3 times the size of the monochromatic region f−1(x)
in the ideal partition of the input space for k-element sets. Thus the contribution to the
sum (for PARk+1) in Eq. 4 of the rectangles R in f−1(0x) is 6 times the contributions of the
contribution to the sum (for PARk) of the rectangles R in f−1(x). This allows us to rewrite
Eq. 5 as

PARk+1 =
6

4
PARk +

1

4
PARk.

Finally, the ideal partition for the Intersectionk problem with k = 1, shown in Fig. 7,
requires at least 2 tiles for the region (of size 3) corresponding to an empty intersection
and a single tile for the region (of size 1) corresponding to a non-empty intersection. This
immediately gives the initial condition

PAR1 =
1

22
(3 + 3 + 1) =

7

4
.

0 1
0
1

Figure 7: Ideal partition for the Intersectionk problem with k = 1.

5.2.2 Objective PAR for the trivial and 1-first protocols

Proposition 5.3. The average-case objective PAR for the trivial and 1-first protocols for

the Intersectionk problem equals
(

7
4

)k
.

Proof. Consider the tiling Tk+1 of the (k+1)-bit value space induced by these protocols. Any
tile S in Tk has 3 corresponding tiles in Tk+1: the tile whose transcript (in the 1-first protocol)
is 10S, in the bottom-left quadrant; the tile whose transcript is 0S, which spans the top two
quadrants; and the tile whose transcript is 11S, which is in the bottom-right quadrant. The
ideal monochromatic region that contains 0S and 10S (the same region contains both) in the
(k+ 1)-bit value space is 3 times the size of the ideal monochromatic region that contains S
in the k-bit value space; the ideal monochromatic region that contains 11S is the same size
as the ideal monochromatic region that contains S. Thus, we have that PARk+1 = 7

4
PARk.

By inspection, PAR1 = 7
4
, finishing the proof.

5.2.3 Objective PAR for the alternating protocol

Although the recursive tiling structure induced by the alternating protocol is slightly differ-
ent than that induced by the trivial and 1-first protocols, the argument from the proof of
Prop. 5.3 applies essentially unchanged. In particular, even though the structure is different,
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the tiles in Tk+1 corresponding to a tile S in Tk are: one tile in the bottom-left quadrant;
one tile that spans the top two quadrants; and one tile in the bottom-right quadrant. Thus,
we again have PARk+1 = 7

4
PARk. Again, we also have PAR1 = 7

4
, giving us the following

proposition.

Proposition 5.4. The average-case objective PAR for the alternating protocol for the In-

tersectionk problem equals
(

7
4

)k
.

5.3 Subjective PAR

5.3.1 Subjective PAR for the trivial and 1-first protocols

Remark 5.5. The contribution from f−1(∅) is as for Disjointnessk. What about the con-
tribution for f−1(6= ∅)?
Proposition 5.6. The average-case PAR with respect to player 1 of the trivial and 1-first
protocols for Intersectionk is 1. The average-case PAR with respect to player 2 of the

trivial and 1-first protocols for Intersectionkis
(

3
2

)k
.

Proof. The 1-partition induced by the trivial protocol is exactly the ideal 1-partition, from
which the first claim follows.

For the second claim, we let vk be the value of the sum in Eq. 1. Let S be a tile in the
induced 2-tiling of the k-bit input space; we will also use S to denote the 1-first-protocol
transcript that labels S. We now consider the tiles corresponding to S in the induced 2-tiling
of the (k + 1)-bit input space. The tile 10S in the bottom-left quadrant is contained in an
ideal region that is twice as big as the one that contains S—this ideal region contains points
in both the bottom-left and top-left quadrants; the same is true of the tile 0S in the top-left
quadrant. The tile 0S in the top-right quadrant (which is a different 2-induced tile than
the one in the top-left quadrant) is contained in an ideal region that is the same size as the
ideal region containing S—this ideal region does not contain any points in the bottom-right
quadrant. Finally, the tile 11S in the bottom-right quadrant is contained in an ideal region
that is the same size as the ideal region containing S. Thus, we have that vk+1 = 6vk; by
inspection, v1 = 6, so vk = 6k. Note that the average-case PAR with respect to 2 equals
vk/4

k, completing the proof.

Corollary 5.7. The average-case subjective PAR of the trivial and 1-first protocols for In-
tersectionk with respect to the uniform distribution is(

3

2

)k
.

Corollary 5.8. If PARtrivial
i denotes the average-case PAR w.r.t. i of the trivial protocol for

Intersectionk w.r.t. the uniform distribution, and if PAR1−first
i denotes the average-case

PAR w.r.t. i of the 1-first protocol for Intersectionk w.r.t. the uniform distribution, then

PARtrivial
2

PARtrivial
1

=
PAR1−first

2

PAR1−first
1

=

(
3

2

)k
.
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5.3.2 Subjective PAR for the alternating protocol

Proposition 5.9. The average-case PAR with respect to player 1 of the alternating pro-

tocol for Intersectionk is 4
5

(
5
4

)k
. The average-case PAR with respect to player 1 of the

alternating protocol for Intersectionk is 6
5

(
5
4

)k
.

Proof. We let

hk =
∑
S

|RI
1(S)|,

where the sum is taken over all induced 1-rectangles (“horizontal rectangles”) in the k-bit
value space, and we let

hk =
∑
S

|RI
2(S)|,

where the sum is taken over all induced 2-rectangles (“vertical rectangles”) in the k-bit value
space.

Making use of the structure of the tiling, we have that

vk+1 = 2vk + 2hk + hk + vk = 3(vk + hk),

where the summands correspond to the contributions from each quadrant (clockwise from
the bottom-left quadrant). We also have

hk+1 = hk + 2vk + hk = 2(vk + hk),

where the summands correspond to the contributions from the bottom-left, top-two, and
bottom-right quadrants, respectively. By inspection, we have h1 = 4 and v1 = 6; this gives
hk = 4 · 5k−1 and vk = 6 · 5k−1. Denoting by PARalt

i (k) the average-case PAR w.r.t. i of the
trivial protocol for Intersectionk w.r.t. the uniform distribution, we have

PARalt
1 (k) =

hk
4k

=
4

5

(
5

4

)k
PARalt

2 (k) =
vk
4k

=
6

5

(
5

4

)k
as claimed.

Corollary 5.10. The average-case subjective PAR of the alternating protocol for Inter-
sectionk is

6

5

(
5

4

)k
.

Corollary 5.11. If PARalt
i denotes the average-case PAR w.r.t. i of the trivial protocol for

Intersectionk w.r.t. the uniform distribution, then

PARalt
2

PARalt
1

=
3

2
.
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6 Conclusions and Future Work

Our definitions of PARs involve the intuitive notion of the indistinguishability of inputs that
is natural to consider in the context of privacy preservation. Other definitions of PARs
may be appropriate in analyzing other notions of privacy. For example, if there is a natural
notion of “distance” between inputs (as in the examples considered in this paper), one might
prefer protocols that cannot distinguish among a few inputs that are far from each other
to protocols that cannot distinguish among many inputs that are all relatively close. This
necessitates different definitions of PARs and suggests many interesting avenues for future
work.

Starting from the same place that we did, namely [4, 11], Bar-Yehuda et al. [1] provided
three definitions of approximate privacy. We show in [8] that the formulation in [1] is
not equivalent to ours, but there is more to do along these lines. The definition in [1] that
seems most relevant to the study of privacy-approximation ratios is their notion of h-privacy.
Determine when and how it is possible to express PARs in terms of h-privacy and vice versa.

Lower bounds on the average-case subjective PARs for Disjointnessk and Intersec-
tionk would be interesting; as noted above, we conjecture that these are exponential in
k. Our PAR framework should also be applied to other functions and extended to n-party
communication.
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A Perfect Privacy and Communication Complexity

For convenience, we include Sec. 2 of (a revised version of) [8] as the text of this appendix.
It contains the basic definitions of communication complexity and privacy that underlie our
approach to approximate privacy.
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A.1 Two-Party Communication Model

We now briefly review Yao’s model of two-party communication and notions of objective and
subjective perfect privacy; see Kushilevitz and Nisan [12] for a comprehensive overview of
communication complexity theory. Note that we only deal with deterministic communication
protocols. Our definitions can be extended to randomized protocols.

There are two parties, 1 and 2, each holding a k-bit input string. The input of party i,
xi ∈ {0, 1}k, is the private information of i. The parties communicate with each other in
order to compute the value of a function f : {0, 1}k × {0, 1}k → {0, 1}t. The two parties
alternately send messages to each other. In communication round j, one of the parties sends
a bit qj that is a function of that party’s input and the history (q1, . . . , qj−1) of previously
sent messages. We say that a bit is meaningful if it is not a constant function of this input
and history and if, for every meaningful bit transmitted previously, there some combination
of input and history for which the bit differs from the earlier meaningful bit. Non-meaningful
bits (e.g., those sent as part of protocol-message headers) are irrelevant to our work here and
will be ignored. A communication protocol dictates, for each party, when it is that party’s
turn to transmit a message and what message he should transmit, based on the history of
messages and his value.

A communication protocol P is said to compute f if, for every pair of inputs (x1, x2), it
holds that P (x1, x2) = f(x1, x2). As in [11], the last message sent in a protocol P is assumed
to contain the value f(x1, x2) and therefore may require up to t bits. The communication
complexity of a protocol P is the maximum, over all input pairs, of the number of bits
transmitted during the execution of P .

Any function f : {0, 1}k × {0, 1}k → {0, 1}t can be visualized as a 2k × 2k matrix with
entries in {0, 1}t, in which the rows represent the possible inputs of party 1, the columns
represent the possible inputs of party 2, and each entry contains the value of f associated
with its row and column inputs. This matrix is denoted by A(f).

Definition A.1 (Regions, partitions). A region in a matrix A is any subset of entries in A
(not necessarily a submatrix). A partition of A is a collection of disjoint regions in A whose
union equals A.

Definition A.2 (Monochromaticity). A region R in a matrix A is called monochromatic if
all entries in R contain the same value. A monochromatic partition of A is a partition all of
whose regions are monochromatic.

Of special interest in communication complexity are specific kinds of regions and parti-
tions called rectangles, and tilings, respectively:

Definition A.3 (Rectangles, Tilings). A rectangle in a matrix A is a submatrix of A. A
tiling of a matrix A is a partition of A into rectangles.

Definition A.4 (Refinements). A tiling T1(f) of a matrix A(f) is said to be a refinement
of another tiling T2(f) of A(f) if every rectangle in T1(f) is contained in some rectangle in
T2(f).



– 28 –

Monochromatic rectangles and tilings are an important concept in communication-com-
plexity theory, because they are linked to the execution of communication protocols. Every
communication protocol P for a function f can be thought of as follows:

1. Let R and C be the sets of row and column indices of A(f), respectively. For R′ ⊆ R
and C ′ ⊆ C, we will abuse notation and write R′×C ′ to denote the submatrix of A(f)
obtained by deleting the rows not in R′ and the columns not in C ′.

2. While R× C is not monochromatic:

• One party i ∈ {0, 1} sends a single bit q (whose value is based on xi and the
history of communication).

• If i = 1, q indicates whether 1’s value is in one of two disjoint sets R1, R2 whose
union equals R. If x1 ∈ R1, both parties set R = R1. If x1 ∈ R2, both parties set
R = R2.

• If i = 2, q indicates whether 2’s value is in one of two disjoint sets C1, C2 whose
union equals C. If x2 ∈ C1, both parties set C = C1. If x2 ∈ C2, both parties set
C = C2.

3. One of the parties sends a last message (consisting of up to t bits) containing the value
in all entries of the monochromatic rectangle R× C.

Observe that, for every pair of private inputs (x1, x2), P terminates at some monochro-
matic rectangle in A(f) that contains (x1, x2). We refer to this rectangle as “the monochro-
matic rectangle induced by P for (x1, x2)”. We refer to the tiling that consists of all rectangles
induced by P (for all pairs of inputs) as “the monochromatic tiling induced by P”.

Figure 8: A tiling that is not induced by any communication protocol [11]

Remark A.5. There are monochromatic tilings that cannot be induced by communication
protocols. For example, observe that the tiling in Fig. 8 (which is essentially an example
from [11]) has this property.
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A.2 Perfect Privacy

Informally, we say that a two-party protocol is perfectly privacy-preserving if the two parties
(or a third party observing the communication between them) cannot learn more from the
execution of the protocol than the value of the function the protocol computes. (This
definition can be extended naturally to protocols involving more than two participants.)

Formally, let P be a communication protocol for a function f . The communication string
passed in P is the concatenation of all the messages (q1, q2, . . .) sent in the course of the
execution of P . Let s(x1,x2) denote the communication string passed in P if the inputs of
the parties are (x1, x2). We are now ready to define perfect privacy. The following two
definitions handle privacy from the point of view of a party i that does not want the other
party (that is, of course, familiar not only with the communication string, but also with
his own value) to learn more than necessary about i’s private information. We say that a
protocol is perfectly private with respect to party 1 if 1 never learns more about party 2’s
private information than necessary to compute the outcome.

Definition A.6 (Perfect privacy with respect to 1). [4,11] P is perfectly private with respect
to party 1 if, for every x2, x

′
2 such that f(x1, x2) = f(x1, x

′
2), it holds that s(x1,x2) = s(x1,x′2).

Informally, Def. A.6 says that party 1’s knowledge of the communication string passed in
the protocol and his knowledge of x1 do not aid him in distinguishing between two possible
inputs of 2. Similarly:

Definition A.7 (Perfect privacy with respect to 2). [4,11] P is perfectly private with respect
to party 2 if, for every x1, x

′
1 such that f(x1, x2) = f(x′1, x2), it holds that s(x1,x2) = s(x′1,x2).

Observation A.8. For any function f , the protocol in which party i reveals xi and the other
party computes the outcome of the function is perfectly private with respect to i.

Definition A.9 (Perfect subjective privacy). P achieves perfect subjective privacy if it is
perfectly private with respect to both parties.

The following definition considers a different form of privacy—privacy from a third party
that observes the communication string but has no a priori knowledge about the private
information of the two communicating parties. We refer to this notion as “objective privacy”.

Definition A.10 (Perfect objective privacy). P achieves perfect objective privacy if, for
every two pairs of inputs (x1, x2) and (x′1, x

′
2) such that f(x1, x2) = f(x′1, x

′
2), it holds that

s(x1,x2) = s(x′1,x
′
2).

Kushilevitz [11] was the first to point out the interesting connections between perfect pri-
vacy and communication-complexity theory. Intuitively, we can think of any monochromatic
rectangle R in the tiling induced by a protocol P as a set of inputs that are indistinguishable
to a third party. This is because, by definition of R, for any two pairs of inputs in R, the
communication string passed in P must be the same. Hence we can think of the privacy of
the protocol in terms of the tiling induced by that protocol.
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Ideally, every two pairs of inputs that are assigned the same outcome by a function f will
belong to the same monochromatic rectangle in the tiling induced by a protocol for f . This
observation enables a simple characterization of perfect privacy-preserving mechanisms.

Definition A.11 (Ideal monochromatic partitions). A monochromatic region in a matrix A
is said to be a maximal monochromatic region if no monochromatic region in A properly con-
tains it. The ideal monochromatic partition of A is made up of the maximal monochromatic
regions.

Observation A.12. For every possible value in a matrix A, the maximal monochromatic
region that corresponds to this value is unique. This implies the uniqueness of the ideal
monochromatic partition for A.

Observation A.13 (A characterization of perfectly privacy-preserving protocols).
A communication protocol P for f is perfectly privacy-preserving iff the monochromatic
tiling induced by P is the ideal monochromatic partition of A(f). This holds for all of the
above notions of privacy.

B Other Notions of Approximate Privacy

For the convenience of the reader, we repeat the discussion from Sec. 6.1 of [8] (the revision
dated the same date as this report) of other possible approaches to approximate privacy.

By our definitions, the worst-case/average-case PARs of a protocol are determined by

the worst-case/expected value of the expression |RI(x)|
|RP (x)| , where RP (x) is the monochromatic

rectangle induced by P for input x, and RI(x) is the monochromatic region containing A(f)x
in the ideal monochromatic partition of A(f). That is, informally, we are interested in the
ratio of the size of the ideal monochromatic region for a specific pair of inputs to the size of
the monochromatic rectangle induced by the protocol for that pair. More generally, we can
define worst-case/average-case PARs with respect to a function g by considering the ratio
g(RI(x),x)
g(RP (x),x)

. Our definitions of PARs set g(R,x) to be the cardinality of R. This captures the
intuitive notion of the indistinguishability of inputs that is natural to consider in the context
of privacy preservation. Other definitions of PARs may be appropriate in analyzing other
notions of privacy. We suggest a few here; further investigation of these and other definitions
provides many interesting avenues for future work.

Probability mass. Given a probability distribution D over the parties’ inputs, a seem-
ingly natural choice of g is the probability mass. That is, for any region R, g(R) = PrD(R),
the probability (according to D) that the input corresponds to an entry in R. However, a
simple example illustrates that this intuitive choice of g is problematic: Consider a problem
for which {0, . . . , n}×{i} is a maximal monochromatic region for 0 ≤ i ≤ n−1 as illustrated
in the left part of Fig. 9. Let P be the communication protocol consisting of a single round
in which party 1 reveals whether or not his value is 0; this induces the monochromatic tiling
with tiles {(0, i)} and {(1, i), . . . , (n, i)} for each i as illustrated in the right part of Fig. 9.
Now, let D1 and D2 be the probability distributions over the inputs x = (x1, x2) such that,
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for 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, PrD1 [(x1, x2) = (0, i)] = ε
n
, PrD1 [(x1, x2) = (j, i)] = 1−ε

n2 ,
PrD2 [(x1, x2) = (0, i)] = 1−ε

n
, and PrD2 [(x1, x2) = (j, i)] = ε

n2 for some small ε > 0. Intu-
itively, any reasonable definition of PAR should imply that, for D1, P provides “bad” privacy
guarantees (because w.h.p. it reveals the value of x1), and, for D2, P provides “good” privacy
(because w.h.p. it reveals little about x1). In sharp contrast, choosing g to be the probability
mass results in the same average-case PAR in both cases.

...

0 1 n−1

0

1

n

0 1 n−1

0

1

n
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Figure 9: Maximal monochromatic regions (left) and protocol-induced rectangles (right) for an
example showing the deficiencies of PAR definitions based on probability mass.

Other additive functions. In our definition of PAR and in the probability-mass ap-
proach, each input x in a rectangle contributes to g(R,x) in a way that is independent of the
other inputs in R. Below, we discuss some natural approaches that violate this condition,
but we start by noting that other functions that satisfy this condition may be of interest.
For example, taking g(R,x) = 1 +

∑
y∈R\x d(x,y), where d is some distance defined on the

input space, gives our original definition of PAR when d(x, y) = 1 − δx,y and might cap-
ture other interesting definitions (in which indistinguishable inputs that are farther away
from x contribute more to the privacy for x). (The addition of 1 ensures that the ratio
g(RI ,x)/g(RP ,x) is defined, but that can be accomplished in other ways if needed.) Im-
portantly, here and below, the notion of distance that is used might not be a Euclidean
metric on the n-player input space [0, 2k − 1]n. It could instead (and likely would) focus
on the problem-specific interpretation of the input space. Of course, there are may possible
variations on this (e.g., also accounting for the probability mass).

Maximum distance. We might take the view that a protocol does not reveal much
about an input x if there is another input that is “very different” from x that the protocol
cannot distinguish from x (even if the total number of things that are indistinguishable from
x under the protocol is relatively small). For some distance d on the input space, we might
than take g to be something like 1 + maxy∈R\{x} d(y,x).

Plausible deniability. One drawback to the maximum-distance approach is that it
does not account for the probability associated with inputs that are far from x (according
to a distance d) and that are indistinguishable from x under the protocol. While there
might be an input y that is far away from x and indistinguishable from x, the probability
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of y might be so small that the observer feels comfortable assuming that y does not occur.
A more realistic approach might be one of “plausible deniability.” This makes use of a
plausibility threshold—intuitively, the minimum probability that the “far away” inputs(s)
(which is/are indistinguishable from x) must be assigned in order to “distract” the observer
from the true input x. This threshold might correspond to, e.g., “reasonable doubt” or other
levels of certainty. We then consider how far we can move away from x while still having
“enough” mass (i.e., more than the plausibility threshold) associated with the elements
indistinguishable from x that are still farther away. We could then take g to be something
like 1 + max{d0|PrD({y ∈ R|d(y,x) ≥ d0})/PrD(R) ≥ t}; other variations might focus on
mass that is concentrated in a particular direction from x. (In quantifying privacy, we would
expect to only consider those R with positive probability, in which case dividing by PrD(R)
would not be problematic.) Here we use PrD(R) to normalize the weight that is far away
from x before comparing it to the threshold t; intuitively, an observer would know that the
value is in the same region as x, and so this seems to make the most sense.

Relative rectangle size. One observation is that a bidder likely has a very different
view of an auctioneer’s being able to tell (when some particular protocol is used) whether
his bid lies between 995 and 1005 than he does of the auctioneer’s being able to tell whether
his bid lies between 5 and 15. In each case, however, the bids in the relevant range are
indistinguishable under the protocol from 11 possible bids. In particular, the privacy gained
from an input’s being distinguishable from a fixed number of other inputs may (or may not)
depend on the context of the problem and the intended interpretation of the values in the
input space. This might lead to a choice of g such as diamd(R)/|x|, where diamd is the
diameter of R with respect to some distance d and |x| is some (problem-specific) measure
of the size of x (e.g., bid value in an auction). Numerous variations on this are natural and
may be worth investigating.

Information-theoretic approaches. Information-theoretic approaches using condi-
tional entropy are also natural to consider when studying privacy, and these have been used
in various settings. Most relevantly, Bar-Yehuda et al. [1] defined multiple measures based
on the conditional mutual information about one player’s value (viewed as a random vari-
able) revealed by the protocol trace and knowledge of the other player’s value. It would
also be natural to study objective-PAR versions using the entropy of the random variable
corresponding to the (multi-player) input conditioned only on the protocol output (and not
the input of any player). Such approaches might facilitate the comparison of privacy between
different problems.


