DIMACS Technical Report 2010-03
February 2010

Assured Detection of Malware
With Applications to Mobile Platforms

by

Markus Jakobsson! and Karl-Anders Johansson
FatSkunk Inc
590 Mariposa Ave
Mountain View, CA 94041

lPermanent Member

DIMACS is a collaborative project of Rutgers University, Princeton University, AT&T Labs—
Research, Bell Labs, NEC Laboratories America and Telcordia Technologies, as well as
affiliate members Avaya Labs, HP Labs, IBM Research, Microsoft Research, Stevens Institute
of Technology, Georgia Institute of Technology, Rensselaer Polytechnic Institute and The
Cancer Institute of New Jersey. DIMACS was founded as an NSF Science and Technology
Center.

ABSTRACT

We introduce the first software-based attestation approach with provable security properties,
and argue for its importance as a component in a new Anti-Virus paradigm. Our new method
is practical and efficient. It enables detection of any malware (that does not commit suicide
to remain undetected) — even if the infection occurred before our security measure was loaded.
Our new approach works independently of computing platform, and is eminently suited to
address the threat of mobile malware, for which the current Anti-Virus paradigm is poorly
suited.

Our approach is based on memory-printing of client devices. Memory-printing is a novel
and light-weight cryptographic construction whose core property is that it takes notably
longer to compute a function if given less RAM than for which it was configured. This
makes it impossible for a malware agent to remain active (e.g., in RAM) without being
detected, when the function is configured to use all space that should be free after all active
applications are swapped out. Our approach is based on inherent timing differences for
random access of RAM, flash, and other storage; and the time to communicate with external
devices.

Keywords: anti-virus, audit, detection, handset, infection, lightweight, malware, memory-
printing, mobile, post-mortem, retroactive, software-based attestation, timing

1 Introduction

Current Anti-Virus (AV) software works in a similar way to how TSA personnel screens air
travelers as they enter the airport — based on their identification documents, belongings and
behavior. This is a labor-intensive approach that needs constant updates of blacklists, and
in which a single security breach can result in a undetectable (and therefore irrevocable)
damage. After a successful infection, the malware agent can hide from the AV software
and suppress all future alerts — like a rootkit [29] does. Thus, current AV software offers
no guarantees of retroactive security. In the world of malware, this is worrisome, given the
near-infinite number of ways in which malware can be obfuscated to avoid initial detection
[28]. As it comes to mobile malware, an added problem is that it is too costly — in terms of
system resources — to deploy traditional anti-virus software. Keeping with our analogy, this
is similar to how it would be too expensive to deploy TSA personnel for each taxi, bus, and
other form of public transportation.

This paper introduces a new Anti-Virus paradigm for which we can offer guarantees of
security that are backed by proofs. We are assured detection of malware — including yet-
unknown strains — even if the detection algorithm is loaded after the infection occurs!. To
achieve this, we depart from the traditional approach of screening events, and instead audit
the memory state of the device, comparing this centrally to the expected device state and
to whitelists of good programs. Any discrepancy is evidence of corruption. An analogy of
our approach is that of an air marshal that at given time intervals demands of all travelers
to take a step out on the wing, reporting to an authority on the ground who was there,
providing them evidence that the plane is empty — and first then, allows everybody to come
in again. Our solution works even if the air marshal was delivered to the plane after takeoff.

To avoid forged “all clear” reports produced by malware agents wishing to avoid detection,
we introduce the notion of device memory-printing — a form of fingerprinting of device
contents, whose security guarantees are derived from the time it inherently takes to access
memory of various types. It is different from previous timing-based attestation methods
(e.g., [23, 24]), and does not suffer their limitations and vulnerabilities [4].

Our contribution. In contrast to the traditional software-centric approach to malware
defense, we leverage knowledge of the hardware specifics to achieve our security guarantees.
Supported by knowledge of bounds of how long it takes to read from and write to RAM, flash
memory and other storage resources, we describe an algorithm that transforms the memory
contents to a state that is then reported to a central authority. This process is carefully
timed by this authority. In order to remain on the device, a malware agent either has to
be active in RAM or modify legitimate programs in RAM, flash or other storage. Doing
the former, we show, introduces significant delays to generate the output expected from our
algorithm, and doing the latter causes immediate detection when the memory contents are
inspected.

To avoid detection, a malware agent would have to quickly evaluate a given function of
the entire memory contents of the corrupted device. To hide active code — which must take

IThis paper deals with detection only, and not removal, which is an orthogonal issue.

S —

up space in RAM — the malware agent either has to compute the expected contents of the
cells it occupies, store these values elsewhere, or have the function results — or parts thereof
— computed by an external device. Our solution is designed in a way that guarantees that
any of these cheating strategies must take notably longer to carry out than the “legitimate”
evaluation of the function. These guarantees are based on known physical limitations of the
hardware used.

Our solution is based on a non-homomorphic function with a memory access strategy
that severely — and inherently — increases the delays associated with accessing flash memory.
It also uses periodic re-keying to avoid outsourcing of the entire task to a fast, external
processor.

Our solution relies on the central authority being able to identify communication as
coming from the intended client device, and to communicate securely with it. This can be
achieved using a SIM card whose contents cannot be cloned (by a malware agent); or by a
trusted path, such as what can be afforded by a physical communication link.

The estimated time for the software attestation is on the order of a minute. The camera-
ready version will report on the results from an ongoing Android implementation of the
proposed method, and will provide exact information on the time it takes perform an audit.

Outline. We begin by reviewing the related work (section 2). We then describe our as-
sumptions and outline our approach (section 3), and detail the possible adversarial behavior
(section 4). This is followed by an overview of relevant hardware characteristics (section 5).
In section 6, we provide a detailed description of our solution. We argue why our solution
is secure (section 7). We conclude and overview ongoing and future work in section 8. In
the Appendix, we provide proof details and a detailed description of hardware parameters
of importance.

2 Related Work

It is believed that less than 50% of networked computers have up-to-date AV protection
[20], and that 12-25% are infected by malware [1, 7]. Malware is often used to circumvent
other security measures (see, e.g., [9]). To many consumers, security against malware is
complex and frustrating, and the concerns make many hesitant to engage in mobile commerce
activities [10]. Yet, without good technical solutions, users do not manage their security well
[16]. The threat is expected to be aggravated within 2-3 years as smartphones become the
dominant computing platform [11, 26]. It is commonly believed that malware authors will
target smartphones in earnest when this happens [12, 19, 18|.

Windows machines currently receive around a hundred updates a day, to account for close
to forty thousand new and unique malware instances a day. The problem is escalating [15] as
organized crime is moving in [5, 17, 25]. Since resource constrained devices will be strained
to just receive updates at a pace matching the appearance of new malware varieties — and
drained by performing the associated computation — it is clear that today’s AV paradigm
will not address the problem. Progress in battery developments does not promise to solve

-3 -

this problem. Consequently, there is an increased need for lightweight AV protection, e.g.,
using centralized detection [14, 13, 21].

Whereas centralized threat detection can easily be built for some services, such as email
and SMS; it is harder where connections may be encrypted or where the threats use Bluetooth
to propagate [3]. One approach is to log all events on the client, and audit the logs remotely.
Whereas a straightforward approach would be vulnerable to logs being tampered with by the
malware agent, it is possible to use cryptographic audit techniques to address this problem
[14]. The question remains of what types of events to log, though, and how to detect malware
whose attack vectors makes it difficult to log in an efficient manner. Attacks relying on buffer
overflow, for example, pose the thorny problem that whereas it is not realistic to log all
activity, it may be difficult to know what activity can be ignored. An alternative approach,
as we propose herein, is to audit state instead of events.

Gratzer and Naccache [8] proposed to write a pseudo-random string to a smart card, and
then read it back and verify it in order to obtain an assurance that the device is not pre-loaded
with undesirable code. Their security guarantees hinge on the fact that pseudo-random
strings cannot be compressed — at least not a whole lot. While we also write pseudo-random
strings to memory, our security guarantees do not rely on the difficulty to compress the
pseudo-random strings, but on the time it takes to compute or access them. While similar at a
high level, the solutions differ not only in terms of the underlying security guarantees, but also
in terms of the achieved functionality. For example, Gratzer and Naccache’s solution does not
address situations in which client devices are able to communicate with their surroundings
while being audited, but we do. Finally, and due to the fact that they communicate the
entire pseudo-random string to the client device, and not a seed as we do, their solution
is only practical for client devices with very limited amounts of memory. Otherwise, the
bandwidth limitations associated with typical devices make the verification process too slow
to be practical.

Seshadri et al. [23] propose a timing-based approach to heuristically assess the integrity of
legacy computers. They compute a keyed checksum of the code that computes the checksum.
(In contrast, we compute a checksum on all but our checksum code.) Their checksum is not
only a function of the checksum code, but also of the program counter, the data pointer,
and of CPU condition codes. A verifier determines whether the code was tampered with
based on the result of the checksum computation and the time it took to perform it. After
the checksum code has been established not to have been tampered with, control is handed
over to a function that scans the entire device. In contrast to our solution, their solution
does not protect against fast, external attackers that help an infected device perform the
verification. Also, given their heuristic approach, they are not able to provide any security
proof but instead argue how a collection of tried attacks were successfully detected.

Seshadri et al. [24] also propose a timing-based approach to scan embedded devices. Their
solution does not address devices that can communicate with their surroundings (other than
with the verifying device), and is therefore not suitable to address malware on typical mobile
devices, such as smartphones. Some vulnerabilities of their solution were recently pointed
out by Castelluccia et al. [4]; these are based on the fact that the audit code could be written

in a more compact manner.

Dwork, Goldberg and Naor [6] introduced the notion of memory-bound functions, i.e.,
functions whose time to compute depend more on the bus (and memory) speed of a device
than on its processor speed. This was used to create so-called medium hard functions, with
applications to spam prevention and, in general, access control of valuable resources. We
introduce a new type of memory-bound function, which we refer to as a memory-printing
function. It has the property that the speed to evaluate it depends strongly on the type,
quantity and location (i.e., internal or external) of memory used. This allows us — using a
timing-based approach — to ascertain that only fast internal memory is accessed when the
function value is computed, and that no flash or other memory is used. This helps us create
assurances of what processes are active at the time of the memory audit.

3 Overview

The security of our solution rests on two important assumptions:

Assumption 1: Secure device communication. We assume that the verifying party
has some way of ascertaining that the device to be audited is in fact the device it interacts
with?. We also assume that the verifying party can send data securely to the audited device,
e.g., in a way that cannot be eavesdropped.

This can be achieved using encryption / authentication using a device-specific key, embed-
ded in a SIM card. This key would be used to decrypt incoming messages and authenticate
outgoing traffic, but cannot be read by malware.

It can also be achieved using a physical assurance that the correct device is being audited
— e.g., requiring wired connection of the client device to the verifying agent or a trusted
proxy thereof.

Assumption 2: Code optimality. We assume that the memory-printing algorithm is
written in a near-optimal manner in terms of its footprint and execution speed, and that
any modifications of the algorithm would make it notably slower to execute. For general
software, this is not a meaningful assumption to make; however, given the simplicity of our
memory-printing algorithm, it is quite realistic.

Definition: Free RAM. Our malware detection algorithm is implemented as a kernel /algorithm
monolith that is stored in the instruction cache (where it fits in its entirety). It has an as-
sociated working space that is located in the data cache (and registers.) All other RAM?
space is referred to as free RAM — whether it actually is free or not.

What is done: The malware detection algorithm involves the following steps on the client
machine:

2Note that we make no assumptions regarding whether an infected client device outsources part of the task
assigned to it by the verifying party; this will be clarified onwards.
3The cache is typically implemented using RAM, and is considered as being part of it herein.

—5—

1. Setup I: Swap out the contents of free RAM to flash, and perform a setup for the
memory-printing (detailed in section 6.)

2. Setup II: Receive a cryptographic seed from the verifying party, and overwrite free
RAM with the output of a pseudo-random function using this seed.

3. Memory-printing I: Receive a cryptographic seed from the verifying party, and use
this to key a non-homomorphic function whose output is written to all free RAM.
We detail this step in section 6. This process is timed by the verifier, both in its
entirety and for shorter intervals. The verification is based on partial results that are
transmitted to the verifier, where they are checked.

4. Memory-printing II: Receive a cryptographic key from the verifying party, and
compute a keyed cryptographic hash [2, 22] of the entire memory contents, reporting
the resulting value to the verifying party. This process is also timed by the verifier. The
verifier compares the received value to a locally computed keyed hash of the expected
contents.

5. Policy: Execute the verification policy. This could involve reporting* the memory
contents of the client device to the verifying party, or the execution of any task that
should preferably be run in a safe environment. This may be done using whitelisting or
blacklisting approaches, and may involve the use of heuristics to scan the swap space
and secondary storage in general. The implementation of the policy is beyond the scope
of this paper, as we only deal with how to assert the absence of active malware herein.

6. Restore: Restore RAM state by loading the contents that were swapped out during
setup 1.

In addition, the client machine will report state information from its computation in steps
(3) and (4) at time intervals set by the verifying machine, and obtain updates of the seed
resp. key used to compute these functions. These updates will be generated by the verifying
party, and communicated to the client device on an as-needed basis.

The verifying machine will verify that the correct results — both final function value and
partial results — are reported, and that these values are reported within acceptable time
bounds.

Why it is done: Step 1 enables the restoration of context after the verification has com-
pleted. Step 2 simplifies the synchronization of state between the client and verifier at the
same time as it provides random content later to be accessed and modified.

In step 3, free RAM is filled with a pseudo-random string that depends on keys obtained
from the verifier at regular intervals. This function takes notably longer to execute if it is
modified to use flash instead of RAM.

4This does not have to be done by communicating the entire memory contents to the verifying party; instead,
only descriptions of changes since the last audit have to be communicated.

Figure 1: The figure illustrates the principles of memory-printing. All fast memory is ac-
cessed in a pseudo-random order, with a sequence of reads and writes to the accessed po-
sitions. The gray memory portion is used by malware, which will stop itself from being
overwritten in order to survive. Later on, a keyed hash of the entire fast memory is com-
puted. For this result to be correct, the “intended” contents of the grey portion have to be
stored in secondary memory or recomputed on the fly, either of which causes a notable delay.
That alerts the verifying server of the infection. The way memory is accessed intentionally
causes dramatic slowdowns if flash is used instead of RAM. Additional techniques are used
to cause dramatic slowdowns if external, wireless resources are used to store or compute
needed values.

In step 4, the verifying party is given assurance that steps 2 and 3 were performed cor-
rectly, based on a function of the string computed in step 3, and the time it takes to compute
this function. (We note that the timings will typically be performed over a lossy network
with variable latency; this will be taken into consideration when the security determination
is made.)

If the verification (of both results and timings) succeeds, then the verifier knows that
there is no active malware on the client. Therefore, the result of the verification policy in
step 5 is known to be valid, as it cannot have been tampered with. In step 6, the state from
step 1 is restored.

The periodic timing checks bring assurance that the computation is performed fast
enough. In particular, it guarantees that the pseudo-random string is truly stored in RAM
(as opposed to the slower flash), and that the reported results are not computed by an
external fast computer.

The use of frequent re-keying incurs round-trip communication delays for any externally
supported communication. Namely, to make outsourcing possible, the malware agent would
have to forward the seed / key updates to the external device, which would introduce a
measurable delay. The exact delay depends on the latency of the network, but we will
pessimistically assume that the delays are as short as they typically get on the given type of
network.

An implementation note. To minimize the footprint of our malware detection algorithm,
we can let the code consist of two components; one loader and one variable algorithm segment.

-7 -

The task of the loader is to load algorithm segments from non-RAM storage, and hand over
control to the loaded algorithm segment. After an algorithm segment has completed, it
hands back the control to the loader. We will see the importance of this later.

We note that the techniques described above do not guarantee that the correct monolith
kernel is run. Malware may, for example, suppress the entire execution of the audit code.
However, the associated silence will be indicative of infection.

4 Adversarial Strategies

The malware agent needs to do one out of two things to remain resident on an infected
machine. It either (a) has to remain active in RAM or swap space, or (b) modify legitimate
programs, data or configurations of the client device to allow the malware agent to gain
control after the audit process has completed.

To remain undetected in RAM, the malware agent needs to cause the verifier to accept
the memory-printing computation, which requires that the correct responses are produced
within the correct time bounds. Alternatively, to modify contents of secondary storage
without being detected, the malware agent could corrupt the reporting of state (step 5 of
the solution, as described in section 3). This requires being active in RAM at the time of step
5, whether as a unique process or as part of a corrupted version of the detection monolith
kernel.

Therefore, both of the adversarial approaches above — (a) and (b) — require the malware
agent to remain active in RAM and produce the right results within the right time bounds.
The principal approaches a malware agent can take to achieve this are as follows:

Strategy 1: Outsource storage. The malware agent can rely on non-RAM storage or
external storage to store (at least) the portion of the pseudo-random string generated in step
3 that was intended to be stored where the agent resides. The computation of the partial
results used to time the execution would then be modified to use the outsourced storage
instead of the space where the malware agent resides. In particular, a malware agent could
use flash instead of RAM when computing parts of the memory-printing function.

Note that the malware agent does not need to maintain the same memory access structure
as what is intended in the memory-printing function: What normally would have mapped to
one and the same page or block could be stored in different pages or blocks, if this decreases
the expected turn-around time. It also does not have to write back data to the cell where
it came from, but can temporarily write it elsewhere, only to combine data later on. This
may be beneficial for the adversary to attempt in order to avoid the delays associated with
rewriting an entire flash block (see Appendix A.)

Strategy 2: Compute missing data. Instead of outsourcing storage of portions of the
pseudo-random string, the malware agent can store a modified representation of this string
(e.g., compressed or missing portions of the string). It can then attempt to reconstitute
relevant portions of the string as they are needed during the computation of the temporary

-8 —

values (step 3, detailed onwards) and the keyed hash (step 4). Since the malware agent has
the seed from which the pseudo-random string is generated, it can use this — or later states
— to regenerate required portions of data.

Apart from the computational delay this causes, it is also severely complicated by the
fact that memory writes implicitly destroys old state.

Strategy 3: Outsource computation. A malware agent can forward relevant data to
an external device, which we will assume has infinite® computational power and unlimited
storage. The external device will receive data from the client device and compute the values
that need to be reported to the verification authority, feeding these values to the malware
agent on the infected client device.

We will pessimistically assume that the communication channels available to the client
device will be used in an optimal manner to communicate data between the client device
and the external colluding device.

Strategy 4: Modify detection code. A malware agent can attempt to replace the
monolith kernel code of the detection algorithm with modified code. This malicious code
may be designed to suppress reports of compromised memory contents, or contain a hook
for malware code to be loaded after the audit completes. The malware agent may attempt
to incorporate these changes in the legitimate monolith kernel code without taking up more
space by swapping out or compressing portions of this code, loading or unpacking it again
as it is needed.

5 Hardware Characteristics

In this section, we will review the distinguishing characteristics that describe the different
memory and network types of relevance; this is done in the context of the algorithm described
in the next section. We provide a more detailed exposé in Appendix A.

Memory access. We use the term chunk to refer to the minimum amount of data that
can be sent on the memory bus. For the Android G1 phone and many other computing
devices, a chunk is 32 bits. We may sometimes refer to the chunk as a 32-bit chunk for
clarity. We are concerned with the time it takes to read and then write such a 32-bit chunk
to various types of memory. Here, the locations for the read/writes are selected in a manner
that intentionally does not allow an amortization of costs over consecutive operations.

On an Android G1, we have estimated the following access times (please refer to Appendix
A for details and assumptions): It takes 5ns to read or write a 32-bit chunk it the data is in
RAM cache, and 20ns to read or write if in regular non-cached RAM. Reading from on-board
NAND flash using non-standard methods could theoretically be performed in approximately
1 ps (50x RAM time) and a write an be performed in approximately 2us (100x RAM time).

5Tt is evident that these assumptions are not realistic; more reasonable assumptions, however, will only weaken
the adversary’s chances of avoiding detection. We make these assumptions to simplify the analysis of the
attack and its likely chances of success.

-9 —

If a block needs to be erased prior to writing the chunk, an additional 2ms penalty is added,
totally dominating the write time. Faster external SD cards (30MB/s read/write) could -
again, theoretically - allow for a chunk to be read/written in 133ns (6-7x RAM time) while
maintaining the 2ms penalty for block erase.

Thus, when accessed in the manner we do, we see that access to RAM is dramatically
faster than any of the alternatives available to an adversary. For more details, we refer to
Appendix A.

Radio usage. The one-way latency time to communicate a basically empty UDP packet
(header only) over Bluetooth is 15ms; over a local WiFi network 7ms; using 3G (WCDMA /HSDPA)
80ms. Note that out of the typical 80ms latency for 3G, the Time Transmit Interval (TTT)
is about 2-10ms. This can be thought of as the latency seen between the handset and the
cell tower. 4G/LTE is estimated to have total latency of only 5ms.

Early estimates indicate that we can send a short UDP packet every 5-10ms over 3G.
The camera-ready version will include a more detailed analysis of network throughput.

The algorithm in our proposal does not use WiFi or Bluetooth, and therefore swaps out
the platform code to support these features. However, we must consider the possibility that
a malware agent blocks this in order to be able to take advantage of fast, local wireless
communication.

The shortest possible roundtrip time for external wireless communication — given optimal
conditions — is currently 14ms for a small packet using WiFi on a local network.

6 Our Solution

In the following, we will describe how memory-printing works. We will first focus on the
description of the memory-filling technique. We will then describe how the periodic timing
is performed.

6.1 Filling Fast Memory

We will now describe a memory-printing function that satisfies the requirements needed to
detect the various forms of adversarial abuse. It will be used to fill free RAM. (It can also be
used to fill other types of fast memory, should these come to compare with RAM in terms
of access times in the future.)

Setup and Memory-printing. In order to fill free RAM with a pseudo-random string,
there are two main steps:

1. First, a setup function is run. (For practical reasons, this is done as part of step 1,
as described in section 3.) This determines the random order of memory accesses to
be made by the memory-printing function, using a seed obtained from the verifier to
generate pseudo-random values. The table is stored in flash, and the program space
used by the setup function is cleared after the setup completes.

— 10 —

Chunk
Page
Block

Figure 2: The figure illustrates how memory-printing is performed. A pseudo-random se-
quence is XORed in to free RAM in a pseudo-random order; later, a keyed hash of the entire
contents of RAM is computed. Even though RAM does not use blocks and pages, we can
divide it into “virtual” blocks and pages, corresponding to those of flash. Note that we do
not access consecutive chunks in a page or block — this makes the access slow in flash, but
still fast in RAM.

2. Second, the memory-printing function is used to fill all free RAM. Its execution is
timed, both from beginning to end and in shorter intervals.

These functions are detailed below. Machine code for the Android for the two last functions
is provided in Appendix B; the instruction count for these functions is of important to assess
the runtime of the memory-printing. (Real timings will also be provided in the camera-ready
version.)

Parameters. Let number_chunks be the number of chunks in RAM, which is 2%° (= 128 MB
/ 32 bits) for the G1 phone. We assume that the micro-code and its working space are located
in the part of RAM with highest-numbered addresses®. We let chunks_taken be the number
of chunks they use. Moreover, free_chunks is the difference between number_chunks and
chunks_taken, i.e., the number of chunks that free RAM consists of. Finally, chunks_per_block
is the number of chunks contained in a flash block, equaling 32768 (=128kB/ 32 bits) for
the G1 phone.

Setup function

% Generates the permuted order of RAM accesses

% Outputs a vector named position

where < 0

for j < 0 to free_chunks -1
% mot occupied, so no need to jump to other chunk:
jumplk] < 0

for j < 0 to free_chunks -1

8This is a simplification to simplify the description; in reality, the working space would be in the data cache,
and the code in the instruction cache.

— 11 —

% select a new random position but avoid same block:

where <— (where + random|[chunks_per_block, free_chunks - chunks_per_block]) mod free_chunks
% also avoid already taken positions:

where < where + jump[where] mod free_chunks

% and store the result:

position[j] <— where

% this chunk is now taken, and should be avoided:

jump|where] «— jump|where+1 mod free_chunks| +1

Memory-printing function

% Fills RAM with a random string

state < 0

for j < 0 to free_chunks -1
% modify_memory(x,y) XORs the value y
% into the xth chunk position of RAM.
modify_memory(position[j],next_chunk)

next_chunk function
% Returns next chunk
state <— contents of the RAM chunk with location (state + seed) mod number_chunks.

About the computation of new chunks. The memory-printing function calls the func-
tion next_chunk. This function returns a pseudo-random chunk of bits that will be XORed
in to the selected memory position. The function next_chunk computes a new state and an
output from an old state, using a keyed non-homomorphic function. As a concrete example,
and as described above, we can let the output be the contents of the RAM memory cell at a
position determined by the previous output and the seed. We use a modulo number_chunks
in the computation of state in the next_chunk routine. Using the modulo free_chunks instead
would guarantee that only pseudo-random content, and no code values, were used to offset
memory values in free RAM. However, doing so would double the time to execute an iteration
of the loop, as it is a more complicated modulo to compute. Occasionally using program
code and data as offsets is estimated not to introduce any vulnerability — especially since
the adversary cannot anticipate when this will be done.

Note here that a given state or output cannot be computed from an initial state using
random access. Instead, it requires iterated application of the function.

Code optimality. Given that unused code is erased from RAM, the application footprint
at the time of the memory-printing is very small. It consists of (a) the code for the memory-
printing function and next_chunk functions (see Appendix B); (b) one page of position values;
(c) a routine that communicates with the verifier; and (d) a short loader routine to be run
after each phase of the the memory-printing has completed. This minimality is what makes
Assumption 2 realistic.

Bad for flash. We note that the above memory access structure causes hits to different pages
for each access. This will dramatically increase the cost of a flash-bound computation in
comparison to the RAM-bound alternative available to the honest execution of the algorithm.

- 12 —

Execution time. Based on the time to execute the inner loop (see Appendix B), the time to
perform memory-printing for a typical smartphone (such as the G1) will be approximately
one minute. While this is significantly more demanding that traditional AV approaches,
it would only be run occasionally (such as when the device is at rest, potentially as it is
being charged.) This would limit the degree to which the detection would affect the user
experience. However, and as noted briefly in section 8, ongoing work offers hope that faster
memory-printing algorithms are possible to devise.

6.2 Performing Timing

The verifying party times the execution of steps 3-4 of section 3. This is done to identify
attempts to outsource storage; compute missing data; and outsource computation.

loop iterations

Y TS

flash page load

A A

begin time end time begin time

new seed

Figure 3: For each round of the loop of the memory-printing, a small number of RAM
accesses are made, but no flash accesses. At regular intervals, a new page of RAM positions
to modify is read from flash, replacing the previous such page. These scheduled flash accesses
do not cause timing delays, as they are known by the verifier, and the timing intervals can be
set accordingly. However, “unwanted” flash accesses (i.e., those that are made only by the
malware agent) will be detected, as they make the timely reporting impossible. New seeds
are dispensed by the SIM card, who receives encrypted lists of seeds and discloses these one
by one, after receiving the triggering state information from the handset.

The verifying party will obtain checkpoint state information from the client device at
frequent intervals, whose starting and ending points are set by the verifying party. (There
can be more than one seed update per time interval, if needed, and the disclosure time can be
pseudo-random.) As shown in figure 3, this is done in a way that avoids having intentional
flash accesses (to load new pages of position vector elements) be counted as delays.

The seed values and associated triggering values are generated by the external verifier,
and sent to and decrypted by the SIM card. The checkpoint state information received from
the handset is compared with the triggering values, and if two values match, the associated
seed value is disclosed to the handset.

The computation can be timed by an external entity, such as the external verifier, or a
proxy thereof — e.g., the base station that the handset interacts with. To lower the impact

— 13 —

of latency variance, the timing can be performed by the SIM card. This can be achieved by
maintaining a counter on the SIM card, increasing it by one in a loop while waiting for the
next value (so-called C-APDU) from the handset, and recording the value of the counter for
each such C-APDU7. At the end of the computation, the entire vector of checkpoint values
and associated counter values would be authenticated and sent to the external verifier.

7 Security Analysis

We will now assess the security of our proposed approach by reviewing each of the adversarial
strategies.

Defending against adversarial strategy 1 — outsource storage. Recall that on the
G1, each cache access takes 5ns, while each other RAM access takes 20ns. For each iteration
of the loop in the memory-printing function, three memory accesses are made from RAM.
One of these (loading the position value) is to cache, whereas the other two most likely are
not to cache, but to general RAM. Therefore, these memory accesses take at most 45ns.

Based on the sample memory-printing machine code described in Appendix B, the ex-
ecution of each iteration involves 32 cycles, and excluding the memory accesses mentioned
above, is estimated to take 35ns. (Recall that the code resides in the instruction cache.)

This results in a total duration of 80ns per iteration of the loop for the legitimate execu-
tion. We do not count the occasional access to flash to load a new page of position values,
since this is not inside the timing interval; see figure 3.

Now, let us consider the additional delay incurred by a malware agent that causes a
flash access. Under optimal conditions, and using a modified flash reader (see section 5 and
Appendix A), one read access may be possible to perform in 1us for internal flash and 133ns
for fast, external flash. For the internal write, the delay is 2us, whereas the external write
to fast flash remains 133ns.

The above assumes that the malware agent modifies how flash is read /written. This may
not be feasible to do, and is unlikely to be practical. If the malware agents reads flash in a
“normal” way, the delays are considerably longer.

The above delay is in addition to the time to execute the code, which we pessimistically
assume will not take any longer than the legitimate code. Thus, the extra delay is approx-
imately 166% of the time to execute an entire loop iteration in the worst-case situation
(external, fast flash with modified reading/writing).

If there were no variance in network latency, this would always be detected. However,
since the 3G Time Transit Interval is 2-10ms (see section 5), it is clear that a 133ns delay is
not possible to identify by an external verifier. (However, to reduce the variance due to TTI,
the execution of the time-printing can be synchronized with the transfer of the transport
block set. For simplicity, we do not do that herein.)

"This cannot be done using standard Java Cards as they only let SIM card applications remain active between
a C-APDU and the resulting response, or R-APDU. However, modified Java Cards and proprietary operating
system cards can perform this task.

- 14 —

Therefore, we identify the duration not only of single timing intervals, but of several
consecutive intervals, too. The reason is that delays caused by adversarial flash reads will
not vanish over several observations, but noise due to latency variance will. We note that
the malware agent has to send a large number of accessed to flash — maybe on the order of
256 times, corresponding to a 1kB resident code size. Thus, in this example situation, the
accumulated delay would be around 34ms for each report packet. This would be trivially
detected.

The camera-ready version will include a statistical analysis of how many observations are
necessary to detect an adversarially caused delay with certainty.

We observe that there are clear time-space tradeoffs for malware authors. Long malware
may be able to make reprogrammed, fast flash accesses, but at the cost of larger code
size. This translates into a greater number of flash hits, as a bigger program space has to be
“defended” by the malware agent. In contrast, short malware is less likely to be able to make
advanced flash reads, in which case the flash accesses will be longer. This is particularly so
for any approach that is so simple that it does not avoid flash block writes. We refer to
Appendix A for more details on timing estimates for these scenarios.

Defending against adversarial strategy 2 — compute missing data. Assume that
the malicous code and its working space takes ¢ chunks of free RAM. It may also use space
assigned to our monolith kernel, and space in flash, but that is irrelevant here.

As soon as the setup routine has been run, the malware agent knows when each cell of
free RAM will be modified. However, it will not know what values these cells will be modified
with, since that depends on the seed values used. It will learn what memory cells values will
be read from — and what these values are — very close to the time when the access to its
space would be made.

Consider a moment when a given chunk that belongs to the malware agent’s code and
data space is about to be written. The malware agent has to stop this from happening, or it
will be overwritten. However, it must also later be able to retrieve the value that would have
been stored in the chunk to be written. It has two options: either (a) it stores information
about the address of the chunk that contains the value to be XORed in, or (b) it stores that
value. (In addition, it must store some state information from the pseudo-random generator
used to initially overwrite free RAM, but we ignore that for now.)

Case 1: First, imagine a malware agent that always uses option (a), storing the address of
the cell that contains the value. Recall that the malware agent cannot know, a priori, what
these addresses are, and therefore, will not know whether their contents will be modified
later on or not. If the malware agent stores the address to a chunk whose contents will be
modified as a result of later operations, then it will retrieve the wrong value when it needs
to generate the value of the chunk.

Since the malware agent cannot move itself in an opportune manner to avoid this — it
does not know where to move to until it is too late — we see that this will result in an
incorrect output for a given chunk with a 50% probability. Given that the malware agent
takes up ¢ chunks, the probability of success is only 1 — 27¢. For any c larger than, say, 40,

— 15 —

this is not a meaningful attack. At the same time ¢ = 40 corresponds to a 160 byte malware
space (code and data), which is shorter than what is reasonable to even protect itself from
being overwritten — much less to carry any payload.

Case 2: Imagine then a malware agent that always uses option (b) and stores the value
needed. However, since the value it needs to store takes 32 bits, the malware code would
have to add one chunk to its data space for each chunk it wants to “protect”. This is not
possible since these new chunks of data space will also have to be protected.

Case 3: Finally, imagine a malware agent that uses option (a) when the cell will not later be
overwritten, but option (b) otherwise. To be able to achieve this, the malware agent clearly
has to know whether the address that the value should be read from has been re-written
already or will be re-written. It needs to know this for a large fraction of addresses — close to
1. This cannot be stored in free RAM, as it would take up close to é of free RAM. Therefore,
it has to be stored in flash, and as a result, each time a chunk of the malware agent’s space
is about to be written, one flash access will be incurred. (Preloading is not meanigful due
to the unpredictable memory access order.) Being required to access flash therefore incurs
the same cost as strategy 1 — outsource storage — which we know will be detected.

Defending against adversarial strategy 3 — outsource computation. According to
assumption 1, it is not possible for the adversary to cut the client device out of the loop.
Therefore, without considering the variance of latency due to TTI, we see that the one-way
latency incurred by the adversary would be on the order of 5-7ms (for 4G resp. WiFi), with
round-trip latencies of twice this duration. Thus, the minimal round-trip duration would
still be at least 10-14ms. A new seed value is obtained from the SIM card at a random
time of the interval (scheduled by the verifier). If seeds are replaced once per interval, this
gives the malware agent only a half interval (or 2.5ms) to transmit the new seed and get the
response. The outsourcing of computation therefore fails.

Defending against adversarial strategy 4 — modify detection code. The security
against adversarial strategy 4 follows directly from assumption 2 (code optimality), with the
exception of a “kamikaze strategy” in which the adversary corrupts the execution of some of
the steps (as described in section 3), and then willingly loads legitimate code and removes
itself. Such an adversary could only corrupt step 1 of the process, as it will have to be
overwritten during step 2 to avoid detection. Moreover, it needs to correctly perform the
setup in step 1; this means that the only harm it can do is to cause an incorrect state to
be swapped out in step 1. It can write anything it wants to to swap space. It can place a
copy of itself in the swap space, or a copy of a legitimate but vulnerable application, with an
input triggering an opportunity for malware to be loaded. However, the swap space will be
scanned along with all other memory during step 5, and any known malicious configuration
will be detected.

Combinations of the four adversarial strategies will fail, since each of them will be detected
and combinations of them do not change the underlying device-specific limitations.

— 16 —

8 Conclusion and Future Work

We have presented the first software-based attestation approach that is suitable for use on
handsets. It does not rely on heuristic assumptions, but its security properties can be proven
based on measurable physical limitations of devices. The execution time of our proposed
system is estimated to be on the order of a minute for typical smartphones. Ongoing work
aimed at reducing the computational effort offers hope that significantly faster solutions are
possible, which may eventually allow for a continuous user experience. Yet other ongoing
work on server-side processing of usage patters of infected devices suggest that it will be
possible to use our techniques to rapidly detect and classify epidemics, without access to
malware code, but simply based on the network spread patterns.

References

[1] M. Barrett. Cybercrime — and what we will have to do if we want to get it under control,
July, 2008.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authen-
tication. In CRYPTO ’96: Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, pages 1-15, London, UK, 1996. Springer-Verlag.

[3] L. Carettoni, C. Merloni, and S. Zanero. Studying Bluetooth malware propagation:
The BlueBag project. IEEE Security and Privacy, 5(2):17-25, 2007.

[4] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty of software-
based attestation of embedded devices. Proceedings of the 16th ACM conference on
Computer and Communications Security (CCS), 2009.

[5] K.-K. Choo. Organised crime groups in cyberspace: a typology. Trends in Organized
Crime, 11(3):270-295, 2008.

[6] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting spam.
In In Crypto, pages 426-444. Springer-Verlag, 2002.

[7] Georgia Tech Information Security Center. Emerging cyber threats report for 2009,
October, 2008.

[8] V. Gratzer and D. Naccache. Alien vs. quine. [EEE Security and Privacy, 5(2):26-31,
2007.

[9] S. Hansell. How hackers snatch real-time security ID numbers, August 20, 2009.

[10] Harris Interactive Public Relations Research. A study about mobile device users, June
20009.

[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]

[27]
28]
[29]

— 17 —

S. Havlin. Phone infections. Science, 324(5930):1023-1024, 2009.
M. Hypponen. Malware goes mobile. Scientific American Magazine, pages 7077, 2006.

M. Jakobsson. A central nervous system for automatically detecting malware, Septem-
ber, 2009.

M. Jakobsson and A. Juels. Server-side detection of malware infection. In New Security

Paradigms Workshop (NSPW), 2009.
Kaspersky Labs. Kaspersky labs forecasts ten-fold increase in new malware for 2008.
T. Kee. Study: Smartphone users get an 'F’ when it comes to security, August 17, 2009.

B. Krebs. European cyber-gangs target small U.S. firms, group says, August 25, 2009.
Washington Post.

J. Leopando. Signed malware coming to a phone near you?, July 15, 2009.
R. McMillan. Android security chief: Mobile-phone attacks coming, August 12, 2009.
E. Mills. Microsoft to offer free consumer security suite, November, 2008.

J. Oberheide, E. Cooke, and F. Jahanian. CloudAV: N-Version Antivirus in the Network
Cloud. In Proceedings of the 17th USENIX Security Symposium, San Jose, CA, July
2008.

R. L. Rivest. The MD6 hash function — a proposal to NIST for SHA-3. Submission to
NIST, 2008.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems. In SOSP
'05: Proceedings of the twentieth ACM symposium on Operating systems principles,
pages 1-16, New York, NY, USA, 2005. ACM Press.

A. Seshadri, A. Perrig, L. V. Doorn, and P. Khosla. Swatt: Software-based attestation
for embedded devices. In In Proceedings of the IEEE Symposium on Security and
Privacy, 2004.

Symantec Report on the Underground Economy, November 2008.

P. Wang, M. C. Gonzalez, C. A. Hidalgo, and A.-L.. Barabasi. Understanding the
spreading patterns of mobile phone viruses. Science, 324(5930):1071-1076, May 20009.

Wikipedia entry on NAND flash, Accessed Aug 22, 20009.
Wikipedia entry on polymorphic code, Accessed Aug 22, 20009.
Wikipedia entry on Rootkit, Accessed Aug 22, 2009.

— 18 —

A Detailed Hardware Specifics

About the bus. Typical mobile devices have 32-bit buses. That means that the smallest
portion of memory that can be accessed is 32 bits long and that larger segments will be
accessed in portions of 32 bits. The speed of the bus affects the access time for all memory,
except registers.

About registers. Registers are associated with the CPU, are fast to access. They are
used by active algorithms, and offer very limited amounts of storage. A typical smartphone
processor, such as the Android G1 uses a ARM1136EJ-S processor, which has sixteen 32-bit
registers. Very small malware — whose purpose simply is to load a larger payload portion —
requires tens of bytes of storage. Therefore, the registers cannot be used to house a malware
agent®.

About RAM. There are many types of RAM, all allowing random access for both reads
and writes. Typical access times for RAM is 5-70ns, where faster types of RAM are used
as memory cache. A typical smartphone has 32kB of instruction cache, 32kB of data cache,
and 128 MB of main system RAM. The Android G1 has 128 MB of system RAM and is
believed to be configured at 32kB / 32kB cache size) The G1’s CPU cache takes around 5ns
to read or write per 32-bit word (two CPU cycles), while its other RAM takes 20ns to read
and write, assuming reasonably sequential access.

About Flash memory. There are two types of flash memory — NAND [27] and NOR flash.
Cell phones use NAND flash. It is only possible to erase flash in entire blocks, where erasure
corresponds to setting all bits to 1. A typical block size is 16, 128, 256 or 512 kB. However,
flash can be read — and written, as long as it only changes 1’s to 0’s — in smaller portions,
referred to as pages. Typical page sizes are 512 or 2,048 or 4,096 bytes. Flash memory used
in mobile phones is typically 16 bits wide and the flash memory bus is typically clocked at
64MHz. A typical smart phone uses so-called small page flash memory, i.e. 512 bytes/page
(excluding built-in error correction etc) and 32 pages/block (and therefore 16kB / block).
The NAND controller in the MSM7k base band chip used in the G1 is initially designed
for small page flash and has a 512 byte built in buffer. The flash memory used in the
G1 is, however, a “large page” flash with a native 2kB page size and a 128kB block size.
Each 2kB page consists of four 512 byte sectors. The G1 has 256 MB of NAND flash, i.e
2,048 blocks, each containing 128kB. The G1 suffers from a memory architecture where the
NAND flash is attached to the signalling processor rather than the application processor,
so all communications go through RPC between the processors. This reduces effective read
access speed to around 4MB/s. Write is estimated at 2MB/s.

The smallest data transfer from a flash memory is typically a sector, i.e. 512 bytes as
it is on this level the necessary error correcting codes (ECC) operate. On the G1 it takes
no shorter than 125us to read a sector (512 bytes, plus out-of-band data; 16 bytes, for ECC

81f future developments make register-housed malware a reality, then an approach analogous to the one used
to distinguish between RAM and flash can be used to perform computation that flushes the registers by
introducing timing-distinctions between registers and RAM.

— 19 —

among other things) from on-board NAND flash memory. Since we will typically not make
consecutive memory accesses, the 512 byte sector read becomes the actual cost of one single
32-bit read in a naive malware implementation. We must however assume that an attacker
could find a way to avoid accessing the entire sector, possibly by inventing their own ECC
scheme. For simplicity we will assume that a 32-bit read could be performed in 4/512:th of
the time of the sector read, i.e. approximately 1us. Note that this is under ”better than
ideal conditions” as we basically assume zero setup time and no overhead or error correction.
That is still 50 times slower than RAM.

Writing to flash memory is generally 4-6 times slower than reading, but on the G1 we
estimate sector write time to about 250us. This is not because writing to NAND flash
is especially fast on the G1 but rather that the architecture of accessing NAND through
another CPU cap performance and mainly lowering read speeds.

Note that write speed to a file system residing on NAND flash lowers dramatically as
the file system gets fuller and when files are overwritten with new content. This is because
NAND pages (or sectors) cannot be overwritten without first erasing the entire block, so
instead the data is written to a new NAND block thus leaving ”garbage” behind in the old
block. Sooner or later this garbage must be collected, and this is done by compacting the
still relevant pages into new blocks and erasing the blocks that now only have garbage in
them. As the file system gets fuller and fuller this takes longer and longer time, thus further
increasing the gap between RAM and Flash speeds. Every time a NAND block needs to be
erased, there is a penalty of about 2ms.

About SD card memory. SD (Secure Digital) cards are popular removable data storage
cards that are commonly used in mobile phones and other consumer electronic devices such
as digital cameras, camcorders and handheld computers. They use NAND flash to store data
in blocks just like the internal NAND flash of the typical smart phone. SD cards come with
a Speed Class rating that indicate the minimum write speed in MB/s. The Speed Classes
officially defined by the SD Association are 2, 4, and 6, corresponding to 2.0MB/s, 4.0MB/s
and 6.0MB/s respectively, although classes 8 and 10 are now commonly referred to as well by
manufacturers. Note that these are the minimum rated write speeds, and also note that read
speeds typically are higher. As of this writing the fastest SD cards announced (SanDisks
32GB Extreme SDHC Card) claims speeds of approximately 30MB/s for both read and write
under ideal conditions (unverified). The G1 can not make use of this bandwidth and tends
to bottom out at around 10MB/s read speed. We do however anticipate that mobile phones
soon will start to reach these speeds.

About other secondary memory. Flash is considered as secondary memory for cell
phones. For traditional computing platforms, hard drives are the secondary memory of
choice. Typical access times for hard drives — taking average rotational latency into con-
sideration — are dramatically longer than RAM access times. If access locations are set
pseudo-randomly then this increases the expected access time.

About external communication. Theoretical Wi-Fi rates go up to 22Mbps, with typi-
cal rates at 5Mbps. Similarly, theoretical Bluetooth 2.0 with EDR (Enhanced Data Rate)

— 20 —

exhibits transfer rates of up to 3Mbps, with typical rates at 500kbps. Note that we are not
concerned with the turn-around times, but rather the maximum practical throughputs, as
we are making the pessimistic assumption that all communication is optimally scheduled by
an external host. Thus, these typical access times are on the order of 45-333 slower (for
Wi-Fi resp. Bluetooth) than RAM access, under conditions that are the most favorable to
an adversary, and under the rather pessimistic RAM rates of 1000Mbps.

About changes. It is worth noting that all of the above access speeds are likely to change
over time; however, dramatic changes are unlikely, and modest changes will only force us to
make new parameter choices. Since parameter choices have to be made for each particular
device type in the first place, that is not a concern.

B Memory-Printing Machine Code

In order to estimate the run time of the memory printing, it is meaningful to consider possible
code. In a production version, this code would be further optimized, but the code below
allows us to provide a reasonable estimate for the execution time per loop.

memory_printing:
@ Number of rounds in argO (r0)
@ Number of chunks in argl (r1)
stmfd sp!, {r4, r5, r6, r7, r8, sl, 1r}
subs sl, r0, #0
ldmlefd sp!, {r4, r5, r6, r7, r8, sl, pc}
cmp rl, #0
add r3, rl, #127

movge r3, ril

mov r7, r3, asr #7

mov r8, #0
.LRounds:

cmp r7, #0

ldrgt r4, .LGlobals
ldrgt r5, .LGlobals+4
movgt r6, #0

ble .LNoPages
.LPages:
mov r0, r6

bl get_position_page_from_flash
mov ip, #0
mov 1r, r0
.LInner:
1ldr r3, [r4, #0]
ldr r2, [r5, #0]

— 21 —

add r3, r3, r2
ldr r0, [ip, 1r]
bic r3, r3, #0xFE000000
bic r3, r3, #0x00000003
ldr ri, [r3, #0]
ldr r2, [r0, #0]
add ip, ip, #4
eor r2, r2, ri
cmp ip, #512
str rl, [r4, #0]
str r2, [r0, #0]
bne .LInner
add r6, r6, #1
cmp r7, r6
bne .LPages
.LNoPages:
add r8, r8, #1
cmp sl, r8

bne .LRounds

1ldmfd sp!, {r4, r5, r6, r7, r8, sl, pc}
.LEnd:

.align 2
.LGlobals:

.word state

.word seed

The largest portion of time is spent between the .LInner: label and the bne .LInner
conditional branch, i.e.; in the inner loop. The three first memory loads are the global
variables state and seed; and one entry of the paged-in position vector, all residing in cached
RAM. The parts that consume the most time in the inner loop are one load from uncached
memory for updating the state variable in the next_chunk function; and one uncached memory
read at the position pointed out by the entry in the position vector. The subsequent store
operation is faster, because then the cache has been activated for that memory position. The
modulo operator in the next_chunk function has been replaced by a hard coded bitwise AND
(implemented using two BIC instructions) to force the memory address within the available
128MB RAM (the first BIC) and aligned to an even 32-bit boundary (the second one). We
estimate that the inner loop constitutes approximately 32 CPU cycles, therefore running one
iteration in about 80ns out of which 45ns are pure memory access

