Balanced and Unbalanced Split Graphs

Ann Trenk

Wellesley College

Joint work with Karen Collins, Wesleyan University

Three Decades of DIMACS Conference
November 22, 2019
Split Graphs Definition

Definition: A *split graph* G is a graph whose vertex set can be partitioned as $V(G) = K \cup S$ where K is a clique and S is a stable set.

Such a partition is a *KS*-partition.

Definition: A *KS*-partition of a split graph G is *K-max* if $|K| = \omega(G)$ and *S-max* if $|S| = \alpha(G)$.
A split graph can model a social network consisting of 2 groups of people, K, S so that

All pairs of people from K are friends, and
No pair of people from S are friends.
Example: P_4 and $K_{1,3}$ are split graphs

P_4 has a unique KS-partition. It is both K-max and S-max.

$K_{1,3}$ has two KS-partitions. One is S-max, the other is K-max.
Example: C_4 is NOT a split graph

The largest clique in C_4 is K_2.

The remaining vertices do not form a stable set.
Characterizing Split Graphs

Theorem: (Földes and Hammer, 1977) The following are equivalent for a graph G:

- G is a split graph.
- G and \overline{G} are chordal.
- G has no induced $2K_2$, C_4 or C_5.
Two kinds of split graphs

Theorem (Hammer, Simeone: 1977) For any KS-partition of a split graph G, exactly one of the following holds.

1. $|K| = \omega(G)$ and $|S| = \alpha(G)$. \hfill (K-max, S-max)
2. $|K| = \omega(G) - 1$ and $|S| = \alpha(G)$. \hfill (S-max)
3. $|K| = \omega(G)$ and $|S| = \alpha(G) - 1$. \hfill (K-max)

Moreover, in
(1.) the partition is unique, in
(2.) there exists $s \in S$ so that $K \cup \{s\}$ is complete, and in
(3.) there exists $k \in K$ so that $S \cup \{k\}$ is a stable set.

In (2) and (3), we call vertices s, k *swing vertices.*
Definition: A split graph is *balanced* if there exists a KS-partition that is both K-max and S-max, and *unbalanced* otherwise.

Terms K-max and S-max refer to a partition. Balanced/unbalanced refer to a graph.
Example: Balanced vs. Unbalanced

P_4 $K_{1,3}$

K-max, S-max S-max K-max
Balanced Unbalanced Unbalanced
Threshold Graphs

Definition: A graph is a *threshold graph* if there exists a threshold $t > 0$ and a positive weight a_i assigned to each $v_i \in V(G)$ so that S is a stable set if and only if $\sum_{i \in S} a_i \leq t$.

Characterization Theorem (Chvátal and Hammer: 1977) A graph is a threshold graph if and only if it does not contain $2K_2$, C_4, or P_4 as an induced subgraph.
Threshold Graphs are split graphs

\[\text{split graph } \iff \text{no induced } 2K_2, C_4, \text{ or } C_5. \]

\[\text{threshold graph } \iff \text{no induced } 2K_2, C_4, \text{ or } P_4. \]

Since \(P_4 \) is induced in \(C_5 \), all threshold graphs are split graphs.

Are they balanced or unbalanced?
Threshold graphs are unbalanced split graphs

Proposition (Collins, Trenk: 2019)
All balanced split graphs contain P_4 as an induced subgraph.

Corollary: Threshold graphs are **unbalanced** split graphs.
Background

Balanced split graphs contain a P_4 (proof)

Let G be a balanced split graph. Fix a KS-partition.
For $v \in K$, let $N_S(v)$ be the set of nbrs of v in S.
Let x be a min degree vertex in K.

- No swing vertices, so $N_S(x) \neq \emptyset$
- Each $z \in N_S(x)$ has a non-nbr y in K (or z would be a swing vertex)
Balanced split graphs contain a P_4 (proof con’t)

- Since $\text{deg}(x) \leq \text{deg}(y)$, there exists $w \in N_S(y) - N_S(x)$.
- Now x, y, z, w induce a P_4 in G.
Recognizing Split Graphs from degree sequences

Theorem (Hammer, Simeone: 1977) Split graphs can be characterized by their degree sequence.

Theorem (Cheng, Collins, Trenk: 2016) The classes of balanced and unbalanced split graphs can also be characterized by their degree sequence.
Recognition from degree sequences

Theorem (Cheng, Collins, Trenk: 2016) Let G be a split graph with degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$ and let $m = \max\{i : d_i \geq i - 1\}$. Then G is unbalanced if $d_m = m - 1$ and balanced if $d_m > m - 1$.

Proof: Let $d_i = \text{deg}(v_i)$, $K = \{v_1, v_2, \ldots, v_m\}$ and $S = \{v_{m+1}, \ldots, v_n\}$.

- The standard proof of split graph recognition from degree sequences shows that K is a clique, S is a stable set, and $|K| = m = \omega(G)$.
- If $d_m = m - 1$ then v_m is a swing vertex and G is unbalanced.
- If $d_m > m - 1$ then every $v \in K$ has a nbr in S, so there are no swing vertices and G is balanced.
Example of recognition from degree sequences

\[m = \max\{i : d_i \geq i - 1\} \]

Example 1: Degree Sequence 2, 2, 1, 1.

\[\begin{array}{c|c|c|c|c}
 d_i & 2 & 2 & 1 & 1 \\
i - 1 & 0 & 1 & 2 & 3 \\
\end{array}\]

\[m = 2 \text{ and } d_2 > 2 - 1. \quad \text{Balanced} (P_4).\]

Example 2: Degree Sequence 3, 1, 1, 1.

\[\begin{array}{c|c|c|c|c}
 d_i & 3 & 1 & 1 & 1 \\
i - 1 & 0 & 1 & 2 & 3 \\
\end{array}\]

\[m = 2 \text{ and } d_2 = 2 - 1. \quad \text{Unbalanced} (K_{1,3}).\]
Additional Information on Split Graphs

Split Graphs chapter in the forthcoming book:

Topics in Algorithmic Graph Theory (Cambridge University Press)

Edited by Lowell W. Beineke, Martin C. Golumbic, Robin J. Wilson