ON SOLVING THE QUADRATIC SHORTEST PATH PROBLEM

Renata Sotirov & Hao Hu

Tilburg University, The Netherlands
The Quadratic Shortest Path Problem (QSPP)

- $G = (V, A)$... a directed graph
 - V ... vertex set, $|V| = n$
 - A ... arc set, $|A| = m$
- $s, t \in V$... two distinguished vertices
The Quadratic Shortest Path Problem (QSPP)

- $G = (V, A)$ … a directed graph
 - V … vertex set, $|V| = n$
 - A … arc set, $|A| = m$
- $s, t \in V$ … two distinguished vertices

The shortest path problem (SPP)

Find a path between s and t s.t. the sum of costs of arcs on the path is minimized.
The Quadratic Shortest Path Problem (QSPP)

- $G = (V, A)$... a directed graph
 - V ... vertex set, $|V| = n$
 - A ... arc set, $|A| = m$
- $s, t \in V$... two distinguished vertices

The shortest path problem (SPP)
Find a path between s and t s.t. the sum of costs of arcs on the path is minimized.

The quadratic shortest path problem (QSPP)
Find a path between s and t s.t. the sum of costs of arcs, and the sum of interaction costs over all pairs of arcs on the path is minimized.
The Shortest Path Problem (SPP)

- find a path $s \rightarrow t$ s.t. the linear cost of the path is minimized
The Shortest Path Problem (SPP)

- find a path \(s \rightarrow t \) s.t. the **linear cost** of the path is minimized

- \(c \in \mathbb{R}^m \) ... vector of **arc costs**
The Shortest Path Problem (SPP)

- find a path $s \rightarrow t$ s.t. the linear cost of the path is minimized
- $c \in \mathbb{R}^m_+$. . . vector of arc costs
- $x \in \{0, 1\}^m$. . . the characteristic vector of a path P

$$x_{ij} = \begin{cases} 1 & \text{if } (i, j) \in A \text{ is on the } s-t \text{ path} \\ 0 & \text{otherwise} \end{cases}$$
The Shortest Path Problem (SPP)

- find a path $s \rightarrow t$ s.t. the linear cost of the path is minimized
- $c \in \mathbb{R}_+^m$... vector of arc costs
- $x \in \{0, 1\}^m$... the characteristic vector of a path P
- $x_{ij} = \begin{cases} 1 & \text{if } (i, j) \in A \text{ is on the } s-t \text{ path} \\ 0 & \text{otherwise} \end{cases}$
- $I \in \mathbb{R}^{n\times m}$... the incidence matrix of G
The Shortest Path Problem (SPP)

- find a path \(s \to t \) s.t. the linear cost of the path is minimized
- \(c \in \mathbb{R}_+^m \) ... vector of arc costs
- \(x \in \{0,1\}^m \) ... the characteristic vector of a path \(P \)
 \[
 x_{ij} = \begin{cases}
 1 & \text{if } (i,j) \in A \text{ is on the } s-t \text{ path} \\
 0 & \text{otherwise}
 \end{cases}
 \]
- \(\mathcal{I} \in \mathbb{R}^{n \times m} \) ... the incidence matrix of \(G \)

\[
\begin{align*}
\min \quad & c^T x \\
\text{(SPP)} \quad & \mathcal{I} x = b \\
\text{s.t.} \quad & x \in \{0,1\}^m \\
\end{align*}
\]

where \(b_s = 1, \ b_t = -1 \) and \(b_i = 0 \) if \(i \in V \setminus \{s, t\} \)
The Quadratic Shortest Path Problem (QSPP)

- find a path $s \rightarrow t$ s.t. the quadratic cost of the path is minimized
The Quadratic Shortest Path Problem (QSPP)

- find a path $s \rightarrow t$ s.t. the quadratic cost of the path is minimized
- $Q = Q^T \in \mathbb{R}^{m \times m}_+$... matrix of interaction costs
The Quadratic Shortest Path Problem (QSPP)

- find a path $s \to t$ s.t. the quadratic cost of the path is minimized
- $Q = Q^T \in \mathbb{R}_{+}^{m \times m}$... matrix of interaction costs
- $x \in \{0, 1\}^m$... the characteristic vector of a path P

$$x_{ij} = \begin{cases} 1 & \text{if } (i, j) \in A \text{ is on the } s-t \text{ path} \\ 0 & \text{otherwise} \end{cases}$$
The Quadratic Shortest Path Problem (QSPP)

- find a path $s \rightarrow t$ s.t. the quadratic cost of the path is minimized
- $Q = Q^T \in \mathbb{R}_+^{m \times m}$... matrix of interaction costs
- $x \in \{0, 1\}^m$... the characteristic vector of a path P

$$
\begin{align*}
x_{ij} &= \begin{cases}
1 & \text{if } (i, j) \in A \text{ is on the } s-t \text{ path} \\
0 & \text{otherwise}
\end{cases} \\
\end{align*}
$$

$$
\begin{align*}
\min_{x} & \quad x^T Q x \\
\text{s.t.} & \quad \mathcal{I} x = b \\
& \quad x \in \{0, 1\}^m
\end{align*}
$$
The QSPP

The QSPP . . .

- is NP-hard

 Hu, Sotirov, Special cases of the QSPP. arXiv:1611.07682
The QSPP

The QSPP . . .

- is NP-hard

 Hu, Sotirov, Special cases of the QSPP. arXiv:1611.07682

- applications:
 - transportation:
 - of hazardous materials
 - unloading and reloading goods at junctions
 - telecommunication networks
 - satellite network design
 - energy distribution networks
 - route planning
 - . . .
Poly-time solvable cases of the QSPP
Linearizable QSPP

A QSPP instance is given by: $G, s, t \in V$, matrix Q where

- $x^T Q x$... the quadratic cost of the s-t path P_x
Linearizable QSPP

A QSPP instance is given by: \(G, s, t \in V \), matrix \(Q \) where

- \(x^T Q x \) . . . the quadratic cost of the \(s-t \) path \(P_x \)

Linearizable QSPP

A QSPP instance is linearizable if there exists a cost vector \(c \) s.t.

\[x^T Q x = x^T c \]

for every \(s-t \) path in \(G \)

We call \(c \) the linearization vector of \(Q \).
Linearizable QSPP

A QSPP instance is given by: $G, s, t \in V$, matrix Q where
- $x^T Q x \ldots$ the quadratic cost of the s-t path P_x

Linearizable QSPP

A QSPP instance is linearizable if there exists a cost vector c s.t.

$$x^T Q x = x^T c$$

for every s-t path in G

We call c the linearization vector of Q.

- An instance may be linearizable if:
 - Q has special properties
 - G has special structure
Examples of Linearizable QSPP

- the adjacent QSPP:

 \[q_{e,f} = \begin{cases}
 \geq 0 & \text{if } e, f \in A \text{ are adjacent} \\
 = 0 & \text{otherwise}
 \end{cases} \]

⇒ linearizable if \(G \) is directed acyclic graph

Examples of Linearizable QSPP

- the adjacent QSPP:

\[q_{e,f} = \begin{cases}
\geq 0 & \text{if } e, f \in A \text{ are adjacent} \\
= 0 & \text{otherwise}
\end{cases} \]

⇒ linearizable if \(G \) is directed acyclic graph

⇒ in general NP-hard

Hu, S. Special cases of the QSPP, Preprint, 2016.

Examples of Linearizable QSPP

- the adjacent QSPP:

\[
q_{e,f} = \begin{cases}
\geq 0 & \text{if } e, f \in A \text{ are adjacent} \\
= 0 & \text{otherwise}
\end{cases}
\]

⇒ linearizable if \(G \) is directed acyclic graph

- Rostami, Malucelli, Frey, Buchheim. On the QSPP.

⇒ in general NP-hard

- Hu, S. Special cases of the QSPP, Preprint, 2016.

- \(Q \) is generated by some \(w \in \mathbb{R}^m_+ \):

\[
q_{e,f} = w_e + w_f \quad e, f \in A
\]

and every \(s-t \) path in \(G \) has the same length
Graphs whose every s-t path has constant length?

- The directed grid graph $G_{pq} = (V, A)$ where

 $$V = \{v_{i,j} \mid 1 \leq i \leq p, 1 \leq j \leq q\}$$

 $$A = \{(v_{i,j}, v_{i+1,j}) \mid 1 \leq i \leq p - 1, 1 \leq j \leq q\}$$

 $$\cup \{(v_{i,j}, v_{i,j+1}) \mid 1 \leq i \leq p, 1 \leq j \leq q - 1\}$$

 and every $v_{1,1}$-$v_{p,q}$ path has length $p + q - 2$.

Figure: The directed grid graph $G_{3,4}$, variants of G_{pq}, hypercube graph, etc.
Graphs whose every \(s-t \) path has constant length?

- The directed grid graph \(G_{pq} = (V, A) \) where
 \[
 V = \{v_{i,j} \mid 1 \leq i \leq p, 1 \leq j \leq q\}
 \]
 \[
 A = \{(v_{i,j}, v_{i+1,j}) \mid 1 \leq i \leq p-1, 1 \leq j \leq q\}
 \]
 \[
 \cup \{(v_{i,j}, v_{i,j+1}) \mid 1 \leq i \leq p, 1 \leq j \leq q-1\}
 \]
 and every \(v_{1,1} - v_{p,q} \) path has length \(p + q - 2 \).

- \(|V| = pq \) and \(|A| = 2pq - p - q \)

\[\text{Figure : The directed grid graph } G_{3,4}\]
Graphs whose every s-t path has constant length?

- The directed grid graph $G_{pq} = (V, A)$ where
 \[V = \{ v_{i,j} \mid 1 \leq i \leq p, 1 \leq j \leq q \} \]
 \[A = \{ (v_{i,j}, v_{i+1,j}) \mid 1 \leq i \leq p-1, 1 \leq j \leq q \} \cup \{ (v_{i,j}, v_{i,j+1}) \mid 1 \leq i \leq p, 1 \leq j \leq q-1 \} \]
 and every $v_{1,1}$-$v_{p,q}$ path has length $p + q - 2$.

- $|V| = pq$ and $|A| = 2pq - p - q$

variants of G_{pq}, hypercube graph, etc.
The QSPP on the directed grid graph

- consider the QSPP with no restriction on Q, and $G_{p,q}$
The QSPP on the directed grid graph

- consider the QSPP with no restriction on Q, and $G_{p,q}$

Thm (Hu & S.)

The algorithm \textsc{Linearize-grid} determines if a QSPP instance on $G_{p,q}$ is linearizable, and if so it constructs its linearization vector in $O(p^3 q^2 + p^2 q^3)$ time.
The QSPP on the directed grid graph

- consider the QSPP with no restriction on Q, and $G_{p,q}$

Thm (Hu & S.)

The algorithm `LINEARIZE-GRID` determines if a QSPP instance on $G_{p,q}$ is linearizable, and if so it constructs its linearization vector in $O(p^3q^2 + p^2q^3)$ time.

Proof. (sketch)

- Show that $\mathcal{I}_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ is linearizable iff $\mathcal{I}_2 = (G_{p,q}, v_{1,1}, v_{p-1,q}, Q)$ and $\mathcal{I}_3 = (G_{p,q}, v_{1,1}, v_{p,q-1}, Q)$ are linearizable.
The directed grid graph

Thm (Hu & S.)

The algorithm **Linearize-grid** determines if a QSPP instance on $G_{p,q}$ is linearizable, and if so it constructs its linearization vector in $O(p^3q^2 + p^2q^3)$ time.

Proof. (sketch)

- Show that $I_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ is linearizable iff
 $I_2 = (G_{p,q}, v_{1,1}, v_{p-1,q}, Q)$ and
 $I_3 = (G_{p,q}, v_{1,1}, v_{p,q-1}, Q)$ are linearizable.

- Show that for $I_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ only $(p - 1)(q - 1) + 1$ paths are important for linearization,
The directed grid graph

Thm (Hu & S.)

The algorithm **LINEARIZE-GRID** determines if a QSPP instance on $G_{p,q}$ is linearizable, and if so it constructs its linearization vector in $O(p^3q^2 + p^2q^3)$ time.

Proof. (sketch)

- Show that $I_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ is *linearizable* iff

 $I_2 = (G_{p,q}, v_{1,1}, v_{p-1,q}, Q)$ and

 $I_3 = (G_{p,q}, v_{1,1}, v_{p,q-1}, Q)$ are

 linearizable.

- Show that for $I_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ only $(p - 1)(q - 1) + 1$ paths are important for linearization, and similar for I_2 and I_3, etc.
The directed grid graph

Thm (Hu & S.)

The algorithm `LINEARIZE-GRID` determines if a QSPP instance on $G_{p,q}$ is linearizable, and if so it constructs its linearization vector in $O(p^3q^2 + p^2q^3)$ time.

Proof. (sketch)

- Show that $I_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ is linearizable iff
 - $I_2 = (G_{p,q}, v_{1,1}, v_{p-1,q}, Q)$ and
 - $I_3 = (G_{p,q}, v_{1,1}, v_{p,q-1}, Q)$ are linearizable.

- Show that for $I_1 = (G_{p,q}, v_{1,1}, v_{p,q}, Q)$ only $(p - 1)(q - 1) + 1$ paths are important for linearization, and similar for I_2 and I_3, etc.

- Show that all QSPP instances on $G_{2,q}$ for $q \geq 2$ are linearizable. □
The directed grid graph

- The algorithm can be adjusted for any directed acyclic graph (DAG).
The directed grid graph

- The algorithm can be adjusted for any directed acyclic graph (DAG).
- The complexity of the algorithm for a DAG with is $\mathcal{O}(|A|^4 + |V||A|^3)$.
The directed grid graph

- The algorithm can be adjusted for any directed acyclic graph (DAG).
- The complexity of the algorithm for a DAG with is $O(|A|^4 + |V||A|^3)$
- Can we use **Linearize-DAG** to solve difficult QSPP instances?
Exploiting **LINEARIZE-GRID** to derive bounds

- consider the QSPP with *no restriction on* Q, and $G_{p,q}$

How to compute l_p bounds?

Strategy:
Find a linearizable \hat{Q} that is “close” to the cost matrix Q.

Linearize-DAG yields the linear system:

$$B(\hat{Q}) = 0 \Rightarrow \hat{Q} \text{is linearizable}$$

the following splitting approach provides \hat{Q} and its linearization vector \hat{c}:

$$\max \hat{Q}, \hat{c} \quad \sum_i \hat{c}_i s.t. \quad B(\hat{Q}) = 0 \quad (\hat{Q} \text{is linearizable})$$

$$C(\hat{Q}) = \hat{c}$$

$$Q - \hat{Q} \geq 0 \quad \text{(quadratic cost matrix is non-negative)}$$

there are no similar splitting approaches in the literature (!)
Exploiting **LINEARIZE-GRID** to derive bounds

- consider the QSPP with no restriction on Q, and $G_{p,q}$

 How to compute l_p bounds?
Exploiting **LINEARIZE-GRID** to derive bounds

- consider the QSPP with no restriction on Q, and $G_{p,q}$

 How to compute lp bounds?

Strategy: Find a linearizable \hat{Q} that is “close” to the cost matrix Q.
Exploiting **LINEARIZE-GRID** to derive bounds

- consider the QSPP with no restriction on Q, and $G_{p,q}$

How to compute l_p bounds?

Strategy: Find a linearizable \hat{Q} that is “close” to the cost matrix Q.

- **LINEARIZE-DAG** yields the linear system: $B(\hat{Q}) = 0 \Rightarrow \hat{Q}$ is linearizable

$\text{max} \hat{Q}, \hat{c}, \sum_i \hat{c}_i s.t. B(\hat{Q}) = 0 (\hat{Q} \text{ is linearizable})$,

$C(\hat{Q}) = \hat{c}$ ($\hat{c} \leftarrow \text{linearization vector}$)

$Q - \hat{Q} \geq 0$ (quadratic cost matrix is non-negative)

There are no similar splitting approaches in the literature (!)
Exploiting **LINEARIZE-GRID** to derive bounds

- consider the QSPP with **no restriction on** Q, and $G_{p,q}$

How to compute l_p bounds?

Strategy: Find a **linearizable** \hat{Q} that is “close” to the cost matrix Q.

- **LINEARIZE-DAG** yields the linear system: $B(\hat{Q}) = 0 \Rightarrow \hat{Q}$ is linearizable
- the following **splitting approach** provides \hat{Q} and its linearization vector \hat{c}:

\[
\begin{align*}
\max_{\hat{Q}, \hat{c}} & \quad \sum_i \hat{c}_i \\
\text{s.t.} & \quad B(\hat{Q}) = 0 \quad (\hat{Q} \text{ is linearizable}) \\
& \quad C(\hat{Q}) = \hat{c} \quad (\hat{c} \leftarrow \text{linearization vector}) \\
& \quad Q - \hat{Q} \geq 0 \quad (\text{quadratic cost matrix is non-negative})
\end{align*}
\]
Exploiting **LINEARIZE-GRID** to derive bounds

- consider the QSPP with **no restriction on** Q, and $G_{p,q}$

 How to compute lp bounds?

Strategy: Find a **linearizable** \hat{Q} that is “close” to the cost matrix Q.

- **LINEARIZE-DAG** yields the linear system: $B(\hat{Q}) = 0 \Rightarrow \hat{Q}$ is linearizable

- the following **splitting approach** provides \hat{Q} and its linearization vector \hat{c}:

 $$\max_{\hat{Q},\hat{c}} \sum_i \hat{c}_i$$

 s.t. $B(\hat{Q}) = 0$ (\hat{Q} is linearizable)

 $C(\hat{Q}) = \hat{c}$ ($\hat{c} \leftarrow$ linearization vector)

 $Q - \hat{Q} \geq 0$ (quadratic cost matrix is non-negative)

- there are **no** similar splitting approaches in the literature (!)
Exploiting **LINEARIZE-GRID** to derive bounds

Numerical results

we compare:
Exploiting **LINEARIZE-GRID** to derive bounds

Numerical results

- we compare:
 - Gilmore-Lower bnd. obtained by underestimating quadratic cost of each arc
 - H&S our lower bound derived by **LINEARIZE-GRID**

<table>
<thead>
<tr>
<th>$G_{p,r}$</th>
<th>m</th>
<th>density</th>
<th>GL</th>
<th>H&S</th>
<th>OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>180</td>
<td>20%</td>
<td>0</td>
<td>116</td>
<td>136</td>
</tr>
<tr>
<td>13</td>
<td>312</td>
<td>40%</td>
<td>86</td>
<td>673</td>
<td>762</td>
</tr>
<tr>
<td>15</td>
<td>420</td>
<td>50%</td>
<td>299</td>
<td>1347</td>
<td>1438</td>
</tr>
</tbody>
</table>
Exploiting \textsc{Linearize-Grid} to derive bounds

\section*{Numerical results}

- we compare:
 - Gilmore-Lower bnd. obtained by underestimating quadratic cost of each arc
 - H&S our lower bound derived by \textsc{Linearize-Grid}

<table>
<thead>
<tr>
<th>$G_{p,p}$</th>
<th>m</th>
<th>density</th>
<th>GL</th>
<th>H&S</th>
<th>OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>180</td>
<td>20%</td>
<td>0</td>
<td>116</td>
<td>136</td>
</tr>
<tr>
<td>13</td>
<td>312</td>
<td>40%</td>
<td>86</td>
<td>673</td>
<td>762</td>
</tr>
<tr>
<td>15</td>
<td>420</td>
<td>50%</td>
<td>299</td>
<td>1347</td>
<td>1438</td>
</tr>
</tbody>
</table>

\ldots TO BE CONTINUED
Other approaches to solve the QSPP?
Other approaches to solve the QSPP?

⇒ Consider *semidefinite programming* (SDP)
SDP for the QSPP

- define the path polyhedron:

\[P_{st}(G) := \{ x \in \mathbb{R}^m \mid \mathcal{I}x = b, \ 0 \leq x \leq 1 \} \]
SDP for the QSPP

- define the path polyhedron:

\[P_{st}(G) := \{ x \in \mathbb{R}^m \mid \mathcal{I}x = b, \ 0 \leq x \leq 1 \} \]

- \(\text{OPT}_{\text{QSPP}} = \min \ \{ x^T Q x : x \in P_{st}(G) \cap \{0, 1\}^m \} \)
SDP for the QSPP

- define the path polyhedron:

\[P_{st}(G) := \{ x \in \mathbb{R}^m \mid \mathcal{I}x = b, \ 0 \leq x \leq 1 \} \]

- \(\text{OPT}_{\text{QSPP}} = \min \ \{ x^T Q x : x \in P_{st}(G) \cap \{0, 1\}^m \} \)

- linearize objective: \(\text{tr}(x^T Q x) = \text{tr}(Qxx^T) \sim \langle Q, X \rangle \) where \(X \in S_m \)
SDP for the QSPP

- define the **path polyhedron**:

\[P_{st}(G) := \{x \in \mathbb{R}^m \mid Ix = b, \ 0 \leq x \leq 1\} \]

- \(\text{OPT}_{\text{QSPP}} = \min \ \{x^TQx : x \in P_{st}(G) \cap \{0, 1\}^m\} \)

- linearize objective: \(\text{tr}(x^TQx) = \text{tr}(Qxx^T) \leadsto \langle Q, X \rangle \) where \(X \in S_m \)

- replace \(X \succeq 0, \ \text{rank}(X) = 1 \) by constraint \(X - xx^T \succeq 0, \ x=\text{diag}(X) \)
SDP for the QSPP

- define the path polyhedron:

\[P_{st}(G) := \{ x \in \mathbb{R}^m | \mathcal{I}x = b, \ 0 \leq x \leq 1 \} \]

- \(\text{OPT}_{\text{QSPP}} = \min \ \{ x^T Q x : x \in P_{st}(G) \cap \{0, 1\}^m \} \)

- linearize objective: \(\text{tr}(x^T Q x) = \text{tr}(Q xx^T) \leadsto \langle Q, X \rangle \) where \(X \in S_m \)

- replace \(X \succeq 0, \text{rank}(X) = 1 \) by constraint \(X - xx^T \succeq 0, \ x=\text{diag}(X) \)

- the basic SDP relaxation:

\[
\begin{align*}
\text{min} & \quad \langle Q, X \rangle \\
\text{s.t.} & \quad x \in P_{st}(G) \\
& \quad \text{diag}(X) = x \\
& \quad \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0
\end{align*}
\]

(SDP\(_0\))
SDP for the QSPP

to improve SDP_0

- add nonnegativity constraints: $X \geq 0$
SDP for the QSPP

to improve SDP_0

- add nonnegativity constraints: $X \geq 0$
- add ‘squared linear’ constraints: $\langle \mathcal{I}_i \mathcal{I}_i^T, X \rangle = b_i^2$, $i = 1, \ldots, |V| - 1$

where \mathcal{I}_i is the ith row of \mathcal{I}
SDP for the QSPP

to improve SDP_0

- **add** nonnegativity constraints: $X \geq 0$
- **add** ‘squared linear’ constraints: $\langle I_i I_i^T, X \rangle = b^2_i, \ i = 1, \ldots, |V| - 1$
 where I_i is the ith row of I

the resulting SDP relaxation:

$$\begin{align*}
\text{min} \quad & \langle Q, X \rangle \\
\text{s.t.} \quad & I_s^T x = b_s \\
& \text{diag}(X) = x \\
& \langle I_i I_i^T, X \rangle = b^2_i, \ i = 1, \ldots, |V| - 1 \\
& \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0, \quad X \geq 0
\end{align*}$$

SDP_N has $n + m$ equality, and $O(m^2)$ inequality constraints
On solving SDP_N

- consider QSPP instances on G_{pq}
On solving SDP_N

- consider QSPP instances on G_{pq}
- interior-point algorithm can solve SDP_N for $m \leq 480$ arcs ($p, q \leq 16$)
 - SDP_N provides tight bounds for most test instances with $m \leq 420$
On solving SDP_N

- consider QSPP instances on G_{pq}
- interior-point algorithm can solve SDP_N for $m \leq 480$ arcs ($p, q \leq 16$)
 - SDP_N provides tight bounds for most test instances with $m \leq 420$
- to solve LARGER INSTANCES we implemented:
 the Alternating Direction Method of Multipliers (ADMM)
The ADMM for SDP_N

- we implement a variant of ADMM for SDP from:

\[
\begin{align*}
\min & \quad \langle Q, Y \rangle \\
\text{s.t.} & \quad \text{diag}(Y) = Y_{m+1}^T Y_{m+1} = 1 \\
& \quad Y = WUW^T \\
& \quad Y \geq 0, U \succeq 0
\end{align*}
\]

The SDP relaxations SDP_N and SDP_N are equivalent.
The ADMM for SDP_N

- by using facial reduction - Borwein and Wolkowicz, 1980 - \leadsto the Slater feasible version of SDP_N:

$$\begin{align*}
\text{min} & \quad \langle Q, Y_{1:m,1:m} \rangle \\
\text{s.t.} & \quad \text{diag}(Y) = Ye_{m+1} \\
& \quad Y_{m+1,m+1} = 1 \\
& \quad Y = WUW^T \\
& \quad Y \succeq 0, \quad U \succeq 0
\end{align*}$$

(SDP_{NS})

where $W \in \mathbb{R}^{m+1,m-n+2}$ and $U \in \mathcal{S}_{m-n+2}$
The ADMM for SDP_N

- by using facial reduction - Borwein and Wolkowicz, 1980 - ⇝ the Slater feasible version of SDP_N:

\[
\begin{align*}
\min & \quad \langle Q, Y_{1:m,1:m} \rangle \\
\text{s.t.} & \quad \text{diag}(Y) = Ye_{m+1} \\
& \quad Y_{m+1,m+1} = 1 \\
& \quad Y = WUW^T \\
& \quad Y \succeq 0, \quad U \succeq 0
\end{align*}
\]

SDP_{NS}

where $W \in \mathbb{R}^{m+1,m-n+2}$ and $U \in S_{m-n+2}$

- The SDP relaxations SDP_N and SDP_{NS} are equivalent.
The ADMM for \(\text{SDP}_N \)

- The augmented Lagrangian:

\[
\mathcal{L}_A(U, Y, Z) = \langle Q, Y_{1:m+1,1:m+1} \rangle + \langle Z, Y - WUW^T \rangle + \frac{\beta}{2} \| Y - WUW^T \|^2,
\]

where \(Z \in S_{m+1} \) and \(\beta > 0 \)
The ADMM for SDP_N

- The augmented Lagrangian:

$$\mathcal{L}_A(U, Y, Z) = \langle Q, Y_{1:m+1,1:m+1} \rangle + \langle Z, Y - WUW^T \rangle + \frac{\beta}{2} \| Y - WUW^T \|^2,$$

where $Z \in S_{m+1}$ and $\beta > 0$

- the ADMM in the k-th iteration:

$$U_{k+1} = \arg \min_{U \succeq 0} \mathcal{L}_A(U, Y_k, Z_k)$$

$$Y_{k+1} = \arg \min_{Y \in P} \mathcal{L}_A(U_{k+1}, Y, Z_k)$$

$$Z_{k+1} = Z_k + \gamma \beta(Y_{k+1} - WU_{k+1}W^T)$$

where $P = \{ Y \in S^n \mid \text{diag}(Y) = Ye_{m+1}, Y_{m+1,m+1} = 1, Y \geq 0 \}$
The ADMM for SDP_N

- the U-subproblem:

$$U_{k+1} = \mathcal{P}_{S_+} \left(W^T (Y^k + \frac{1}{\beta} Z^k) W \right)$$

where $\mathcal{P}_{S_+}(\cdot)$ is the projection to the cone of PSD matrices.
The ADMM for SDP_N

- the U-subproblem:

$$U_{k+1} = \mathcal{P}_{S_+} \left(W^T (Y^k + \frac{1}{\beta} Z^k) W \right)$$

where $\mathcal{P}_{S_+} (\cdot)$ is the projection to the cone of PSD matrices

- the Y-subproblem

$$Y_{k+1} = \begin{cases}
\max\{0, \hat{Y}_{i,j}\} & \text{if } i < j < m + 1, \\
\max\{0, \frac{1}{3} \hat{Y}_{i,i} + \frac{2}{3} \hat{Y}_{i,m+1}\} & \text{if } i = j < m + 1, \\
\max\{0, \frac{1}{3} \hat{Y}_{i,i} + \frac{2}{3} \hat{Y}_{i,m+1}\} & \text{if } i < j = m + 1, \\
1 & \text{if } i = j = m + 1,
\end{cases}$$

where $\hat{Y} = WU_{k+1}^T W^T - \frac{1}{\beta} (Q + Z^k)$
The ADMM for SDP_{NS} – practical issues
from the Lagrangean dual of SDP_{NS} it follows that

$$g(Z) = \min_{Y \in P} \langle \hat{Q} + Z, Y \rangle,$$
where $Z \in \{Z \mid W^TZW \preceq 0\}$ \hspace{1cm} (★)

provides a lower bound for SDP_{NS}
The ADMM for SDP_{NS} – practical issues

- from the Lagrangean dual of SDP_{NS} it follows that

 $$g(Z) = \min_{Y \in P} \langle \hat{Q} + Z, Y \rangle, \text{ where } Z \in \{Z \mid W^TZW \preceq 0\}$$

 provides a lower bound for SDP_{NS}

- use the output of the ADMM and $(★)$ \Rightarrow lower bound
The ADMM for SDP_{NS} – practical issues

- from the Lagrangean dual of SDP_{NS} it follows that

$$g(Z) = \min_{\hat{Q} + Z} \langle \hat{Q} + Z, Y \rangle, \text{ where } Z \in \{Z \mid W^TZW \preceq 0\} \quad \text{(★)}$$

provides a lower bound for SDP_{NS}

- use the output of the ADMM and (★) \Rightarrow lower bound

\Rightarrow one can use moderate accuracy to obtain (weaker) bound
The ADMM for SDP_{NS} – practical issues

- from the Lagrangean dual of SDP_{NS} it follows that

\[g(Z) = \min_{Y \in P} \langle \hat{Q} + Z, Y \rangle, \text{ where } Z \in \{Z \mid W^TZW \preceq 0\} \quad (\star) \]

provides a lower bound for SDP_{NS}

- use the output of the ADMM and (\star) \rightsquigarrow lower bound

\[\Rightarrow \text{ one can use moderate accuracy to obtain (weaker) bound} \]

- weaker bounds that are computed faster are useful within a B&B framework
The ADMM for SDP_{NS} – practical issues

- to improve the initial performance of the ADMM add redundant const.:
 - $Y \leq 1$ (see Oliveira et al.)
The ADMM for SDP_{NS} – practical issues

- to improve the initial performance of the ADMM add redundant const.:
 - $Y \leq 1$ (see Oliveira et al.)
 - $e^T Ye = (L + 1)^2$, where L is the length of the path (when applicable)
The ADMM for SDP_{NS} – practical issues

- to improve the **initial performance** of the ADMM add **redundant** const.:
 - $Y \leq 1$ (see Oliveira et al.)
 - $e^T Ye = (L + 1)^2$, where L is the length of the path (when applicable)
- the effect of the redundant constraints is **non-beneficial** in the long run
The ADMM for SDP_{NS} – practical issues

- to improve the initial performance of the ADMM add redundant const.:
 - $Y \leq 1$ (see Oliveira et al.)
 - $e^T Y e = (L + 1)^2$, where L is the length of the path (when applicable)
- the effect of the redundant constraints in non-beneficial in the long run
- however, effective within a B&B framework (!)
Numerical results - summary

for the QSPP instances on the GRID GRAPHS:

- ADMM computes SDP_{NS} bound for instances with $m \leq 480$ in ≤ 1 min.
for the QSPP instances on the grid graphs:

- ADMM computes SDP_{NS} bound for instances with $m \leq 480$ in ≤ 1 min
- B&B algorithm that computes SDP_N with ADMM in each node of the tree:
 - solves the QSPP with $m \leq 760$ within 3 min
 - solves the QSPP with $m = 1200$ within 30 min
- CplexQP can not provide an opt. solution for $m = 420$ within 10 000 s
Numerical results - summary

for the QSPP instances on the **GRID GRAPHS**:

- **ADMM** computes SDP_{NS} bound for instances with $m \leq 480$ in ≤ 1 min
- **B&B** algorithm that computes SDP_N with **ADMM** in each node of the tree:
 - solves the QSPP with $m \leq 760$ within 3 min
 - solves the QSPP with $m = 1200$ within 30 min
- **CplexQP** can **not** provide an opt. solution for $m = 420$ within 10 000 s
Numerical results

we also tested:

- SDP_{NS} and ADMM on different graphs, with

- dense data matrices
- sparse data matrices
- k-partite graphs

Question: Other splitting approaches for solving SDPs?
Numerical results

we also tested:

- SDP_{NS} and ADMM on different graphs, with
 - sparse data matrices
 - dense data matrices
 - reload cost data used in transportation
 - k-partite graphs
Numerical results

we also tested:

- SDP_{NS} and ADMM on different graphs, with
 - sparse data matrices
 - dense data matrices
 - reload cost data used in transportation
 - k-partite graphs

- largest solved instances in < 60 min has \(m = 2646 \) arcs
Numerical results

we also tested:

- SDP_{NS} and ADMM on different graphs, with
 - sparse data matrices
 - dense data matrices
 - reload cost data used in transportation
 - k-partite graphs

- largest solved instances in < 60 min has $m = 2646$ arcs

QUESTION:

Other splitting approaches for solving SDPs?
THANK YOU FOR YOUR ATTENTION