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Abstract

We consider the problem of protein folding in the HP modelloe 3D square lattice. This problem is
combinatorially equivalent to folding a string of 0’s and Ko that the string forms a self-avoiding walk
on the 3D square lattice and the number of adjacent pairssdé Ythaximized. The previously best-known
approximation algorithm for this problem has a guaranteé ef .375 and was given by Hart and Istrail
[HI95] almost a decade ago.

In this paper, we first present anot@approximation algorithm for the 3D folding problem based o
different geometric ideas. This algorithm improves on theddute approximation guarantee of Hart and
Istrail's algorithm. We then show a connection between thd@ding problem and a basic combinatorial
problem on binary strings, which may be of independent @ger Given a binary string iga,b}*, we
want to find a long subsequence of the string in which everyaece of consecutivas is followed by at
least as many consecutits. We show a non-trivial lower-bound on the existence ofhssigbsequences.
Building upon this result, we obtain @439— O(5(S)/|S))-approximation algorithm, wherg(S) is the
number of transitions in the input strirBfrom sequences of 1's in odd positions to sequences of 1'gn e
positions. Combining this with a375+ Q(3(S)/|9)))-approximation algorithm, we obtain an algorithm
with a slightly improved approximation ratio of at least 584 for the 3D folding problem. All of our
algorithms run in linear time.

1 Introduction

We consider the problem of protein folding in the HP modellmmthree-dimensional (3D) square lattice. This
problem is combinatorially equivalent to folding a stringQs and 1's, i.e. placing adjacent elements of the
string on adjacent lattice points, so that the string forrsel&avoiding walk on the 3D lattice and the number
of adjacent pairs of 1’'s is maximized. Figure 1 shows an exawipsuch a 3D folding of a binary string.

Background. The widely-studied HP model was introduced by Dill [Dil85i|E]. A protein is a chain of
amino acid residues. In the HP model, each amino acid resdtlassified as an H (hydrophobic or non-polar)
or a P (hydrophilic or polar). An optimal configuration for @irsg of amino acids in this model is one that
has the lowest energy, which is achieved when the maximunbeuwf H-H contacts (i.e. pairs of H's that
are adjacent in the folding but not in the string) are preséht protein foldingproblem in the hydrophobic-
hydrophilic (HP) model on the 3D square lattice is combiratly equivalent to the problem we just described:
we are given a string of P’s and H’s (instead of 0's and 1's) @wedvish to maximize the number of adjacent
pairs of H’s (instead of 1's). An informative discussion die HP model and its applicability to protein folding
is given by Hart and Istrail [HI95].
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Figure 1: Two views of a folding for the string 10101010000001010101001010101010101010101, where
white circles represent 0’s and black circles representTliss folding yields 26 contacts and occupies tep
planes in the 3D lattice.

Related Work. Berger and Leighton showed that this problem is NP-hard EBL@n the positive side, Hart
and Istrail gave a simplé-approximation algorithm [HI95]. Folding in the HP modelsteso been studied for
the 2D square lattice. This variant is also NP-hard [CG#]. Hart and Istrail gave é—approximation algorithm

for this problem [HI95], which was recently improved t(%aapproximation algorithm [Ala02]. Improving on
the approximation guarantee g)ffor the 3D problem has been an open problem for almost a decade

Our Contribution. In this paper, we first present a new 3D folding algorithm {®ac2.1). Our algorithm
produces a folding Witt@OPT— O(1) contacts. This improves on the absolute approximationaguee of
§OPT— O(v/OPT) given by Hart and Istrail’s algorithm [HI95].

We then show that if the input string is of a certain speciainfowe can modify our algorithm to produce
%OPT— O(3(S)) contacts, wheré(S) is the number of transitions in the input striSdrom sequences of 1's in
odd positions in the string to sequences of 1's in even positi This is described in Sections 2.2 and 2.3.

In Section 3, we reduce the general 3D folding problem to pezial case above, yielding a folding algo-
rithm producing.439- OPT — O(d(S)) contacts. This reduction is based on a simple combinatoradlem for
strings, which may be of independent interest.

We call a binary string fror{a,b}* block-monotonef every maximal sequence of consecut&’s is im-
mediately followed by a block of at least as maty. Suppose we are given a binary string with the following
property: every suffix of the string (i.e. every sequenceanisecutive elements that ends with the last element
of the string) contains at least as mdr'syasa’'s. What is the longest block-monotone subsequence of ttimg 3t
It is easy to see that we can find a block-monotone subsequatickength at least half the length of the string
by removing all thea's. In Section 3.2, we show that there always is a block-mom®tsubsequence containing
at least g2 — /2) ~ .5857 fraction of the string’s elements.

Finally, we combine our folding algorithm with a simple, betlious, case-based algorithm producidgs-
OPT + Q(&(S)) contacts that is described in Appendix B. We therefore resrtbe dependence @tS) in the
approximation guarantee and obtain an algorithm with d8ligmproved approximation guarantee.87501
for the 3D folding problem.

2 A New 3D Folding Algorithm

Let Se {0,1}" represent the string we want to fold. We refer to each 0 or Inadeament We lets represent
theith element ofS, i.e. S=s5...s,. We refer to a 1 in an odd position (i.e = 1 with odd indexi) as
anodd-land a 1 in an even position (i.e5 = 1 with even index) as aneven-1 An odd or evenlabel is
determined by an element’s position in the input string anelschot change at any stage of the algorithm. We



will use O[§ and£[g to denote the number of odd-1's and even-1's, respectiirely,stringS. For example,
for S=10111100101101, we haw@[§ = 5 andf[g = 4.

Note that because the square lattice is bipartite, the weld/mbel determines the set of lattice points on
which an element can be placed. For example, suppose wedhédattice points into two bipartite sets, one
red and one blue. If the first element of the string is placed oed lattice point, then all the elements in odd
positions in the string will be placed on red lattice pointsl all the elements in even positions in the string will
be placed on blue lattice points.

A contact between two elements placed on the square latitéherefore only occur between an odd-1 and
an even-1. Each lattice point is adjacent to six neighbodatiice points. In any folding, if an odd-1 is placed
on a particular lattice point, two neighboring lattice gsiwill be occupied by preceding and succeeding (even)
elements of the string unless the element is one of the twpanid of the string. Therefore, there are four
remaining adjacent lattice points with which contacts carfdsmed. Thus, an upper bound on the size of an
optimal solution is:

OPT < 4min{O[S, [T} + 2. 1)

This upper bound was introduced by Hart and Istrail [HI95]heifF algorithm for the 3D folding problem
produces a folding witkéOPT— O(v/OPT) contacts in the worst case. We will now present an algorithm
that produces a folding with at Iea%OPT— ©(1) contacts in the worst case, thereby improving dhsolute
approximation guarantee.

Our algorithm is based otiagonal folds The algorithm guarantees that contacts form on and bettvaen
adjacent 2D planes. Each point in the 3D lattice ha$xay z)-coordinate, where,y, andz are integers. We
will fold the string so that all contacts occur on or betweles planesz = 0 andz = 1.

2.1 The Diagonal Folding Algorithm

DIAGONAL FOLDING ALGORITHM

Input a binary stringS.
Output a folding of the stringS.
1. Letk=min{O[Y,£[F}.

2. Divide Sinto two strings such tha®», contains at least half the odd-1's afgd contains at least
half the even-1's. We can do this by finding a point on the gtsnch that half of the odd-1's are
on one side of this point and half the odd-1's are on the ofiger. ©ne of these sides contains at
least half of the even-1's. We call this si@g and the remaining sid&,. Then we replace all the
even-1's inS» with 0’s and replace all the odd-1's & with O’s.

3. Place the first odd-1 if» on lattice point(1,1,1) and the next odd-1 i8» on lattice point(2,2,1)
and so on. For the firé} of the odd-1's inSy, place the" odd-1 on lattice pointi,i,1). Then
place thek/4+ 1) odd-1 on lattice pointk/4—1,k/4+1,1). For the first;'i —1ofthe even-1'sin
S, place thé!" even-1 on lattice pointi,i +1,1). Use the dimensiors> 1 to place the strings ¢
0’s between consecutive odd-1's$» and the strings of 0’s between consecutive even-1%in

=

4. Place thék/4+2) odd-1inSy on lattice point(k/4—2,k/4+1,0). Then place thék/4+i) odd-
1in S on lattice point(k/4 —i+ 1,k/4—i+2,0). Place thgk/4) even-1 in& on lattice point
(k/4—1,k/4—1,0). Place thegk/4+i) even-1 inS on lattice point(k/4—i—1,k/4—i—1,0).
Use the dimensions< 0 to place the strings of 0’'s between consecutive 1Sjror &.
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Figure 2: This figure illustrates Steps 2 and 3 of the@GDONAL FOLDING ALGORITHM. In the folding resulting

from this algorithm, all contacts are formed on or between2b planes = 0 (lower) andz= 1 (upper).

Lemma 1. TheDIAGONAL FOLDING ALGORITHM produces a folding with at Iea%tOPT— 9 contacts.

Proof: Without loss of generality, we assume that O[S. Consider thé'" odd-1 from the first half 0&.

It is placed on lattice pointi,i,1). In Step 2, this odd-1 forms contacts with the even-1's onldttee points
(i,i+1,1) and(i — 1,i,1). In Step 3, it forms a contact with the lattice pointi,0). Thus, each odd-1 from the
first half of S» has three contacts. Now consider an odd-1 with an ingéxt i, wherei ranges from 3 and.
Each such odd-1 is placed on lattice pdikt4 — i+ 1,k/4—i+2,0). In Step 3, it forms contacts with even-1’s
on the lattice pointgk/4 —i+1,k/4—i+1,0) and(k/4 —i+2,k/4—i+2,0). In Step 2, it forms a contact
with the even-1 on lattice poirfk/4—i+ 1,k/4+i+2,1). Thus, it also has 3 contacts. By (1), we see that an
upper bound on the number of contactOBT < 40[Y = 4k+ 2. We obtain 3 contacts fcg— 3 of the odd-1’s.
Thus, the number of contacts in the resulting folding is a&;ﬂéOPT— 9. O

2.2 Relating Folding to String Properties

As the number of 1's placed on the diagonal in the®ONAL FOLDING ALGORITHM (i.e. 3 min{O[S,£[S})
increases, the length of the resulting folding increasea direction parallel to the ling =y. The height
of the folding may also increase depending on the maximutarte between consecutive odd-1'sSn or
consecutive even-1's ific. However, regardless of the input string, the resultingifa has the same constant
width in the direction parallel to the line= —y. In other words, although the algorithm produces a three-
dimensional folding, with increasinigandn, the folding may increase in length and height but not in uidive
will explain how we can use this unused space to improve therigthm for a special class of strings.

By consecutive odd-1'sve mean odd-1's that are not separated by even-1's and dyrfitet consecutive
even-1's. For example, in the string 1010001100011, treeaestring of 3 consecutive odd-1's followed by two
consecutive even-1's followed by an odd-1.

Definition 2. A string & is calledodd-monotonéf every maximal sequence of consecutive even-1's is peelced
by at least as many consecutive odd-1's. A striggsScalled even-monotondf every maximal sequence of
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consecutive odd-1's is preceded by at least as many comse@wen-1's.

For example, the string 10101100011 is odd-monotone andttiteg 0100010101101101011 is even-
monotone. We define switchas follows:

Definition 3. A switchis an odd-1 followed by an even-1 (separated only by 0's). ¥t the number of
switches in S b(9).

For example, for the strin§= 100100010101101@1011,5(S) = 2 since there are two transitions (under-
lined) from a maximal sequence of consecutive odd-1’s tajaesace of even-1's.

Suppose we can divide a given strifgnto S» and S such thatSy is odd-monotone an&e is even-
monotone an®[Sv] = £[S] andE[Sp| = O[S ]. Additionally, suppose the number siitchesin Sis 8(S).
Then we have the following theorem:

Theorem 4. Let S= S»S and let $ be an odd-monotone string ang Be an even-monotone string such that
OS] = €[&] andE[Sv] = O[&]. Then there is a linear time algorithm that folds these twimgs achieving
SOPT - 163(S) — O(1) contacts.

The main idea behind the proof of Theorem 4 is that we pantitiee elements irff» and S into main-
diagonal elementandoff-diagonal elementsWe then use the BGONAL FOLDING ALGORITHM to fold the
main-diagonal elements along the directioa y and the off-diagonal elements into branches along thettrec
X = —Yy (see Figures 3 and 4). All 1's will receive 3 contacts exceptaf constant number of 1's for each off-
diagonal branch, which correspond to switches in the frfhgandSg, and a constant number at the ends of
the main diagonal. This yields the claimed numbeﬁ@IPT— O(3(S)) — O(1) contacts.

To precisely defingnain-diagonaland off-diagonalelements, we need some additional notation. We use
ok and ¥ (for some integek > 0) to refer to the strings consisting kf0’s andk 1's, respectively. By writing
S= EX for some integek, we mean tha$is of the form

S=QPoth PPt gPistt . gPk-1 110

for integers; > 0, and all the 1's ir5are even-1's. Likewise, we writg= OX to refer a string of the same form
where all 1's are odd-1's, i.e.

S=10P1 11 (A2t Pistl | o2k-1t11Qk,

So we can express any strig asSe = EXOME®2Q .. E*O for k = §(S¢) and integersy; andby;. If S
is even-monotone, them > b; for all i. We can express any strirgp asS» = OXERO%2E% ... O%EY for
¢ =3(S») and integers; andd;. If Sy is even-monotone, thes > d; for all i.

Definition 5. For an even-monotone string S E2OP1E2Q% ... E&%Q%, the first set of & bj even-1's in each
block, i.e. the elements®E 1 E%2 P2 E%~b gre themain-diagonal elementand the remaining elements
EPOP1EP2QP2  EPQ gre theoff-diagonal elementin S.

Definition 6. For an odd-monotone string:S= O%E%“O%2E% ... O%E%, the first set of c— d; odd-1’s in each
block, i.e. the elements@®“0%~% O%~% are themain-diagonal elementsnd the remaining elements
O%RERQLRE®: O%EY are theoff-diagonal element® Sp.

For the algorithm, it will be useful to havg andS» in a special form. Two sets of off-diagonal elements
in S, O%EY% andQ%+1E%+1, are separated by, — di,1 odd-1's that are main-diagonal elements. We want
them to be separated by a number of main-diagonal elemaitsth multiple of 8. This will guarantee that the
off-diagonals used to fold the off-diagonal elements ageil@ly spaced so that none of the off-diagonal folds
interfere with each other. We will use the following simpterima.



Lemma 7. For any odd-monotone string¢Sit is possible to change at mo85(S») 1's to 0's so that the
resulting string Sis of the form
S = OMEMO®E™ . O

where a— by; is a positive multiple of 8 fot <i < k.

Proof: Suppose tha® initially is of the form
Sp = ONEPO%2ER: | O,

First, we convert alEP with B; < 8 into 0's. This will merge some maximal sequences of oddyi&lding a
string of the form
OMEVIO®EY2 ... O%*

with k < £. For each, we then converty; — a)mod 8 even-1's oEY into 0’s, yielding a string of the desired
form. O

We note that there is an analogous version of Lemma 7 for mm@mstone strings. With this preparation,
we can now state our folding algorithm.

2.3 A Modified Diagonal Folding Algorithm

OFF-DIAGONAL FOLDING ALGORITHM

Input A binary stringS= S S, such thats, is odd-monotoneS is even-monotone,
OS] = €[] ande[So] = O[:).

Output A folding of the stringS.
1. Change at most®S) 1's to 0’'s inS» andS to yield the form specified in Lemma 7.

2. Run DAGONAL FOLDING ALGORITHM onmain-diagonalelements along the direction
x =Yy and change from plane= 0 to z= 1 when the length of the main diagonal equals
4.10[Sv]/8] +2. See Figure 3.

3. Run DAGONAL FOLDING ALGORITHM on theoff-diagonalelements along the direction
X = —V. Theoff-diagonalelements attached to tineain-diagonalelements on the plane
z=1 are folded along the diagonais= —y+ 8k. Theoff-diagonalelements attached to
themain-diagonalelements on the plare= 0 are folding along the diagonals
X= —-y+ 8k+ 4. See Figure 4.

Proof of Theorem 4. By the correctness of the BGONAL FOLDING ALGORITHM, it suffices to consider
whether some off-diagonals intersect each other. The fiegt af the algorithm ensures that all off-diagonal
branches are spread apart by multiples of 8 on the main“&gdhus, neighboring branches do not intersect.
Furthermore, branches off the uppee{1) plane do not intersect with branches off the lowes Q) place due
to Step 3. Changing the plane when the main diagonal has thlen§ mod 4 ensures that branches on the
upper plane will follow diagonalg = —y + 8k for somek, and branches on the lower plane follow diagonals
x = —y+8k+4 for somek. Thus, branches are at least 4 lattice points apart, shothimigthe folding is
non-intersecting.

It remains to analyze the number of contacts produced bydldinf). The DAGONAL FOLDING ALGO-
RITHM generally produces 3 contacts for every 1. So it suffices tmdhe number of 1's its that do not
receive 3 contacts. The following is an exhaustive list:th{§ up to &(S) 1's changed into 0’s in Step 1; (ii)
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a constant number of 1's at the ends of the main-diagonalL@hma 1) and because we fold over at a length
=2 mod 4 in Step 2; (iii) in Step 3, for each of the at md&$) off-diagonal branches: at most 3 1's at the
end of each branch (by Lemma 1), and at most 5 1's to connediftftBagonal branch to the main-diagonal

(see Figure 4). So in summary, up tod(8) + O(1) 1's might not receive three contacts, so that we obtain
30[9 - 165(S) — O(1) > 20PT - 165(S) — O(1) contacts. O

z=1

Figure 3: Folding thenain-diagonalelements in Step 2 of thefB-DIAGONAL FOLDING ALGORITHM. The
solid lines represent thmain-diagonalelements and the dashed lines represenpfiidiagonalelements.



Figure 4: Folding theoff-diagonalelements in Step 3 of the ®B-DIAGONAL FOLDING ALGORITHM. The
main-diagonalelements are represented by the dashed lines on the maondlad heoff-diagonalelements
are represents by the solid lines on the off-diagonals. fignise shows how the repetitions of theASONAL
FOLDING ALGORITHM on the off-diagonals interleave and thus so not interfeith wach other. The closeup
gives an example of how the off-diagonal folds are connetdd¢de main diagonal.

z=1



3 Combinatorial Problems on Strings

3.1 Solving the General Folding Problem

In this section, we will prove a combinatorial theorem abbimary strings, which will allow us to use the
algorithm from Section 2.3 to solve the general 3D stringlifay problem. The binary strings that we consider
in this section are from the ség,b}*. Given a string to fold in{0,1}*, we map it to a corresponding string
in {a,b}* by representing each odd-1 by arand each even-1 by la For example, the string 10100101
would be mapped to the strirgabh We will use theorems about the strings{imb}* to prove theorems about
subsequencesf the strings in{0,1}* that we want to fold.

The combinatorial problem that we want to solve is the foltayv given a stringS € {0,1}* such that
E[Y = O[S, we want to divide the string into two substrings such tha oontains an even-monotone subse-
guence and the other contains an odd-monotone subsequehtteeanumber of 1's contained in these monotone
subsequences is as large as possible, since the 1’s in thiessgsences are the 1's that will have contacts in the
folding algorithm in Section 2.3.

Given a stringSe {0,1}*, we will treat it as a loof.(S) by attaching its endpoints. In other words, we are
only going to consider foldings of the string that place thstfand last element @& on adjacent lattice points.
(If Shas odd length, we can add a 0 to the end of the string and fsdtiting instead of; a folding of this
augmented string will yield a valid folding of the origindtiag.)

Lemma 8. Let L(S) € {0,1}* be a loop, and k= min{ O[§,£[F}. Then it is possible to change some 1's of
L(S) to O’s such that there is a partition(5) = S» S with S and $ odd- and even-monotone, respectively,
O[So] = E&[S], £[So] = O[Se], andO[So] + OS] > (2— V/2)k. Furthermore, this partition can be constructed
in linear time.

This Lemma implies that every 3D folding instance can be eded into the case required by Theorem 4
by converting not too many some 1's into 0's. We get the foltmpCorollary.

Corollary 9. There is a linear time algorithm for the 3D folding problenatlyenerates at leastt39- OPT —
165(S) — O(1) contacts.

Proof: Given an input strinds, first obtainS, andSe with Lemma 8. Note that the number of switches does
not increase fronsto SpSe. Since the number of 1's is reduced by a facto(f 1/2), the optimal number of
contacts might also have been decreased by that factoryisgplheorem 4 t&5» andSe therefore leads to a
folding with at least (2 — v/2)OPT — 165(S) — O(1) > .439- OPT — 163(S) — O(1) contacts. O

Proof (Lemma 8): We can generat&, andSe by cuttingL(S) in two places. First, we will use Lemma 2.2
from [Ala02]. This lemma states that given a lob(), there is an element in L(S) such that if we start at
point p and move around the loop in the clockwise direction, we sésaat as many odd-1's as even-1's and if
we move around the loop in the counter-clockwise directtartiag at pointp, we see at least as many even-1's
as odd-1’s.

We choose such a poimtto be the first point where we cut the lo&gS). We choose the second point
simply by ensuring that both resulting substrings contathdgame number of 1's. Now we have two substrings
S» andS:. The substrings», has the property that every suffix (or prefix—-depending onymuwiew the string)
has at least as many odd-1's as even-1's &ntlas the property that every suffix has at least as many egen-1’
as odd-1's.

Now we want to change the minimum number of 1's to 0'sSisi and S¢ so that the resulting substrings
are odd-monotone and even-monotone, respectively,(d8d| = £[S] and £[Sv] = O[], since these are
the conditions required by Theorem 4. Consider a binarmmg®i corresponding to the subsequence of 1's in
S in which each odd-1 is replaced by arand each even-1 is replaced by.aThe problem of changing the
minimum number of 1's to 0's irs so that the resulting string is odd-monotone is equivalerfinding the



longestblock-monotonesubsequence in the stril®) A subsequence islock-monotonéf every block ofa’s is
immediately followed by a block of at least as mdry. (For the stringS», we have the same problem stated
with a’'s andb’s inverted: we want to find the longest subsequence in whielyeblock ofb’s is immediately
followed by a block of at least as maaig.)

The rest of this section is devoted to solving the followimgndinatorial problem: Given a binary string in
{a,b}* in which every suffix contains at least as maty asa’s, what is the longest block-monotone subse-
quence? For example, suppose we are given the staagaabbbbabbbalsome block-monotone subsequences
are: aaaabbbbabbbalindaaaaaabbbbbbbablf the number ofa’'s andb’s are equal, it is clear that we can al-
ways find a block-monotone subsequence containing at ladshk elements by just choosing the subsequence
of all b's. Can we always find a block-monotone subsequence of marettalf the elements? We will prove in
Theorem 15 that we can always find a block-monotone subsegquéiwith at least2 —v/2)n elements where
nis the number of elements in the input string and the inputgtrontains an equal number @ andb’s.

By Lemma 17, we can furthermore choose these subsequeratethatO[Sy| = £[S| andE[Sv] = O[]
after the transformation. This completes the proof of theira. O

3.2 Block-Monotone Subsequences

In this section, we will prove a combinatorial theorem allwingry strings. LeBbe a binary stringSe {a,b}".
We will use the following definitions.

Definition 10. A blockis a maximal substring of consecutive a’s or b’s in a binarjnst

For example, the stringbbbaaabthas two blocks ob’s (of length four and two) and one block a& (of length
three).

Definition 11. A binary string isblock-monotonef every block of a’s is immediately followed by a block of at
least as many b’s.

For example, the stringaaabbbaaabbbls block-monotone. The stringabbaaablis not block-monotone.
Definition 12. Let m(S) and ny(S) denote the number of a’'s and b’s, respectively, in a string S.

Given a binary stringS, our goal is to find a long block-monotone subsequence. lasy ¢o see thab
contains a block-monotone subsequence of length atmgéSt since the subsequencelas is trivially block-
monotone. It is also easy to see that there are strings fathaieé cannot do better than this. For example,
consider the string'a'. In this string, there is no block monotone subsequencetmaains any of tha’s. Thus,
we will put a stronger condition on the binary strings in whige want to find block-monotone subsequences.

Notation 13. a =1 73~ 0.2929

Definition 14. A binary string S=s,...s, is suffix-monotondf for every suffixg = Sc1...8, 0< k < n, we

have (&) > a- (n—k).

For example if every suffix dbhas at least as mais asa’s, the string is suffix-monotone. (If in addition,
Salso has the same numberad andb’s, thenScorresponds to a string in the set of well-balanced pareethg
We will give an algorithm to prove the following theorem.

Theorem 15. Suppose S is a suffix-monotone string of length n. Then therdliock-monotone subsequence
of S with length at least # ny(S)(2v/2 — 2). Furthermore, such a subsequence can be found in linear time

If na(S < %n and Sis suffix-monotone, then Theorem 15 states that we can findak{shonotone sub-

sequence of length at lea@ — v/2) > .5857 the length o5 Now we will give an algorithm for finding a
block-monotone subsequence of a suffix-monotone string.
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BLOCK-MONOTONE ALGORITHM

Input a suffix-monotone string=-=s;...s

Output a block-monotone subsequenceSof
LetS =5;...5, S =S41...5fori: 1<i<n
1. If sy =b:
() Find the largest indek such thats is a block ofb’s and outputs,
2.fg =@
(i) Find the smallest indek such that:
Np(Sc) > ak
(i)LetS =spp1...5forl: 1<l <Kk
(iii) Find ¢ such that:
Na(S) < Mp(S)
Na(S) +Np(S) is maximized
(iv) Remove all theéb's from § and outpuls,
(v) Remove all thea's from S, and outputS,
3. Repeat algorithm on strirfg

Figure 5: These three figures give a pictorial represemtati@ binary strings. An up edge corresponds to an

and a down edge corresponds to. dn the first figurek denotes the point chosen in Step 2 (i) drdknotes the
point chosen in Step 2 (iii). In the second figure, the crossddedges represent the elements that are removed
from the string. The third figure shows the string after reingvhe crossed-out elements.

Because of space limitations, we put the proofs of Lemma tld.@mma 17 in Appendix A.

Lemma 16. For a suffix-monotone string S of length n, BeEOCK MONOTONE ALGORITHM outputs a block-
monotone subsequence of length at leastg(S) (2v/2 — 2).

Lemma 17. We can modify the block-monotone subsequenhcautput by theBLOCK-MONOTONE ALGO-
RITHM so that

Na(S) = Kl— %) na(S)-‘ and ny(S) = [n— (% — 1> na(S)-| :
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4 Conclusion

We conclude the paper by stating an approximation guardantependent ob(S). We give a case-based
algorithm whose approximation guarante%@Pﬂ- O(8(S)). This algorithm is based on the following idea:
Suppose&y andSe contain half the odd-1's and half the even-1's, respegtivdle use the INGONAL FOLDING
ALGORITHM, but for each switch irsp, we use different local foldings to obtain an additional nstant)
number of contacts, e.g. we use an even-1 in the switch tanchiether contact with an odd-1 placed on the
main diagonal. The different cases for this algorithm araitkl in Appendix B, which contains the proof of
following lemma.

e

Lemma 18. We can modify th®IAGONAL FOLDING ALGORITHM to create a folding witI"%OPT+ 556 —

O(1) contacts for any binary string S.

Corollary 19. There is a polynomial time algorithm for the 3D folding prebi that creates a folding with
.37501- OPT — O(1) contacts for any binary string S.

Proof: We run the algorithms referred to in Corollary 9 and Lemmaadl@putting the better of the two foldings.

Their output guarantees are lowest if they are equalgm?T+ % = .439PT — 165(S), which happens for
0(S) =~ .040PT, yielding an approximation guarantee of slightly more tt2#50156. O

So we have obtained an algorithm for protein folding in therkiddel on the 3D square lattice that slightly im-
proves on the previously best-known algorithm to yield aoragimation guarantee of .37501. The contribution
of this paper is not so much the actual gain in the approxonatatio, but the demonstration that the previously
best-known algorithm is not optimal, even though there Ha@&n no improvements for almost a decade. We
also explore different approaches to this problem, i.alifigls that mainly exploit properties of the string.

In closing, we discuss the problem of finding block-monotenbsequences of binary strings. One way to
improve the approximation ratio of our algorithm is to impedhe guarantee given by Theorem 15. We note that
we only apply Theorem 15 to binary strings in which every sufintains at least as mabig asa’s—a stronger
condition that our definition of block-monotone. Theoremirhplies that such strings contain block-monotone
subsequences of at leaS857 their length. We conjecture that the real lower boumttﬂally:% their length.
Currently, the best upper bound we are aware of is the string:

aaaaabaaaabaaabaababbbaaabaaabababaababbbbbbbbbbbbb

whose longest block-monotone subsequeneé®ist®, which is 2 ~ 71.15% of the length of the original string.
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A Appendix: Proofs

Proof of Lemma 16: Note that in Step 2 (i), there always is an indewith the required property because the
definition ofsuffix-monotonémplies it is true fork = n. Similarly, £ = 1 satisfies,(S) =1 < ny(S)), thus there
always is art of the required form in Step 2 (iii). Finally, the algorithratputs a block-monotone subsequence
because whenever it outputs a subsequeneis ¢in Step 2 (iv)), it also outputs at least as mdr's/(in Step 2
(v)). This shows that the algorithm is correct.

In the algorithm, we modify the input string by removiay andb’'s. However, in order to analyze the
algorithm, we will first consider a version of the problem ihieh we can remove a fraction of eaalor b.
Note that the algorithm can be used for the continuous pnolale well as the discrete problem. We will show
that in the continuous case, the resulting string has aigartemimum length and then show that in the discrete
case, the resulting string has at least this length.

Since we will cut the string fractionally, let us considecle&lement as a unit-length interval. For example,
if 5 = a, thens is a unit-length segment labeled and if 5 = b, thens is a unit-length segment labelel .’
Thus, we will view the strings as a string of unit-lengtlh- andb-segments. Supposg = 0 andS, is a prefix
of the input suffix-monotone strin§such than,(S) > ak andny(Sj) < ajforall j: 1< j <kasin Step 2 (i)
of the algorithm.

Lett denote the point in the string at whicl(S) = at. The pointt can be viewed as a fractional, rather
than integral, index of the strin§ Note that there always exists a pdimtt whichn,(S) = at because the string
Sis suffix-monotone, which implies that at least@ifraction of Sis b’s. Note thatt may be a non-integer real
number betweek — 1 andk and that the strin& may end with a fractional part ofta

Letg(t) =t — [t]. Letybe the point in the string such than,(S;) = ny(S)). (We defineS, as the substring
starting at positiory up to positiont). If we could keep fractional portions of the string, we ablukep all the
(fractions of)a-intervals inS, and all the (fractions ofp-intervals inS,. Note that at least &1 — o) fraction of
the elements i1g, area’s, and at least an-fraction of the elements i§, areb's. So for the fractional problem,
the best place to cut the string is at the pdirt 3t where:

Bl-a)=(1-B)ja — B=a

Thus, we keep ad(1— a) fraction of each substring considered in Step 2. Next, weyaireg to compute the
total length of the output of our algorithm. L&} represent the set of substrings (i.e. blockd'sf that are

output unmodified during the first step of the algorithm andTg represent their total length. L&} represent
the set of substrings which are modified during the seconqmdtthe algorithm and I€ff,| represent their total
length. Letm be the length of the output of the algorithm. Then we have dlleviing equations:

n = |Tf+[T
Na(S) = (1-0a)[Ty
m = |Ti|+2a(1—a)|Ty|

Solving these three equations, we find that the total fraaifdhe string that remains is:

1
m = <2cx+a—_1> Na(S) +n.

This expression is maximized for=1— 1/+/2, which is why we assigneal this value. Substituting, we get:

m=n—(2v2-2)ny(9). )
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Thus, in the case where we can remove fractions cthandb’s, the algorithm results in a string whose length
is indicated in Equation (2).

In the integral case, we will show that the algorithm resulta string whose length is at least as large as the
fraction in Equation (2). If the poing in § is in ab-interval, then we can keep the whdianterval. In other
words, in addition to keeping thes in S, and theb's in S;, we are also keeping the fraction of thénterval that
lies in'S,. This will only make the block ob's from S, longer, which does not violate the block-monotonicity
of the output string.

If the pointy in § is in ana-interval, then note that the (fractional) numbera in S, is equal to the
(fractional) number ob's in §,. We will denote the former quantity by+ f and the latter quantity bg+ d,
wheree andc are integers and andd are fractions less than 1. Note that simce f = c+d, it follows that
e=candf =d. Also, note that = g(t). Thus,f = g(t). In the fractional version of the algorithm, in the next
iteration, we would skip over at least-1g(t) b's, applying Step 1 (i). Thus, we keep the whbkinterval in
whicht lies, we are keeping+ d b's from S, as well as the remaining-1g(t) fraction of the lasb-interval
in §. Thus, if we keep the additional-1f = 1—g(t) fraction of thea-interval in whichy lies, this does not
violate the block-monotonicity of the output string. O

Proof of Lemma 17: Following the notation of the proof of Lemma 16, in the fracil case, we keep(1 —
a)|Tz| = ang(S) as and|Ty| +a(l—a)|Tz| =n— %Eo‘zna(S) b's. Since these are lower bounds on what we
keep in the integral case, the subsequence output by thethigdas at leastl — %)na(S) a’'s andn— (% —
1)na(S) b's. To keep exactly the number of symbols claimed in this Lemihsuffices to delete the excess
number ofa’s andb’s. To do this, first delete the excess anywhere in the output string, the result will clearly
still be block-monotone. Then we delete the exdgss Note that at this point, the number loé exceeds the
number ofa’s, so there will always be a block bfs strictly greater than the preceding blockad and we can

deleteb'’s from this block. O

B Appendix: A Case-Based 3D String Folding Algorithm with Approximation
Guarantee3/8+ O(3(S))

In this section, we give a case-based algorithm that has@me@mation guarantee 0875+ O((S)). We will
analyze this algorithm to conclude with a proof of Lemma 18.

Consider the substrind® andSe such thatO[Sp| = £[S] andE[Sp] = O[]. (Itis shown how to divide
Sinto such substrings in Section 3.) Furthermore, in thisisecwe can assume th&@[Sy]| = £[Sp]. If we
haveO[S»]| > £[Sv], then the algorithms we describe below will have strictljtéreapproximation ratios than
what we prove.

We will consider the following modified version of the strig. For every sequence of consecutive even-
1's, we turn all but one of them into a 0. For example, we wotdghdform the string 1101011 into 1100001.
Slightly abusing notation, we will from now on refer to thisdified string ass». We will divide the even-1's
in Sy into the following disjoint categories. Suppose each of¢heategories hdgk, o2k, &3k, anddsk even-1's
respectively, wher& = O[S. Without loss of generality, we assume tlat- d, + &3+ 04 > 8/2, i.e. half the
switches occur ir%».
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Each even-1 it falls in exactly one of the following categories:

1. Even-1's in blocks of 1's of length at least 10 or in a blodkls of length 9 tha
begins with an odd-1.

2. Even-1's in blocks of 1's of length at least 2 and at moste® bHegin or end with an
even-1.

3. Even-1'sin blocks of length 1.

4. Even-1's in blocks of length at least 3 and at most 7 thaitbegd end with an odd-1.

For each of the four cases above, we will show how to slightbdify the DIAGONAL FOLDING ALGORITHM

so that it gives an approximation guaranteegof ¢io for some constant. In the DAGONAL FOLDING
ALGORITHM, one way to account for contacts is to attribétef a contact to each odd-1 on the main diagonal
and% of a contact to each even-1 on the main diagonal. The mairbieleiad the modifications of the algorithm
is to fold the string so that some odd-1's may no longer be emhin diagonal (thus Iosin%contacts per odd-
1) but form more thalg contacts per odd-1 with neighboring even-1's (making ugb®fwitches). In some of
the modifications (such as Case 2) we do not actually remoyefahe odd-1’s from the main diagonal; due to
the nature of the switches, we can still g¥tl) contacts per switch. We will first prove a lemma that we will
use in several of the cases.

Lemma 20. Suppose we delete (i.e. change 1's to 0's) i odd-1'sjgh Ehen we can re-divide S into substrings
So and § so that we again havé[S] = O[S]. If we run theDIAGONAL FOLDING ALGORITHM on these
new strings g and &), we will obtain a folding with at Ieag((?[ﬂ — i) contacts on the main diagonal.

Proof: In Section 3, we used Lemma 2.2 from [Ala02] to chossso thatO[S] > £[S§] for all i =1,...n,
where§ =s;...s. If we define§ := s:s,_1...5, then again by Lemma 2.2 in [Ala02] we haﬁé] > O[§]
foralli=1,...n. In Lemma 2.2 of [Ala02], we found, so thatSp = s;...sp andSe = ;... Spt1.

If we removei odd-1's fromS», then the main diagonal fold &» would be much shorter than that §f.
However, if we moves, = Sy, j for somej so that once agai@?[Sy| = £[S¢], then the number of odd-1's &

is at Ieast@. Thus, we obtain at leagt{ O[S — i) contacts on the main diagonal. O

Case 1

Lemma 21. There is a modification of thBIAGONAL FOLDING ALGORITHM with approximation guarantee
atleastS + %

Proof: Aneven-1in Case 1 occurs in a block of 1's of length at leasirlif a block of 1's of length 9 beginning
with an odd-1. Suppose we have a block of 11 1's that begins antodd-1, which will give the worst case
approximation ratio. Then we fold this block as in Figure &téhg at the point labeled. Note that 3 odd-1’s
from S» that would be on the main diagonal in theABONAL FOLDING ALGORITHM are not placed on the
main diagonal. Thus, the main diagonal will be shorter —mﬂéeéi( shorter, because for every 5 even-1's in
Case 1, we take at least 3 odd-1's off the main diagonal. Byrhar@0 we can then assume that the length of
the main diagonal is:
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Figure 6: Cases 1 and 2. The first figure shows a folding for-@&&im Case 1. At pointa begins the folding
for a block of 1's of length 9 that begins with an odd-1. Notatt® odd-1's are not placed on the main diagonal,
but 5 contacts — in addition to those that will be formed onrttzén diagonal — are obtained. At poimta block

of 1's of length 13 is folded. Here, 5 odd-1's are not placedrenmain diagonal, but 8 additional contacts are
formed off the main diagonal. At poirt a block of 1's of length 11 is folded. It is basically the safokling

as used for blocks of length 9. The second figure shows ewemTase 2. For at least half of the blocks of
1's of length at least 2 and at most 9 that begin or end with an-dy we can get an extra contact by placing an
even-1 adjacent to an odd-1 on the main diagonal.

For every odd-1 ir§» on the main diagonal, we obtain 3 contacts. For every 3 oddR1%, off the diagonal
(corresponding to 5 even-1's in Case 1), we obtain 5 contdttss, the approximation guarantee is:

_ _ 1 - _ = -
(3 <O[S] 35 O[S]) . 561(9[3) 1 3 % & _3 &
2 5 5

40[§ 8 40 4 840

Case 2

Lemma 22. There is a modification of thBIAGONAL FOLDING ALGORITHM with approximation guarantee
at least3 + &.

Proof: Aneven-1in Case 2isin ablock of 1's of length at least 2 amdat 9 that begins or ends with an even-
1. In this case, the main diagonal will remain the same leagtim the DAGONAL FOLDING ALGORITHM. We
will obtain extra contacts by placing even-1's frd& next to odd-1's on the main diagonal. This is shown in
Figure 6.

For at least half of the blocks (i8») of 1's of length at least 2 and at most 9 that begin or end widmel’s,
we can get an extra contact by placing an even-1 adjacent tml@i on the main diagonal. We may only
be able to do this for half of the blocks, because the foldmgigure 6 will work only for an even-1 followed
immediately by an odd-1 or an odd-1 followed immediately bywsaen-1, but does not allow alternating between
these two cases. Among these types of blocks, the worst sasélock of 8 1's that begins or ends with an
even-1. Such a block uses 4 even-1's from Case 2. If all the €a&ven-1's fell in this category, we could get
an extra contact for half of them, which is one per 8 switchidss ratio is better for block lengths other than
8. In particular, note that a block of length 9 that beginshveih even-1 must also end with an even-1, so we
always get a contact for one of the two ends of such a blockunmsary, we get the following approximation
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guarantee:

(3(9[5] 62(’)[S]> 1 _3.%
2 8 )40[§ ~ 8 32

Case 3
(iii)

(ii)

Figure 7: Case 3.

Lemma 23. There is a modification of thBIAGONAL FOLDING ALGORITHM with approximation guarantee
atleastd + 3.

Proof: An even-1 in Case 3 is in a block of length 1. Thus, substrirajgaining such an even-1 look like:
1001001100001001, etc. In other words, an even-1 in Case 3 is in arsup4 2 10%21 whereq; andq, are
both positive even integers. Consider the stringl@®10%210/1 wherei and j are odd integers, i.e. the first two
1's and last two 1's in the string are odd-1's and the middle 4n even-1. (We can assume for now that there is
no even-1 between the first two odd-1's or the last two oddbé&ause as we will discuss later, if there are two
Case 3 even-1's that share an odd-1 as a neighbor, our foMihgnly use one of these even-1's.) We will use
four different modifications of the BAGONAL FOLDING ALGORITHM based on the values band j. We name
these types of even-1's asfollows: i(i> 3,j > 3; (i) i=1,j=1; (i) i >3, =1; (iv)i=1,] > 3. See Figure

7 for illustrations of the foldings for each of these typese Méw distinguish two cases: first, if more than half
of the Case 3 even-1's are of type (i), (ii) or (iii), and sed¢oit more than half are of type (iv).

Suppose that more than half of the Case 3 even-1's are of ()p@i§). The foldings for these three types
can be used consecutively (as opposed to the folding ofiich cannot be applied right after itself). However,
we can only guarantee a contact for half of the even-1's isdlibree types because we may have, for example,
1010101001001, i.e. 2 even-1’s that are both adjacent to the samhd oth this case, we can only get an
extra contact for one such even-1.

We note that the approximation guarantee obtained is arlzwabination of the approximation guarantees
for the three types, weighted by their relative frequendye Worst case therefore occurs if half the of Case 3
even-1's are of a single type, (i),(ii) or (iii). Since thelyange the length of the main diagonal, types (i) and (ii)
are worse than (iii).

Since types (i) and (ii) either remove an odd-1 from the maagahal (type (ii)) or result in some even-1's
from S not having contacts on the main diagonal (type (i), theyawese than type (iii). Both of these types
have the same approximation guarantee. We will just anaheease when half the Case 3 even-1's are type
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(). The folding modification for this type changes the ldngf the main diagonal to at least:
1 530[Y
2 (09+557)

This is because we assumed that at least half of the Case 3 &svare of types (i)-(iii) and we can use half of
these even-1's. For each even-1 in Case 3, we lose 1 odd-leanadim diagonal and we gain 2 contacts per
even-1 off the main diagonal. Therefore, the approximagjoarantee is:

(35 29%) -29) 20 2 a3 2l e 3o o

In the other case, when more than half of Case 3 even-1's angef(iv), per type (iv) even-1 we obtain 2
contacts and one odd-1 is not used on the main diagonal. fbheré this case the approximation guarantee is
better than that in (3). O

Case 4

Lemma 24. There is a modification of thBIAGONAL FOLDING ALGORITHM with approximation guarantee
at leastS + %.

Proof: In Case 4, even-1's occur in blocks of length at least 3 andost Mthat begin and end with an odd-1.
Consider all the odd-1's that occur in blocks of length astéaand at most 7 and that begin and end with an
odd-1. Note that the number of such odd-1's is at Iéé‘lssince the ratio of odd-1's to even-1’s in this case is
at least 4 to 3. To deal with Case 4, we will cut the |dq®) into two pieces in a particular way. Recall that
in Section 3, we cut the loop(S) into two pieces to secure certain properties. Here, we witltlee loopL(S)

into two pieces in the following (different) way: Lef be an element i, that dividesSy into two parts, each
containing half the odd-1's of Case 4 (i.e. odd-1's that arblocks with Case 4 even-1's). This will be one of
the new points at which we clt(S). Then we find another point such that one string containsaat lealf the
odd-1’s and the other string contains at least half the é&nFor these new strings, let us call th&pnands;,
note that nowS; contains at least half of th@[S odd-1's that were in blocks with the Case 4 even-1's. Thus,
we can apply the Case 2 folding 8, i.e. S; now contains blocks of 1's that begin with odd-1's. This gitke
following the approximation guarantee:

30§  145,0[51\ 1 3 &
(2 4 3 E)

401§ — 8" 24

Now we can prove Lemma 18.

Proof of Lemma 18: Setting all the approximation guarantees equal, we have:
61 . 52 N 53 . 64
40 32 32 24

Using the fact thad, + &, + 83+ &4 = 3, we obtain that whed; > 33, we should use the Case 1 modification.

This implies that the approximation guarantee for the fasges is at least:

3,81 _3, 3
8" 3240 ~ 8 256

18



