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Abstract. The linear ordering problem is easy to state: Given a com-
plete weighted directed graph, find an ordering of the vertices that maxi-
mizes the weight of the forward edges. Although the problem is NP-hard,
it is easy to estimate the optimum to within a factor of 1/2. It is not
known whether the maximum can be estimated to a better factor us-
ing a polynomial-time algorithm. Recently it was shown [NVO01] that
widely-studied polyhedral relaxations for this problem cannot be used to
approximate the problem to within a factor better than 1/2. This was
shown by demonstrating that the integrality gap of these relaxations is
2 on random graphs with uniform edge probability p = 2\/m/n. In this
paper, we present a new semidefinite programming relaxation for the lin-
ear ordering problem. We then show that if we choose a random graph
with uniform edge probability p = £, where d = w(1), then with high
probability the gap between our semidefinite relaxation and the integral
optimal is at most 1.64.

1 Introduction

Vertex ordering problems comprise a fundamental class of combinatorial op-
timization problems that, on the whole, is not well understood. For the past
thirty years, combinatorial methods and linear programming techniques have
failed to yield improved approximation guarantees for many well-studied ver-
tex ordering problems such as the linear ordering problem and the traveling
salesman problem. Semidefinite programming has proved to be a powerful tool
for solving a variety of cut problems, as first exhibited for the maximum cut
problem [GW95]. Since then, semidefinite programming has been successfully
applied to many other problems that can be categorized as cut problems such
as coloring k-colorable graphs [KMS98], maximum-3-cut [GW04], maximum k-
cut [FJ97], maximum bisection and maximum uncut [HZO01], and correlation
clustering [CGWO03], to name a few. In contrast, there is no such comparably
general approach for approximating vertex ordering problems.

In this paper, we focus on a well-studied and notoriously difficult combi-
natorial optimization problem known as the linear ordering problem. Given a
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complete weighted directed graph, the goal of the linear ordering problem is to
find an ordering of the vertices that maximizes the weight of the forward edges.
Although the problem is NP-hard [Kar72], it is easy to estimate the optimum
to within a factor of %: In any ordering of the vertices, either the set of forward
edges or the set of backward edges accounts for at least half of the total edge
weight. It is not known whether the maximum can be estimated to a better
factor using a polynomial-time algorithm. Approximating the problem to within
better than 22 is NP-hard [NVO01].

The linear ordering problem is also known as the maximum acyclic subgraph
problem. Given a weighted directed graph, the maximum acyclic subgraph prob-
lem is that of finding the maximum weight subgraph that contains no cycles.
The forward edges in any linear ordering comprise an acyclic subgraph and a
topological sort of an acyclic subgraph yields a linear ordering of the vertices in
which all edges in the acyclic subgraph are forward edges.

Recently it was shown that several widely-studied polyhedral relaxations for
the linear ordering problem each have an integrality gap of 2, showing that it is
unlikely these relaxations can be used to approximate the problem to within a
factor greater than % [NV01,New00]. The graphs used to demonstrate these inte-
grality gaps are random graphs with uniform edge probability of approximately
2\/m/n, where n is the number of vertices. For sufficiently large n, such a ran-
dom graph has a maximum acyclic subgraph close to half the edges with high
probability. However, each of the polyhedral relaxations studied provide an up-
per bound for these graphs that is asymptotically close to all the edges, which
is off from the optimal by a factor of 2.

In this paper, we first present a new semidefinite programming relaxation
for the linear ordering problem. A vertex ordering for a graph G = (V, E) with
n vertices can be fully described by a series of n — 1 cuts. We use this simple
observation to relate cuts and orderings. We derive a semidefinite program for
the linear ordering problem that is related to the semidefinite program used
in the Goemans-Williamson algorithm to approximate the maximum cut prob-
lem [GW95]. We note that by using different objective functions, our semidefinite
programming relaxation can be used to obtain semidefinite relaxations for many
other vertex ordering problems.

Second, we show that for sufficiently large n, if we choose a random directed
graph on n vertices with uniform edge probability p = % (i.e. every edge in
the complete directed graph on n vertices is chosen with probability p), where
d = w(1), our semidefinite relaxation will have an integrality gap of no more
than 1.64 with high probability. In particular, the graphs used in [NVO01] to
demonstrate integrality gaps of 2 for the widely-studied polyhedral relaxations
fall into this category of random graphs. The main idea is that our semidefinite
relaxation provides a “good” bound on the value of an optimal linear ordering
for a graph if it has no small roughly balanced bisection. With high probability,
a random graph with uniform edge probability contains no such small balanced
bisection.
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2 Relating Cuts and Orderings

Given an undirected weighted graph G = (V, E), the maximum cut (maxcut)
problem is to find a bipartition of the vertices that maximizes the weight of the
edges crossing the partition. In 1993, Goemans and Williamson used a semidefi-
nite programming relaxation to obtain a .87856-approximation algorithm for this
fundamental graph optimization problem [GW95]. The goal of the Goemans-
Williamson algorithm for the maxcut problem is to assign each vertex i € V' a
vector v; € {1,—1} so as to maximize the weight of the edges (,7) such that
v; # Uj.

A closely related graph optimization problem is the maximum directed cut
(dicut) problem. Given a directed weighted graph G = (V, A), the dicut problem
is to find a bipartition of the vertices—call these disjoint sets V; and Vo—that
maximizes the weight of the directed edges (i,7) such that vertex i is in set V}
and vertex j is in set V5. Note that the edges in a directed cut form an acyclic
subgraph. We can generalize the dicut problem to that of dividing the vertices
into k labeled sets Vi, Vs, ...,V so as to maximize the weight of the edges (i, j)
such that vertex ¢ is in set V}, and vertex j is in set V}, and k& < h. We call this
the k-acyclic dicut problem. The linear ordering problem is equivalent to the
n-acyclic dicut problem.

2.1 A Relaxation for the Linear Ordering Problem

We can generalize the semidefinite programming relaxation for the dicut prob-
lem [FG95,GW95] to obtain a new semidefinite programming relaxation for the
linear ordering problem. The basic idea behind this formulation is a particular
description of a vertex ordering that uses n+ 1 unit vectors for each vertex. Each
vertex i € V has n + 1 (n = |V|) associated unit vectors: v, v},v?,... v In an
integral solution, we enforce that v) = —1, v® = 1 and that v? and v}"™* differ
for only one value of h, 0 < h < n. Constraint (1) enforces that in an integral
solution, v? and ’U?-H differ for only one such value of h. This position h denotes
vertex #’s position in the ordering. For example, suppose we have a graph G that
has four vertices, arbitrarily labeled 1 through 4. Consider the vertex ordering
in which vertex ¢ is in position 7. An integral description of this vertex ordering
is:

{0 o1, v, w3 v} = {-1, 1, 1, 1, 1},
{09, v}, v2, Wi wi} = {-1,-1, 1, 1, 1},
{0, vk, v3, W3 vi} = {-1,-1,-1, 1, 1},
{09, vy, vi, w3 vi} = {~1,-1,-1,-1, 1}.

Let G = (V, A) be a directed graph. The following is an integer quadratic
program for the linear ordering problem. For the sake of convenience, we assume
that n is odd since this simplifies constraint (2). By P(G), we denote the optimal
value of the integer quadratic program P on the graph G.



4 Alantha Newman

(P)

max Z Z wi; (vl -vf + ot -vffl —of -vffl — yht -vf) (1)
ijEA 1<h<f<n
ol -vf + ot -vfd — ol -vffl — ot -vf >0 Vi,jeV, h,len]
v?-v?:l YieV, heln]
o) v =—-1 YieV
v cup =1 VieV
Z vi% -vj% =0 (2)
i,jEV
ol € {1,-1} Vi,h € [n]. (3)

We obtain a semidefinite programming relaxation for the linear ordering problem
by relaxing constraint (3) to: v € R™, Vi, h. We denote the optimal value of
the relaxation of P on the graph G as Pr(G).

2.2 Cuts and Uncuts

Suppose we have a directed graph G = (V, A) and we are given a set of unit
vectors {v;} € R™, 0 < i < n. We will define the forward value of this set
of vectors as the value obtained if we compute the value of the dicut semidefi-
nite programming relaxation [GW95,FG95] using these vectors. Specifically, the
forward value for this set of vectors is:

1
maXZZ(].—’Ui"l)j—vo"l)i—FUo"Uj). (4)

In an integral solution for the dicut problem, there will be edges that cross the
cut in the backward direction, i.e. they are not included in the dicut. For a
specified set of unit vectors, we can view the dicut semidefinite programming
relaxation as having forward and backward value. We define the backward value
of the set of vectors {v;} as:

1
maXZZ(].—Ui'l]j—’l}o'l]j-i-’l)o'l]i). (5)

The difference between the forward and backward value of a set of vectors {v;}
is:

Z %(vj-vo—vi-vo). (6)

ijeA

Lemma 1. If a directed graph G = (V, A) has a mazimum acyclic subgraph of
(3 + 0)|A| edges, then there is no set of vectors {v;} such that the difference
between the forward and backward value of this set of vectors exceeds 25| A|.
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Proof. We will show that given a vector solution {v;} to the semidefinite program
in which the objective function is (6) and all the v; vectors are unit vectors, we
can find an integral (i.e. an actual cut) solution in which the difference of the
forward and backward edges crossing the cut is exactly equal to the objective
value. If the difference of an actual cut exceeds 26| A|, e.g. suppose it is (20 +€)| 4],
then we can find an ordering with (1 + 6 + €/2)|A| forward edges, which is a
contradiction. This ordering is found by taking the cut that yields (26 + €)|A]
more forward than backward edges and ordering the vertices in each of the two
sets greedily so as to obtain at least half of the remaining edges.

Suppose we have a set of unit vectors {v;} such that the value of equation
(6) is at least (20 + €)|A| = B|A|. We will show that we can find an actual cut
such that the difference between the forward and the backward edges is at least
B|A|. Note that vg - v; is a scalar quantity since vg is a unit vector that without
loss of generality is (1,0,0,...). Thus, our objective function can be written as
ZijeA %(z] — z;) where 1 > z; > —1. We transform the z; variables into z;
variables that range between 0 and 1 by letting z; = 2z; — 1. Then we have that
dijeA Hzi—z) = > ijea(®j — ;). This results in a linear program. We claim
that an optimal solution to the following linear program is integral.

> (@ — ) (7)
ijeA
0<z: <1, VieV.

To show this, consider rounding the variables by letting ¢ be 1 with proba-
bility z; and 0 otherwise. Then the expected value of the solution is exactly the
objective value. However, note that the value of the solution cannot be less than
the expected value, since then there must exist a solution with value greater
than the expected value, which contradicts the optimality of the expected value.
Thus, the integral solution obtained must have difference of forward and back-
ward edges that is equal to the objective value (7). o

We will also find a discussion of the following problem useful. Consider the
problem of finding a balanced partition of the vertices of a given graph (i.e. each

partition has size ) that maximizes the weight of the edges that do not cross

the cut. This problem is referred to as the max-g-uncut problem by Halperin

and Zwick [HZ01]. Below is a integer quadratic program for the max-§-uncut
problem.
(T)
1+4wv;- Vj
max 0 LU0
ijJEA
Z Ui -V = 0
i,jEV
v rv; =1 YVieV
v € {1,-1} VieVW (8)
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We obtain a semidefinite programming relaxation for the max-3-uncut problem
by relaxing constraint (8) to: v; € R", Vi. We denote the value of the relaxation

of T on the graph G as Tr(G).

Lemma 2. Let G = (V, A) and €, be positive constants. Suppose the mazimum
acyclic subgraph of G is (5 + 0)|A]. If Pr(G) > (1 — ¢)|A|, then Tr(G) >
(1 —2e—20)|A|.

Proof. For each edge ij € A, we have:

_ — — _
ZU?"U?‘F’U?l'Uj1—U£L'Uj1—l]?1'v§: 9)
h<(

G B C i I
h</{
PR G B C e B (10)
h<3 <3
h . h— -
(0f —vp ™) - (vf =i h) + (11)
h>Z (>
h— ¢ -
(o = oY) (0 = o). (12)
h<Z,0>2

For each edge, we refer to the quantity (9) as the forward value for that edge
with respect to Pr(G). The same term summed instead over h > £ is referred to
as the backward value of the edge with respect to Pr(G). We can simplify the

terms above. Let v; = v/?.

1
o =T ) = 7 (i +00) - (v + o),

h<% <%
- _ 1
D ol (] o) = (0 = vi) - (v — vy),
h>% 0>
_ _ 1
Z (v =o' 1)'(U§—Uf Y= Z(Ui-l-vo)'(vo—vj)-
h<Z 0>2

Since Pr(G) > (1 —€)|A|, we have:

YY) e —e = Y fe ) o+ ) < eldl

ijEA h>Z <2 ijEA

The above inequality says that the backward value of the vectors {v;} (i.e. quan-
tity (5)) is at most the backward value of Pr(G). By Lemma 1, the difference
of the edges crossing the cut in the forward direction and the edges crossing the
cut in the backward direction is at most 26| A|.
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1 1
Z Z(Ui +vo) - (vo —vj) — Z Z(UO —v;) - (vo +vj) =
ijeA ijeA
1
Z 5(1}z “vg — vj - vo) < 20| Al
ijeA

This implies that the forward value cannot exceed the backward value by more
than 20| A|. Thus, we can bound the forward value as follows:

Z Z (v — oty (vf - Uf_l) = Z i(vo —v;) - (vg +v;) < (e +20)| Al

ijEARLE (>3 ijEA

This implies that if we sum the quantities (10) and (11) over all edges in A, then
the total value of this sum is at least (1 — 2e¢ — 24)|A|. The sum of (10) and (11)
taken over all the edges is:

].-f—’l)i"l)j
Y (13)

ijeA

3 Balanced Bisections of Random Graphs

A bisection of a graph is a partition of the vertices into two equal (or with
cardinality differing by one if n is odd) sets. We use a related definition in this
section.

Definition 1. A vy-bisection of a graph for v < % is the set of edges that cross
a cut in which each set of vertices has size at least yn.

Suppose we choose an undirected random graph on n vertices in which every
edge is present with probability p = 'Fd. The expected degree of each vertex is
2d and the expected number of edges is dn. We will call such a class of graphs
Gp.

Lemma 3. For any fized positive constants €,y, if we choose a graph G € G, on
n vertices for a sufficiently large n with p = % and d = w(l), then the minimum
v-bisection contains at least (1 — €)y(1 —7v)2nd edges with high probability.

Proof. We will use the principle of deferred decisions. First, we will choose a
yn, (1 — v)n partition of the vertices. Thus v(1 — v)n? edges from the complete
graph on n vertices cross this cut. Then we can choose the random graph G by
picking each edge with probability p = %. The expected number of edges from
G crossing the cut is = (y(1 — 7)n?)(22) = v(1 — 7)2dn. For each edge in the
complete graph that crosses the cut, we have the indicator random variable X;
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such that X; = 1 if the edge crosses the cut and X; = 0 if the edge does not
cross the cut. Let X = ) Xj, i.e. X is the random variable for the number of
edges that cross the cut. By Chernoff Bound, we have:

_ Ey(1—7)2dn
p

PriX < (1 —e)y(l—7)2dn)] <e

We can union bound over all the possible y-bisections. There are less than 2"
ways to divide the vertices so that at least yn are in each set. Thus, the prob-
ability that the minimum ~-bisection of G is less than a (1 — €) fraction of its
expectation is:

2n
Pr{min v-bisection(G) < (1 —€)v(1 —7)2nd] < —— -
ez
Let d = w(1). Then for any fixed positive constants -, €, this probability will be
arbitrarily small for sufficiently large n. O

4 A Contradictory Cut

In this section, we will prove our main theorem. Suppose we choose a directed
random graph on n vertices in which every edge in the complete directed on n
vertices is included with probability p. Let p = % and let d = w(1). We will call

this class of graphs @p. Note that if we randomly choose a graph from ép, the
underlying undirected graph is randomly chosen from G,,.

Theorem 1. For sufficiently large n, d = w(l), and p = %, if we randomly

choose a graph G € @p, then with high probability, the ratio PR(@)/P(é) < 1.64.

Let E represent the edges in the complete undirected graph K, for some fixed
n. Let A C E represent the edges in an undirected graph G chosen at random
from G,. Let €; be a small positive constant whose value can be arbitrarily small
for sufficiently large n. We weight the edges in E as follows:

n
LT
Wi (1—e)2d 1 1) €A,

wij =1 if ije E—A.
We will refer to this weighted graph as G'.

Lemma 4. The minimum y-bisection of G' has negative value with high proba-
bility.

Proof. By Lemma 3 with high probability the minimum v-bisection of G has at
least (1 — €1)7(1 —7)2nd edges. Thus, with high probability the total weight of
the edges in the minimum ~-bisection of G’ is at most:
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(]. - 61)2d)

~(1 =) <n2 —(1—e)2nd+(1— el)znd(—(l_”m)) =

YL =7) (=1 = €e1)2nd) < 0.

YA =y)n® = (1 —e)y(1 = 7)2nd + (1 — e1)y(1 — 7)2nd(-

a

Lemma 5. Let {v;}, i € V be a set of unit vectors that satisfy the following
constraints:

Z Vi~V = 0 (14)

SOLEUY S (1- gl (15)

If €5 < .36, then we can find a ~y-bisection of G' with a strictly positive value.

To prove Lemma 5, we will use the following theorem from [GW95].

Theorem 2.7 [GW] Let W_ =}, w;;, where =~ = min(0, z). Then

1
{EW]-W_} > a 5;jwij(l—ui-uj)—w_

Proof of Lemma 5: We will use Goemans-Williamson’s random hyperplane
algorithm to show that we can find a cut that is roughly balanced and has a
strictly positive value. Let W represent the total weight of the edges that cross
the cut obtained from a random hyperplane. Let W_ denote the sum of the
negative edges weights, i.e. W_ = A. Applying Theorem 2.7 from [GW], we
have:

1
R P

1—wv;-vy 1+wv;-v;
>ag Y wy—y Lt Y fwyl— L W
i<jrwi; >0 i<jrw;i; <0
1—v;-vj
1<jiw;; >0 2

o 1-v;-v; _ np?—2n
that >, .y vi-v; =0 and therefore )7, , —5— = ="

We want to calculate the value of . By condition (14), we have
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1— ;- v, 1— v -0, 1— v -0,
Z 1;1 Uy :Z ';z vi Z 7;1 Uj

i<jiwi; >0 i<j i<jrw;i; <0
:Zl—vi-vj_n_cl+ V5 - Vj
— 2 2 o 2
<] 1<jiwqi; <0

l-vi-v; nd (1-2e)nd
> - v P, A Sme)e
>2 > T2

1<)
n? —2n

= 1 — eand.

Now we have:

n? —2n n

n
1 — eand) +

A~ 62)”d} T M—en2d"

For large enough n, we can choose €; to be arbitrarily small. So E[W] can be
bounded from below by a value arbitrarily close to the following:

E[W]>a {( d.

2202 —o(n?) > (.1585—%)77?—0(712). (16)

If the value of e, is such that the quantity on line (16) is strictly greater than An>
for some positive constant 3, then we will have a contradiction for sufficiently
large n. Note that if this value is at least An?, then each side of the cut contains
at least v/Bn vertices, so it is a \/B-bisection. This value will be strictly positive
as long as ez < .36. Thus, it must be the case that e2 > .36. ad

Proof of Theorem 1: We fix positive constants -y, e;. Suppose we choose a
random directed graph G as prescribed and let the graph G = (V, A) be the
undirected graph corresponding to the underlying undirected graph of G. We
then weight the edges in the graph K, as discussed previously and obtain G'.
By Lemma 4, the minimum ~-bisection of G’ is negative with high probability.
Thus, with high probability equation (15) hold only when e > .36.

Suppose the maximum acyclic subgraph of G, i.e. P(G) is (3 + 6)|A]| for
some positive constant . Then the value of Pgr(G) is upper bounded by the
maximum value for some set of unit vectors {v;} of (10), (11), and (12) summed
over all edges in A. Note that this is equivalent to the quantity in (13) (which
is no more than .64|A|) plus the quantity in (4). By Lemma 1, the difference
between (4) and (5) must be no more than 25|A|. Thus, we can upper bound
the value of Pr(G) by .64|A| + (20 + (.36 — 20))|A| = (.82 + 8)|A|. Thus, with
high probability, we have:

Pr(G) _ 8246
p(é) - 5494

.82
< — =1.64.
- 5
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5 Discussion

In this paper, we make a connection between cuts and vertex ordering of graphs
in order to obtain a new semidefinite programming relaxation for the linear
ordering problem. We show that the relaxation is “good” on random graphs
chosen with uniform edge probability, i.e. the integrality gap is strictly less than
2 for most of these graphs. We note that we can extend this theorem to show
that this relaxation is “good” on graphs that have no small y-bisections for some
constant v > 0.

In [HZ01], Halperin and Zwick give a .8118-approximation for a related prob-
lem that they call the max §-directed-uncut problem. Given a directed graph,
the goal of this problem is to find a bisection of the vertices that maximizes the
weight of the edges that cross the cut in the forward direction plus the weight of
the edges that do not cross the cut. We note that a weaker version of Theorem 1
follows from their .8118-approximation algorithm. This is because their semidef-
inite program for the max §-directed uncut problem is the sum over all edges
of terms (10), (11), and (12). If for some directed graph G = (V, A), Pr(G) has
value at least (1 — €)|A[, then the value of their semidefinite programmming re-
laxation also has at least this value. Thus, if € is arbitrarily small, we can obtain
a directed uncut of value close to .8118 of the edges, which is a contradiction for
a random graph with uniform edge probability. In this paper, our goal was to
give a self-contained proof of this theorem.

We would like to comment on the similarity of this work to the work of Pol-
jak and Delorme [DP93] and Poljak and Rendl [PR95] on the maxcut problem.
Poljak showed that the class of random graphs with uniform edge probability
could be used to demonstrate an integrality gap of 2 for several well-studied
polyhedral relaxations for the maxcut problem [Pol92]. These same graphs can
be used to demonstrate an integrality gap of 2 for several widely-studied polyhe-
dral relaxations for the linear ordering problem [NVO01]. The similarity of these
results stems from the fact that the polyhedral relaxations for the maxcut prob-
lem are based on odd-cycle inequalities and the polyhedral relaxations for the
linear ordering problem are based on cycle inequalities. Poljak and Delorme
subsequently studied an eigenvalue bound for the maxcut problem that is equiv-
alent to the bound provided by the semidefinite programming relaxation used
in the Goemans-Williamson algorithm [GW95]. Despite the fact that random
graphs with uniform edge probability exhibit worst-case behaviour for several
polyhedral relaxations for the maxcut problem, Delorme and Poljak [DP93] and
Poljak and Rendl [PR95] experimentally showed that the eigenvalue bound pro-
vides a “good” bound on the value of the maxcut for these graphs. This exper-
imental evidence was the basis for their conjecture that the 5-cycle exhibited
a worst-case integrality gap of 0.88445... for the maxcut semidefinite relax-
ation [DP93,Pol92]. The gap demonstrated for the 5-cycle turned out to be very
close to the true integrality gap of .87856... [FS].
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