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sail.mit.eduAbstra
t. The linear ordering problem is easy to state: Given a 
om-plete weighted dire
ted graph, �nd an ordering of the verti
es that maxi-mizes the weight of the forward edges. Although the problem is NP-hard,it is easy to estimate the optimum to within a fa
tor of 1/2. It is notknown whether the maximum 
an be estimated to a better fa
tor us-ing a polynomial-time algorithm. Re
ently it was shown [NV01℄ thatwidely-studied polyhedral relaxations for this problem 
annot be used toapproximate the problem to within a fa
tor better than 1/2. This wasshown by demonstrating that the integrality gap of these relaxations is2 on random graphs with uniform edge probability p = 2plogn=n. In thispaper, we present a new semide�nite programming relaxation for the lin-ear ordering problem. We then show that if we 
hoose a random graphwith uniform edge probability p = dn , where d = !(1), then with highprobability the gap between our semide�nite relaxation and the integraloptimal is at most 1.64.1 Introdu
tionVertex ordering problems 
omprise a fundamental 
lass of 
ombinatorial op-timization problems that, on the whole, is not well understood. For the pastthirty years, 
ombinatorial methods and linear programming te
hniques havefailed to yield improved approximation guarantees for many well-studied ver-tex ordering problems su
h as the linear ordering problem and the travelingsalesman problem. Semide�nite programming has proved to be a powerful toolfor solving a variety of 
ut problems, as �rst exhibited for the maximum 
utproblem [GW95℄. Sin
e then, semide�nite programming has been su

essfullyapplied to many other problems that 
an be 
ategorized as 
ut problems su
has 
oloring k-
olorable graphs [KMS98℄, maximum-3-
ut [GW04℄, maximum k-
ut [FJ97℄, maximum bise
tion and maximum un
ut [HZ01℄, and 
orrelation
lustering [CGW03℄, to name a few. In 
ontrast, there is no su
h 
omparablygeneral approa
h for approximating vertex ordering problems.In this paper, we fo
us on a well-studied and notoriously diÆ
ult 
ombi-natorial optimization problem known as the linear ordering problem. Given a? Supported in part by NSF Grant CCR0307536.



2 Alantha Newman
omplete weighted dire
ted graph, the goal of the linear ordering problem is to�nd an ordering of the verti
es that maximizes the weight of the forward edges.Although the problem is NP-hard [Kar72℄, it is easy to estimate the optimumto within a fa
tor of 12 : In any ordering of the verti
es, either the set of forwardedges or the set of ba
kward edges a

ounts for at least half of the total edgeweight. It is not known whether the maximum 
an be estimated to a betterfa
tor using a polynomial-time algorithm. Approximating the problem to withinbetter than 6566 is NP-hard [NV01℄.The linear ordering problem is also known as the maximum a
y
li
 subgraphproblem. Given a weighted dire
ted graph, the maximum a
y
li
 subgraph prob-lem is that of �nding the maximum weight subgraph that 
ontains no 
y
les.The forward edges in any linear ordering 
omprise an a
y
li
 subgraph and atopologi
al sort of an a
y
li
 subgraph yields a linear ordering of the verti
es inwhi
h all edges in the a
y
li
 subgraph are forward edges.Re
ently it was shown that several widely-studied polyhedral relaxations forthe linear ordering problem ea
h have an integrality gap of 2, showing that it isunlikely these relaxations 
an be used to approximate the problem to within afa
tor greater than 12 [NV01,New00℄. The graphs used to demonstrate these inte-grality gaps are random graphs with uniform edge probability of approximately2plogn=n, where n is the number of verti
es. For suÆ
iently large n, su
h a ran-dom graph has a maximum a
y
li
 subgraph 
lose to half the edges with highprobability. However, ea
h of the polyhedral relaxations studied provide an up-per bound for these graphs that is asymptoti
ally 
lose to all the edges, whi
his o� from the optimal by a fa
tor of 2.In this paper, we �rst present a new semide�nite programming relaxationfor the linear ordering problem. A vertex ordering for a graph G = (V;E) withn verti
es 
an be fully des
ribed by a series of n � 1 
uts. We use this simpleobservation to relate 
uts and orderings. We derive a semide�nite program forthe linear ordering problem that is related to the semide�nite program usedin the Goemans-Williamson algorithm to approximate the maximum 
ut prob-lem [GW95℄. We note that by using di�erent obje
tive fun
tions, our semide�niteprogramming relaxation 
an be used to obtain semide�nite relaxations for manyother vertex ordering problems.Se
ond, we show that for suÆ
iently large n, if we 
hoose a random dire
tedgraph on n verti
es with uniform edge probability p = dn (i.e. every edge inthe 
omplete dire
ted graph on n verti
es is 
hosen with probability p), whered = !(1), our semide�nite relaxation will have an integrality gap of no morethan 1.64 with high probability. In parti
ular, the graphs used in [NV01℄ todemonstrate integrality gaps of 2 for the widely-studied polyhedral relaxationsfall into this 
ategory of random graphs. The main idea is that our semide�niterelaxation provides a \good" bound on the value of an optimal linear orderingfor a graph if it has no small roughly balan
ed bise
tion. With high probability,a random graph with uniform edge probability 
ontains no su
h small balan
edbise
tion.



Cuts and Orderings 32 Relating Cuts and OrderingsGiven an undire
ted weighted graph G = (V;E), the maximum 
ut (max
ut)problem is to �nd a bipartition of the verti
es that maximizes the weight of theedges 
rossing the partition. In 1993, Goemans and Williamson used a semide�-nite programming relaxation to obtain a :87856-approximation algorithm for thisfundamental graph optimization problem [GW95℄. The goal of the Goemans-Williamson algorithm for the max
ut problem is to assign ea
h vertex i 2 V ave
tor vi 2 f1;�1g so as to maximize the weight of the edges (i; j) su
h thatvi 6= vj .A 
losely related graph optimization problem is the maximum dire
ted 
ut(di
ut) problem. Given a dire
ted weighted graph G = (V;A), the di
ut problemis to �nd a bipartition of the verti
es|
all these disjoint sets V1 and V2|thatmaximizes the weight of the dire
ted edges (i; j) su
h that vertex i is in set V1and vertex j is in set V2. Note that the edges in a dire
ted 
ut form an a
y
li
subgraph. We 
an generalize the di
ut problem to that of dividing the verti
esinto k labeled sets V1; V2; : : : ; Vk so as to maximize the weight of the edges (i; j)su
h that vertex i is in set Vk and vertex j is in set Vh and k < h. We 
all thisthe k-a
y
li
 di
ut problem. The linear ordering problem is equivalent to then-a
y
li
 di
ut problem.2.1 A Relaxation for the Linear Ordering ProblemWe 
an generalize the semide�nite programming relaxation for the di
ut prob-lem [FG95,GW95℄ to obtain a new semide�nite programming relaxation for thelinear ordering problem. The basi
 idea behind this formulation is a parti
ulardes
ription of a vertex ordering that uses n+1 unit ve
tors for ea
h vertex. Ea
hvertex i 2 V has n+ 1 (n = jV j) asso
iated unit ve
tors: v0i ; v1i ; v2i ; : : : vni . In anintegral solution, we enfor
e that v0i = �1, vni = 1 and that vhi and vh+1i di�erfor only one value of h; 0 � h < n. Constraint (1) enfor
es that in an integralsolution, vhi and vh+1i di�er for only one su
h value of h. This position h denotesvertex i's position in the ordering. For example, suppose we have a graph G thathas four verti
es, arbitrarily labeled 1 through 4. Consider the vertex orderingin whi
h vertex i is in position i. An integral des
ription of this vertex orderingis: fv01 ; v11 ; v21 ; v31 ; v41g = f�1; 1; 1; 1; 1g;fv02 ; v12 ; v22 ; v32 ; v42g = f�1;�1; 1; 1; 1g;fv03 ; v13 ; v23 ; v33 ; v43g = f�1;�1;�1; 1; 1g;fv04 ; v14 ; v24 ; v34 ; v44g = f�1;�1;�1;�1; 1g:Let G = (V;A) be a dire
ted graph. The following is an integer quadrati
program for the linear ordering problem. For the sake of 
onvenien
e, we assumethat n is odd sin
e this simpli�es 
onstraint (2). By P (G), we denote the optimalvalue of the integer quadrati
 program P on the graph G.



4 Alantha Newman(P)maxXij2A X1�h<`�nwij(vhi � vj̀ + vh�1i � v`�1j � vhi � v`�1j � vh�1i � vj̀) (1)vhi � vj̀ + vh�1i � v`�1j � vhi � v`�1j � vh�1i � vj̀ � 0 8i; j 2 V; h; ` 2 [n℄vhi � vhi = 1 8i 2 V; h 2 [n℄v0i � v0 = �1 8i 2 Vvni � v0 = 1 8i 2 VXi;j2V v n2i � v n2j = 0 (2)vhi 2 f1;�1g 8i; h 2 [n℄: (3)We obtain a semide�nite programming relaxation for the linear ordering problemby relaxing 
onstraint (3) to: vhi 2 Rn; 8i; h: We denote the optimal value ofthe relaxation of P on the graph G as PR(G).2.2 Cuts and Un
utsSuppose we have a dire
ted graph G = (V;A) and we are given a set of unitve
tors fvig 2 Rn; 0 � i � n. We will de�ne the forward value of this setof ve
tors as the value obtained if we 
ompute the value of the di
ut semide�-nite programming relaxation [GW95,FG95℄ using these ve
tors. Spe
i�
ally, theforward value for this set of ve
tors is:maxXij2A 14(1� vi � vj � v0 � vi + v0 � vj): (4)In an integral solution for the di
ut problem, there will be edges that 
ross the
ut in the ba
kward dire
tion, i.e. they are not in
luded in the di
ut. For aspe
i�ed set of unit ve
tors, we 
an view the di
ut semide�nite programmingrelaxation as having forward and ba
kward value. We de�ne the ba
kward valueof the set of ve
tors fvig as:maxXij2A 14(1� vi � vj � v0 � vj + v0 � vi): (5)The di�eren
e between the forward and ba
kward value of a set of ve
tors fvigis: Xij2A 12(vj � v0 � vi � v0): (6)Lemma 1. If a dire
ted graph G = (V;A) has a maximum a
y
li
 subgraph of( 12 + Æ)jAj edges, then there is no set of ve
tors fvig su
h that the di�eren
ebetween the forward and ba
kward value of this set of ve
tors ex
eeds 2ÆjAj.



Cuts and Orderings 5Proof. We will show that given a ve
tor solution fvig to the semide�nite programin whi
h the obje
tive fun
tion is (6) and all the vi ve
tors are unit ve
tors, we
an �nd an integral (i.e. an a
tual 
ut) solution in whi
h the di�eren
e of theforward and ba
kward edges 
rossing the 
ut is exa
tly equal to the obje
tivevalue. If the di�eren
e of an a
tual 
ut ex
eeds 2ÆjAj, e.g. suppose it is (2Æ+�)jAj,then we 
an �nd an ordering with ( 12 + Æ + �=2)jAj forward edges, whi
h is a
ontradi
tion. This ordering is found by taking the 
ut that yields (2Æ + �)jAjmore forward than ba
kward edges and ordering the verti
es in ea
h of the twosets greedily so as to obtain at least half of the remaining edges.Suppose we have a set of unit ve
tors fvig su
h that the value of equation(6) is at least (2Æ + �)jAj = �jAj. We will show that we 
an �nd an a
tual 
utsu
h that the di�eren
e between the forward and the ba
kward edges is at least�jAj. Note that v0 � vi is a s
alar quantity sin
e v0 is a unit ve
tor that withoutloss of generality is (1; 0; 0; : : : ). Thus, our obje
tive fun
tion 
an be written asPij2A 12 (zj � zi) where 1 � zi � �1. We transform the zi variables into xivariables that range between 0 and 1 by letting zi = 2xi� 1. Then we have thatPij2A 12 (zj � zi) =Pij2A(xj � xi). This results in a linear program. We 
laimthat an optimal solution to the following linear program is integral.Xij2A(xj � xi) (7)0 � xi � 1; 8i 2 V:To show this, 
onsider rounding the variables by letting i be 1 with proba-bility xi and 0 otherwise. Then the expe
ted value of the solution is exa
tly theobje
tive value. However, note that the value of the solution 
annot be less thanthe expe
ted value, sin
e then there must exist a solution with value greaterthan the expe
ted value, whi
h 
ontradi
ts the optimality of the expe
ted value.Thus, the integral solution obtained must have di�eren
e of forward and ba
k-ward edges that is equal to the obje
tive value (7). utWe will also �nd a dis
ussion of the following problem useful. Consider theproblem of �nding a balan
ed partition of the verti
es of a given graph (i.e. ea
hpartition has size n2 ) that maximizes the weight of the edges that do not 
rossthe 
ut. This problem is referred to as the max-n2 -un
ut problem by Halperinand Zwi
k [HZ01℄. Below is a integer quadrati
 program for the max-n2 -un
utproblem.(T) maxXij2A 1 + vi � vj2Xi;j2V vi � vj = 0vi � vi = 1 8i 2 Vvi 2 f1;�1g 8i 2 V: (8)



6 Alantha NewmanWe obtain a semide�nite programming relaxation for the max-n2 -un
ut problemby relaxing 
onstraint (8) to: vi 2 Rn; 8i:We denote the value of the relaxationof T on the graph G as TR(G).Lemma 2. Let G = (V;A) and �; Æ be positive 
onstants. Suppose the maximuma
y
li
 subgraph of G is ( 12 + Æ)jAj. If PR(G) � (1 � �)jAj, then TR(G) �(1� 2�� 2Æ)jAj.Proof. For ea
h edge ij 2 A, we have:Xh<` vhi � vj̀ + vh�1i � v`�1j � vhi � v`�1j � vh�1i � vj̀ = (9)Xh<`(vhi � vh�1i ) � (vj̀ � v`�1j ) �Xh�n2 ;`�n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) + (10)Xh>n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) + (11)Xh�n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ): (12)For ea
h edge, we refer to the quantity (9) as the forward value for that edgewith respe
t to PR(G). The same term summed instead over h > ` is referred toas the ba
kward value of the edge with respe
t to PR(G). We 
an simplify theterms above. Let vi = v n2i .Xh�n2 ;`�n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = 14(vi + v0) � (vj + v0);Xh>n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = 14(v0 � vi) � (v0 � vj);Xh�n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = 14(vi + v0) � (v0 � vj):Sin
e PR(G) � (1� �)jAj, we have:Xij2A Xh>n2 ;`�n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = Xij2A 14(v0 � vi) � (v0 + vj) � �jAj:The above inequality says that the ba
kward value of the ve
tors fvig (i.e. quan-tity (5)) is at most the ba
kward value of PR(G). By Lemma 1, the di�eren
eof the edges 
rossing the 
ut in the forward dire
tion and the edges 
rossing the
ut in the ba
kward dire
tion is at most 2ÆjAj.



Cuts and Orderings 7Xij2A 14(vi + v0) � (v0 � vj) � Xij2A 14(v0 � vi) � (v0 + vj) =Xij2A 12(vi � v0 � vj � v0) � 2ÆjAj:This implies that the forward value 
annot ex
eed the ba
kward value by morethan 2ÆjAj. Thus, we 
an bound the forward value as follows:Xij2A Xh�n2 ;`>n2 (vhi � vh�1i ) � (vj̀ � v`�1j ) = Xij2A 14(v0 � vi) � (v0 + vj) � (�+ 2Æ)jAj:This implies that if we sum the quantities (10) and (11) over all edges in A, thenthe total value of this sum is at least (1� 2�� 2Æ)jAj. The sum of (10) and (11)taken over all the edges is: Xij2A 1 + vi � vj2 : (13)ut3 Balan
ed Bise
tions of Random GraphsA bise
tion of a graph is a partition of the verti
es into two equal (or with
ardinality di�ering by one if n is odd) sets. We use a related de�nition in thisse
tion.De�nition 1. A 
-bise
tion of a graph for 
 � 12 is the set of edges that 
rossa 
ut in whi
h ea
h set of verti
es has size at least 
n.Suppose we 
hoose an undire
ted random graph on n verti
es in whi
h everyedge is present with probability p = 2dn . The expe
ted degree of ea
h vertex is2d and the expe
ted number of edges is dn. We will 
all su
h a 
lass of graphsGp.Lemma 3. For any �xed positive 
onstants �; 
, if we 
hoose a graph G 2 Gp onn verti
es for a suÆ
iently large n with p = 2dn and d = !(1), then the minimum
-bise
tion 
ontains at least (1� �)
(1� 
)2nd edges with high probability.Proof. We will use the prin
iple of deferred de
isions. First, we will 
hoose a
n; (1� 
)n partition of the verti
es. Thus 
(1� 
)n2 edges from the 
ompletegraph on n verti
es 
ross this 
ut. Then we 
an 
hoose the random graph G bypi
king ea
h edge with probability p = 2dn . The expe
ted number of edges fromG 
rossing the 
ut is � = (
(1� 
)n2)( 2dn ) = 
(1� 
)2dn. For ea
h edge in the
omplete graph that 
rosses the 
ut, we have the indi
ator random variable Xi
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h that Xi = 1 if the edge 
rosses the 
ut and Xi = 0 if the edge does not
ross the 
ut. Let X = PXi, i.e. X is the random variable for the number ofedges that 
ross the 
ut. By Cherno� Bound, we have:Pr[X < (1� �)
(1� 
)2dn)℄ < e� �2
(1�
)2dn2 :We 
an union bound over all the possible 
-bise
tions. There are less than 2nways to divide the verti
es so that at least 
n are in ea
h set. Thus, the prob-ability that the minimum 
-bise
tion of G is less than a (1 � �) fra
tion of itsexpe
tation is:Pr[min 
-bise
tion(G) < (1� �)
(1� 
)2nd℄ < 2ne �2
(1�
)2dn2 :Let d = !(1). Then for any �xed positive 
onstants 
; �, this probability will bearbitrarily small for suÆ
iently large n. ut4 A Contradi
tory CutIn this se
tion, we will prove our main theorem. Suppose we 
hoose a dire
tedrandom graph on n verti
es in whi
h every edge in the 
omplete dire
ted on nverti
es is in
luded with probability p. Let p = dn and let d = !(1). We will 
allthis 
lass of graphs ~Gp. Note that if we randomly 
hoose a graph from ~Gp, theunderlying undire
ted graph is randomly 
hosen from Gp.Theorem 1. For suÆ
iently large n, d = !(1), and p = dn , if we randomly
hoose a graph ~G 2 ~Gp, then with high probability, the ratio PR(~G)=P (~G) � 1:64.Let E represent the edges in the 
omplete undire
ted graphKn for some �xedn. Let A � E represent the edges in an undire
ted graph G 
hosen at randomfrom Gp. Let �1 be a small positive 
onstant whose value 
an be arbitrarily smallfor suÆ
iently large n. We weight the edges in E as follows:wij = � n(1� �1)2d if ij 2 A;wij = 1 if ij 2 E �A:We will refer to this weighted graph as G0.Lemma 4. The minimum 
-bise
tion of G0 has negative value with high proba-bility.Proof. By Lemma 3 with high probability the minimum 
-bise
tion of G has atleast (1� �1)
(1� 
)2nd edges. Thus, with high probability the total weight ofthe edges in the minimum 
-bise
tion of G0 is at most:
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(1� 
)n2 � (1� �1)
(1� 
)2nd+ (1� �1)
(1� 
)2nd(� n(1� �1)2d ) =
(1� 
)�n2 � (1� �1)2nd+ (1� �1)2nd(� n(1� �1)2d )� =
(1� 
) (�(1� �1)2nd) < 0: utLemma 5. Let fvig; i 2 V be a set of unit ve
tors that satisfy the following
onstraints: Xi;j2V vi � vj = 0 (14)Xij2A 1 + vi � vj2 � (1� �2)jAj: (15)If �2 < :36, then we 
an �nd a 
-bise
tion of G0 with a stri
tly positive value.To prove Lemma 5, we will use the following theorem from [GW95℄.Theorem 2.7 [GW℄ Let W� =Pi<j w�ij , where x� = min(0; x). ThenfE[W ℄�W�g � �8<:12Xi<j wij(1� vi � vj)�W�9=; :Proof of Lemma 5: We will use Goemans-Williamson's random hyperplanealgorithm to show that we 
an �nd a 
ut that is roughly balan
ed and has astri
tly positive value. Let W represent the total weight of the edges that 
rossthe 
ut obtained from a random hyperplane. Let W� denote the sum of thenegative edges weights, i.e. W� = A. Applying Theorem 2.7 from [GW℄, wehave:E[W ℄ � �8<:12Xi<j wij(1� vi � vj)�W�9=;+W�� �8<: Xi<j:wij>0wij 1� vi � vj2 + Xi<j:wij<0 jwij j1 + vi � vj2 9=;+W�:We want to 
al
ulate the value ofPi<j:wij>0 1�vi�vj2 . By 
ondition (14), we havethat Pi;j2V vi � vj = 0 and therefore Pi<j 1�vi�vj2 = n2�2n4 .



10 Alantha NewmanXi<j:wij>0 1� vi � vj2 =Xi<j 1� vi � vj2 � Xi<j:wij<0 1� vi � vj2=Xi<j 1� vi � vj2 � nd2 + Xi<j:wij<0 vi � vj2�Xi<j 1� vi � vj2 � nd2 + (1� 2�2)nd2= n2 � 2n4 � �2nd:Now we have:E[W ℄ � ��(n2 � 2n4 � �2nd) + n(1� �1)2d (1� �2)nd�� n(1� �1)2dnd:For large enough n, we 
an 
hoose �1 to be arbitrarily small. So E[W ℄ 
an bebounded from below by a value arbitrarily 
lose to the following:(�4 + �2 � 12 � ��22 )n2 � o(n2) � (:1585� ��22 )n2 � o(n2): (16)If the value of �2 is su
h that the quantity on line (16) is stri
tly greater than �n2for some positive 
onstant �, then we will have a 
ontradi
tion for suÆ
ientlylarge n. Note that if this value is at least �n2, then ea
h side of the 
ut 
ontainsat least p�n verti
es, so it is a p�-bise
tion. This value will be stri
tly positiveas long as �2 < :36. Thus, it must be the 
ase that �2 > :36. utProof of Theorem 1: We �x positive 
onstants 
; �1. Suppose we 
hoose arandom dire
ted graph ~G as pres
ribed and let the graph G = (V;A) be theundire
ted graph 
orresponding to the underlying undire
ted graph of ~G. Wethen weight the edges in the graph Kn as dis
ussed previously and obtain G0.By Lemma 4, the minimum 
-bise
tion of G0 is negative with high probability.Thus, with high probability equation (15) hold only when �2 > :36.Suppose the maximum a
y
li
 subgraph of ~G, i.e. P (~G) is ( 12 + Æ)jAj forsome positive 
onstant Æ. Then the value of PR(~G) is upper bounded by themaximum value for some set of unit ve
tors fvig of (10), (11), and (12) summedover all edges in A. Note that this is equivalent to the quantity in (13) (whi
his no more than :64jAj) plus the quantity in (4). By Lemma 1, the di�eren
ebetween (4) and (5) must be no more than 2ÆjAj. Thus, we 
an upper boundthe value of PR(~G) by :64jAj+ (2Æ + 12 (:36� 2Æ))jAj = (:82 + Æ)jAj. Thus, withhigh probability, we have:PR(~G)P (~G) � :82 + Æ:5 + Æ � :82:5 = 1:64: ut



Cuts and Orderings 115 Dis
ussionIn this paper, we make a 
onne
tion between 
uts and vertex ordering of graphsin order to obtain a new semide�nite programming relaxation for the linearordering problem. We show that the relaxation is \good" on random graphs
hosen with uniform edge probability, i.e. the integrality gap is stri
tly less than2 for most of these graphs. We note that we 
an extend this theorem to showthat this relaxation is \good" on graphs that have no small 
-bise
tions for some
onstant 
 > 0.In [HZ01℄, Halperin and Zwi
k give a :8118-approximation for a related prob-lem that they 
all the max n2 -dire
ted-un
ut problem. Given a dire
ted graph,the goal of this problem is to �nd a bise
tion of the verti
es that maximizes theweight of the edges that 
ross the 
ut in the forward dire
tion plus the weight ofthe edges that do not 
ross the 
ut. We note that a weaker version of Theorem 1follows from their .8118-approximation algorithm. This is be
ause their semidef-inite program for the max n2 -dire
ted un
ut problem is the sum over all edgesof terms (10), (11), and (12). If for some dire
ted graph G = (V;A), PR(G) hasvalue at least (1� �)jAj, then the value of their semide�nite programmming re-laxation also has at least this value. Thus, if � is arbitrarily small, we 
an obtaina dire
ted un
ut of value 
lose to :8118 of the edges, whi
h is a 
ontradi
tion fora random graph with uniform edge probability. In this paper, our goal was togive a self-
ontained proof of this theorem.We would like to 
omment on the similarity of this work to the work of Pol-jak and Delorme [DP93℄ and Poljak and Rendl [PR95℄ on the max
ut problem.Poljak showed that the 
lass of random graphs with uniform edge probability
ould be used to demonstrate an integrality gap of 2 for several well-studiedpolyhedral relaxations for the max
ut problem [Pol92℄. These same graphs 
anbe used to demonstrate an integrality gap of 2 for several widely-studied polyhe-dral relaxations for the linear ordering problem [NV01℄. The similarity of theseresults stems from the fa
t that the polyhedral relaxations for the max
ut prob-lem are based on odd-
y
le inequalities and the polyhedral relaxations for thelinear ordering problem are based on 
y
le inequalities. Poljak and Delormesubsequently studied an eigenvalue bound for the max
ut problem that is equiv-alent to the bound provided by the semide�nite programming relaxation usedin the Goemans-Williamson algorithm [GW95℄. Despite the fa
t that randomgraphs with uniform edge probability exhibit worst-
ase behaviour for severalpolyhedral relaxations for the max
ut problem, Delorme and Poljak [DP93℄ andPoljak and Rendl [PR95℄ experimentally showed that the eigenvalue bound pro-vides a \good" bound on the value of the max
ut for these graphs. This exper-imental eviden
e was the basis for their 
onje
ture that the 5-
y
le exhibiteda worst-
ase integrality gap of 0:88445 : : : for the max
ut semide�nite relax-ation [DP93,Pol92℄. The gap demonstrated for the 5-
y
le turned out to be very
lose to the true integrality gap of :87856 : : : [FS℄.
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