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Abstract

We consider the problem of arranging elements on a circle so as to approximately preserve
specified pairwise distances. This problem is closely related to optimization problems found in
genome assembly. The current methods for genome sequencing involve cutting the genome into
many segments, sequencing each (short) segment, and then reassembling the segments to determine
the original sequence. A useful paradigm has been using “mate pair” information, which, for
a circular genome (e.g. bacterial genomes), generates information about the directed distance
between non-adjacent pairs of segments in the final sequence.

Specifically, given a set of equations of the form xv − yu ≡ duv (mod q), we study the objective
of maximizing a linear payoff function that depends on how close the value xv − yu (mod q) is to
duv . We apply the rounding procedure used by Goemans and Williamson for complex semidefinite
programs. Our main tool is a simple geometric lemma that allows us to easily compute the expected
distance on a circle between two elements whose positions have been assigned using this rounding
procedure.

1 Introduction

We address the problem of arranging elements on a circle subject to directed pairwise distance con-
straints. For example, consider the well-studied problem Linear Equations mod q. In this problem,
we are given a set of equations of the form xv − xu ≡ duv (mod q). The standard objective is to as-
sign each element xu an integral value in the range [0, q) so as to satisfy the maximum number of
constraints. Due to the circular symmetry, this problem can also be viewed as arranging elements on
a circle (i.e. on positions labeled zero through q− 1 in the clockwise direction) so as to exactly satisfy
the maximum number of specified directed pairwise distance constraints.

A natural relaxation of this problem is to try to preserve these distances as much as possible. In
other words, if we have the equation xv − xu ≡ 4 (mod 16), we may prefer assignments to xv and xu

such that xv − xu equals three or five, rather than two or six. Given that xu is already assigned a
value, then the target position for xv is the value of xu plus duv. For instance, in the previous example,
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if xu is assigned zero, then the target position for xv would be four. We would like xv to be as close to
this target position as possible. Current algorithms for Linear Equations mod q (e.g. algorithms
for Unique Games [CMM06]) are aimed at satisfying equations exactly and say nothing about the
quality of the solutions for the unsatisfied equations.

Although this problem does not appear to have been addressed from a theoretical perspective—
beyond the standard formulation of Linear Equations mod q as explained above—the general prob-
lem of approximately preserving directed pairwise distances is closely related to optimization problems
used for genome assembly, in particular to a problem known as Contig Scaffolding [HRM02], upon
which we now elaborate.

1.1 Genome Assembly and Contig Scaffolding

Genome sequencing is an area of research into which tremendous amounts of time, money and com-
putational resources are currently being invested. For our purposes, a genome can be viewed as two
oppositely-oriented strings from a four letter alphabet, {A,C,G, T}. Each of the two strings is the
complement of the other (A pairs with T , and C with G). Moreover, each string (and each of its
substrings) is directed; e.g. it can be viewed as A → A → T → C → .... If we determine to which
of the two strings a particular substring belongs, then we can determine the orientation of that sub-
string. Genomes range in length from thousands to billions of letters, also known as base pairs. While
some genomes, such as those of humans, are linear strings, a large class of genomes are circular. For
example, the genomes of all bacteria are circular.

With the current technology for genome sequencing, an entire genome cannot be sequenced at
once. Rather, comparatively short substrings are sequenced, and these short substrings must then be
assembled to form the original genome. To obtain more information to enable this assembly, many
copies of the original two strings of the genome are made. These copies are broken up randomly, the
pieces sequenced and then reassembled based on the local overlap information gleaned from the many
copies. This is a computationally intensive task, and the overlap information is sometimes insufficient
to determine the sequence if, for example, there are repeated substrings in the original sequence.

An important innovation in genome assembly was to use so-called “mate pair” information [HRM02].
Suppose we are able to sequence substrings of length `. We consider a substring S of length L >> ` and
sequence the two substrings of length ` that make up the two ends of S. Now we have two substrings
whose relative distance and orientation in the original genome is known. This global information was
crucial for sequencing and dealing with repeated substrings in the human genome [MSS+02].

The graph theoretic approach outlined by Huson et al. [HRM02] is based on aggregated mate pair
information: based on local overlap information, substrings are combined into longer substrings called
contigs. If a mate pair (i.e. two substrings with known relative orientation and distance) belong to two
different contigs, then we have information about the relative orientation and distance of these contigs.
Of course, due to sequencing errors as well as repeated substrings, this information may be inconsistent,
but there are methods for averaging this distance and orientation information. Ultimately, we obtain
what Huson et al. refer to as the contig-mate-pair-graph. In this graph, contigs are represented by
vertices, and some pairs of contigs have desired distances and relative orientations associated with
them. The problem of Contig Scaffolding is to assign each contig an orientation (i.e. assign each
contig to one of the two complementary strings in the genome) and a position so that the relative
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Figure 1: In this length L substring of a genome,
the segments a → b and c → d are “mate pairs”.
Since the segment f → g is the complement of
d ← c, we know both segments a → b and f → g
after sequencing this mate pair. We also know that
in the reassembled genome, if a→ b and f → g are
assigned to the clockwise string, then f → g should
be approximately distance L ahead of a→ b in the
clockwise direction. If they are on the counterclock-
wise string, then f → g should be approximately
distance L ahead of a→ b in the counterclockwise
direction.
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Figure 2: If xu is in position 0, then the darkest
red dot denotes the target position for xv and the
lighter the dots are, the less ideal the position is for
xv.

position of specified pairs of contigs that are assigned to the same string is approximately preserved.
Specifically, suppose we have a pair of contigs u and v that are known to be at a distance L based on
mate pair information, i.e. they are connected by a directed edge e of length L in the contig-mate-pair-
graph. Note that both u and v have complementary contigs—call them ū and v̄, respectively—which
should have the opposite orientation as u and v. Following the example in Section 3 of [HRM02],
either u and v have the same orientation, say clockwise (i.e. they are assigned to the string with
clockwise direction), and |pos(v) − pos(u) − L| ≤ σ(e), or u and v are assigned to the string with
counterclockwise direction and |pos(u)−pos(v)−L| ≤ σ(e). If u and v fulfill either of these situations,
the pair or edge u, v is called “happy”. The goal is to maximize the number (or weight) or the happy
edges. In [HRM02], σ(e) denotes a function of the standard deviation of the distribution from which
the length of the edge e was generated.

In general, this problem has seen many greedy/local approaches [HRM02]. As discussed in [Pop09],
most of these approaches iterate through the constraints on the pairs of contigs, attempting to op-
timally place and orient them. Constraints that are violated by the current position of the contigs
are typically simply discarded. Recently, Dayarian et al. used a global approach based on simulated
annealing to satisfy the distance constraints between pairs of contigs [DMS10]. Another approach is
based on Eulerian tours in specially constructed graphs [PT01].
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1.2 Our Problem Formulation: Relaxed Linear equations mod q

We now discuss the precise formulation of the problem that we address in this paper and how it relates
to the problem of Contig Scaffolding. Given an equation of the form xv − xu ≡ duv (mod q), we
define the following payoff function:

P{u,v}(i, j) = 1− 2`

q
, if (j − i) ≡ duv ± ` (mod q), where ` ∈ [0, q/2]. (1)

In words, P{u,v}(i, j) is the cost of simultaneously placing element xu at position i and element xv at
position j. In each equation, if we assume that xu is assigned some value, then there is a target position
for xv. In particular, if xu = 0, then the target position for xv is duv. There is a linear decrease in the
contribution of an equation to the objective value the farther element xv is from its target position
with respect to the position of xu.

We refer to the payoff function (1) as the Relaxed Linear Equations mod q problem (or Rel-
Lin-Eq(q) for short). Also, we allow each equation to be weighted by a positive value, wuv. We note
that if we randomly assign each variable xu a value in [0, q), we would obtain a solution in which each
equation contributes half to the objective value in expectation. Our main theoretical result is that
given a set of equations in the form xv − xu ≡ duv (mod q), we can efficiently assign each element xu

a value in [0, q) such that for each equation, the payoff function, (1), is satisfied to within at least .854
times the payoff of that equation in an optimal solution.

We can also consider the payoff function:

P{u,v}(i, j) =

(

1 + cos ( 2π·`
q )
)

2
, if (j − i) ≡ cuv ± `(mod q), where ` ∈ [0, q/2]. (2)

We show that this payoff function can be approximated to within αGW ≈ .878.

1.3 Applying Rel-Lin-Eq(q) to Contig Scaffolding

If we had just one of the strings in a double-stranded circular genome, and we knew the relative distance
of certain pairs of contigs, then the problem of Contig Scaffolding would be very similar to an
approximate version of the Linear Equations mod q problem. However, since there are actually
two oppositely oriented strings, applying Rel-Lin-Eq(q) to the Contig Scaffolding problem is
not entirely straightforward. We now clarify the differences between the problems and discuss how our
problem can be used as a tool to find good arrangements of the contigs in the Contig Scaffolding
problem.

Rather than simply finding positions for the contigs, we must also determine their relative ori-
entation, or to which of the two strings they belong. We discuss two ways to reduce the Contig
Scaffolding problem to one very similar to the Rel-Lin-Eq(q) problem. The first approach is
given by Dayarian et al [DMS10]. In this approach, we find a maximum cut on the graph composed
of edges that represent constraints for contigs that are oppositely oriented, since these contigs should
be on different strings. Once we have found a partition of the contigs, we can order each set of contigs
separately. For each set in the partition, we only need to consider constraints between pairs of contigs
specifying that they should have the same orientation (a constraint between two oppositely oriented
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contigs can be replaced by one in which one of the contigs is substituted with its complement). We
can then use our algorithm to find a circular arrangement for each set of contigs.

The second approach that we propose is to skip the step which uses a maximum cut to partition the
contigs into sets, and try to arrange the contigs so that all pairwise directions are oriented clockwise.
If we only consider pairwise constraints between contigs of the same orientation (i.e. between contigs
believed to be on the same string), and if there were no errors in our data and we could find an
arrangement that agreed with all of the pairwise distances, then the contigs would be partitioned
into two disjoint strings. (In other words, the counterclockwise string would also be translated to the
clockwise direction.) Of course, there may be noise in the data, and many of the pairwise distance
constraints may be violated in the arrangement of the contigs that we find. However, our goal is to take
advantage of techniques that try to globally satisfy the constraints. After finding such an arrangement,
extracting actual feasible solutions from our arrangements will likely have to be conducted heuristically,
e.g. throw away the most violated constraints.

Additionally, there are two more key issues that are not directly addressed when optimizing the
payoff function in the Rel-Lin-Eq(q) problem. The first issue is that the payoff function (1) rewards
each constraint to the extent that it is satisfied, whereas the stated goal in the Contig Scaffolding
problem is to maximize the number (or weight) of equations within some fixed distance from the target
position. We note that these two objectives are related. Suppose we have a solution for the objective
function in (1) that has value (1− ε)|E|, where |E| is the number of constraints. Let δ, σ be values in
[0, 1].

Lemma 1 In a solution with value (1− ε)|E|, at most δ|E| equations are more than distance σq from
the target, where δ ≤ ε/(2σ).

We note that the desired distances from the target, σ(e), may actually be different for different
constraints. A way to address this with our payoff function, (1), could be to weight the constraint
corresponding to edge e more if σ(e) is smaller.

The second issue is that in a feasible solution to the Contig Scaffolding problem, each position
on the circle should be occupied by at most two contigs (one for the clockwise circle and one for the
counterclockwise circle). We note that our solution to the problem posed in (1) does allow that more
than one or two elements be assigned to a certain position. Since our solution consists of rounding
a semidefinite programming (SDP) relaxation, we could add spreading constraints as in [ENRS00],
so as to ensure that not too many elements are assigned to the same position. However, from a
computational perspective, these constraints are extremely expensive to add, since each constraint is
an inequality, which forces us to add a new vector to the SDP relaxation for each constraint. Thus, if an
arrangement does map several contigs to the same position, then this issue will have to be addressed
heuristically. A suggestion in [DMS10] is that if they obtain a solution in which many contigs are
assigned the same position, they go back and add more constraints to the contig graph based on local
overlap information between pairs of these contigs. Moreover, we note that while our algorithm should
generate useful global information about where the contigs should be placed relative to each other, as
in many assembly algorithms, it would likely need work in the “finishing” stage to generate an actual
feasible solution.

Finally, we mention that L—the distance between two ends of a mate pair—does not have to be
the same length for each pair. In practice, there are usually a small set of possible values for L.
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Some algorithms for assembly based on mate pair information require that L is a small set of values.
In contrast, in our algorithm, the desired directed distance between the contigs in a constraint pair
(represented by duv in the respective equation) can take on any value between between zero and q,
where q will represent the length of a string. This could be useful for future technologies if mate pair
distances are generated from a broader range.

1.4 Complex Semidefinite Programming

Complex semidefinite programming (CSDP) was introduced by Goemans and Williamson to study the
Max-3-Cut and Linear Equations mod 3 problems [GW04]. They represent each element with
a complex vector re−iθ, which is equivalent to representing each element with an infinite set of real
vectors, each with length r and corresponding to some angle θ ∈ [0, 2π). Throughout this paper, we
refer to such a set of vectors as a two-dimensional disc. In their rounding algorithm, they choose a
normally distributed random vector g and project the vector g onto each disc. The disc can be viewed
as being partitioned into three equal sections, each of angle 120 degrees. Depending on which section
of its disc the vector g projects onto determines if the element is assigned a 0, 1 or 2. Although the
applications in the original paper are for problems with domains of size three, it is interesting to note
that the actual positions are denoted by angles which are continuous in the range [0, 2π). Thus, it
seems likely that this technique may have applications for larger domain problems in which the goal
is to place the elements on the circle so as to optimize a specified objective function. The main tool
in [GW04] is that, if elements are represented by two-dimensional discs, and the rounding algorithm
is as described above, they give a formula for the distribution of the angle between the positions of
two elements, specifically, for the probability that the distance is less than a particular angle. Zhang
and Huang gave a formula for the probability that two elements are an exact angle apart [ZH06].

Despite the elegance of this approach, this technique does not appear to have been applied to other
optimization problems. One barrier is that these two-dimensional discs have limited modeling power,
i.e. while we can model Linear Equations mod 3 exactly with a complex semidefinite program, it
is not clear how to model Linear Equations mod q for q > 3 with these two-dimensional discs. (By
“model” a problem, we mean write an integer program for the problem for which a solution of value
α corresponds to an actual integer solution to the problem with value α.)

Our main tool to address the problem presented in Section 1.2 is a simple geometric method for
computing the expected angle between two elements if they are assigned positions on a circle using the
algorithm from [GW04]. In contrast, as mentioned above, Goemans and Williamson give a formula for
the probability that the angle after rounding is less than a certain angle. Theirs is clearly a stronger
theorem, but our proof is quite simple. We believe that our proof might yield some geometric insight
into CSDP, which could possibly promote what appears to be a useful but overlooked technique. We
also note that although we do not know how to model the Rel-Lin-Eq(q) problem exactly using the
CSDP methods from [GW04] (i.e. we cannot represent the elements with two-dimensional discs and
obtain a relaxation of our problem in the usual sense), we nevertheless show how to use techniques
from CSDP in our rounding methods.
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1.5 Preliminaries and Notation

The payoff function in (1) uses the following natural notion of distance between two points on a circle.
Suppose a circle has q equally spaced points that are labeled clockwise from 0 through q− 1 for some
integer q. We note that the following definition of distance between two points on a circle is sometimes
referred to as the Lee distance.

Definition 1 Given two points on a circle with indices x, y ∈ [0, q), let dist(x, y) = min{|x− y|, q −
|x− y|}, that is, the length of the minor arc between x and y.

In general, for a specified domain of size q, a distance on that domain will be a number between 0
and q/2 and a normalized distance will be a fraction between 0 and 1, i.e. the distance on domain q
divided by q/2.

1.5.1 Notation

Let E = {xv − xu ≡ duv(mod q)} be a given system of linear equations on the set of elements
V = {xu}. Let n = |V |. Let [q] denote the integers in the range [0, q).

1.6 Overview of Our Results and Organization

In Section 2 we present our main tool, which is a simple, geometric lemma to compute the expected
angle between two elements in the rounding algorithm for CSDP given in [GW04]. In Section 3,
we show how to apply this lemma to a relaxation of a quadratic program for the Rel-Lin-Eq(q)
problem to obtain a .8046-approximation. This SDP relaxation contains only two vectors per element,
and thus can be solved efficiently in practice for moderate values of |E|, e.g. |E| ≈ 100. Next, in
Section 4, we show that using an SDP relaxation that is standard in the CSP framework, we can
obtain an improved approximation factor of .854, again using the same geometric tool from Section
2 to round the relaxation. Since an α-approximation algorithm for the Rel-Lin-Eq(q) problem
implies an α-approximation for Max-Cut, we note that assuming the Unique Games conjecture, our
approximation is within at least .0245 of optimal. Finally, we note that both algorithms yield an
approximation guarantee of (1 − O(

√
ε))|E| when the optimal solution has value at least (1 − ε)|E|.

We also give an improved approximation guarantee for Linear Equations mod 4 in Section 5. All
of our results hold for sets of constraints with non-negative weights.

2 A Geometric Tool

Suppose we have two two-dimensional discs, A and B, such that disc A is in the plane defined by two
orthogonal vectors Ax and Ay and disc B is in the plane defined by two orthogonal vectors Bx and
By. Let q be any (possibly huge) positive integer. For simplicity, we assume that q is a multiple of
four. For each i ∈ [q], we define the following vector:

Ai =

(

cos (
2π · i

q
)

)

Ay +

(

sin (
2π · i

q
)

)

Ax. (3)
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Then {Ai} is the set of q vectors that comprise the two-dimensional disc A. In other words, A0 = Ay

and Aq/4 = Ax. We can define a set of vectors for the disc B similarly. We say that A = {Ai} =
(Ax, Ay). More generally, suppose we have the following properties relating the four vectors Ax, Ay, Bx

and By:

(i) Ax ·Ay = 0 and Bx · By = 0,

(ii) |Ax| = |Ay| = |Bx| = |By|,

(iii) Ax ·By = Ay · (−Bx),

(iv) Ax ·Bx = Ay ·By.

If properties (i) through (iv) hold, then we can show that an additional useful property holds.

Lemma 2 Let A = (Ax, Ay) and B = (Bx, By) be discs that satisfy the above properties (i) through
(iv). Then the angle between Ai and Bj equals the angle between Ai+k and Bj+k for all i, j, k ∈ [q],
where subscripts are computed modulo q.

Proof: Let α = 2π·i
q and β = 2π·j

q . Let αk = 2π·(i+k)
q and βk = 2π·(j+k)

q , with subscripts computed
modulo q.

Ai · Bj = ((cos α)Ay + (sinα)Ax) · ((cos β)By + (sinβ)Bx)

= cos α cos β(Ay ·By) + sinα sinβ(Ax ·Bx) + cos α sinβ(Ay · Bx) + sinα cos β(Ax · By)

= cos α cos β(Ay ·By) + sinα sinβ(Ay · By) + sinβ cos α(Ay · Bx)− cos β sinα(Ay ·Bx)

= cos (α− β)(Ay · By) + sin (β − α)(Ay · Bx).

We have used the facts that Ax · Bx = Ay ·By and that Ay · Bx = −Ax · By. Since it is the case that
α − β = αk − βk and β − α = βk − αk, we have shown that Ai · Bj = Ai+k · Bj+k. Additionally, if
property (ii) holds, then it is straightforward to see that |Ah| = |Ax| for all h ∈ [q], and similarly for
all vectors Bh. Thus, the lemma follows. 2

Now suppose the two discs A and B represent two elements xa and xb that we want to place on
a circle with following goal in mind: if element a is in position i, we want element b to be close to
position i + cab. In other words, our target is to satisfy the equation xb − xa ≡ cab (mod q). Is there
a procedure that places xa in a position i and places xb in a position “close” to position i + cab for all
i ∈ [q]?
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Input: A set of n elements, {xa}, and a corresponding set of n two-dimensional discs, {A}
such that:

(a) Each disc A is defined by two specified orthogonal vectors, Ax and Ay in
� 2n, and

vector Ai is defined as in Equation (3).

(b) Each pair of discs obeys constraints (i)–(iv).

Output: An assigned position for each element in the range [q].

Rounding Procedure:

1. Choose g ∈ N (0, 1)2n.

2. For each disc, A, compute the set of values {Ai · g}.

3. Let pos(xa) = i if Ai−1 · g < 0 and Ai · g > 0.

We note that the above rounding procedure is equivalent to that presented by Goemans and
Williamson for CSDP [GW04]. Since the disc A is two-dimensional, pos(xa) is uniquely defined. This
is because the projection of g onto the disc A partitions the vectors in the disc into two sets—those that
have positive dot products with g and those that have negative dot products—and each set contains
consecutive indices. We now want to analyze the expected distance between pos(xa) and pos(xb) for
two discs, A and B. Using the definition of dist(x, y) from Definition 1, we have:

Lemma 3 Let A = (Ax, Ay) and B = (Bx, By) be two discs that satisfy properties (i) through (iv).

Suppose arccos(A0 ·B0) = θ. Then: �
[

dist
(

pos(xa), pos(xb)
)

]

= θ
2π · q.

Proof: Consider the pairs of vectors {Ak, Bk} for integral k ∈ [q]. By Lemma 2, we have that for all
k:

A0 ·B0 = Ak ·Bk.

Thus, for each pair of vectors, {Ak, Bk}, the angle between the vectors is also θ. By [GW95], the
probability that this pair of vectors differs in sign is:

Pr[sign(g · A0) 6= sign(g · B0)] =
θ

π
.

This probability holds for all pairs, since all pairs have the same angle. Thus, in expectation, there
are θ · q/π pairs with different signs. Since a pair of dot products g · Ai, g · Bi differ in sign exactly
when the pair of dot products g · Ai+q/2, g ·Bi+q/2 differs in sign (superscripts computed modulo q),
then the expected distance between the position pos(xa) and pos(xb) is exactly θ · q/(2π). 2

More generally, if we assume without loss of generality that pos(xa) = 0, then we can compute the
expected distance of pos(xb) from its target position j.
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Lemma 4 Let A = (Ax, Ay) and B = (Bx, By) be two discs that satisfy properties (i) through (iv).

Suppose arccos(A0 ·Bj) = θj. Then: �
[

dist
(

pos(xa) + j, pos(xb)
)

]

=
θj

2π · q.

Proof: The proof is analogous to the proof of Lemma 3, except in this case we consider pairs of
vectors {Ai, Bi+j}. 2

3 Applying Our Techniques to Rel-Lin-Eq(q)

We now show how to apply the geometric tools from Section 2 to the problem of Rel-Lin-Eq(q).
We consider two semidefinite programming relaxations. The first relaxation uses 2n vectors (two
vectors per element), thus making the relaxation tractable for relatively large values of q (e.g. ≈ 100
on a desktop). We show that using this relaxation, we can obtain a .8046-approximation for the
Rel-Lin-Eq(q) problem. In Section 4, we consider another relaxation, from which we can obtain
an approximation guarantee of .854. The latter relaxation is in the standard CSP framework and
therefore has q vectors per vertex, making it tractable only for very small values of q (e.g. ≈ 15).

In the following quadratic program, each element xu ∈ V corresponds to two vectors that associate
this element with a two-dimensional plane defined by the vectors yu and y⊥u . There are q elements,
{yi

u} for i ∈ [q], in the disc associated with element xu.

yi
u =

(

cos (
2π · i

q
)

)

yu +

(

sin (
2π · i

q
)

)

y⊥u . (4)

For the equation xv − xu ≡ duv(mod q), we have the following objective function:

1 + yu · yduv
v

2
=

∑

uv∈E

1 + cos ( 2π·duv

q )(yu · yv) + sin ( 2π·duv

q )(yu · y⊥v )

2
. (5)

Thus, we can write the above objective function using only two vectors per element.

Quadratic Program (Q1):

max
∑

uv∈E

1 + cos ( 2π·duv

q )(yu · yv) + sin ( 2π·duv

q )(yu · y⊥v )

2
(6)

yu · yu = 1, ∀xu ∈ V, (7)

y⊥u · y⊥u = 1, ∀xu ∈ V, (8)

yu · y⊥u = 0, ∀xu ∈ V, (9)

yu · yv = y⊥u · y⊥v , ∀xu, xv ∈ V, (10)

yu · y⊥v = −y⊥u · yv, ∀xu, xv ∈ V, (11)

yu, y⊥u ∈ � 2, ∀xu ∈ V. (12)

A semidefinite relaxation can be obtained by replacing (12) with the constraint yu, y⊥u ∈
� 2n, ∀xu ∈

V . We refer to this relaxation as (Q′
1). Note that the objective value of this quadratic program—and
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thus that of the corresponding relaxation—might not be an upper bound on the value of an optimal
solution. This is because on the interval [π/2 ≤ φ ≤ π], cosφ is a lower bound to φ/π. Nevertheless,
as we now show, we can derive an upper bound on the value of an optimal solution to the Rel-Lin-
Eq(q) problem given an optimal solution to (Q′

1). Our main theorem of this section is that applying
the rounding procedure from Section 2 to the two-dimensional discs obtained from (Q ′

1) results in the
following guarantee:

Theorem 1 Rounding the relaxation (Q′
1) is a factor .8046 approximation for Rel-Lin-Eq(q).

Consider a set of vectors {yu, y⊥u } obtained from an optimal solution to (Q′
1). Let θuv = arccos (y0

u · yduv
v )

and θuv ∈ [0, π] (i.e. corresponding to the equation xv − xu ≡ duv(mod q)). Define γ as follows:

γ =
∑

uv∈E

1

|E| cos (θuv). (13)

We can assume that γ ∈ [0, 1]. Consider some arbitrarily large integer N and define θi = 2πi
N . Define

θmin(γ) to be:

θmin(γ) = min
{ai}

N/2
∑

i=0

aiθi (14)

subject to: 0 ≤ ai ≤ 1, (15)

N/2
∑

i=1

ai = 1, (16)

N/2
∑

i=0

ai cos (θi) = γ. (17)

Define θmax(γ) analogously.

Lemma 5 Given an optimal solution for (Q′
1) where γ =

∑

uv∈E cos (θuv)/|E|, we can upper bound
the value of an optimal solution: OPT ≤ (1− θmin(γ))|E|.

Proof: Suppose there were a solution with value more than (1− θmin(γ))|E|. Then, there would be
a solution to (Q′

1) with value (1 + γ ′)|E|/2 such that γ ′ > γ. 2

Lemma 6 For γ ∈ [cos (θGW ), 1), θmin = (1−γ)θGW

1−cos (θGW ) .

Proof: Consider γ ∈ [cos (θGW ), 1). Begin with any set of values {ai} that fulfill constraints (15),
(16) and (17) above. Since cos φ is concave in the range [0 ≤ φ ≤ π/2] and convex on the range
[π/2 ≤ φ ≤ π], we can replace the values of ai with non-negative values a′

i such that a′i = 0 for

11



0 < i < N/4 and there is only one value of j ∈ [N/4, N/2] such that a′
j 6= 0. For these values a′

i, the
following statements hold:

γ =

N/2
∑

i=1

ai cos (θi) = 1− a′j + a′j cos(θj), (18)

N/2
∑

i=1

aiθi ≥ a′jθj. (19)

In other words, we have γ = 1−x+x cos θ for some x > 0 and some value of θ. We want to determine
the value of θ > 0 that minimizes the value x · θ. We have:

g(θ) = x · θ =
(1− γ) · θ
1− cos (θ)

. (20)

g′(θ) =
(1− γ)

(1− cos θ)2
(1− cos θ − θ sin θ) . (21)

Note that θGW ≈ 133.56◦ is the value that minimizes (20) and it follows that θGW is also the value
for which (21) equals zero. Thus, for γ ∈ [cos (θGW ), 1), we have:

θmin(γ) =
(1− γ)θGW

1− cos (θGW )
. (22)

2

Lemma 7 For γ ∈ (−1, cos (π − θGW )], θmax = (1−γ)θGW

1−cos (θGW ) . For γ ∈ [cos (π − θGW ), 1], θmax =
arccos γ.

Proof: First, we consider γ ∈ (−1, cos (π − θGW )]. Begin with any set of values {ai} that fulfill
constraints (15), (16) and (17). Since cos φ is concave in the range [0 ≤ φ ≤ π/2] and convex on the
range [π/2 ≤ φ ≤ π], we can replace the values of ai with non-negative values a′

i such that a′i = 0 for
N/4 < i < N/2 and there is only one value of j ∈ [0, N/4] such that a′

j 6= 0. For these values a′
i, the

following statements hold:

γ =

N/2
∑

i=1

ai cos (θi) = − 1(1− a′j) + a′j cos(θj), (23)

N/2
∑

i=1

aiθi ≤ a′jθj. (24)

In other words, we have γ = x−1+x cos θ for some x > 0 and some value of θ. We want to determine
the value of θ that maximizes the value x · θ. We have:

g(θ) = x · θ + (1− x)π (25)

=
(1 + γ)θ + (cos θ − γ)π

1 + cos θ
. (26)

12



We want to find the value of θ that minimizes g(θ). Taking the derivative, we have:

g′(θ) =
π(1 + γ) (cos θ + 1 + (θ − π) sin θ)

(1 + cos θ)2
. (27)

We are looking for θ ∈ [0, π/2]. Thus, g ′(θ) is zero when the following holds:

0 = cos θ + 1 + (θ − π) sin θ (28)

= 1− cos (π − θ)− (π − θ) sin (π − θ). (29)

Since this is the same expression as (21), we see that it is satisfied when π − θ = θGW , which implies
that θ = π − θGW . Thus, for γ ∈ (−1, cos (π − θGW )], we have:

θmax(γ) =
(1 + γ)(π − θGW ) + (cos (π − θGW )− γ)π

1 + cos (π − θGW )
(30)

=
π − (1 + γ)θGW − π cos θGW

1− cos (θGW )
. (31)

Now we consider γ ∈ (cos (π − θGW ), 1]. Let θγ = arccos γ. On the interval θ ∈ [0 ≤ θ ≤ θγ ], the
function g(θ) is an increasing function of θ. So the function is maximized when θ = θγ . Thus, for
γ ∈ (cos (π − θGW ), 1], we have θmax = arccos γ. 2

Now we can prove Theorem 1:

Proof of Theorem 1: Given a solution to (Q′
1), where γ =

∑

uv∈E cos (θuv)/|E|, the approximation
ratio achieved by the rounding procedure is:

π −min{θmax(γ), π/2}
π − θmin(γ)

. (32)

since the numerator is a lower bound on what our rounding procedure yields, and the denominator is
an upper bound on the value of an optimal solution.

In the interval γ ∈ [−1, π(1−cos (θGW ))
2θGW

− 1], the approximation ratio is at least:

π
2 (1− cos (θGW ))

π(1− cos (θGW ))− (1− γ)θGW
≥ .8046. (33)

In the interval γ ∈ [π(1−cos (θGW ))
2θGW

− 1, cos (π − θGW )], the approximation ratio is at least:

(1 + γ)θGW

π(1− cos (θGW ))− (1− γ)θGW
≥ .8046. (34)

Finally, in the interval γ ∈ [cos (π − θGW ), 1], the approximation ratio is at least:

π − arccos γ

π − (1−γ)θGW

1−cos (θGW )

≥ .8593. (35)
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2

Note that the quadratic program (Q1) models the payoff function (2) exactly. In other words,
there is a one-to-one correspondence between optimal integral solutions and solutions to (Q1). Thus,
(Q′

1) is a relaxation for this payoff function. The proof of Theorem 2 follows directly from Lemma 4
and the main theorem in [GW95].

Theorem 2 Rounding the relaxation (Q′
1) is a factor αGW approximation for the optimization problem

defined by payoff function (2).

We conclude this section by analyzing the asymptotic guarantee of our algorithm when the optimal
value of an instance of Rel-Lin-Eq(q) is (1− ε)|E| for small ε.

Theorem 3 If an optimal solution to an instance of Rel-Lin-Eq(q) has value (1 − ε)|E|, then our
algorithm finds a solution with value at least

(

1−O(
√

ε)
)

|E|.

Proof: Suppose ε is very close to zero. Consider the ratio in (35). We have:

1− (1− γ)θGW

π(1 − cos (θGW ))
≥ 1− ε. (36)

This implies that: γ ≥ 1 − piε/β for some constant β > 0. The value obtained by the algorithm is
1− θγ/π. Since we have γ = cos (θγ) ≥ 1−πε/β, it follows that cos2 (θγ) ≥ 1− 2πε/β. Thus, for small
values of θγ , we have θγ ≤

√

2πε/β. So the value obtained by our algorithm is at least 1−O(
√

ε). 2

4 An Improved Approximation Ratio for Rel-Lin-Eq(q)

We now consider another relaxation for which we can also use the rounding procedure described
in Section 2. This standard relaxation is the one recently analyzed by Raghavendra for CSP prob-
lems [Rag08]. Each element is represented by an orthogonal constellation rather than a two-dimensional
disc. The first step in our approach is therefore to find a solution for the relaxation of the following
quadratic program. Then, the first step in our rounding procedure is to create a two-dimensional
disc for each element using the vectors we obtain from this solution. We then apply the rounding
procedure from Section 2 to obtain positions for each element in the range [0, 2π). Thus, despite the
fact, that unlike in the output of relaxation (Q′

1), we do not directly obtain two-dimensional discs
from the SDP, we can still use our geometric tool from Section 2. We therefore demonstrate a general
connection between the standard relaxation for CSPs and the CSDP framework. Our analysis yields
a .854-approximation, which is better than the approximation guarantee given in Section 3.

14



Quadratic Program (Q2):

max
∑

uv∈E





∑

i,j∈[q]

P{u,v}(i, j)ui · vj



 (37)

ui · vj ≥ 0, ui · uj = 0 ∀xu, xv ∈ V, i, j ∈ [q], (38)
∑

i∈[q]

|ui|2 = 1 ∀xu ∈ V, (39)

|
∑

i∈[q]

ui −
∑

i∈[q]

vi|2 = 0 ∀xu, xv ∈ V, (40)

ui ∈ {0, 1} ∀xu ∈ V, i ∈ [q]. (41)

We consider the semidefinite relaxation in which constraint (41) is replaced by the constraint
ui ∈

� qn for all xu ∈ V, i ∈ [q]. We refer to this relaxation as (Q′
2). In the relaxation (Q′

2), each
element xu ∈ V corresponds to q orthogonal assignment vectors, {u0, u1, . . . uq−1}. In an integral
solution, for each element xu ∈ V , only one vector ui (for a single value of i) is allowed to be a unit
vector. The index of this vector corresponds to the position to which this element xu is assigned in this
solution. The relaxation (Q′

2) is (exactly) the same as SDP(II) from [Rag08] (although there are also
other ways to write it) and has been used to obtain approximation algorithms for Max-Dicut [FG95],
Linear Equations mod q [AEH01] and Unique Games [Kho02, CMM06]. We note that we are
using the payoff function given in (1). However, if, for example, we wanted to more accurately model
the Contig-Scaffold problem, we could modify the payoff function so that for a particular equation
corresponding to edge e, all positions more than σ(e) away from the target position have payoff zero.
It would be more difficult to analyze what our rounding procedure gives with this payoff function.

If the size of the domain, q, is a fixed integer, then for any payoff function, Raghavendra gives
an algorithm that has an optimal approximation guarantee assuming the Unique Games Conjec-
ture [Rag08]. Moreover, he shows that an integrality gap of α for the problem corresponding to this
payoff function implies a Unique-Games hardness factor of α, and shows a rounding scheme whose
approximation ratio is arbitrarily close to the integrality gap. However, there is a shortcoming to these
results in terms of efficiency: both the rounding algorithm and the computation of the approximation
ratio require time that is exponential in both the domain size and the inverse of the accuracy param-
eter, making them impractical to compute for a given payoff function. Moreover, note that for our
problem, q need not be a fixed integer. Thus, in the case that q is not a fixed integer, Raghavendra’s
algorithm does not guarantee an optimal algorithm even assuming the Unique Games Conjecture.

Note that our particular payoff function (1) is shift invariant. In other words, the payoff function
only depends on the relative positions of i and j. Because of this circular symmetry, for each solution
with a certain value, there are actually q solutions with the same value. We can therefore augment
the relaxation (Q′

2) with the following constraints:

15



|ui|2 = 1/q ∀xu ∈ V, i, j ∈ [q],

(∗) ui · vj = ui+k · vj+k ∀xu, xv ∈ V, i, j, k ∈ [q].

We refer to the relaxation (Q′
2) augmented with the constraints (∗) as (Q∗

2). Note that the constraints
(∗) are also valid (for the same reasons) in the standard Linear Equations mod q problem. We
will also use the following lemma that holds for a feasible solution to the relaxation (Q∗

2).

Lemma 8 For every u, v ∈ V , it is the case that
∑q

j=0 u0 · vj = u0 · u0.

Proof: Note that for each u ∈ V , the sum of elements equals the same unit vector, call this vector
x. Since the sum of the lengths is 1 and the vectors are pairwise orthogonal, it must be the case that
u0 · u0 = u0 · x. In other words, we have:

q
∑

j=0

u0 · vj = u0 ·
q
∑

j=0

vj = u0 · x = u0 · u0.

The lemma follows. 2

4.1 Geometric Rounding of the Relaxation (Q∗
2)

Let {ui} be a feasible solution to (Q∗
2) corresponding to a given instance of Rel-Lin-Eq(q). The main

idea behind our improved algorithm is to create the following two-dimensional disc for each element
xu ∈ V .

Ux =

q−1
∑

i=0

sin (
2π · i

q
)ui, Uy =

q−1
∑

i=0

cos (
2π · i

q
)ui.

We can show that the following holds for the vectors {Ux, Uy}.

Lemma 9 The vectors {Ux, Uy} for xu ∈ V satisfy properties (i) through (iv).

(Since the proof of Lemma 9 is somewhat long, it can be found in Appendix B.) We can therefore
apply the rounding procedure from Section 2.

In particular, we can apply Lemma 4 to find positions for the elements in V . If we choose g ∈
N (0, 1)m and we wish to compute the expected distance between pos(U, g) and pos(V, g) +h, then we
must determine the angle between U0 and Vh, in other words we need to compute the angle between
U0 and Vh.

Lemma 10

U0 · Vh

|U0| · |Vh|
= q

q−1
∑

k=0

cos (θk − θh) u0 · vk.
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Proof:

U0 · Vh =

(

q−1
∑

i=0

cos (
2π · i

q
)ui

)

·
(

(

cos (
2π · h

q
)

)

Vy +

(

sin (
2π · h

q
)

)

Vx

)

=

(

q−1
∑

i=0

cos (θi)ui

)

·
(

cos (θh)

q−1
∑

j=0

cos (θj)vj + sin (θh)

q−1
∑

j=0

sin (θj)vj

)

=

(

q−1
∑

i=0

cos (θi)ui

)

·
(

q−1
∑

j=0

cos (θj − θh)vj

)

=

(

q−1
∑

i=0

cos (θi)ui

)

·
(

i−1
∑

j=i

cos (θj − θh)vj

)

(42)

=

(

q−1
∑

i=0

cos (θi)u0

)

·
(

i−1
∑

j=i

cos (θj − θh)vj−i

)

(43)

=

(

q−1
∑

i=0

cos (θi)

)

·
(

i−1
∑

j=i

cos (θj − θh)u0 · vj−i

)

=

(

q−1
∑

i=0

cos (θi)

)

·
(

i−1
∑

j=i

cos (θi + (θj − θh − θi))u0 · vj−i

)

=

(

q−1
∑

i=0

cos (θi)

)

·
(

q−1
∑

k=0

cos (θi + (θk − θh))u0 · vk

)

(44)

=

(

q−1
∑

i=0

cos2 (θi)

)

·
(

q−1
∑

k=0

cos (θk − θh)u0 · vk

)

(45)

=
q

2
·
(

q−1
∑

k=0

cos (θk − θh)u0 · vk

)

. (46)

To obtain (42), note that the indices of vj are computed modulo p. Line (43) follows from the
constraints of (Q∗

2). Substituting k for j − i and θk for θj − θi, we obtain line (44). Using the identity
for cos (a + b) = cos a cos b− sin a sin b and Lemma 15 (found in Appendix A), we obtain (45). Lastly,
applying Lemma 14 (also found in Appendix A), we obtain the final equality.

The lemma follows from the fact that the length of |Ui| = 1√
2

for all i ∈ [q] and all xu ∈ V . This

proof can be found in Appendix B. 2

Applying Lemma 10, we obtain the following theorem. Let θi = 2π·i
q .

Theorem 4 Given a set of vectors {ui} that forms a feasible solution to (Q∗
2) corresponding to a set

of elements V , we can find a set of positions, {pos(xu)}, for all xu ∈ V such that for all xu, xv ∈ V
and h ∈ [q]:
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�
[

dist
(

pos(xu) + h, pos(xv)
)]

= arccos

(

q

q−1
∑

i=0

cos (θi − θh)u0 · vi

)

· q

2π
.

Theorem 4 follows from Lemma 10.

4.2 Analysis

We now consider the payoff function (1) and show that rounding (Q∗
2) using Theorem 4 gives a good

approximation. In particular, let ALG represent the value returned by our algorithm, and let SDP
represent the objective value of the formulation (Q∗

2) with the payoff given in (1). We wish to determine
the worst case ratio of ALG/SDP . Let ai = (u0 · vi)p. By Lemma 8, we have

∑q−1
i=0 ai = 1. Given

a set of values {a0, . . . aq−1} such that
∑q−1

i=0 ai = 1, we can assume without loss of generality that
∑q/2

i=0 ai = 1, i.e. we let ai = (u0 · vi + u0 · vq/2+i)p. This follows from the fact that both of the two
functions below are symmetric.

ALG = 1−
arccos

(

∑q/2
i=0 cos(2π·i

q )ai

)

π
, SDP =

q/2
∑

i=0

(1− 2
i

q
)ai.

Let θi = 2π·i
q . Then we have:

ALG = 1−
arccos

(

∑q/2
i=0 cos(θi)ai

)

π
, SDP =

q/2
∑

i=0

(1− θi

π
)ai = 1−

q/2
∑

i=0

θi

π
ai.

ALG

SDP
=

π − arccos
(

∑q/2
i=0 cos(θi)ai

)

π −∑q/2
i=0 θi · ai

. (47)

Theorem 5 ALG

SDP
≥ .854.

Proof: For any value of θ from 0 ≤ θ ≤ π, we consider an arbitrary set {ai} such that
∑q/2

i=0 θiai = θ.
We first show that there exists some set {a′

i} where a′i = 0 for all i : 0 < i < q
4 and a′i = ai for all

i : q
4 < i ≤ q

2 such that:

q/2
∑

i=0

θi · ai =

q/2
∑

i=0

θi · a′i

and

arccos





q/2
∑

i=0

cos (θi) · ai



 ≤ arccos





q/2
∑

i=0

cos (θi) · a′i



 (48)
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and both
∑q/2

i=0 ai = 1 and
∑q/2

i=0 a′i = 1. In other words, the ratio in (47) is no greater using the set
{a′i} in place of the set {ai}. The inequality in line (48) follows from the fact that the function cos (φ)
is concave on the range [0 ≤ φ ≤ π/2]. Next, we will show that there is some set {a ′′

i } such that
a′′0 = a′0 and a′′i 6= 0 for only one value of i 6= 0. Let us refer to this index as j. This follows from the

fact that the function φ is convex on range [π/2 ≤ φ ≤ π]. Since
∑q/2

i=0 a′′i = 1, we have a′′0 + a′′j = 1.
In other words, we have:

arccos





q/2
∑

i=0

cos (θi) · a′i



 ≤ arccos





q/2
∑

i=0

cos (θi) · a′′i



 = arccos (a′′0 + cos (θj) · a′′j ). (49)

We will now show that there exists some θx and some value x between 0 and 1 such that θ = θx ·x
and:

π − arccos (1− a′′j + cos (θj) · a′′j )
π − θ

≥ π − arccos (1− x + cos (θx) · x)

π − θ
. (50)

Let f(θx) = cos (θx) · x − x = cos (θ/x) · x − x. Note that the righthand side of Equation (50) is
minimized when f(θx) is minimized. Substituting x = θ/θx.

f(θx) = cos (θx) · θ

θx
− θ

θx
=
−θ(1− cos (θx))

θx
. (51)

Thus f(θx) is minimized when (1 − cos (θx))/θx is maximized. Note that by Lemma 3.5 in [GW95],
we have:

θx

1− cos (θx)
≥ π

2
(.87856 . . . ).

Thus, for any fixed value of θ = θx · x, the function f(θx) is minimized for a value of θx that we will
refer to as θGW . (However, note that since x ≤ 1, this is only true for θ ≤ θGW . We will deal with θ
such that θGW ≤ θ < π separately.) We recall that x = θ/θGW . Thus, we have the following function
of x.

h(x) =
π − arccos (1− x + cos (θGW ) · x)

π − θGW · x
. (52)

Figure 3 shows the function h(x). We conclude that the function is always at least .854 achieves this
value for θ ≈ 37 degrees.

For values of θ in the range [θGW , π), we note that θx ≥ θ. We note that the function (1−cos θx)/θx

is a decreasing function of θx in the range θGW ≤ θ < π. Thus, the function is maximized for θx = θ
in this range, and it is straightforward to observe that (50) is always at least 1 for values of θ in this
interval. 2

Lemma 11 If the ratio from (47) is considered for a domain of q = 4, then the ratio is αGW > .878.
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Figure 3: Graph of the function h(x) on the interval x ∈ [0, 1].

Proof: In the case of q = 4, the only non-zero values of ai correspond to the angles 0, π/2 and
π. Thus, we want to compute the minimum value of the following expression. Let x = a0 and let
y = aq/2. Note that θ = y · π and that x + y < 1.

π − arccos (x− y)

π − θ
=

π − arccos (x− y)

π − y · π − (1− x− y) · π/2

=
1− arccos (x− y)/π

1− y − (1− x− y)/2

=
1− arccos (x− y)/π

(1 + x− y)/2

Let z = x− y. Then the above expression is:

1− arccos (z)/π

(1 + z)/2
,

which is has a minimum value of αGW > .878. 2

Suppose the optima value of an instance of Rel-Lin-Eq(q) is at least (1−ε)|E|. It is not surprising
that in this case we can obtain a (1 − O(

√
ε))|E|, since we could obtain the same guarantee for the

rounding of (Q′
1), which does not appear to be a stronger relaxation than (Q∗

2).

Lemma 12 If an optimal solution to an instance of Rel-Lin-Eq(q) has value (1 − ε)|E|, then our
algorithm finds a solution with value at least

(

1−O(
√

ε)
)

|E|.
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Proof: Given that we fix the angle θ, i.e. the SDP value is fixed, what is the minimum value returned
by the algorithm? For θ ≤ θGW , the worst case is:

π − arccos (1− x + cos (θGW ) · x)

π − θ
.

The value of cos(θGW ) is at most −.689. If ε = x·θGW

π , so x = ε · π/θGW .

1− arccos (1− ε(1.689)/θGW )

1− ε
=

1− arccos (1− ε · β)/π

1− ε
,

where β is a constant that is at least 2.276. This last quantity is 1−O(
√

ε) for small ε. 2

This is the same asymptotic behavior as the Max Cut algorithm of Goemans-Williamson [GW95].

5 Linear equations mod 4

We can apply our techniques to obtain an improved approximation factor for the linear equations
mod 4 problem. Note that for linear equations mod 3, there is an algorithm with an approximation
guarantee of at least .793 [GW04]. However, such a strong result is not known for the problem of
linear equations mod 4. Although previous results indicate that one can do better than random for
linear equations mod q (i.e. there is an approximation algorithm with a guarantee strictly better
than 1/p, [AEH01, EG04]), the best known explicitly computed approximation ratio for p = 4 is
1/4 + 1/5120 [EG04]. We show here that we can do much better than this. Before doing so, we state
the following useful lemma.

Lemma 13 Given an instance of linear equations mod q, the optimal value for the relaxed objective
is at least as large as the optimal value for the standard objective.

Proof: This follows since any solution for the standard linear equations mod q contributes 1 for each
satisfied assignment and at least 0 for every unsatisfied assignment. 2

Theorem 6 Linear equations mod 4 can be approximated to within a factor of αGW /2 ≈ .439.

Proof: Consider a solution to the relaxed version of linear equations mod 4. For each equation,
we either satisfy it (contributing 1 to the objective function) or we do not satisfy it (contributing .5
or 0 to the objective function). For each element, xi, we keep the assignment of xi unchanged with
probability .5. With probability .5, we make the assignment xi := (xi +1) mod 4. If the equation was
satisfied, then we have probability half that it is still satisfied (i.e. both variables remain unchanged
or both change). If the contribution was .5, there is a .25 chance that the equation is satisfied.

Thus, we are obtaining a solution with value αGW /2 of the optimal for the relaxed version, which
by Lemma 13 is at least as large as optimal. Thus, we can conclude that we can satisfy at least αGW /2
as many equations as an optimal solution. 2
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6 Future Directions

We plan to run experiments on actual or simulated contig data to see how our methods can be
applied in practice. For example, we can consider constraints based on pairs of contigs in an actual
arrangement that has had some noise added to it. We note that even if actual contig-mate-pair-graphs
are much larger than what our algorithm can handle, we would like to know if constructing a scaffold
from a small sample of the contigs gives any helpful information in determining the final arrangement
of contigs.

Finally, we remark that we can possibly use our techniques for assembly on a line, simply by
constraining the elements to lie on, say, a half circle. Given that the current methods are more
naturally tailored to a circle, this would likely be more computationally expensive (more constraints),
but is a direction for future investigation.
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A Some Basics

We give some definitions and basic lemmas that we use several times. Let θi = 2π·i
q . Let q be an

integer representing the size of the domain.

Lemma 14 If q ≥ 3, then:

1

q

q−1
∑

i=0

cos2 θi =
1

q

q−1
∑

j=0

sin2 θi =
1

2
.

Proof: If we assume that the two sums are equal, then since the two sums sum to one, it follows that
each sum equals one half. Thus, it remains to prove that the two sums are equal. We have:

q−1
∑

i=0

sin2 θi =

q−1
∑

i=0

1− cos(2θi)

2

q−1
∑

i=0

cos2 θi =

q−1
∑

i=0

1 + cos(2θi)

2
.

Thus, if we can show that:

q−1
∑

i=0

cos(2θi) = 0,
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then we are done. To do this we can use complex numbers. Let x = 4π
q . We have:

q−1
∑

j=0

cos(2θj) = Re





q−1
∑

j=0

ei(xj)





= Re

(

1− ei(4π)

1− e
i
4π
q

)

= Re

(

1− cos 4π − i sin 4π

1− cos 4π
q − i sin 4π

q

)

.

We can multiply both the numerator and denominator by the complex conjugate of the denominator:

Re

((

1− cos 4π − i sin 4π

1− cos x− i sinx

)(

1− cos x + i sinx

1− cos x + i sinx

))

= Re

(

0 · (1− cos x + i sinx)

(1− cos x)2 + sin2 x

)

= Re

(

0 · (1− cos x + i sinx)

2− 2 cos x

)

(53)

= 0.

Note that the numerator is always 0, regardless of q. However, the denominator is also 0 when q = 1, 2.
Thus, the lemma holds only for q ≥ 3. 2

Lemma 15 If q ≥ 3, then:

q−1
∑

i=0

cos θi sin θi = 0.

Proof: Since we have that cos θi · sin θi = 2 sin 2θi, the resulting sum obtained by this substitution is
just the imaginary part of the expression (53). When q ≥ 3, the imaginary part of this expression is
always 0. 2

Fact 1

q−1
∑

j=0

cos (θj)vj =

q−1
∑

j=0

cos(θi + (θj − θi))vj

=

q−1
∑

j=0

(cos (θi) cos (θj − θi)− sin (θi) sin (θj − θi)) vj .

Fact 2

q−1
∑

j=0

sin (θj)vj =

q−1
∑

j=0

sin(θi + (θj − θi))vj

=

q−1
∑

j=0

(sin (θi) cos (θj − θi) + cos (θi) sin (θj − θi)) vj

24



B Proof of Lemma 9

Given a set of vectors {ui} for u ∈ V and i ∈ [p] that form a feasible solution to the relaxation (Q′
2),

we show that the corresponding vectors {Ux, Uy} satisfy the following properties. We assume that
q ≥ 3. Recall that θi = 2π·i

q .

(i) Ux · Uy = 0, for all xu ∈ V ,

(ii) |Ux| = |Uy| = |Vx| = |Vy|, for all xu, xv ∈ V ,

(iii) Ux · Vy = Uy · (−Vx), for all xu, xv ∈ V ,

(iv) Ux · Vx = Uy · Vy, for all xu, xv ∈ V .

(i)

Ux · Uy =

(

q−1
∑

i=0

sin (
2π · i

q
)ui

)

·





q−1
∑

j=1

cos (
2π · j

q
)uj



 .

Since ui · uj 6= 0 if and only if i = j, we have:

Ux · Uy =

(

q−1
∑

i=0

sin θi cos θi (ui · ui)

)

=
1

q

(

q−1
∑

i=0

sin θi cos θi

)

= 0.

The last equality follows from Lemma 15.

(ii)

Ux · Ux =

(

q−1
∑

i=0

sin (
2π · i

q
)ui

)

·
(

q−1
∑

i=0

sin (
2π · i

q
)ui

)

=

q−1
∑

i=0

sin2 (θi)ui · ui

=
1

q

q−1
∑

i=0

sin2 (θi)

=
1

2
.

The last inequality follow from Lemma 14. Thus we have |Ux| = 1√
2
. Note that we also use Lemma

14 to show that |Uy| = 1√
2
. Thus, property (ii) holds for all u ∈ V .
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(iii)

Ux · Vy =

(

q−1
∑

i=0

sin (
2π · i

q
)ui

)

·





q−1
∑

j=0

cos (
2π · j

q
)vj



 .

By Fact 1, we have:

Ux · Vy = −
q−1
∑

i=0

sin2 θiui

q−1
∑

j=0

sin (θj − θi)vj

= −
q−1
∑

j=0

sin2 θi

q−1
∑

k=0

sin (θk)u0 · vk.

Uy · (−Vx) =

(

q−1
∑

i=0

cos (
2π · i

q
)ui

)

·



−
q−1
∑

j=0

sin (
2π · j

q
)vj



 .

By Fact 2, we have:

Uy · (−Vx) = −
q−1
∑

i=0

cos2 θiui

q−1
∑

j=0

sin (θj − θi)vj

= −
q−1
∑

j=0

cos2 θi

q−1
∑

k=0

sin (θk)u0 · vk.

Thus, by Lemma 14, we see that property (iii) holds.

(iv)

Ux · Vx = Uy · Vy =

q−1
∑

i=0

cos (
2πi

q
) u0 · vi.

Ux · Vx =

(

q−1
∑

i=0

sin (θi)ui

)

·





q−1
∑

j=0

sin (θj)vj
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We recall that for j ≥ i, we have ui · vj = u0 · v(j−i). By Fact 2, we have:

Ux · Vx =

q−1
∑

i=0

q−1+i
∑

j=i

(

sin2 (θi) sin (θj − θi)− cos (θi) sin (θi) sin (θj − θi)
)

u0 · v(j−i)

=

q−1
∑

i=0

sin2 θi

q−1
∑

k=0

(cos (θk))u0 · vk

=
q

2

q−1
∑

k=0

(cos (θk)) u0 · vk.

Uy · Vy =

(

q−1
∑

i=0

cos (θi)ui

)

·





q−1
∑

j=0

cos (θj)vj





We recall that for j ≥ i, we have ui · vj = u0 · v(j−i). By Fact 1, we have:

Uy · Vy =

q−1
∑

i=0

q−1+i
∑

j=i

(

cos2 (θi) cos (θj − θi)− cos (θi) sin (θi) sin (θj − θi)
)

u0 · v(j−i)

=

q−1
∑

i=0

cos2 θi

q−1
∑

k=0

(cos (θk)) u0 · vk

=
q

2

q−1
∑

k=0

(cos (θk))u0 · vk.

Thus, property (iv) holds. 2
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