
The Maximum Ayli Subgraph Problem and Degree-3 GraphsAlantha NewmanLaboratory for Computer Siene, MIT, Cambridge, Mass 02139E-mail: alantha�theory.ls.mit.eduWe study the problem of �nding a maximum ayli subgraph of a givendireted graph in whih the maximum total degree (in plus out) is 3. For thesegraphs, we present a simple ombinatorial algorithm that ahieves an 11/12-approximation (the previous best fator was 2/3 [1℄), (ii) a lower bound of 39053906on approximability. The problem of �nding a better-than-half approximationfor general graphs is open.1. INTRODUCTIONGiven a direted graphG = (V;E), the maximum ayli subgraph prob-lem is to �nd a maximum ardinality subset E0 of E suh that G0 = (V;E0)is ayli. The problem is NP-hard [3℄ and the best-known polynomial-timeomputable approximation fator for general graphs is 12 .In this paper, we fous on graphs in whih every vertex has total de-gree (in-degree plus out-degree) at most 3. Throughout this paper, werefer to these graphs as degree-3 graphs. The problem remains NP-hardfor these graphs [3℄. In Setion 2, we present an algorithm that �nds an1112 -approximation. This improves on the previous best guarantees of 23 forgraphs with maximum degree 3 and 1318 for 3-regular graphs [1℄. The algo-rithm is purely ombinatorial and relies heavily on exploiting the strutureof degree-3 graphs. As a orollary of a Theorem in [4, 5℄, we obtain anapproximation lower bound of 39053906 in Setion 3.2. COMBINATORIAL APPROXIMATION ALGORITHMSIn [1℄, Berger and Shor present an algorithm that returns an ayli sub-graph of size at least 2jEj3 for degree-3 graphs that do not ontain 2-yles.For 3-regular graphs (note that the set of 3-regular graphs is a propersubset of the set of degree-3 graphs) with no 2-yles, an algorithm thatreturns an ayli subgraph of size 13jEj18 is given in [1℄. In this setion, we1
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kFIG. 1. FIG. 2.show that the problem in degree-3 graphs (with or without 2-yles) anbe approximated to within 1112 of optimal using simple ombinatorial meth-ods. First we give an 89 -approximation algorithm to illustrate some basiarguments. Then we extend these arguments to give an 1112 -approximationalgorithm. 2.1. An 89 -ApproximationGiven a degree-3 graph G = (V;E) for whih we want to �nd an aylisubgraph S � E, we an make the following assumptions.(i) All verties in G have in-degree and out-degree at least 1 and totaldegree exatly 3.(ii) G ontains no direted or undireted 2- or 3-yles.The explanation for assumption (i) is as follows. If G ontains any ver-ties with in- or out-degree 0, we an immediately add all edges adjaentto these verties to the ayli subgraph S, sine these edges are ontainedin any maximal ayli subgraph. Additionally, we an ontrat all ver-ties in G that have in-degree 1 and out-degree 1. For example, say thatvertex j in G has in-degree 1 and out-degree 1 and G ontains edges (i; j)and (j; k). Then at least one of these two edges will be inluded in anymaximal ayli subgraph of G. Thus, ontrating vertex j is equivalentto ontrating edge (i; j) and adding it to the ayli subgraph S.Now we explain assumption (ii). We an ontrat multi-edges withoutadding yles to the graph, thus removing any undireted 2-yles. This isshown in Figure 1. The edges in the undireted 2-yle are added to S sinethey are inluded in any maximal ayli subgraph. In Figures 1 and 2, thedotted edges are added to S. Similarly, we an remove any undireted 3-yle by ontrating it and adding its edges to S. This results in a degree-3vertex as shown in Figure 2. Contrating an undireted 3-yle will notintrodue any new yles into the graph sine eah of the verties in the3-yle has in-degree and out-degree at least 1 by (i).In the ase of direted 2- and 3-yles, we an remove the minimumnumber of edges from the graph while breaking all suh yles. For direted2-yles, onsider the two adjaent non-yle edges of a 2-yle. If they areboth in edges, or both out edges, as in Figure 3A, then we an break the



32-yle by removing an arbitrary edge. If one is out and the other is in, asin Figure 3B, then only one of the edges in the 2-yle is onsistent withthe diretion of a possible yle ontaining both of edges that are not inthe 2-yle. For example, in Figure 3B, we would remove edge (i; j). Fordireted 3-yles, onsider Figure 4A. In this ase, or in the analogous asewhere three edges point towards the 3-yle, we an remove any edge fromthe 3-yle. In the other ase, we remove an edge from the 3-yle, so thatthe path from the single in edge or to the single out edge is broken. Forexample, in Figure 4B, we would remove edge (j; k).
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kFIG. 3. FIG. 4.We now onsider two sublasses of degree-3 graphs. We will use thefollowing de�nition.Definition 2.1. An �-edge is an edge (i; j) suh that vertex i hasin-degree 2 and out-degree 1 and vertex j has in-degree 1 and out-degree2. For example, edge (j; k) in Figure 4B is an �-edge. First, we onsiderthe ase where G ontains no �-edges. If there are no �-edges, then we an�nd the maximum ayli subgraph in polynomial time. We will use thefollowing lemma.Lemma 2.1. If G is a 3-regular graph and ontains no �-edges, then allyles in G are edge disjoint.Proof. Assume that there are two yles in G that have an edge (or apath) in ommon. First ase: assume that these two yles have a singleedge (i; j) in ommon, i.e. edge (i; j) belongs to both yles, but edges(a; i) and (j; b) eah belong to only one of these yles. Then vertex imust have in-degree 2 and vertex j must have out-degree 2. Thus, edge(i; j) is a �-edge, whih is a ontradition. Seond ase: assume thesetwo yles have a path fi; : : : ; jg and that this path is maximal, i.e. edge(a; i) and (j; b) eah belong to only one of these yles. Vertex i musthave in-degree 2 and vertex j must have out-degree 2. Therefore, at leastone of the edges on the path must be an �-edge, whih is a ontradition.



4 Sine all the yles in a graph with no �-edges are edge disjoint, we an�nd the maximum ayli subgraph of suh a graph in polynomial time.Given a graph G ontaining no �-edges, we simply �nd a yle in G, throwaway any edge from this yle, and add edges to the ayli subgraph S byontrating appropriate edges in G or removing appropriate edges from Guntil G satis�es properties (i) and (ii). We repeat until there are no moreyles in G.
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contracted edges

edges added to SFIG. 5. An illustration of step 4.If G ontains �-edges, then the problem is NP-hard. For this ase, we givethe following 89 -approximation algorithm. De�ne C(e) as the onnetedomponent ontaining edge e. De�ne E(e) as the set of edges adjaentto edge e, i.e. the edges that share an endpoint with e. For example, ife is edge (i; j) in the �rst piture in Figure 5, then E(e) ontains edges(d; i); (a; i); (j; ), and (j; b). S is the solution set. The �rst part of thealgorithm is the following proedure. An illustration of step 4 is shown inFigure 5.While G ontains �-edges, do the following:1. Make sure G is 3-regular and remove all 2- and 3-yles from G (seeexplanation of assumptions (i) and (ii)).2. Find an �-edge e in G.3. If jC(e)j = 9, solve this omponent exatly.4. Else remove e from G. Add E(e) and any other edges with in- orout-degree 0 to S. Contrat any verties with in-degree and out-degree1.When there are no more �-edges inG, then we an solve for the maximumayli subgraph in polynomial time as disussed previously. Then, weunontrat every edge in S that orresponds to a path ontrated in some



5exeution of step 1 or step 4. For every edge not in S that orresponds tosome ontrated path, we throw away one edge from the path, and add theremaining edges to S. Thus, every time we ontrat a vertex, we guaranteethat at least one more edge will be added to S.Theorem 2.1. The algorithm is an 89 -approximation for the maximumayli subgraph problem in degree-3 graphs.Proof. We show that for every edge we remove, we ontrat or add to Sa total of at least 8 edges. Consider a �-edge (i; j) in G. There must be 4distint verties within distane one from i and j (sine there are no 2-ylesor 3-yles). Thus, there must be at least 9 edges in this neighborhood. Ifthere are exatly 9 edges, then we have a omponent with 9 edges and thealgorithm solves this omponent exatly. Otherwise, if there are more than9 edges in the neighborhood of edge (i; j) (i.e. there ould be as many astwelve edges) then for eah of the 4 distint verties that are exatly oneedge away from i or j, we an either ontrat this vertex, or we an addtwo more edges to S (whih would let us add more than 8 edges to S inthis round). Note that E(e) ontains 4 edges, whih are added to S imme-diately. Therefore at least 8 edges are added to S for eah edge removed.2.2. An 1112 -ApproximationWe now show how to extend the previous algorithm to obtain an 1112 -approximation algorithm. In our 89 -approximation algorithm, we arbitrar-ily hoose �-edges to remove. There are degree-3 graphs suh that if wearbitrarily hoose �-edges to remove, then we may obtain an ayli sub-graph with size only 89 of optimal. We will show that if we hoose the�-edges to remove arefully, then we an always ensure that the resultinggraph ontains ertain �-edges whose removal allows us to add at least 11edges (rather than 8) to the solution set.In order to analyze the steps of the algorithm more easily, we onsidera further modi�ation of a given degree-3 graph. We ontrat any pair ofadjaent verties in whih eah vertex has in-degree 1 or eah vertex hasout-degree 1. An example of suh a pair of adjaent verties is shown inFigure 6. Here, j; k is a pair of verties both with in-degree 1 and f; i isa pair of verties both with out-degree 1, so we ontrat edges (f; i) and(j; k). In order to aount for the ontrated edges, if a vertex has d outedges or d in edges after an edge was ontrated, then the value of theseedges is 2d � 2, sine this is the number of edges they represent in theoriginal graph. For example, in Figure 6, there are now three inomingedges to vertex i. These three edges represent 4 edges in the originaldegree-3 graph, so they have value 4. In other words, if the three edges



6oming into vertex i are added to the ayli subgraph for the modi�edgraph, then this is equivalent to adding all 4 edges to the ayli subgraphfor the original graph. After ontrating the relevant edges, the resultinggraph will no longer be a degree-3 graph, but will orrespond to a degree-3graph. However, every edge still has in- or out-degree 1 and total degree atleast 3. Hene, we an still handle undireted and direted 2- and 3-ylesas desribed in Setion 2.1 and thus property (ii) holds. We now have theadditional assumption about the given graph G for whih we want to �ndan ayli subgraph.(iii) G ontains no adjaent verties suh that both verties have in-degree 1 or both verties have out-degree 1.
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gFIG. 6. Edges (f; i) and (j; k) will be ontrated.When we remove an edge e from a graph G, the graph G� e will repre-sent the graph that is obtained by removing edge e from G, removing alledges adjaent to a vertex with in- or out-degree 0 in the resulting graph,ontrating all resulting verties that have in-degree 1 and out-degree 1and all edges (i; j) suh that both i and j have in-degree or out-degree 1.We will use the following de�nitions.Definition 2.2. Edge (i; j) is a pro�table �-edge if either i or j hasin-degree or out-degree at least 3.Definition 2.3. A super-pro�table graph is a graph that ontains eithera 4-yle or an �-edge (i; j) in whih the in-degree of i plus the out-degreeof j is at least 6.Our algorithm will use the following lemmas.Lemma 2.2. If e is a pro�table �-edge, then removing e from G allowsus to add 11 edges to the solution set S.



7Proof. Consider a pro�table �-edge e = (i; j). When we remove edge e,we an immediately add at least 6 edges to S sine the total value of theedges inoming to i and outgoing from j is at least 6. Sine E(e) ontains atleast 5 distint verties and sine there are no 2- or 3-yles, we an make atleast 5 ontrations. Otherwise it is an isolated omponent and we an solveit exatly.Lemma 2.3. If G is not super-pro�table and G does not ontain anypro�table �-edges, then G ontains an edge e suh that the graph G � eontains a pro�table �-edge.Proof. For some �-edge e = (i; j), we let V (e) denote the set of vertiesadjaent to i and j. For example, in Figure 7, V (i; j) is the set fa; b; ; dg.This is the set of verties that would be ontrated if we removed edge (i; j)from G. The �rst ase we onsider is when there is at least one vertex inV (e){wlog say it is vertex a{suh that there is no edge with one endpointa and the other endpoint in V (e). Vertex a must have in-degree 2 andout-degree 1, as shown in Figure 7. Then besides edge (j; a), there are alsoedges (f; a) and (a; g) for some verties f and g. Vertex f must have out-degree 2; if it had in-degree 2, then ff; ag would have been ontrated. Forthe same reason, vertex g must have out-degree 2. When we remove edge(i; j), vertex a is ontrated, but neither vertex f nor vertex g is a�eted,sine neither vertex is in the neighbor set of (i; j). Thus, the graph G � eontains the edge ff; gg whih will be ontrated. If G ontains one edgewith out degree greater than 2, then it ontains a pro�table �-edge.The seond ase we onsider is when for eah vertex v in the set V (e),G ontains an edge with one endpoint v and the other endpoint in the setV (e). Note that we annot have an edge from a or b to  or d beause Gontains no 4-yles. G also ontains no undireted 3-yles. Therefore, inthis ase, the only possible situation is the one depited in Figure 8. Notethat verties l and f must have out-degree 2 and verties g and h musthave in-degree 2. Thus, if we remove the �-edge (a; f), we would ontratverties  and j, and the graph G � (a; f) would ontain the pro�table �-edge (b; `). Note that vertex h is una�eted by the removal of edge (a; f).Lemma 2.4. If G is not a super-pro�table graph and G ontains a prof-itable �-edge, then there is some set fe1; : : : ekg of edges for some k 2f1; 2; 3g suh that G� fe1; : : : ekg ontains a pro�table �-edge and remov-ing these k edges from G allows us to add at least 11k edges to the solutionset S.
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FIG. 9. FIG. 10.Proof. G must ontain a pro�table �-edge e = (i; j) that has in-degree2 and out-degree 3 or vie versa. The �rst ase is when V (i; j) ontains atleast one vertex adjaent to i and at least one vertex adjaent to j suhthat neither of these verties is adjaent to another vertex in V (i; j). SeeFigure 9 for an example of this. Here, n and d form suh a pair of verties.In this ase, if we remove edge e, G � e will ontain a pro�table �-edge.For example, in Figure 9, suppose n has in-degree 2. Then if we removeedge (i; j), the edge inoming to vertex m will beome a pro�table �-edge.If n has in-degree 3, note that we an remove the pro�table �-edge (n; o)and vertex i will still have in-degree 3 in the resulting graph (sine G isnot super-pro�table, it does not ontain 4-yles, so there is no edge fromo to b; f or e).The seond ase is when V (i; j) ontains two pairs of adjaent verties asshown in Figure 10. In this ase, we an remove both �-edges from below,whih in this ase would be edges (h; g) and (n; o). If either vertex d or h



9has in-degree 3, then we an remove one of the pro�table �-edges adjaentto one of these verties and the edge (i; j) will still be a pro�table �-edgein the resulting graph sine vertex j will have out-degree 3. Otherwise ifboth d and h have in-degree 2, then we have two subases to onsider. The�rst is that there is an edge from o to k, i.e. edge (i; j) is ontained in a6-yle. However, this is not a problemati ase beause if we remove edges(h; g) and (n; o), all of the 5 other edges in the 6-yle will be added to S.Thus, in this ase we an make muh more than a pro�t of 11 edges perdisarded edge, sine the optimal solution an also only get 5 edges from a6-yle.In the last ase, assume (i; j) is not in a 6-yle. In this ase, if weremove edges (h; g) and (n; o) we an immediately add at least 18 edgesto S (i.e. we an add all of the edges shown in Figure 10 exept for twoof the edges adjaent to f and in addition, we an add the two edgesoming into a and two edges oming into k, whih are not shown, fora total of 18) and we an make at least 9 ontrations. In the nextmove we an remove an �-edge suh that the resulting graph ontainsa pro�table �-edge by Lemma 2.3. Thus, we an remove 3 edges, addat least 35 edges to S whih is at least 11 edges per disarded edge.
h i

jk

h i

jk

h i

jk

h i

jkFIG. 11.Lemma 2.5. If G is a super-pro�table graph, then G ontains some �-edge whose removal allows us to add at least 14 edges to the solution setS.Proof. If G ontains an �-edge with total in- and out-degree at least 6,then we an add at least 14 edges to S (8 immediately plus 6 ontrations).If G ontains a 4-yle, then there are the following 4 ases shown in Figure11. Eah ase is easy to handle optimally exept for the last one. In the�rst ase, it doesn't matter whih edge we remove from the 4-yle{anyone is optimal. In the seond and third, we remove edge (j; k).Now onsider the last ase. Note that edge (h; i) is an �-edge. Assumethe total in-degree of h plus out-degree of i is less than 6 (otherwise, wehave the ase above). Without loss of generality, assume h has in-degreeonly 2 in the modi�ed graph, as shown in Figure 12. In this ase, theinoming edge to vertex m is an �-edge. If we remove this �-edge, we add



10at least 8 edges to S. If verties n and p are unique, then note that theresulting graph ontains a 3-yle sine edge (m;h) will be removed andvertex h ontrated as a result. Thus, on the next move we will get 8 extraedges. Thus, by removing one edge, we an add at least 14 edges to S. If nand p are not unique (i.e. there are two adjaent 4-yles), and we removeedge (p;m) (or (n;m)), we will ontrat verties h and i, whih results ina 2-yle. However, we an only add 5 edges to S by handling a 2-yleoptimally (we add 3 immediately and make 2 ontrations), whih is notenough to establish our lemma.Therefore, we argue the following. If there is an edge from n to m andfrom r to q, then we have 3 adjaent 2-yles. It may be the ase as shown inthe seond piture in Figure 12, that these edges form a onneted ompo-nent with 9 edges. However, in this ase we an solve exatly and so we donot disard any possibly uneessary edges. So we onsider the ase shown inthe last drawing in Figure 12. In this ase, if there is not an edge from t tos, then we an use the original argument and obtain a graph with a 3-yleafter removing the �-edge adjaent to t. If there is an edge from t to s, thennotie that after we remove edge (m;n) and obtain the 2-yle fj; kg, we willobtain another 2-yle after we handle the fj; kg 2-yle optimally. Thus,we will add at least 10 extra edges to S bringing the total to at least 14.
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jkFIG. 12.We have now stated all the lemmas that we will use to show that wean approximate our problem to within 1112 . The algorithm is similar to theprevious algorithm, exept that the while loop is more omplex. We willgive a high-level desription of the new while loop.



11The main idea is that during eah iteration of the while loop, we want toremove a pro�table �-edge from the graph and simultaneously ensure thatthe resulting graph also ontains a pro�table �-edge or is super-pro�table.We an assume that the given degree-3 graph G ontains a pro�table �-edge. If it does not, we an use Lemma 2.3 to obtain a graph that does.We will only disard one edge in the proess and sine G ontains at leastone yle (otherwise it is already ayli), the number of edges in the newgraph is no less than the maximum ayli subgraph of the original graph.Then we have two ases. In the �rst ase, if this graph is super-pro�table,by Lemma 2.5, we an remove an �-edge and add 14 edges to S. If afterremoving this edge, we are not left with a graph that is super-pro�table orontains a pro�table �-edge, then we an use Lemma 2.3 again to obtaina graph that ontains a pro�table �-edge. Thus we will disard two edgesand add at least 22 edges to S. In the seond ase, if the graph is notsuper-pro�table, we an use Lemma 2.4 remove a set of k 2 f1; 2; 3g edgesand add a set of 11k edges to S so that the resulting graph ontains apro�table �-edge.Theorem 2.2. The algorithm is an 1112 -approximation algorithm for themaximum ayli subgraph problem in degree-3 graphs.Proof. If G is a super-pro�table graph, then by Lemma 2.5, there issome �-edge whose removal allows us to add 14 edges to S. If we are notleft with a super-pro�table graph or a graph ontaining a pro�table �-edge,then by Lemma 2.3 we an �nd an �-edge whose removal leaves us with agraph ontaining a pro�table �-edge. Thus, if we would disard at mosttwo edges and add at least 14+8=22 edges to S.If G is not a super-pro�table graph, then by Lemma 2.4, we add at least11 edges to S for eah disarded edge and are left with a graph ontaining apro�table �-edge. 3. A LOWER BOUNDWe an make a modi�ation of the gadgets in [4, 5℄ to obtain the follow-ing lower bound for degree-3 graphs. Spei�ally, we an add edges to thegadgets so that the graphs obtained in the redution are degree-3 graphs.The original redution in [4, 5℄ was from the problem of linear equationsmod 2 with exatly 3 variables per lause. In this paper, we use Theorem 1from [2℄, whih shows that the problem of linear equations mod 2 with ex-atly 3 variables per lause and eah variable ouring in at most 3 lauses,i.e. (3-OCC-E3-LIN-2), is NP-hard to approximate to within better than61=62+ � for any � > 0.



12Theorem 3.1. It is NP-hard to approximate the maximum ayli sub-graph of a 3-regular graph to within 39053906 + � for any � > 0.Proof. We an onvert the lause and variable gadgets depited inFigure 3 of [5℄ to lause and variable gadgets in whih eah vertex hasdegree 3. In Figure 3 of [5℄, eah lause gadget has 36 edges. For eahvertex labeled x2; : : : x5; y2; : : : y5; z2; : : : z5, we an add two edges so thatthese 12 verties are now eah degree-3. An example of this is shown inFigure 13. This adds 24 edges per lause gadget. Note that none of thesenew edges are �-edges and only �-edges belong to a minimum feedbak arset.Now we an onnet these lause gadgets so that the resulting graph isdegree-3. First, we an onnet the lause gadgets to the verties x0; x1;y0; y1; z0; z1 as shown in Figure 3 in [5℄. Sine eah variable appears at most3 times, these verties have in-degree at most 3 and out-degree at most 3.We an assume eah variable appears exatly 3 times, sine otherwise theredution graph will have fewer edges. We an transform these degree-6verties to degree-3 verties as shown in Figure 14. Note that every edgelabeled x = 1 in a lause gadget is in a yle with every other edge labeledx = 0 from this lause gadget or from other lause gadgets. This is howonsisteny in an assignment is maintained.Suppose we have an assignment of the variables for an instane of 3-OCC-E3-Lin-2. We say an assignment orresponds to an ayli subgraphif all edges labeled x = 0 are removed if x is true in the assignment andif all edges labeled x = 1 are removed if x is false in the assignment. Ifa lause is satis�ed, we only need to remove 3 edges from the respetivelause gadget and if the assignment for all lauses is onsistent, then thereare no yles between lauses. Note that sine a variable an our at most3 times, at most one of the lauses it appears in an be false. Otherwise, wewould ip the value of that variable and obtain an assignment that satis�esmore lauses.Thus, an optimal assignment that satis�es s lauses and does not satisfyu lauses orresponds to an ayli subgraph with 57s+56u+6m edges. Itis NP-hard to distinguish between a set of lauses in whih allm lauses anbe satis�ed and at most 61=62m lauses an be satis�ed. Thus, if we anapproximate the problem to within more than 39053906 , we an distinguish be-tween the ase in whih we have 57m+6m (whih orresponds to all lausesbeing satis�ed) and the ase in whih we have 57(61=62)m+56(1=62)m+6m.
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FIG. 13. FIG. 14.4. COMMENTSA preliminary version of this paper appeared in the proeedings of AP-PROX 2001. The proof of Theorem 4.2 in the preliminary version is inor-ret. This is due to an error in the proof of Lemma 4.1: the onstrutionused may not atually preserve the size of the feedbak ar set, i.e. thereis a ounter example. Additionally, the same error was made in Theorem3.1 of the preliminary version, whih has been amended and appears asTheorem 3.1 in this version.ACKNOWLEDGEMENTSI thank Santosh Vempala for many disussions on the maximum aylisubgraph problem.
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