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1 IntrodutionWe disuss disrete optimization approahes to the problem of protein folding in the Hydrophobi-Hydrophili (HP) model. The widely-studied HP model was introdued by Ken Dill [5, 6℄. Thismodel abstrats the dominant fore in protein folding: the hydrophobi interation. The hydropho-biity of an amino aid measures its aÆnity for water, and the hydrophobi amino aid residues ofa protein form a tightly lustered ore. In the HP model, eah amino aid residue is lassi�ed asan H (hydrophobi) or a P (hydrophili). The model further simpli�es the problem by restritingthe feasible foldings to the 2D or 3D square lattie. An optimal onformation for a string of aminoaid residues in this model is one that maximizes the number of H-H ontats, i.e. pairs of H's thatoupy adjaent lattie points but are not adjaent on the string.
Figure 1: An optimal folding for the string 101010101001010101. 0's and 1's are denoted by un�lledand �lled dots, respetively. Contats are denoted by the dashed lines.The problem of protein folding in the HP model is ombinatorially equivalent to folding a stringof 0's and 1's on the square lattie to form a self-avoiding walk that maximizes the number of pairs ofadjaent 1's, i.e. with H=1 and P=0. For example, suppose we have the string 101010101001010101.An optimal folding for this string on the 2D square lattie is shown in Figure 1. This folding haseight ontats or pairs of 1's that are plaed on adjaent lattie points but are not neighbors in thestring.Finding an optimal folding is NP-hard for both the 2D and 3D square latties [4, 3℄. Computingan exat upper bound on the optimal number of ontats is therefore probably very diÆult to doeÆiently, so we would like �nd the best eÆiently omputable upper bound. The better the upperbound{the loser the upper bound is to the maximum number of ontats{the more information wehave about the atual optimal value. Despite the fat that the best-known eÆiently omputableupper bound is quite straightforward and was introdued at least a deade ago, it has yet to beimproved upon.To explain this upper bound, we introdue some notation that we will use throughout the paper.Let S = s1s2 : : : sn be a binary string in f0; 1gn. We refer to eah 1 in an odd position on the stringas an odd-1 and eah 1 in an even position on the string as an even-1. Let O[S℄ represent thenumber of odd-1's in S and let E [S℄ represent the number of even-1's in S. Sine both the 2D and3D square latties are bipartite graphs, eah odd-1 an have ontats with only even-1's. Similarly,eah even-1 an have ontats with only odd-1's. Thus, a simple upper bound for the 2D problem1



is: 2 �minfE [S℄;O[S℄g+ 2: (1)For the 3D problem, an analogous argument leads to an upper bound of 4 �minfE[S℄;O[S℄g + 2.These simple upper bounds an be used to obtain algorithms with approximation guaranteesof 1/4 [8℄ and 1/3 [10℄ for the 2D problem and 3/8 [8℄ for the 3D problem. The approximationguarantee for eah of these algorithms is based on the observation that it yields a folding with atleast 1/4, 1/3, and 3/8, respetively, as many ontats as permitted by the upper bound. Ourgoal is to improve upon this upper bound, whih ould potentially lead to improved approximationalgorithms and more eÆient exat algorithms (using for instane a branh and bound tehnique).Overview In this paper, we investigate various integer programs that model the 2D problemand examine the upper bounds given by their respetive linear programming relaxations. Ourformulations are similar to those studied previously in [7℄, whih appears to ontain the only otherdesription of this problem as an integer program. In Setion 2, we give some bakground on linearprogramming and its appliations to �nding upper bounds for hard ombinatorial maximizationproblems. In Setion 2.1 and Setion 2.2, we de�ne some notation and explain how we we usevariables in our integer programs. In Setion 2.3, we give a basi integer program for our problemand explain why there is a one-to-one orrespondene between integer solutions and atual foldingsof strings on the 2D square lattie. In Setion 2.4, we introdue a slightly modi�ed approah toour formulations that uses aggregate variables. In Setion 2.5, we show how to obtain a linearprogramming relaxation from the IP in Setion 2.3 and disuss ways to measure the quality of theupper bound provided by a linear programming relaxation. We show that the upper bound givenby this relaxation is atually quite poor and needs to be strengthened. In Setion 3.1, we presentimproved linear models and prove that they are at least as good as the best-known upper bound. InSetion 3.2, we give an example of a string for whih the linear programming relaxation is o� by afator of 2 and in Setion 4 we make some suggestions for how to further strengthen the relaxation.Finally, in Setion 5, we give some experimental results whih show that the upper bound providedby the linear programming relaxation an beat the simple upper bound.2 Integer Program FormulationsLinear Programming is often used to �nd upper bounds on the ost of optimal solutions to hardombinatorial (maximization) problems. The method is to (i) �nd an integer program that desribesthe problem, (ii) relax the integrality onstraints to obtain a linear programming relaxation forthe problem, (iii) solve the linear program to ompute a bound on an optimal integral solution.Although solving an integer program an be omputationally diÆult, we an solve linear programseÆiently. Thus, this is one approah to �nding eÆiently omputable upper bounds. We onsidera simple integer program for our problem. First, we introdue some neessary notation.
2



2.1 NotationLet I be the set of indies in a given binary string S of length n, i.e. I = f1; : : : ng. We break downI as follows:E is the set of indies of elements in even positions.O is the set of indies of elements in odd positions.We break down E and O further as follows:HO is the set of indies of odd-1's in S,HE is the set of indies of even-1's in S,PO is the set of indies of odd-0's in S,PE is the set of indies of even-0's in S.Thus, HE [ PE = E ,HO [ PO = O and E [ O = I.Let V represent the set of feasible verties in the lattie, i.e. a vertex ours at eah intersetionof a horizontal and vertial line in the lattie. We assume that one of the points (e.g. the oddpoint losest to the middle) on the string is assigned to a partiular lattie point, whih de�nes thefeasible region of verties in the lattie. In other words, one this middle element is �xed, there areonly a �nite number of lattie points to whih we an assign the other elements of the string. Welassify the points in V as follows:VE is the set of even lattie points in V ,VO is the set of odd lattie points in V .Let Æ(v) denote the set of feasible verties adjaent to v, whih, in 2D, onsists of at most fourlattie points. The set of feasible edges in the lattie is denoted by E, whih is the set of (v; w)suh that v 2 VO and w 2 VE ; w 2 Æ(v).2.2 Variables for IP and LP FormulationsNow we de�ne and explain the funtion of the variables that we use in our various integer programs.By onvention, we always use i and v to refer to indies for odd elements on the string and oddlattie points, respetively. Similarly, we always use j and w to refer to indies for even elementson the string and even lattie points, respetively.The variable h(iv)(jw) indiates whether or not there is a ontat between hydrophobi elementsi and j on edge (v; w). For example, if there is a ontat between i and j aross edge (v; w) thenh(iv)(jw) is 1, and if there is no ontat between i and j on edge (v; w), then h(iv)(jw) is 0.The variable h(v;w) represents the total number of ontats formed aross edge (v; w). In aninteger solution, if there is a ontat between i 2 HO and j 2 HE on edge (v; w), suh that i 6= j�1,then the value of h(vw) is 1. If there are no ontats aross edge (v; w), then the value of h(vw) is0. Note that there is a relationship hold between the variables h(iv)(jw) and h(vw):3



h(v;w) = Xi2HO Xj2HE ;j 6=i�1h(iv)(jw): (2)The variable xiv indiates whether or not the element i is plaed on vertex point v. In an integersolution, xiv is set to 1 if element i is plaed on lattie point v and 0 otherwise. Sine the squarelattie is bipartite, without loss of generality, we an assume that odd elements are plaed only onodd lattie points and even elements are plaed only on even lattie points. Thus, we distinguishbetween these two ases and reate variables xiv for the odd ase and xjw for the even ase. Notethat any string folding orresponds to a 0-1 assignment of the variables fxiv; xjwg. However, notethat not every 0-1 assignment to the variables fxiv ; xjwg orresponds to a folding, whih is why weneed to further onstrain these variables.2.3 A Simple Integer ProgramThe integer program IP1 is a simple formulation for the 2D folding problem. Lemma 1 states thatthere is a one-to-one orrespondene between foldings and integer solutions to the following integerprogram.IP1: max X(v;w)2E Xi2HO Xj2HE ;j 6=i�1 h(iv)(jw)subjet to : Xv2V xiv = 1; 8i 2 I (3)Xi2I xiv � 1; 8v 2 V (4)Xw2Æ(v)xi+1;w � xiv ; 8i 2 I n fng; v 2 V (5)Xj2HE ;j 6=i�1h(iv)(jw) � xiv ; 8i 2 HO; (v; w) 2 E (6)Xi2HO ;i 6=j�1h(iv)(jw) � xjw ; 8j 2 HE ; (v; w) 2 E (7)h(iv)(jw); xiv ; xjw 2 f0; 1g; 8i 2 HO; j 2 HE ; (v; w) 2 E: (8)Lemma 1 There is a one-to-one orrespondene between foldings and integer solutions for IP1.Proof: First, we show that every folding orresponds to an integer solution. In a valid folding,eah element is plaed on a unique lattie point and every lattie point has at most one element,so onstraints (3) and (4) are satis�ed. Conseutive elements on the string are plaed on adjaentlattie points, so onstraint (5) is satis�ed.Seond, we show that an integer solution orresponds to a valid folding. For eah element i,there is exatly one v suh that xiv = 1 (onstraint (3)). Moreover, eah lattie point v ontains at4



most one element (onstraint (4)). Constraint (5) guarantees that eah onseutive element on thestring is plaed on an adjaent lattie point to its neighbor on the string. Thus, we have a validfolding. 2Constraints (6) and (7) require that there must be an even-1 and odd-1 on adjaent lattiepoints if there is a ontat on that edge. Note that sine only the fxiv; xjwg variables are neededto desribe a valid folding, these last two onstraints are only used to limit the number of ontatsgiven in the objetive funtion. Constraint (8) enfores the integrality of all the variables. It ispossible that we only need to fore the x variables to be integer and this will automatially enforethe h variables to be integer.2.4 Aggregate ConstraintsWe an obtain another integer program and its orresponding linear programming relaxation byreplaing onstraints (6) and (7) in IP1 and LP1 with the aggregate onstraints (9) and (10).Xi2HO Xj2HE ;j 6=i�1 h(iv)(jw) � Xi2HO xiv 8(v; w) 2 E (9)Xj2HE Xi2HO ;i 6=j�1 h(iv)(jw) � Xj2HE xjw 8(v; w) 2 E (10)We an use the variables h(vw) to simplify these onstraints. Thus, if we use onstraints (9) and (10)to replae onstraints (6) and (7), then LP1 would ontain fewer h variables. Reall the de�nitionof h(vw) from Equation (2).2.5 A Linear Programming RelaxationWe obtain a linear programming relaxation by relaxing onstraint (8) in IP1 to the following:0 � xiv; xjw � 1: (11)A linear programming formulation provides an upper bound on a maximum integral solution andan be solved muh more eÆiently than an integer program. One way to measure the quality ofan integer program for a maximization problem is to determine the upper bound guaranteed by itslinear relaxation. In general, the tighter (better) the bound provided by the linear relaxation, thehigher the quality of the integer programming formulation.There are other ways to formulate the problem as an integer program. For example, in IP1, weould replae onstraint (5) with onstraint (12), whih is shown below.Xw2Æ(v) xi�1;w � xiv 8i 2 I n f1g; v 2 V: (12)This would also result in an integer programming formulation. Alternatively, we an inlude bothonstraints (12) and (5). Inluding both these onstraints leads to a tighter linear program thaninluding only one of these onstraints. This is stated in Lemma 2, whih is proved in the Appendix.We add onstraint (12) to IP1 and refer to its orresponding linear programming relaxation as LP1.5



Lemma 2 Inluding both onstraints (5) and onstraint (12) results in a tighter linear program(i.e. an provide a better upper bound) than inluding only one onstraint.Unfortunately, the relaxation disussed so far may not provide frational solutions that are verylose to integral solutions. As noted in Setion 1, the upper bound on the number of ontats ina string S is 2 �minfO[S℄; E [S℄g + 2. These relaxations an yield a frational answer that is twieas large as this upper bound. In this setion, we show that the integrality gap of IP1 is poor. Theintegrality gap of a relaxation is the worst ase ratio of the frational and integral optimal solutionvalues over all possible non-negative ost funtions. Lemma 3 is proved in the Appendix.Lemma 3 The objetive value of LP1 is eah at least 4 �min(O[S℄; E [S℄)(1� 1pn) for any string Sof length n.Thus, the integrality gap for both formulations is arbitrarily lose to 4 sine there are stringsfor whih the optimal folding ahieves only (1 + o(1))minfO[S℄; E [S℄g ontats [10℄.3 Improved Linear ModelsIn order to obtain a linear programming relaxation that provides a tighter upper bound, we an addmore onstraints to strengthen our linear program. First, we want to �nd an example of when theurrent linear program provides a poor bound and then we an try to �nd additional onstraintsthat addresses this weakness.3.1 Additional ConstraintsFigure 2 depits a situation in whih adding new onstraints may help. In Figure 2, the variablesxiv; xj+1;v; xi+1;w and xjw eah have value 12 . If i; j + 1 2 HO and j; i + 1 2 HE , then h(iv)(jw) andh(j+1;v)(i+1;w) an eah be assigned a value as high as 12 .However, in an integral solution, if element i were plaed on lattie point v and element i + 1were plaed on lattie point w, then the edge (v; w) ould not be used for any ontats sine it isoupied by the atual string. Even in a frational solution, the value of the ontats that ouraross edge (v; w) should not be 1, sine at least a fration of the string is oupying the edge.In order to make the optimal LP value loser to the optimal integer value of a folding, we addonstraints that we refer to as bakbone onstraints. We use the following variables: the variableE(iv)(i+1;w) set to 1 means that element i is on lattie position v and element i + 1 is on lattieelement w. Sine these variables are only for onseutive elements on the string, we an abbreviatethem as follows: E+ivw = E(iv)(i+1;w); E�ivw = E(iv)(i�1;w):Then we an add the six sets of valid inequalities (13) and (14) to obtain a new linear program,whih we refer to as LP2. 6



LP2: max X(v;w)2E h(vw)subjet to : Xv2VO xiv = 1; 8i 2 HOXv2VE xjw = 1; 8j 2 HEXi2HO xiv � 1; 8v 2 VOXj2HE xjw � 1; 8w 2 VEXw2Æ(v)E�ivw = xiv ; 8i 2 HO; v 2 VO (13)Xw2Æ(v)E+ivw = xiv 8i 2 HO; v 2 VOXv2Æ(w)E�j+1;vw = xjw ; 8j 2 HE ; w 2 VEXv2Æ(w)E+j�1;vw = xjw ; 8j 2 HE ; w 2 VEXi2HO E�ivw + Xi2HO E+ivw + h(v;w) � Xi2HO xiv ; 8v 2 VO (14)Xj2HE E�j+1;vw + Xj2HE E+j�1;vw + h(v;w) � Xj2HE xjw ; 8v 2 VE0 � E�ivw; xiv ; xjw ; h(vw) � 1; 8i 2 HO; j 2 HE ; (v; w) 2 E:
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Note the onnetivity onstraints, (12) and (5), are missing from LP2. As stated in Lemma 4,whih is proved in the Appendix, these onstraints are implied by onstraints (13) and (14).Lemma 4 Bakbone onstraints imply the onnetivity onstraints, i.e. onstraints (13) implyonstraints (12) and (5).We an now show that LP2 provides an upper bound that is at least as good as the upper bound(1) explained in Setion 1. Lemma 5 is proved in the Appendix.Lemma 5 The optimal solution for LP2 is at most 2 �minfO[S℄; E [S℄g + 2.LP2 does not always give a solution whose objetive value is at least 2 � minfO[S℄; E [S℄g + 2. Itmay give a solution whose objetive value is stritly better. For example, if we onsider the stringof 20 onseutive 1's, from the simple ombinatorial upper bound, we know an optimal foldingan have no more than 21 ontats. However, an optimal folding an atually have no more than14.5 ontats aording to our AMPL implementation of LP2. (See Setion 5 for An alternateformulation for the linear program above would entail using the four index h variables h(iv)(jw)instead of the two index h variables h(vw).E�ivw +E+ivw + Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 E; (15)E�j+1;vw +E+j�1;vw + Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 E:We an substitute onstraints (15) for onstraints (14). We refer to the resulting integer and linearprogram as IP3 and LP3, respetively.Lemma 6 Suppose the string S ontains no onseutive 1's. Then the upper bound provided by LP3is no tighter than the upper bound provided by LP2, i.e. substituting onstraints (15) for onstraints(14) does not lead to a tighter relaxation.If the string S ontains onseutive 1's, then the proof of Lemma 6 does not go through.Furthermore, we an onstrut an example in whih LP2 and LP3 have di�erent objetive values.Figure 3 gives an example in whih LP2 has a higher objetive funtion than that of LP3.The only di�erene between LP2 and LP3 is that LP3 does not allow \ontats" between adjaentelements on the string. Let f(S) represent the number of pairs of onseutive 1's in S, e.g. thestring S = 01110 has two pairs of onseutive 1's, so f(S) = 2. Then the relationship between thevalues of LP2 and LP3 for a string S is stated in Lemma 7, whih is proved in the Appendix.Lemma 7 LP2 - f(S) � LP3 � LP2 � 2 �minfO[S℄; E [S℄g + 2.3.2 Integrality GapsWe an show that the integrality gap for LP2 and LP3 is 2 � � for any � > 0. We use the stringS = f0gqf01gkf0g2qf1000gkf0gq. We let k denote a positive integer and q = 4k2. In [10℄, it isshown that no folding of S has more than (1+o(1))O[S℄ ontats. However, we an easily onstruta frational solution for LP2 for whih the objetive funtion is 2O[S℄.8
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And we ould replae the objetive funtion with the following:max Xi;k2HO Xj2HE Xadjaent v;w;uh(iv)(jw)(ku) + Xi;k2HE Xj2HO Xadjaent v;w;uh(iv)(jw)(ku):If the solution for LP2 or LP2 with this objetive funtions were 0, then we would know that anoptimal folding ontains only maxfO[S℄; E [S℄g ontats.5 Experimental ResultsIn this setion, we present experimental results for LP2. We ran LP2 on some of the benhmarks forthe problem in the 2D HPmodel. These were taken from: www.s.sandia.gov/teh reports/ompbio/tortilla-hp-benhmarks.html. We ran LP2 on the following strings:1. hphpphhphpphphhpphph2. hhpphpphpphpphpphpphpphh3. pphpphhpppphhpppphhpppphh4. ppphhpphhppppphhhhhhhpphhpppphhpphpp5. pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh6. hhhpphphphpphphphpphString length upper bound LP3 Opt1 20 11 10.67529996 92 24 11 11 93 25 8 8 84 36 16 14.89908257 145 48 25 24.88770748 226 20 11 10.76264643 106 DisussionThe hallenge that we introdue here is to ompute better upper bounds for the 2D folding problemusing linear programming or otherwise. Our integer and linear programming models provide apromising diretion for solving the 2D folding problem to optimality using branh-and-bound.However, beause of the large size of the linear program (i.e. number of variables), we likely needtighter linear programming bounds to make these tehniques pratial. One way to address thesesalability issues would be to use branh-and-bound on some speial subset of the variables. Forexample, we have empirially observed that if we use branh-and-bound to enfore the integralityonstraints on the odd variables, i.e. the fxivg variables, then even variables, i.e. the fxjwgvariables, are also integral in the resulting solution. Thus, we onjeture that if we have an optimalsolution for LP2 suh that all the fxivg variables are integral, then we an use this solution (e.g.round this solution) to obtain a fully integral solution with the same objetive value. If thisonjeture is true, we an restrit branhing to the set of odd variables, thus utting down the timeneessary to ompute an exat solution. 10



Another possible appliation of our integer and linear programming formulations is to �ndatual foldings that are better than those obtained in approximation algorithms but perhaps notprovably optimal. Bakofen has used exat methods from onstraint logi programming to obtainompat onformations, i.e. solutions, for these folding problems [2℄. If we an further onstrainour integer programs to the solution spae of ompat foldings, then we may be able to redue thetime needed to �nd a solution.7 AknowledgmentsThis work was performed in part at Sandia National Laboratories. Sandia is a multipurposelaboratory operated by Sandia Corporation, a Lokheed-Martin Company, for the United StatesDepartment of Energy under ontrat DE-AC04-94AL85000. This work was partially funded by theUS Department of Energy's Genomes to Life program (www.doegenomestolife.org), under projet\Carbon Sequestration in Synehoous Sp.: From Moleular Mahines to Hierarhial Modeling,"(www.genomes-to-life.org).We would like to aknowledge Harvey Greenberg, Cindy Phillips, Sorin Istrail, Jonathan Ek-stein and Naomi Cameron for their helpful disussions on IP formulations for this problem.Referenes[1℄ R. Agarwala, S. Batzoglou, V. Danik, S. Deatur, M. Farah, S. Hannenhalli, S. Muthukrish-nan and S. Skiena, \Loal Rules for Protein Folding on a Triangular Lattie and GeneralizedHydrophobiity in the HP Model", Journal of Computational Biology (1997) Vol. 4(2):275-296.[2℄ Rolf Bakofen, \Optimization Tehniques for the Protein Struture Predition Problem",Ph.D. Thesis, Ludwig-Maximilians-Universit�at M�unhen (2000).[3℄ Bonnie Berger and Tom Leighton, \Protein Folding in the Hydrophobi-Hydrophili (HP)Model is NP-Complete", Proeedings of the 2nd Conferene on Computational Moleular Bi-ology (RECOMB '98).[4℄ P. Cresenzi, D. Goldman, C. Papadimitiou, A. Piolboni, and M. Yannakakis, \On the Com-plexity of Protein Folding", Proeedings of the 2nd Conferene on Computational MoleularBiology (RECOMB '98).[5℄ K. A. Dill, \Theory for the Folding and Stability of Globular Proteins", Biohemistry (1985)Vol. 24:1501.[6℄ K. A. Dill, \Dominant Fores in Protein Folding, Biohemistry (1990) Vol. 29:7133-7155.[7℄ H. J. Greenberg, W. E. Hart, and G. Lania, \Opportunities for Combinatorial Optimizationin Computational Biology", INFORMS Journal of Computing, To appear.[8℄ William Hart and Sorin Istrail, \Fast Protein Folding in the Hydrophobi-Hydrophili Modelwithin Three-Eighths of Optimal", Journal of Computational Biology Vol. 3, No. 1, 1996:53-96.11



[9℄ Gianarlo Mauri, Antonio Piolboni, and Giulio Pavesi, \Approximation Algorithms for Pro-tein Folding Predition", Proeedings of the 10th ACM-SIAM Symposium on Disrete Algo-rithms (SODA '99).[10℄ Alantha Newman, \A New Algorithm for Protein Folding in the HP Model", Proeedings ofSODA, 2002, 876-884.8 AppendixProof of Lemma 2: We show that onstraint (12) does not imply onstraint (5) or vie-versa.To do this we give a feasible LP solution for a string of length 9 suh that onstraint (5) is obeyedbut onstraint (12) is violated.
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Figure 5: Constraint (12) is violated for i = 6; v = q. However, note that no other onstraints (e.g.onstraint (5)) are violated.Suh a feasible solution is shown in Figure 5. The values shown in Figure 5 are the frations ofeah xi that are plaed at the labeled lattie points, i.e. the xiv values. Let i = 6; v = q. Note thatonstraint (12) is violated for x6q sine x6q = 2=3 and Pw2Æ(q) x5w = 1=3. Note that onstraint(5) is not violated for any of the xiv variables. We an repeat this argument for the string labeledin the reverse order and we would obtain an example in whih onstraint (12) is not violated butonstraint (5) is violated. Thus neither onstraint is implied by the other. 2Proof of Lemma 3: To show this, we give a solution for LP1 that is valid for any string S andthat has an objetive value of 4 �minfO[S℄; E [S℄g. We let n represent the number of elements in S,12



i.e. the length of S. Without loss of generality, assume O[S℄ � E [S℄ and let m be the number oflattie points, i.e. jVOj = jVE j = m2 . We also assume n � m, i.e. the string an atually be foldedonto the lattie. We let xiv = 2m for all i 2 HO; v 2 VO and xjw = 2m for all j 2 HE ; w 2 VE . Thenwe let h(iv)(jw) = 2(E [S℄)m for all i 2 HO; j 2 HE ; v 2 VO; w 2 VE .Note that onstraint (3) is satis�ed sine for eah i, there are m2 possible v 2 V with the sameparity. Constraint (4) will be satis�ed beause we have:Xi2I xiv = Xi2HO xiv � m2 � 2m � 1:Constraints (12) and (5) will be satis�ed as long as eah lattie point v has at least one neighbor.Constraint (6) is satis�ed sine for i 2 HO, we have 2(E [S℄)m � O[S℄ � 2m and for even i, we have2(E [S℄)m � E [S℄ = 2m . The number of h(iv)(jw) variables is E [S℄ � O[S℄ � 4(m2 ); there are E [S℄ � O[S℄ pairsof 1's suh that odd-1's are paired with even-1's. There are m�pm2 odd lattie points eah with 4neighbors, i.e. the m lattie points form a onvex region, so eah odd lattie point, exept thoseon the border, serves as an endpoint for 4 edges, so we have a total of 4(m�pm2 ) edges. Thus, theobjetive value is:max Xi2HO Xj2HE Xv2VO Xw2Æ(v) h(iv)(jw) � (O[S℄� 2) � E [S℄ � m�pm2 � 4 � 2E [S℄m =(4O[S℄� 8)(1 � 1pm):Sine m � n, this implies the lemma. So the value of the objetive funtion is arbitrarily lose to4 �minfO[S℄; E [S℄g for suÆiently large n, i.e. suÆiently long enough strings. 2Proof of Lemma 4: From the bakbone onstraints, we have:xiv = Xw2Æ(v)E�ivw:For eah variable xi�1;w, we also have:xi�1;w = Xu2Æ(w)E+i�1;wu:This last onstraint implies that xi�1;w � E+i�1;wv, sine v 2 Æ(w). Note that E+i�1;wv = E�ivw. Foreah of terms in the �rst onstraint in this proof, we an obtain the inequality xi�1;w � E�ivw. Thus,we have the desired inequality: 13



xiv � Xw2Æ(v) xi�1;w:We an repeat this argument to derive onstraint (5). 2Proof of Lemma 5: The optimal solution for the linear program is P(v;w)2E h(vw). Withoutloss of generality, we assume O[S℄ � E [S℄. Reall that onstraint (14) is in the linear program. Werewrite this onstraint as follows:h(vw) � Xi2HO xiv � Xi2HO E�ivw � Xi2HO E+ivw:Summing over all the edges, we have:X(v;w)2E h(vw) � X(v;w)2E Xi2HO xiv � X(v;w)2E Xi2HO E�ivw � X(v;w)2E Xi2HO E+ivw:The �rst sum is upper bounded by 4O[S℄. To show this, �rst we note that:Xv2VO xiv = 1:If we sum over all edges, as opposed to all odd verties, note that eah odd vertex v 2 VO is anendpoint in at most 4 edges. Thus, we have:X(v;w)2E xiv = Xv2VO Xw2Æ(v) xiv = Xw2Æ(v) Xv2VO xiv = Xw2Æ(v) 1 � 4;X(v;w)2E Xi2HO xiv = Xi2HO X(v;w)2E xiv � Xi2HO 4 = 4O[S℄:Now we analyze the following sum:X(v;w)2E Xi2HO ;i 6=1E�ivw = Xi2HO ;i 6=1 X(v;w)2EE�ivw:Eah variable E�ivw is assoiated with a unique odd vertex, i.e. the odd vertex v. We have thefollowing onstraints for eah odd vertex:Xw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VO:14



Thus, we an rewrite the sum as follows:Xi2HO ;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=1 Xv2VO Xw2Æ(v)E�ivw = Xi2HO ;i 6=1 Xv2VO xiv = Xi2HO ;i 6=1 1 = O[S℄� 1:Note that: X(v;w)2EE�ivw = X(v;w)2EE+ivw:Thus, Xi2HO ;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=n X(v;w)2EE+ivw = O[S℄� 1:Therefore, we have:X(v;w)2E h(vw) � 4O[S℄� (O[S℄� 1)� (O[S℄� 1) � 2O[S℄ + 2:So the maximum value of the objetive funtion is 2 �minfO[S℄; E [S℄g + 2: 2Proof of Lemma 6: We assume that there are no onseutive 1's in the string S. We show thatgiven a set of fh(vw)g that satisfy all the onstraints in LP2 for the string S, we an �nd a seth(iv)(jw) suh that fh(iv)(jw)g satisfy all the onstraints in LP3 for the string S. We de�ne h(vw)as in Equation (2). From any solution for LP3, we an obtain a solution for LP2 with the sameobjetive value. Conversely, we need to show that for any solution fh(vw)g for LP2, we an �nd asolution fh(iv)(jw)g for LP3 with the same objetive value.We use the variables fiv and fjw, whih we de�ne below:fivw = xiv �E�ivw �E+ivw;fjvw = xjw �E�j+1;vw �E+j�1;vw:If we sum the fivw variables over all i 2 HO and the fjvw variables over all j 2 HE , then we have:Xi2HO fivw = Xi2HO(xiv �E�ivw �E+ivw);Xj2HE fjvw = Xj2HE(xjw �E�j+1;vw �E+j�1;vw):Consider the following table for an arbitrary edge (v; w) 2 E. Assume there are k i's in HOlabeled i1 : : : ik and assume there are m j's in HE labeled j1 : : : jm.15



i: i1 i2 i3 . . . ikj :j1 h(i1v)(j1w) h(i2v)(j1w) h(i3v)(j1w) : : : h(ikv)(j1w) � fj1vwj2 h(i1v)(j2w) h(i2v)(j2w) h(i3v)(j2w) : : : h(ikv)(j2w) � fj2vwj3 h(i1v)(j3w) h(i2v)(j3w) h(i3v)(j3w) : : : h(ikv)(j3w) � fj3vw. . . . . .. . . . . .. . . . . .jm h(i1v)(jmw) h(i2v)(jmw) h(i3v)(jmw) : : : h(ikv)(jmw) � fjmvw� � � : : : �fi1vw fi2vw fi3vw : : : fikvwNote that if there are no onseutive 1's in S, then there will be no h(iv)(jw) variables in the abovetable in whih j = i + 1 or j = i � 1. If there were suh variables, then they must be assigned 0.But sine there are no onseutive 1's in S, all the h(iv)(jw) variables in the table an be non-zero.Without loss of generality, for some i; j; v; w, assume Pi2HO fivw � Pj2HE fjvw. We wantto distribute the value h(v;w) among the h(iv)(jw) variables. We an set the variable h(i1v)(j1w)to minffi1vw; fj1vwg. Then we an set the variable h(i1v)(j2w) to be as large as possible so thath(i1v)(j1w) + h(i1v)(j2w) � fi1v, et.We assign values to the h(iv)(jw) variables in the �rst olumn so that the sum of the variablesin the �rst olumn is equal to f1vw. We an do this by setting h(i1v)(j2w) to be as large as possiblesuh that it is at most f2vw and at most f1vw. Then we set h(i1v)(j3w) to be as large as possible sothat the sum of the three variables is no more than fi1vw and h(i1v)(j3w) is no greater than f(j3vw).We repeat this for the rest of the h(i1v)(jw) variables for j 2 HE . When we are done, we have thefollowing: Xj2HE h(i1v)(jw) = fi1vw:Then we repeat for fi2vw, et. Reall that the sum of the fivw's is no more than the sum of thefjvw's. Thus, we an always �nd an assignment for the h(iv)(jw)'s suh that none of the onstraintsare violated. If for some fivw, we ould not �nd a set of h(iv)(jw) variables to assign the value(beause doing so would violate onstraint (14)) then we would have a ontradition, sine thiswould mean that the sum of the fjvw's is less than the sum of the fivw's. 2Proof of Lemma 7: The last inequality was proved in Lemma 5. The seond inequality followsfrom the observation that given any solution for LP3, we an obtain a solution for LP2 with thesame objetive value just by setting the h(vw) variables as in Equation (2). The �rst inequalityfollows from Lemma 6 and the slight modi�ation of it's proof in whih we allow variables h(iv)(jw)for j = i� 1. Then we simply let all suh variables equal 0, dereasing the objetive funtion by atmost f(S). 216


