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Disrete Optimization Modelsfor Protein Folding1 IntrodutionThe protein folding problem is an important and widely-studied problem in Compu-tational Biology. A protein is a sequene of 100-300 amino aid residues. Shorteramino aid hains are alled peptides. There are approximately 20 di�erent aminoaids. The funtions of proteins and peptides are determined by their respetive three-dimensional (3D) shapes. Under ertain standard onditions (e.g. extreme heat mayause a protein to unfold), proteins always fold to the same unique native 3D stru-ture. This shape is prinipally determined by the one-dimensional (1D) sequene.This was shown by Christian An�nsen, who won the 1972 Nobel Prize in Chemistryfor his work on protein struture in living ells [1℄. He wondered why a protein foldedinto a partiular 3D shape and what (e.g. enzymes?) direted it to this folding. Inan artile in the Journal of Biologial Chemistry [3℄, he showed that the sequene ofamino aids in a protein or peptide hain determines the folding pattern. In otherwords, the proess of protein folding an be largely explained by the physial andhemial interations among the amino aids. This work is the basis for the belief thenative struture of a protein an be predited omputationally using the informationontained in the amino aid sequene [7℄.In this report, we disuss disrete optimization approahes to the problem of pro-tein folding in the Hydrophobi-Polar (HP) model (also known as the Hydrophobi-Hydrophili model). The widely-studied HP model was introdued by Ken Dill [4, 5℄.This model abstrats the dominant fore in protein folding: the hydrophobi inter-ation. The hydrophobiity of an amino aid measures its aÆnity for water. Thehydrophobi resides in a protein form a tightly lustered ore. In the HP model, eahamino aid residue is lassi�ed as an H (hydrophobi or non-polar) or a P (hydrophilior polar). The model further simpli�es the problem by restriting the feasible fold-ings to the 2D or 3D square lattie. An optimal onformation for a string of aminoresidues in this model is one that maximizes the number of H-H ontats, i.e. pairsof H's that are adjaent in the folding but are not neighbors on the string. Thus, theproblem of protein folding in the HP model is ombinatorially equivalent to foldinga given string of 0's and 1's on the square lattie to form a self-avoiding walk thatmaximizes the number of pairs of adjaent 1's, i.e. let H=1 and P=0.One of the most immediately obvious drawbaks of the HP model is that on7



the square lattie, residues in even positions in the given string an have as theirneighbors on the lattie only residues from odd positions in string and vie versa.In the atual protein folding problem, there is no suh restrition. The HP modelhas also been studied on the 2D and 3D triangular lattie [2℄, whih does not havethis parity problem. We believe that our methods an be extended to the triangularlattie. However, the square lattie seems to be the best plae to start omputationalexperiments sine a string has fewer possible onformations on the square lattie thanit does on the triangular lattie.2 Problem StatementWe are given a string of 0's and 1's. Our goal is to �nd a valid folding of this stringon the 2D square lattie that maximizes the number of pairs of adjaent 1's. In otherwords, we want to �nd a self-avoiding walk that maximizes the number of pairs ofadjaent 1's when the string is superimposed on it. For example, suppose we havethe string 101010101001010101. Then an optimal folding is shown in Figure 1. Thisfolding has eight ontats.

Figure 1. An optimal folding for the string101010101001010101. 0's and 1's are denoted by un�lled and�lled dots, respetively. Contats are denoted by the dashedlines.NotationLet S be a string in f0; 1gn. We will refer to eah 0 and eah 1 in the given string asan element. We will refer to eah 1 in an odd position on the string as an odd-1 and8



eah 1 in an even position on the string as an even-1. We will denote the number ofodd-1's in the string S as O[S℄ and the number of even-1's in a string S as E [S℄.An Upper BoundThe best-known upper bound was introdued in [7℄. An even-1 or an odd-1 an haveat most 2 ontats if it is not the �rst or last element on the string. The �rst andlast element on the string an eah have at most 3 ontats. Thus, an upper boundon the maximum number of ontats in any folding of a given string S is:2 �minfO[S℄; E [S℄g+ 2:Comparing the optimal values produed by our models to this upper bound gives ussome idea of how well our models are performing. These upper bounds are also usedto obtain approximate solutions for this problem [7, 8℄.3 Integer and Linear ProgramsIn this setion, we present some integer programs (IPs) for the protein folding problemin the HP model as well as their respetive linear programming relaxations (LPs).First, we will introdue the neessary notation.Let I be the set of indies in S, i.e. I = f1; : : : ng. We break down I as follows:E is the set of indies of elements in even positions.O is the set of indies of elements in odd positions.We break down E and O further as follows:HO is the set of indies of odd-1's in S,HE is the set of indiies of even-1's in S,PO is the set of indies of odd-0's in S,9



PE is the set of indies of even-0's in S.Thus, HE [ PE = E and HO [ PO = O and HE [ PE [HO [ PO = E [ O = I.Let V represent the set of feasible verties in the lattie, i.e. a vertex ours ateah intersetion of a horizontal and vertial line in the lattie. We will assume thatone of the points (e.g. the odd point losest to the middle) on the string is assignedto a partiular lattie point, whih de�nes the feasible region of verties in the lattie.In other words, one this middle element is �xed, there are only a �nite number oflattie points to whih we an assign the other elements. We lassify the points in Vas follows:VE is the set of even lattie points in V .VO is the set of odd lattie points in V .Let Æ(v) denote the set of feasible verties adjaent to v, whih onsists of at mostfour lattie points. The set of feasible edges in the lattie is denoted by E, whih isthe set of (v; w) suh that v 2 VO and w 2 VE ; w 2 Æ(v).Variables for IP and LP FormulationsNow we will de�ne the variables that we will use in our various integer programs.First we list the variables that we use:1. h(iv)(jw) 8i 2 HO; j 2 HE ; (v; w) 2 E2. h(vw) 8(v; w) 2 E;3. xiv 8i 2 HO; v 2 VO;4. xjw 8j 2 HE ; w 2 VE :Now we will explain the funtion/meaning of eah variable. We will not use all thevariables immediately{some will be used in integer programs introdued later on inthe paper. Also, by onvention, we will always use i and v to refer to indies for oddelements on the string and odd lattie points, respetively. Similarly, we will always10



use j and w to refer to indies for even elements on the string and even lattie points,respetively.The variable h(iv)(jw) indiates whether or not there is a ontat between elementsi and j on edge (v; w). For example, if h(iv)(jw) is set to 1 in an integer program, thenthere is a ontat between i and j aross edge (v; w), and if h(iv)(jw) is set to 0, thenthere is no ontat between i and j on edge (v; w).The variable h(v;w) represents the total amount of ontats between all odd ele-ments and all even elements on edge (v; w). In an integer solution, if there is a ontatbetween any i 2 HO and any j 2 HE on edge (v; w), then the value of h(vw) wouldbe 1. If there are no ontats on this edge, the value of h(vw) would be 0. Note thatthere is a relationship between the variables h(iv)(jw) and h(vw).
h(v;w) = Xi2HOXj2HE h(iv)(jw): (1)

The variable xiv indiates whether or not the element i is plaed on vertex pointv. In an integer solution, xiv is set to 1 if element i is plaed on lattie point v and0 otherwise. Odd elements are plaed only on odd lattie points and even elementsare plaed only on even lattie points. Thus, we distinguish between these two asesand reate variables xiv for the odd ase and xjw for the even ase. Note that anystring folding orresponds to a 0-1 assignment of the variables fxiv; xjwg. However,note that not every 0-1 assignment to the variables orresponds to a folding, whihis why we need to impose onstaints on these variables.
Integer ProgramsThe following integer program is one possible integer program for our problem. Everyinteger solution de�nes a valid folding and every folding orresponds to an integersolution. Thus, there is a one-to-one orrespondene between foldings and integersolutions. 11



IP1: max X(v;w)2E Xi2HO Xj2HE h(iv)(jw)subjet to : Xv2V xiv = 1 8i 2 I (2)Xi2I xiv � 1 8v 2 V (3)Xw2Æ(v) xi+1w � xiv 8i 2 I n fng; v 2 V (4)Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 E (5)Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 E (6)h(iv)(jw); xiv; xjw 2 f0; 1g: (7)Lemma 1. There is a one-to-one orrespondene between foldings and integer solu-tions.Proof: Showing that every folding orresponds to an integer solution is easy. We willshow that every integer solution orresponds to a folding. In an integer solution, foreah element i, there is exatly one v suh that xiv = 1 (onstraint (2)). Moreover,eah lattie point v ontains at most one element (onstraint (3)). Constraint (4)guarantees that eah onseutive element on the string is plaed on an adjaent lattiepoint to its neighbor on the string. Thus, we have a valid folding.Constraints (5) and (6) are used to fore elements to be plaed on lattie points vand w if there there is a ontat between elements i and j on edge (v; w). Constraint(7) enfores the integrality of all the variables. It is possible that we only need tofore the x variables to be integer and this will automatially enfore the h variablesto be integer.Linear ProgramsWe obtain a linear programming relaxation from IP1 by relaxing onstraint (7) to thefollowing: 0 � xiv; xjw � 1: (8)12



A linear program provides an upper bound on the optimal integral solution. Also, ofkey importane is the fat that it an be solved muh faster than an integer program.One way to measure the quality of an integer program is to determine the upperbound guaranteed by its linear relaxation. In general, the better the bound providedby the linear relaxation, the higher the quality of the integer program.
4 More Integer Programming FormulationsThere are many other ways to formulate this problem as an integer program. Forexample, in IP1, we ould replae onstraint (4) with onstraint (9), whih is shownbelow. Xw2Æ(v) xi�1w � xiv 8i 2 I n fng; v 2 V: (9)This would also result in a valid integer program. Alternatively, we an inlude bothonstraints (9) and (4). We will show that inluding both these onstraints leads toa stronger linear program than inluding only one of these onstraints. We will addonstraint (9) to IP1 and refer to its orresponding linear programming relaxation asLP1.It is not immediately lear that onstraints (9) and (4) are both neessary, i.e.that onstraint (9) does not imply onstraint (4) or vie versa. However, we will showthat onstraint (9) does not imply onstraint (4) or vie-versa. To do this we willgive a feasible LP solution for a string of length 9 suh that onstraint (4) is obeyedbut onstraint (9) is violated.Suh a feasible solution is shown in Figure 2. The values shown in Figure 2 arethe frations of eah xi that are plaed at the labeled lattie points, i.e. the xivvalues. Let i = 6; v = q. Note that onstraint (9) is violated for x6q sine x6q = 2=3and Pw2Æ(q) x5w = 1=3. Note that onstraint (4) is not violated for any of the xivvariables. We an repeat this argument for the string labeled in the reverse order andwe would obtain an example in whih onstraint (9) is not violated but onstraint (4)is violated. Thus neither onstraint is implied by the other.13
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Figure 2. Constraint (9) is violated for i = 6; v = q.However, note that no other onstraints (e.g. onstraint (4))are violated.Aggregate ConstraintsWe an obtain another integer program and its orresponding linear programmingrelaxation by replaing onstraints (5) and (6) in IP1 and LP1 with the aggregateonstraints (10) and (11). We refer to the resulting integer and linear programs asIP2 and LP2, respetively.Xi2HOXj2HE h(iv)(jw) � Xi2HO xiv 8(v; w) 2 E (10)Xj2HE Xi2HO h(iv)(jw) � Xj2HE xjw 8(v; w) 2 E (11)We an use the variables h(vw) to simplify IP2. Thus, IP2 is a formulation whih hasfewer h variables than IP1. Reall the de�nition of h(vw) from (1).14



h(v;w) = Xi2HOXj2HE h(iv)(jw)We restate IP2 here for larity and onveniene:IP2: maxXv2VO Xw2Æ(v) h(v;w)subjet to : Xv2V xiv = 1 8i 2 IXi2I xiv � 1 8v 2 VXw2Æ(v) xi�1w � xiv 8i 2 I n fng; v 2 VXw2Æ(v) xi+1w � xiv 8i 2 I n fng; v 2 Vh(v;w) � Xi2HO xiv 8(v; w) 2 Eh(v;w) � Xj2HE xjw 8(v; w) 2 Exiv; xjw 2 f0; 1g:It is lear that the optimal objetive value for LP2 is at least as large as the optimalobjetive value for LP1. This is beause a solution for LP1 does not violate anyonstraints in LP2. Additionally, we an also show that the optimal objetive valuefor LP1 is at least as large as the optimal objetive value for LP2 when the objetivefuntion is of the form fvwg, i.e. there is a ost funtion that assoiates a ost withevery edge (v; w).Lemma 2. The optimal values of LP1 and LP2 are equal, i.e. jOPT (LP1)j =jOPT (LP2)j.Proof: We will show that if we use any objetive funtion of the form fvwg, then theobjetive values of LP1 and LP2 will be the same. First, we will show that given a setof fh(iv)(jw)g, we an �nd a set of fh(vw)g suh that fh(vw)g satisfy all the onstraintsin LP2. We de�ne h(vw) as follows: 15



Xi2HOXj2HE h(iv)(jw) = h(vw): (12)Constraints (5) and (6) imply (10) and (11). Thus, using (1), we see that from anyfeasible solution for LP1, we an obtain a feasible solution for LP2 with the sameobjetive value.Now, we want to show that given a solution for LP2, i.e. given a set of fh(vw)g,we an �nd a solution set fh(iv)(jw)g that obeys all the onstraints in LP1. Withoutloss of generality, assume that for some v; w:Xi2HO xiv � Xj2HE xjw:Consider the following table for v; w. Assume there are k i's in HO labeled i1 : : : ikand assume there are m j's in HE labeled j2 : : : jm.i: 1 3 5 : : : kj :2 h(1v)(2w) h(3v)(2w) h(5v)(2w) : : : h(kv)(2w) � x2w4 h(1v)(4w) h(3v)(4w) h(5v)(4w) : : : h(kv)(4w) � x4w6 h(1v)(6w) h(3v)(6w) h(5v)(6w) : : : h(kv)(6w) � x6w. . . . . .. . . . . .. . . . . .m h(1v)(mw) h(3v)(mw) h(5v)(mw) : : : h(kv)(mw) � xmwx1v x3v x5v : : : xkvWe are trying to assign a value to eah h(iv)(jw) so that onstraints (5) and (6) arenot violated and equality (12) is met.We will assign values to the h(iv)(jw) variables in the �rst olumn so that the sumof the variables in the �rst olumn is equal to x1v. We an do this by setting h(1v)(2w)to be as large as possible suh that it is at most x2w and at most x1v. Then we seth(1v)(4w) to be as large as possible so that the sum of the two variables is no more than16



x1v and h(1v)(4w) is no greater than x(4w). We repeat this for h(1v)(jw), where j > 4and j 2 HE . When we are done, we will have the following:Xj2HE h(1v)(jw) = x1v:Then we repeat for x3v, et. Reall that the sum of the xiv's is no more than the sumof the xjw's. Thus, we an always �nd an assignment for the h(iv)(jw)'s suh that noneof the onstraints are violated. If for some xiv, we ould not �nd a set of h(iv)(jw)variables to assign the value (beause doing so would violate onstraint (6)) then wewould have a ontradition, sine this would mean that the sum of the xjw's is lessthan the sum of the xiv's.Lemma 3. For a given string S, the values of the xiv variables in optimal LP1 andLP2 solutions are the same. In other words, the projetions of the LP1 and LP2solutions onto the x variables are the same.Proof: Note that in the proof of Lemma 2, as we go from the fhvwg variables to theh(iv)(jw) variables and vie-versa, we use the same set of x variables.Another way to deal with LP2 is to not have variables for h(iv)(jw) when i and jare onseutive, i.e. j = i+1 or j = i�1. In this ase, the proof of Lemma 2 does notgo through. However, note that it still goes through if there are no onseutive 1's inthe input string S. If there are onseutive 1's in the input string S, then the boundprovided by LP2 with this alternation ould be better than the bound provided byLP1. However, we will show in the next setion that the quality of the LP solutionsare roughly the same regardless of whether or not we allow h(iv)(jw) variables foronseutive i and j.Quality of the LP SolutionUnfortunately, the relaxations disussed so far may not provide frational solutionsthat are very lose to integral solutions. As noted in Setion 2, the upper bound onthe number of ontats in a string S is 2 � minfO[S℄; E [S℄g + 2. These relaxationsan yield a frational answer that is twie as large as this upper bound.Lemma 4. The objetive values of LP1 and LP2 are eah at least 4�min(O[S℄; E [S℄).17



Proof: To show this, we will give a solution for LP1 that is valid for any string Sand that has an objetive value of 4 � minfO[S℄; E [S℄g. We will let k represent thenumber of elements in S, i.e. the length of S. Without loss of generality, assumeO[S℄ � E [S℄ and let n be the number of lattie points, i.e. jVOj = jVE j = n2 . Wealso assume k � n, i.e. the string an atually be folded onto the lattie. We letxiv = 2n for all i 2 HO; v 2 VO and xjw = 2n for all j 2 HE ; w 2 VE . Then we leth(iv)(jw) = 2(E [S℄)n for all i 2 HO; j 2 HE ; v 2 VO; w 2 VE .Note that onstraint (2) is satis�ed sine for eah i, there are n2 possible v 2 Vwith the same parity. Constraint (3) will be satis�ed beause we have:Xi2I xiv = Xi2HO xiv � k2 � 2n � 1:Constraints (9) and (4) will be satis�ed as long as eah lattie point v has at least oneneighbor. Constraint (5) is satis�ed sine for i 2 HO, we have 2(E [S℄)n�O[S℄ � 2n and foreven i, we have 2(E [S℄)n �E [S℄ = 2n . The number of h(iv)(jw) variables is E [S℄�O[S℄�4(n2 ).This is beause there are E [S℄ � O[S℄ pairs of 1's suh that odd-1's are paired witheven-1's. And there are n2 odd lattie points eah with 4 neighbors, i.e. eah oddlattie point serves as an endpoint for 4 edges so we have a total of 4(n2 ) edges. Thus,the objetive value will be:maxXi2HO Xj2HE Xv2VO Xw2Æ(v) h(iv)(jw) = E [S℄ � O[S℄ � n2 � 4 � 2E [S℄n = 4O[S℄: (13)So the value of the objetive funtion is at least 4�minfO[S℄; E [S℄g. Note that this isthe right value asymptotially. Sine we an hoose the n lattie points so that theyform a onvex region, about 4pn of the lattie points have less than 4 neighboringlattie points.If we use the 4 index formulation but do not allow h(iv)(jw) variables for onse-utive i and j, then we an still use the same values for the x variables. However,asymptotially, this does not hange the value of the LP solution given in Equation13. Spei�ally, for every j 2 HE and edge (v; w) 2 E, there are only O[S℄�2 h(iv)(jw)variables. So when we remove the h(iv)(jw) variables for onseutive i and j, the valueof the optimal LP2 solution is at least: 18



maxXi2HO Xj2HE Xv2VO Xw2Æ(v) h(iv)(jw) = E [S℄ � (O[S℄� 2) � n2 � 4 � 2E [S℄n = 4O[S℄� 8:
The integrality gap for both formulations is 4 sine there are strings for whih theoptimal folding ahieves only o(1) + minfO[S℄; E [S℄g ontats [8℄.Bakbone ConstraintsWe an add more onstraints to strengthen our LP. Figure 3 gives an example whereadding new onstraints may help. Figure 3 depits a situation in whih xiv = xj+1;v =12 and xi+1;w = xjw = 12 . If i; j + 1 2 HO and j; i + 1 2 HE , then h(iv)(jw) andh(j+1;v)(i+1;w) an eah be assigned a value as high as 12 .
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Figure 3. An example in whih bakbone onstraints anbe added to the LP formulation to give a better bound onthe optimal folding.Even in a frational solution, this situation should not our beause the bakboneor atual string is oupying the edge so the edge annot be used for a ontat.For example, in an integral solution, if element i were plaed on lattie point v andelement i+ 1 were plaed on lattie point w, then the edge (v; w) would not be usedfor any ontats sine it is oupied by the atual string.In order to make the optimal LP value loser to the optimal integer value of afolding, we will add onstraints that we refer to as bakbone onstraints. We will usethe following variables: The variable E(iv)(i+1;w) means that element i is on lattieposition v and element i + 1 is on lattie element w. Sine these variables are onlyfor onseutive elements on the string, we an abbreviate them as follows:19



E+ivw = E(iv)(i+1;w); E�ivw = E(iv)(i�1;w):Then we an add the following valid inequalities to strengthen our LP formulation.We will add these onstraints to LP1 and refer to the resulting LP as LP3.Xw2Æ(v)E�ivw = xiv (14)Xw2Æ(v)E+ivw = xivXv2Æ(w)E�j+1;vw = xjwXv2Æ(w)E+j�1;vw = xjwXi2HO E�ivw +Xi2HO E+ivw + h(v;w) � Xi2HO xiv (15)Xj2HE E�j+1;vw +Xj2HE E+j�1;vw + h(v;w) � Xj2HE xjw:Note that if i 2 HO and i + 1 2 HE , then E+ivw has the same funtion as h(iv)(i+1;w).Similarly for E�ivw and h(iv)(i�1;w). Also, note that if i 2 HO and i � 1; i + 1 2 HE ,then onstraint (15) (written below) is the same as onstraint (10).Xi2HO E�ivw +Xi2HO E+ivw +Xi2HO Xj2HE ;j 6=i�1;i+1h(iv)(jw) � Xi2HO xiv:In LP1, the four-index LP, onstraint (15) would be replaed with:E�ivw + E+ivw + Xj2HE ;j 6=i+1;i�1h(iv)(jw) � xiv:20



Another IP and LP FormulationIP3: max X(v;w)2E h(vw)subjet to : Xv2VO xiv = 1 8i 2 HOXv2VE xjw = 1 8j 2 HEXi2HO xiv � 1 8v 2 VOXj2HE xjw � 1 8w 2 VEXw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VOXw2Æ(v)E+ivw = xiv 8i 2 HO; v 2 VOXv2Æ(w)E�j+1;vw = xjw 8j 2 HE ; w 2 VEXv2Æ(w)E+j�1;vw = xjw 8j 2 HE ; w 2 VEXi2HO E�ivw +Xi2HO E+ivw + h(v;w) � Xi2HO xiv 8v 2 VOXj2HE E�j+1;vw +Xj2HE E+j�1;vw + h(v;w) � Xj2HE xjw 8v 2 VEEivw; xiv; xjw; h(vw) 2 f0; 1g:Lemma 5. Bakbone onstraints imply the onnetivity onstraints, i.e. onstraints(14) imply onstraints (9) and (4).Proof: From the bakbone onstraints, we have:xiv = Xw2Æ(v)E�ivw:21



For eah variable xi�1;w, we also have:xi�1;w = Xu2Æ(w)E+i�1;wu:This last onstraint implies that xi�1;w � E+i�1;wv, sine v 2 Æ(w). Note that E+i�1;wv =E�ivw. For eah of terms in the �rst onstraint in this proof, we an obtain theinequality xi�1;w � E�ivw. Thus, we have the desired inequality:xiv � Xw2Æ(v) xi�1;w:We an repeat this argument to derive onstraint (4).Lemma 6. The optimal solution for LP3 is at most 2 �minfO[S℄; E [S℄g+ 2.Proof: The optimal solution for the linear program is P(v;w)2E h(vw). Without lossof generality, we assume O[S℄ � E [S℄. Reall that onstraint (15) is in the linearprogram. We rewrite this onstraint as follows:h(vw) � Xi2HO xiv �Xi2HO E�ivw �Xi2HO E+ivw:Summing over all the edges, we have:X(v;w)2E h(vw) � X(v;w)2EXi2HO xiv � X(v;w)2EXi2HO E�ivw � X(v;w)2EXi2HO E+ivw:The �rst sum is upper bounded by 4O[S℄. To show this, �rst we note that:Xv2VO xiv = 1:22



If we sum over all edges, as opposed to all odd verties, note that eah odd vertexv 2 VO is an endpoint in at most 4 edges. Thus, we have:X(v;w)2E xiv = Xv2VO Xw2Æ(v) xiv = Xw2Æ(v)Xv2VO xiv = Xw2Æ(v) 1 � 4;X(v;w)2EXi2HO xiv = Xi2HO X(v;w)2E xiv � Xi2HO 4 = 4O[S℄:Now we will analyze the following sum:X(v;w)2E Xi2HO ;i 6=1E�ivw = Xi2HO ;i 6=1 X(v;w)2EE�ivw:Eah variable E�ivw is assoiated with a unique odd vertex, i.e. the odd vertex v. Wehave the following onstraints for eah odd vertex:Xw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VO:Thus, we an rewrite the sum as follows:Xi2HO ;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=1Xv2VO Xw2Æ(v)E�ivw = Xi2HO;i 6=1Xv2VO xiv = Xi2HO ;i 6=1 1 = O[S℄�1:Note that: X(v;w)2EE�ivw = X(v;w)2EE+ivw:Thus, Xi2HO;i 6=1 X(v;w)2EE�ivw = Xi2HO ;i 6=n X(v;w)2EE+ivw = O[S℄� 1:23



Therefore, we have:X(v;w)2E h(vw) � 4O[S℄� (O[S℄� 1)� (O[S℄� 1) � 2O[S℄ + 2:So the maximum value of the objetive funtion is 2 �minfO[S℄; E [S℄g+ 2:Note that this LP will not always give a solution whose objetive value is at least2 �minfO[S℄; E [S℄g. It may give a solution whose objetive value is stritly better.For example, if we onsider the string of 20 onseutive 1's, the objetive value is 14.5aording to our AMPL implementation. (See Setion 9 for the AMPL Code.)An alternate formulation for the linear program above would entail using the fourindex variables h(iv)(jw) instead of the two index variables h(vw).E�ivw + E+ivw +Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 E; (16)E�j+1;vw + E+j�1;vw +Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 E:Suppose we substitute onstraints (16) for onstraints (15). We will refer to theresulting integer and linear program as IP4 and LP4, respetively.
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IP4: max X(v;w)2E Xi2HOXj2HE h(iv)(jw)subjet to : Xv2VO xiv = 1 8i 2 HOXv2VE xjw = 1 8j 2 HEXi2HO xiv � 1 8v 2 VOXj2HE xjw � 1 8w 2 VEXw2Æ(v)E�ivw = xiv 8i 2 HO; v 2 VOXw2Æ(v)E+ivw = xiv 8i 2 HO; v 2 VOXv2Æ(w)E�j+1;vw = xjw 8j 2 HE ; w 2 VEXv2Æ(w)E+j�1;vw = xjw 8j 2 HE ; w 2 VEE�ivw + E+ivw +Xj2HE h(iv)(jw) � xiv 8i 2 HO; (v; w) 2 EE�j+1;vw + E+j�1;vw +Xi2HO h(iv)(jw) � xjw 8j 2 HE ; (v; w) 2 EEivw; xiv; xjw; h(vw) 2 f0; 1gLemma 7. Suppose S ontains no onseutive 1's. Then LP4 is no stronger thanLP3, i.e. substituting onstraints (16) for onstraints (15) does not lead to a strongerrelaxation.Proof: We an apply the following modi�ation of the proof of Lemma 2. Considerthe following table for an arbitrary edge (v; w) 2 E. Assume there are k i's in HOlabeled i1 : : : ik and assume there are m j's in HE labeled j1 : : : jm. Instead of usingxiv and xjw in the bottom row and right olumn, as we did in the proof of Lemma 2,we use fiv and fjw, whih we de�ne below:25



fiv = xiv � E�ivw � E+ivw;fjw = xjw � E�j+1;vw � E+j�1;vw:i: 1 3 5 : : : kj :2 h(i1v)(j1w) h(i2v)(j1w) h(i3v)(j1w) : : : h(ikv)(j1w) � fj1w4 h(i1v)(j2w) h(i2v)(j2w) h(i3v)(j2w) : : : h(ikv)(j2w) � fj2w6 h(i1v)(j3w) h(i2v)(j3w) h(i3v)(j3w) : : : h(ikv)(j3w) � fj3w. . . . . .. . . . . .. . . . . .m h(i1v)(jmw) h(i2v)(jmw) h(i3v)(jmw) : : : h(ikv)(jmw) � fjmwfi1v fi2v fi3v : : : fikvNote that if there are no onseutive 1's in S, then there will be no h(iv)(jw) variablesin the above table in whih j = i+ 1 or j = i� 1. If there were suh variables, thenthey would have to be assigned 0 and we would not be able to apply the proof ofLemma 2. But sine all the h(iv)(jw) variables in the table an be non-zero, we anuse the same tehnique as in the proof of Lemma 2.Note that: Xi2HO fiv = Xi2HO(xiv � E�ivw � E+ivw);Xj2HE fjw = Xj2HE(xjw � E�j+1;vw � E+j�1;vw):Without loss of generality, assumePi2HO fiv �Pj2HE fjw. We want to distributethe value h(v;w) among the h(iv)(jw) variables. We an set the variable h(i1v)(j1w) tominffi1v; fj1wg. Then we an set the variable h(i1v)(j2w) to be as large as possible sothat h(i1v)(j1w) + h(i1v)(j2w) � fi1v, et. We an set all the h(iv)(jw) variables so thattheir sum equals the sum of the fiv variables.Note that if the string S ontains onseutive 1's, then the proof of Lemma 7 doesnot go through. Furthermore, we an onstrut an example in whih LP3 and LP426



have di�erent objetive values. Figure 4 gives an example in whih LP3 has a higherobjetive funtion than that of LP4.
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x xFigure 4. The variable h(v;w) an have value at least 12 inLP3. In LP4, the ontribution of edge (v; w) would be 0 sinethe variable h(iv)(i+1;w) is not de�ned, i.e. it is impliitly 0.The only di�erene between LP3 and LP4 is that and LP4 does not allow \ontats"between adjaent elements on the string. Let f(S) represent the number of pairs ofonseutive 1's in S. Then the values of LP3 and LP4 for a string S are related asfollows: LP3 � LP4 � LP3 - f(S). There is no other other bene�t to using the 4-indexvariables rather than the 2-index variables with the urrent set of onstraints.5 Branh and BoundUsing branh and bound, we would like to branh only on x variables in odd positionsor only on x variables in even positions. This would allow us to ut down the numberof variables to branh on by a fator of 2. This would be a good approah if thefollowing onjeture holds.Conjeture 1. Suppose we have an optimal solution fxiv; h(v;w)g for LP2 suh thatxiv is integral if i; v are odd. We will all this an odd integral solution. Then we anuse this solution (e.g. round this solution) to obtain a fully integral solution with thesame objetive value.Given an odd integral solution, we want to show that we an onstrut a solutionwith the same objetive value in whih all the xjw are also integral for even j; w.We have not been able to prove this onjeture. If we onsider the path formed byonseutive xiv variables for odd i, we an easily see that it forms a self-avoiding walk27



on the subset of odd lattie points and for every even j, at most two xjw variablesan be non-zero.Lemma 8. In an odd-integral solution, at most two xjw an be non-zero when j iseven.Proof: For all odd i, we have that xiv are integral. Consider xip and x(i+2)q for someodd i and some p; q suh that xip = 1 and x(i+2)q = 1. By onstraint (4), we have:Xv2Æ(p) x(i+1)v � xip:Thus, the total value of xi+1 distributed on the four neighbors of p is 1. Similarly, byonstraint (9), we have: Xv2Æ(q) x(i+1)v � x(i+2)q:So p and q must share neighbors and the most neighbors any two points have inommon is 2.Empirially, we've observed that in odd integral solutions, the value of the xjwvariables for even j is usually 0 or 12 .
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6 Integrality GapsWe an show that the integrality gap for LP3 and LP4 is 2� � for any � > 0. We willuse the string S = f0gqf01gkf0g2qf1000gkf0gq. We let k denote a positive integerand q = 4k2. In [8℄, it is shown that no folding of S has more than (1 + o(1))O[S℄ontats. However, we an easily onstrut a frational solution for LP3 for whih theobjetive funtion is 2O[S℄.
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Figure 5. Let S1 = f01gk and let S2 = f0001gk . Thestring splits in half at points y and z, whih allows the stringto ross itself, something not allowed in an integral solution.
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7 Six Index ConstraintsAnother idea for strengthening the linear program is to add 6-index onstraints. Onereason to use suh onstraints is that they would invalidate the solution given inFigure 5.Suppose we let the variable h(iv)(jw)(ku) be a 1 if there is a ontat between i andj on edge (v; w) and between j and k on edge (w; u). Then we an have the followingonstraint for ollinear v; w; u. Reall that n denotes the length of the input string.h(iv)(jw)(ku) = 0 i < k < j : ji� kj < 2 � (n� j):The idea behind this onstraint is as follows: Suppose i and k are distane d aparton the string and both form a ontat with j. Suppose i; j; k are plaed on lattiepoints v; w:u, respetively, where v; w; u are ollinear. Then sine the string annotross itself, the distane from j to the last point on the string n (or the nearestendpoint) must be less than distane d=2. If this is not the ase, then at some pointthe substrings j : : : n and i : : : k will have to ross eah other.We annot simply add this onstraint to LP3 or LP4 beause we are not optimiz-ing over double onstraints. However, this onstraint might still be used to obtaininformation about the optimal folding of a string, beause if a string has more thanO[S℄ ontats, then it must have double ontats. We de�ne a double ontat as twoontats that are adjaent to eah other, i.e. ontats formed on edges (v; w) and(w; u) where v; w; u are either ollinear or the two edges form a right angle. In otherwords, if a folding has more than O[S℄ ontats, then some 1's must have more than 1ontat. Thus, we ould add the following onstraints to LP3 for all adjaent v; w; u:h(iv)(jw)(ku) � h(iv)(jw);h(iv)(jw)(ku) � h(jw)(ku):And we ould replae the objetive funtion with the following:max Xi;k2HO Xj2HE Xadjaent v;w;uh(iv)(jw)(ku):30



Or, alternatively, with: Xi;k2HE Xj2HO Xadjaent v;w;uh(iv)(jw)(ku):If the LP solution for both of these objetive funtions were 0, then we would knowthat an optimal folding ontains only maxfO[S℄; E [S℄g ontats.8 Future WorkTwo of the known approximation algorithms for the folding problem on the 2D lattie[7, 8℄ have the following property in ommon. Both algorithms result in a foldingin whih the original string is divided into two strings and there are only ontatsbetween elements on di�erent strings. In other words, the folding results in two stringsS1 and S2 suh that a ontat only ours between i in S1 and j in S2 but never i; jin S1 or i; j in S2.Rounding the LP, e.g. LP3 or LP4, seems diÆult. An easier approah may be todivide the string S into 2 strings S1 and S2 (there are n2 possibilities) and solve LP4only allowing the variables h(iv)(jw) to be non-zero when i is from S1 and j is from S2or vie-versa.
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9 ImplementationIn this setion, we present the ampl ode and experimental results for LP3.AMPL Code for LP with 2-Index Variables and Flow Con-straints (LP3).param length; #length is the length of the input string Sparam feasibleDistane := length/2+2;param firstAid := 1;param lastAid := firstAid+length-1;param middleOddAid := (floor((lastAid-firstAid)/2)-1+firstAid +(floor((lastAid-firstAid)/2)-1+firstAid+1)mod 2);set Aids := firstAid .. lastAid;param H := 1;param P := 0;set SequeneValues := fH,Pg;param sequene Aids within SequeneValues;set O := fi in Aids: (i-firstAid) mod 2 = 0g;set E := fi in Aids: (i-firstAid) mod 2 = 1g;set H O := fi in Aids: (i-firstAid) mod 2 = 0 and sequene[i℄=Hg;set H E := fi in Aids: (i-firstAid) mod 2 = 1 and sequene[i℄=Hg;set P O := fi in Aids: (i-firstAid) mod 2 = 0 and sequene[i℄=Pg;set P E := fi in Aids: (i-firstAid) mod 2 = 1 and sequene[i℄=Pg;#################lattie#################param firstX := 1;param firstY := 1; 32



param numX := length+1;param numY := length+1;param lastX := firstX+numX-1;param lastY := firstY+numY-1;set Xoord := firstX .. lastX;set Yoord := firstY .. lastY;param firstVertex := 1;param numVertex := numX*numY;param lastVertex := firstVertex+numVertex-1;set Verties := firstVertex .. lastVertex;param extratX v in Verties within Xoord :=((v-firstVertex) mod numX) + firstX;param extratY v in Verties within Yoord :=floor((v-firstVertex)/numX) + firstY;param extratVertex x in Xoord, y in Yoord within Verties :=firstVertex+ (y-firstY)*numX + (x-firstX);param xdiff v in Verties, w in Verties :=extratX[v℄-extratX[w℄;param ydiff v in Verties, w in Verties :=extratY[v℄-extratY[w℄;param middleOddX :=(floor(numX/2)-1+firstX + (floor(numX/2)+firstX)mod 2);param middleOddY :=(floor(numY/2)-1+firstY + (floor(numY/2)+firstY)mod 2);param middleOddVertex := extratVertex[middleOddX,middleOddY℄;set FeasibleVerties := v in Verties:33



abs(xdiff[v,middleOddVertex℄) + abs(ydiff[v,middleOddVertex℄)<= feasibleDistane ;set V O := v in FeasibleVerties:(extratX[v℄-firstX+extratY[v℄-firstY) mod 2 = 0;set V E := v in FeasibleVerties:(extratX[v℄-firstX+extratY[v℄-firstY) mod 2 = 1;set Neighbors v in FeasibleVerties := w in FeasibleVerties:(abs(xdiff[v,w℄) + abs(ydiff[v,w℄)) = 1;set Edges := (v,w) in V O ross V E : w in Neighbors[v℄;set OddTriangle :=v in V O: (extratX[v℄ <= extratX[middleOddVertex℄) and((extratX[middleOddVertex℄-extratX[v℄) <=(extratY[middleOddVertex℄-extratY[v℄));######################variables######################var h Edges >=0, <=1;var e minus (Aids ross Edges) >= 0, <=1;var e plus (Aids ross Edges) >= 0, <=1;var x O (O ross V O) >= 0, <=1;var x E (E ross V E) >= 0, <=1;######################onstraints######################subjet to plaeOddElements i in O:sum v in V O x O[i,v℄ = 1;subjet to plaeEvenElements j in E:sum w in V E x E[j,w℄ = 1; 34



subjet to limitOddVertexLoad v in V O:sum i in O x O[i,v℄ <= 1;subjet to limitEvenVertexLoad w in V E:sum j in E x E[j,w℄ <= 1;subjet to oddMinusFlow (i,v) in O ross V O : i != firstAid:sum w in Neighbors[v℄ e minus[i,v,w℄ = x O[i,v℄;subjet to oddPlusFlow (i,v) in O ross V O : i != lastAid:sum w in Neighbors[v℄ e plus[i,v,w℄ = x O[i,v℄;subjet to evenMinusFlow (j,w) in E ross V E : j != lastAid:sum v in Neighbors[w℄ e minus[j+1,v,w℄ = x E[j,w℄;subjet to evenPlusFlow (j,w) in E ross V E : j != firstAid:sum v in Neighbors[w℄ e plus[j-1,v,w℄ = x E[j,w℄;subjet to hOddSideWithFlow (v,w) in Edges:sum i in H O : i !=firstAid e minus[i,v,w℄+ sum i in H O : i != lastAid e plus[i,v,w℄+ h[v,w℄ <= sum i in H O x O[i,v℄;subjet to hEvenSideWithFlow (v,w) in Edges:sum j in H E : j != lastAid e minus[j+1,v,w℄+ sum j in H E : j != firstAid e plus[j-1,v,w℄+ h[v,w℄ <= sum j in H E x E[j,w℄;subjet to fixMiddleOddVertex:x O[middleOddAid,middleOddVertex℄ = 1;subjet to fixFirstVertex:sum v in OddTriangle x O[firstAid,v℄ = 1;######################objetive funtion ######################minimize ontats: - sum (v,w) in Edges h[v,w℄;
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Experimental ResultsWe ran LP3 on some of the benhmarks for the problem in the 2D HP model. Thesewere taken from: www.s.sandia.gov/teh reports/ompbio/tortilla-hp-benhmarks.html.We ran the LP's on the following strings:1. hphpphhphpphphhpphph2. hhpphpphpphpphpphpphpphh3. pphpphhpppphhpppphhpppphh4. ppphhpphhppppphhhhhhhpphhpppphhpphpp5. pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh6. hhhpphphphpphphphpphString length upper bound LP3 Opt1 20 11 10.67529996 92 24 11 11 93 25 8 8 84 36 16 14.89908257 145 48 25 24.88770748 226 20 11 10.76264643 10
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