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Approximating the Maximum Ayli SubgraphbyAlantha NewmanSubmitted to the Department of Eletrial Engineering and Computer Sieneon May 19, 2000, in partial ful�llment of therequirements for the degree ofMaster of Siene in Computer SieneAbstratIn this thesis, we study the maximum ayli subgraph problem: Given a direted graphG = (V;E), �nd a maximum ardinality subset E0 � E suh that G = (V;E0) is ayli. Themaximum ayli subgraph problem is an NP-hard optimization problem for whih the best-known approximation guarantee is 2. We show that the maximum ayli subgraph problemannot be approximated to within 6566 + � for any � > 0. The redution is from H�astad'smaximum satis�ability of linear equations modulo 2 with three variables per equation. It isalready known that the integrality gap of two basi linear programming relaxations is 2, butwe formalize this here sine it is not reorded elsewhere. We also study graphs in whih themaximum degree is 3 and show that if for any � > 0 there exists a (17=18+�)-approximationalgorithm for the maximum ayli subgraph problem in suh graphs, then there is a Æ > 0suh that there is a (1=2 + Æ)-approximation algorithm for the maximum ayli subgraphproblem in general graphs. We give a 89 -approximation algorithm for the maximum aylisubgraph problem in graphs with maximum degree 3.Thesis Supervisor: Santosh VempalaTitle: Assistant Professor of Mathematis
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Chapter 1IntrodutionMany important and pratially motivated optimization problems are NP-hard. UnlessP = NP, we annot eÆiently �nd exat solutions to these problems. One option is to relaxthe requirement that the size (or ost) of the solution is optimal. Instead, we an look for asolution whose size is provably within some fator of the size of an optimal solution. In thissenario, we want to �nd an algorithm that yields the best possible fator or approximationratio. See [11℄ for an overview of approximation algorithms.1.1 The ProblemIn this paper, we explore the approximability and inapproximability of a partiular NP-hardoptimization problem known as the maximum ayli subgraph problem. The maximumayli subgraph problem is de�ned as follows: Given a direted graph G = (V;E), �nd amaximum ardinality subset E0 � E suh that G = (V;E0) is ayli. This problem is anexample of an NP-hard optimization problem for whih a simple approximation algorithmo�ers the best-known guarantee on the size of the solution. For any linear ordering of theverties, the set of forward edges or the set of bakward edges ontains at least half theedges. Eah set is ayli. The entire set of edges, E, is an upper bound on the size of anoptimal solution. Therefore, the larger of these sets yields a 12 -approximation.An outstanding open problem is: Can we do better than half of the optimum?1.2 Overview of this ThesisIn Chapter 2, we show that it is NP-hard to approximate the maximum ayli subgraphto within 6566 + � for any � > 0. This means that if we ould �nd an algorithm with anapproximation guarantee of 6566 + � for some � > 0, then we ould solve the problem exatly.We give a redution from 3-SAT to the maximum ayli subgraph problem to illustrate5



the idea behind the inapproximability redution. We then give a redution from H�astad'slinear equations modulo 2 with 3 variables per equation, whih, although more ompliated,yields a better inapproximability onstant.A ommon tool for �nding approximation algorithms for NP-hard optimization problemsis linear programming. In Chapter 3, we disuss linear programming relaxations for themaximum ayli subgraph problem. The basi linear programming relaxation for themaximum ayli subgraph problem has an integrality gap of 2, i.e. there is a lass of graphsfor whih the true maximum is very lose to half the edges, while the linear programmingrelaxation returns a frational solution with value very lose to the size of the entire edgeset. Therefore, we annot use the basi linear programming relaxation to obtain a better-than-half approximation.In Chapter 4, we �rst investigate the maximum ayli subgraph problem restrited toEulerian graphs. We present a theorem due to Lov�asz and Chen [8℄ showing that the generalproblem an be redued to this restrited problem. We next investigate the maximumayli subgraph problem restrited to graphs with maximum degree 3, i.e. in-degree plusout-degree of any vertex in the graph is at most 3. The maximum ayli subgraph problemremains NP-hard for suh graphs [7℄. We show that there is a onnetion between theapproximability of degree-3 graphs and general graphs. In partiular, we show that if forany � > 0 there exists a (1718+�)-approximation algorithm for the maximum ayli subgraphproblem in degree-3 graphs, then there exists a better-than-half approximation algorithmfor the maximum ayli subgraph problem in general graphs.Finally, in Chapter 5 we show that we an atually approximate the maximum aylisubgraph in degree-3 graphs to within 89 .
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Chapter 2InapproximabilityIn this hapter, we will desribe two redutions whih essentially use the same idea. The �rstredution is from 3-SAT and the seond redution is from H�astad's linear equations modulo2 with 3 variables per equation. The idea behind both redutions is that an assignment thatsatis�es a partiular lause orresponds to removing one less edge from the representativelause gadget than an assignment that does not satisfy this lause.2.1 Redution from 3-SATIn this setion we will give an approximation-preserving redution from MAX-3-SAT tothe maximum ayli subgraph problem. MAX-3-SAT is de�ned as the following problem:Given a CNF formula with at most 3 variables per lause, �nd an assignment of the variablesthat maximizes the number of satis�ed lauses.2.1.1 The ConstrutionGiven a 3-SAT formula F with n variables and m lauses, we onstrut a orrespondingmultigraph G using the following rules: (We assume every variable in F appears at leastone negated and one unnegated.)1. For eah variable x 2 F , we reate 2 verties x1 and x2. These two verties will formthe variable gadget for the variable x.2. For eah lause Ck 2 F , we reate a direted 6-yle and label eah of 3 alternatingedges with a distint literal from the lause Ck. This will be the lause gadget for thelause Ck.3. Eah lause gadget is linked up to the variable gadgets as follows.7



� For an edge (i; j) labeled x in a lause gadget, we add a direted edge from vertexj to vertex x1, an edge from x1 to x2, and an edge from x2 to i.� For an edge (i; j) labeled x, we add a direted edge from vertex j to vertex x2,an edge from x2 to x1, and an edge from x1 to i.Note that the graph G has 15m edges in all | 6m for the equation gadgets, 6m foronneting the equation gadgets to the variable gadgets and 3m for the variable gadgets(one edge per ourrene).2.1.2 The ProofThe following theorem will be our starting point.Theorem 1 (H�astad [6℄) For every � > 0, it is NP-hard to tell if a given 3-SAT formulais satis�able or at most m(78 + �) of its lauses are satis�able.We prove:Theorem 2 The maximum ayli subgraph annot be approximated to within 9596 + � forany � > 0.The proof of Theorem 2 will use the lemmas below.Lemma 1 A minimal feedbak ar set is ayli.Proof. An ayli graph an be viewed as an ordering of the verties suh that all thears are in the forward diretion, i.e. for eah ar (i; j), i omes before j in the ordering.Given a feedbak ar set, onsider suh an ordering for the ayli graph obtained upondeleting the feedbak ar set. If the feedbak ar set has any edges in the forward diretion,then it is not minimal (suh an edge an be added to the ayli graph without reatingany yles). Thus the feedbak ar set onsists only of bakward edges and hene is itselfayli. 2Lemma 2 The minimum feedbak ar set of G either has all the edges from xi1 to xi2 andnone of the edges from xi2 to xi1 or vie versa, for all i.Proof. If we inlude any edges from xi1 to xi2 and even one edge from xi2 to xi1 in theminimum feedbak ar set, then it would not be ayli, whih is a ontradition to Lemma1. If we don't inlude all the edges from one of the sets in the minimum feedbak ar set,then we will not have an edge from every yle in the minimum feedbak ar set, whih isalso a ontradition. 28
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Figure 2-1: The lause and variable gadgets.
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Lemma 3 The minimum feedbak ar set for the graph G ontains 3m+ u edges, where uis the minimum number of unsatis�ed lauses of the formula F .Proof. The theorem will be proved as a onsequene of the following two laims: (i) Givenan assignment for the variables in F that results in u unsatis�ed lauses, we an onstruta Feedbak Ar Set of size at most 3m+u. (ii) Conversely, given a Feedbak Ar Set of size3m+ u, we an �nd an assignment for the variables of F suh that no more than u lausesare unsatis�ed.First, we show that if we have a set of ars inluding all the ars from xi1 to xi2 orvie-versa for all i, and at least one edge from eah of the three 4-yles (linking the literalsars to their variable gadgets) and the 6-yle in every gadget, then the resulting set ofedges is a Feedbak Ar Set. We will do this by showing that the leftover edges form anayli graph.If for every lause gadget, eah 4-yle and 6-yle is missing at least one edge, thenthe set of remaining edges from eah lause gadget is ayli. We still need to show thatthere are no yles that inlude edges from multiple gadgets. Suppose we take a walk onthe graph G. We start the walk on some edge labeled xi and go to vertex xi1. If edge xiis not in the Feedbak Ar Set, then edge (xi1; xi2) must be, whih means edge (xi2; xi1)is not, so all edges labeled xi are inluded in the Feedbak Ar Set. Therefore, when wetry to depart from vertex xi1 and move to a di�erent gadget, we will not be able to do so,beause all edges from this vertex lead to edges labeled xi, whih have been inluded in theFeedbak Ar Set. So the resulting graph is ayli.(i) Given an assignment for the variables in F , we will show that we an �nd a feed-bak ar set inluding exatly 3 ars for eah satis�ed lause and exatly 4 ars from eahunsatis�ed lause. We onstrut the feedbak set as follows. If xi is set to TRUE, then weinlude all the ars from xi2 to xi1 in the feedbak set; if it is set to FALSE, we inlude allthe ars from xi1 to xi2. Then we inlude all the ars in the lause gadgets that orrespondto true literals. In addition, we inlude one ar orresponding to a literal from eah lausegadget for whih all the literals are false. The resulting subset of ars is a feedbak set bythe argument in the previous paragraph and has a total of 3m+ u ars.(ii) Given a feedbak ar set, we now show how to onstrut an assignment from it. Firstwe delete edges from the feedbak ar set until it is minimal. Then we assign eah variablexi in F a value depending on whih set of edges with endpoints in fxi1; xi2g is inluded inthe feedbak ar set. If all the edges from xi2 to xi1 are in the feedbak ar set, then thevariable xi is set to TRUE. Otherwise all the edges from xi1 to xi2 are in feedbak ar set,and then xi is set to FALSE. 10



Every lause gadget that has only 3 assoiated ars (i.e. ars in the 6-yle or in the4-yles linked to the literals in the lause) in the feedbak ar set must have at least 1 arfrom the 6-yle in the feedbak ar set, so at least one of the literals in the lause will havebeen assigned to TRUE. Thus any lause that is false has 4 ars inluded in the feedbakar set. So if the feedbak ar set has 3m+ u ars, the assignment leaves at most u lausesunsatis�ed. 2Corollary 4 follows from Lemma 3 and the fat that G has 15m edges.Corollary 4 The Maximum Ayli Subgraph for G is of size 12s + 11u where s and urepresent the number of satis�ed and unsatis�ed lauses, respetively, for an assignmentthat satis�es the maximum number of lauses.Proof of Theorem 2. Using Corollary 4 and the fat that, given a 3-SAT formulawith m lauses, it is NP-hard to distinguish between an assignment that satis�es (78 + �)mof the lauses and an assignment that satis�es m lauses (Theorem 1), we see that it isNP-hard to distinguish between a graph that has a maximum ayli subgraph of size12(78 + �)m + 11(18 � �)m and a graph that has a maximum ayli subgraph of size 12m.If we ould approximate the maximum ayli subgraph to within 9596 + �, then we oulddistinguish between these two ases. Therefore, it is NP-hard to approximate the maximumayli subgraph to within 9596 + �. 22.2 Redution from Linear Equations Modulo 2In this setion, we will give an approximation-preserving redution from linear equationsmodulo 2 with three variables to the maximum ayli subgraph problem.2.2.1 The ConstrutionGiven a set of m linear equations on n variables, we onstrut a graph G using the followingrules: (We assume all equations have the right hand size zero by negating one literal ifneessary.)1. For eah variable x 2 F , we reate two verties and two edges. The verties are x0and x1 and the edges are (x1; x0) and (x0; x1). These verties and edges will form thevariable gadget.2. For eah lause Cj 2 F , we add the lause gadget. The lause gadget is shown in Fig-ure 2-2. For a literal x in the lause we reate a 4-yle fx2; x3; x4; x5g. We label edge(x5; x2) as x = 1 and edge (x3; x4) as x = 0. We do this for eah literal in the lause.11



Then we add the following 12 edges: (z2; x5); (z2; y3); (z4; y3); (z4; x3); (x2; z3); (x2; y5);(x4; z5); (x4; y5); (y2; z3); (y2; z5); (y4; x3); (y4; x5)3. We onnet eah lause gadget to the orresponding variable gadgets in the followingway: For a literal x, we onnet the orresponding 4-yle in the lause gadget to thevariable gadget by adding edges (x2; x1); (x1; x3); (x0; x5); (x4; x0). The idea is thatan edge in the lause gadget that orresponds to a variable x being set to 1 (labeledx = 1 in Figure 2-2) should be in a yle with the edge in the variable gadget thatorresponds to the variable being set to 0 (labeled 0 in Figure 2-2), so that one ofthese edges is removed and the settings of the variable is determined by the remainingedge. Sine all lauses are onneted to the same variable gadget, this will maintainonsisteny in the variable assignments of eah lause.The resulting graph G has 36m+2n edges, 36 for eah lause gadget and 2 for eah variablegadget. In order to relate variable assignments to ayli subgraphs of G, we will sayremoving the edge (x1; x0) orresponds to setting the variable x to true, and removing theedge (x0; x1) orresponds to setting the variable to false.2.2.2 The ProofWe will use another theorem of H�astad for this proof:Theorem 3 (H�astad [6℄) For every � > 0, it is NP-hard to tell if a given a set of linearequations modulo 2 with 3 variables is satis�able or at most m(12 + �) of its lauses aresatis�able.Lemma 5 The minimum feedbak ar set for the graph G ontains n+3m+u edges, whereu is the minimum number of unsatis�ed equations.Proof. By Lemma 1, exatly one edge from every variable gadget is in the minimumfeedbak ar set. In addition, we need to show the following things:(i) Given a lause, x + y + z = 0, and an assignment that satis�es this lause, we willneed to remove only three edges from the orresponding lause gadget so that the subgraphonsisting of the lause gadget and it three orresponding variable gadgets is ayli. Thereare four assignments to the variables x; y; z that satisfy this lause. They are: ff0; 0; 0g;f0; 1; 1g; f1; 1; 0g; f1; 0; 1gg. We need to show that for any one of these assignments, if weremove the three orresponding edges, then the subgraph of the remaining edges from thelause gadget and relevant variable gadgets is ayli.12



First, note that any yle in a lause gadget must ontain labeled edges. This is beausefor every non-labeled edge (i; j), i is a vertex suh that the only inoming edge is a labelededge, and j is a vertex suh that the only outgoing edge is a labeled edge.We now onsider the four possible satisfying assignments for the lause x+ y + z = 0:1. fx = 0; y = 0; z = 0g. This means that all edges in Figure 2-2 labeled x = 1; y =1; z = 1 are removed. The three edges labeled x = 0; y = 0; z = 0 are not in a yletogether. If they were, vertex x4 would have to be in a yle, but all four of its outedges lead to edges labeled 1, whih are removed. Thus, the remaining set of edges isayli.2. fx = 0; y = 1; z = 1g. Then the edges labeled x = 1; y = 0; z = 0 are removed. Theremaining graph is ayli, sine if you onsider the four edges going out from theedge labeled z = 1, all four of these edges lead to a vertex whose only out edge hasbeen removed.3. fx = 1; y = 0; z = 1g. Then the edges labeled x = 0; y = 1; z = 0 are removed. Ifwe onsider vertex x2, whih is the endpoint of the edge labeled x = 1, all four edgeslead to verties whose only out edge has been removed. So the remaining set of edgesis ayli.4. fx = 1; y = 1; z = 0g. We remove edges x = 0; y = 0; z = 1. Consider vertex z4,whih is the endpoint of the edge labeled z = 0. All four edges leaving this vertexlead to verties, whose only out edge has been removed. So the remaining set of edgesis ayli.(ii) Given a lause, x+ y + z = 0, and an assignment that does not satisfy this lause,we will need to remove exatly four edges from the orresponding lause gadget so thatthe subgraph onsisting of the lause gadget and its three orresponding variable gadgetsis ayli. There are four assignments to the variables x; y; z that do not satisfy this lause.They are: ff1; 1; 1g; f0; 0; 1g; f1; 0; 0g; f0; 1; 0gg.1. fx = 1; y = 1; z = 1g. Then the edges labeled x = 1; y = 1; z = 1 remain and form ayle. So we must remove one of these edges and the remaining graph is ayli.2. fx = 0; y = 0; z = 1g. Then the edges x = 0; y = 0; z = 1. These edges are in a yle,so, again, we must remove of four edges.3. fx = 1; y = 0; z = 0g. Then the edges x = 1; y = 0; z = 0 remain and reate a yle,so we must remove four edges. 13



4. fx = 0; y = 1; z = 0g. Then the edges x = 0; y = 1; z = 0 remain and form a yle, sowe must remove four edges.(iii) For eah variable gadget, if we remove one of the two edges and the orrespond-ing edge from the lause gadgets representing lauses that ontain this variable, then theremaining graph does not ontain any yle omposed of edges from more than one lausegadget. For the lause x + y + z = 0, onsider the edge (x2; x1). If a yle ontains thisedge, it must also ontain the only inoming edge to vertex x2, whih is the edge labeledx = 1. If these edges are ontained in a yle with edges from another lause gadget, thenat vertex x1, we an move to another gadget. However, we will arrive at a vertex suh thatthe only out edge orresponds to the edge that remains i� x has been set to 0, whih is notthe ase if the edge labeled x = 1 was present. So there annot be any yles that use edgesfrom more than one lause gadget.It follows from (i),(ii), and (iii) that the minimum feedbak ar set has size n+3m+u.2Corollary 6 The Maximum Ayli Subgraph for G is of size n+ 33s + 32u where s andu represent the number of satis�ed and unsatis�ed lauses, respetively, for an assignmentthat satis�es the maximum number of lauses.Theorem 4 The maximum ayli subgraph an not be approximated to within 6566 for any� > 0.Proof. By Corollary 6 and by Theorem 3 it is NP-hard to distinguish between a graphthat has a maximum ayli subgraph of size n+33(12 + �)m+32(12 � �)m and a graph thathas a maximum ayli subgraph of size n+ 33m. If we ould approximate the maximumayli subgraph to within 2n+652n+66 + �, then we ould distinguish between these two ases.Therefore it is NP-hard to approximate to approximate the maximum ayli subgraph towithin 2n+652n+66+�. We an make n arbitrarily small ompared to m by reating another set oflinear equations in whih eah original equation appears k times for some k so that we havekm lauses and only n variables. The ratio 2n+652n+66 is arbitrarily lose to 6566 as k beomeslarge. Therefore, it is NP-hard to approximate the maximum ayli subgraph to within6566 + �. 2.
14
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Chapter 3Linear Programming RelaxationsIn this hapter we disuss linear programming relaxations for the maximum ayli subgraphproblem.3.1 Two Integer ProgramsThe maximum ayli subgraph problem an be viewed as maximizing the number of edgessubjet to a onstraint for every yle. The onstraint spei�es that the sum of the edgevariables on a yle of length C is at most jCj � 1. These onstraints are desribed by thefollowing integer program:maximize Pij2E xijsubjet to: Pij2C xij � jCj � 18ij2E xij 2 f0; 1gIt is NP-hard to solve this integer program. However, we an relax the requirement thatxij are in f0; 1g and replae it with the requirement that that 0 � xij � 1. We an solvethe resulting linear program in polynomial time using the Ellipsoid Algorithm beause ithas the following polynomial separation orale [5℄. Given a solution to the linear program,we an onsider the graph with eah edge (i; j) assigned weight 1� xij . Then we an �ndthe minimum weight yle. If there is any yle that has weight less than 1, then we havefound a yle with value more than jCj � 1 whih is a violated onstraint. We refer to thislinear program as LP1.Another integer program for the maximum ayli subgraph problem has a variable forevery pair of verties i; j 2 V . In this program, there are only onstraints for 2- and 3-yles:maximize Pij2E xij 16



subjet to: 8i;j xij + xji = 18i;j;k xij + xjk + xki � 28i;j xij 2 f0; 1gLemma 7 An integral solution to the above integer program represents an ayli subgraph.Proof. Consider some ayli subgraph S � E that inludes every edge whih is assigneda 1 by this integer program. If eah 2-yle in the omplete direted graph has at most oneedge S and eah 3-yle has at most two edges in S, then we prove by indution that everyyle of length jCj � 4 has at most jCj � 1 edges in S.Consider a 4-yle fv1; v2; v3; v4g. Choose two non-adjaent verties v1 and v3 on the 4-yle. Consider the 2-yle that onnets these two verties. One of these edges is in S, say(v3; v1). Then we annot inlude both (v1; v2) and (v2; v3) in S, so at most three edges fromthis 4-yle are in S. Similarly, assume eah yle of length at most C ontains at least oneedge assigned 0 by the integer program. Then onsider some yle x = fv1; v2; � � � ; vC+1gof length C + 1 and hoose any two non-adjaent verties on the yle, vi and vj . Considerthe 2-yle that joins these verties. One of the edges, say (vi; vj) is in S. Sine the ylefvi; vj ; vj+1; � � � vi�1g has length at most C it follows that at least one of the edges in x onthe path from xj to xi is assigned 0 by the integer program. Therefore, we an inlude atmost C edges from a yle of length jCj+ 1 in S. 2Again, it is NP-hard to solve this integer program. However, we an solve the relaxationin polynomial time using the Ellipsoid Algorithm beause there are only a polynomialnumber of onstraints [5℄. We will refer to this relaxation as LP2.3.2 Linear Program Integrality GapThe integrality gap of a linear program is de�ned as the ratio of the size of the optimalinteger solution to the size of the optimal frational solution returned by the linear program.It is not known how to use a linear program to obtain an approximation ratio that is betterthan the integrality gap. In this setion, we will show that the integrality gap for bothLP1 and LP2 is 2 implying that these linear programs will not lead to a better-than-halfapproximation algorithm. As a basis for the onstrution, we will use the fat that thereexists a lass of undireted graphs with girth g and �(n � (n8 ) 1g ) edges. (See Setion 3.3 forthe onstrution.)Given suh a graph G with girth plog n (we ould use any funtion that is o(log n) forthe girth), we will show that the following lemma holds:17



Lemma 8 There exists at least one direted orientation of G suh that for any ordering ofthe verties, the number of bak edges is at least (1� �) jEj2 for any � > 0.Proof. For any � > 0, we show that with non-zero probability, a direted orientation ofG has at least (1� �)m2 bak edges for any ordering of the verties where m is the numberof edges in G, i.e. the size of its maximum ayli subgraph is very lose to half the edges.For this proof, we use a Cherno� bound found in [9℄:Theorem 5 Let X1;X2; � � � ;Xn be independent Poisson trials suh that, for 1 � i � n,Pr[Xi = 1℄ = pi, where 0 < pi < 1. Then, for X = Pni=1Xi; � = E[X℄ = Pni=1 pi, and0 < Æ � 1, Pr[X < (1� Æ)�℄ < e��Æ22We �x an ordering of the verties and we hoose a direted orientation of G at random.For eah edge (i; j), we diret the edge from i to j with probability 12 and from j to i withprobability 12 . Thus, eah edge is a forward edge or a bakward edge with equal probability.We assoiate an indiator random variable Xi with the ith edge so that Xi is 1 if the ithedge is a bakward edge and 0 if it is a forward edge in this ordering. Thus, for all Xi,pi = 12 . X is the random variable that represents the number of bak edges and � = m2 , i.e.the expeted number of bak edges for a �xed ordering of the verties is m2 . Using Theorem5, we �nd that: Pr[X < (1� �)m2 ℄ < em�24In words, the probability that a partiular direted orientation of the edges with respet toa �xed ordering of the verties has less than (1 � �)m2 bak edges is exponentially small inm for any � > 0.Now we �x the orientation of the edges and show that with non-zero probability thisdireted graph has lose to m2 bak edges for every ordering of the verties. There aren! � 2n log n orderings of the verties. By union bound, the probability that this diretedgraph has less than (1� �)m2 bak edges for at least one ordering of the verties is:� e�me24 2n log nIf this quantity is < 1, then the probability that a partiular orientation of the edges hasat least (1� �)m2 bak edges for every ordering of the verties will be > 0.If e�me24 2n log n < 1, then taking the log of eah side, we have:�m�24 + n logn < 0 ) n logn < m�24 ) � >r4n lognmLet m = �(n � (n8 ) 1g ): 18



� >r4 log n(n8 ) 1gWhen g = plog n, we need to show that � is o(1). Then for any �xed � > 0, this inequalitywill be true for large enough n. Sine (n8 ) 1plog n = 2plog n� 3plog n and logn = 2log log n andlog logn < plogn� 3plog n (sine log x < px� 3px), we have � = o(1). Thus, with non-zeroprobability, there is some direted graph with girth plog n that has a maximum aylisubgraph of size (1� �) jEj2 for any � > 0. 2We will refer to a direted graph on n verties with girth plogn and maximum aylisubgraph of size at least (1� �)m2 as G�n. We will use G�n to prove the following lemmas:Lemma 9 The integrality gap of LP1 is 2.Proof. For any � > 0, we an �nd an n suh that G�n has an maximum ayli subgraphof size at least (1 � �)m2 . Sine G�n has girth at least plog n, a feasible solution for LP1is to assign eah edge in E the value (1 � 1plog n). Thus the solution of LP1 has size atleast jEj(1� 1plog n). The ratio of the optimal solution to the optimal frational solution is1� 1plog n12 (1��) . As � dereases, n inreases. Thus, lim n!1 1� 1plog n12 (1��) = 2. Sine this ratio an bemade arbitrarily lose to 2 for large n, the integrality gap is 2. 2Lemma 10 The integrality gap of LP2 is 2.Proof. Given a maximal solution to LP1 for a graph G, we an onstrut a solution toLP2 for G with the same objetive value. A solution to LP1 inludes an assignment forevery edge in G. The solution we will onstrut will ontain an assignment for every pairof verties i; j 2 V . Let x be the maximal solution given for LP1.We extend the solution x as follows: for all (i; j) 2 E; (j; i) =2 E, we assign xji = xij .Now every yle in x of length jCj has total value at most jCj � 1. This is equivalent tosaying that every yle has total value at least 1, sine if some yle has total value lessthan 1, then the yle omposed of the omplementary edges must have total value morethan jCj�1. This is learly true of all yles in E. Let E be the set of edges that are not inE but whose omplements are in E whose values we just added to x. Then all the yles inE must also have total value at most jCj � 1. If this were not the ase, then some yle inE would have value less than 1, whih means the solution x is not maximal. The last asewe need to onsider is a yle omposed of edges from both E and E. Let A be the edges inthis yle from E and a denote their total value and let B be the set of edges in this ylefrom E and b denote their total value. Assume a+ b > jCj � 1 where A and B form yleC. If we onsider the omplements of A and B then we have a yle C with value a+ b < 1.19



The edges in B are in E and x is maximal. This means that there must be some yle C 0in E ontaining B suh that the set of edges C �B has total value jC 0j � 1� b and the setof its omplementary edges has value b. These omplementary edges form a yle with theedges in A whih has value a. Both sets are in E whih implies that a+ b > 1.Therefore, all yles in x have total value at most jCj � 1 and at least 1 so x is still avalid solution to LP1. For eah pair of verties i; j 2 V suh that (i; j) and (j; i) are notin E, the indutive step will be to show that we an �nd an assignment for xij and xjisuh that the resulting x is still a solution to LP1 for the graph G+ (i; j). Thus, when wehave assigned values to all pairs of verties not assoiated with edges in E, we will have asolution for LP1 for the omplete graph. This must also be a valid solution to LP2 sineif every yle has value at most jCj � 1 then every 2- and 3-yle in the omplete graphomplies with the onstraints in LP2.Now we prove the indutive step: to add an assignment to x we hoose a pair of vertiesi; j that are not onneted by an edge in G. Let � be the length of the shortest path fromi to j and � be the length of the shortest path from j to i. Together these shortest pathsform a yle in G. Therefore � + � is at least 1. We let edge (j; i) have value xji = maxf0; 1 � �g and edge (i; j) have value xij = min f1; �g = 1 � xji. If � > 1, then any ylethat inludes edge (j; i) has total value at least 1 and edge (i; j) has value 1 so any ylethat inludes edge (i; j) has total value at least 1. If � � 1, then any yle that inludesedge (j; i) will have total value at least 1 and every yle that inludes edge (i; j) will havetotal value at least �+ �, whih is at least 1.Sine we an onstrut a solution for LP2 with the same objetive value as LP1 so theintegrality gap for LP2 must be the same as LP1. 23.3 Construting Undireted Dense Graphs with High GirthIn this setion, we present a proof of a lemma that is due to Erdos and Sahs [10℄.Lemma 11 There exist undireted graphs with girth at least g and �(n � (n8 ) 1g ) edges.Proof. We will onstrut a graph with girth g and �(n � (n8 ) 1g ) edges. First, we onstruta graph on n verties by hoosing d perfet mathings in Kn2 ;n2 uniformly at random. Sineeah vertex has degree at most d, then for some vertex v there are at most dg paths oflength g that begin at this vertex. We will set dg = n8 (we will solve for d later). If wetake a random walk of length g starting from vertex v, then the probability that we returnto vertex v sometime during the walk is the number of verties that we reah{at most dg{divided by the total number of verties in G. Sine dg = n8 , the probability that we returnto vertex v after taking at most g steps is = 18 .20



We will now use the Cherno� bound de�ned in Setion 3.2. For eah vertex, we ande�ne an indiator random variable Xi. Let Xi = 1 denote that there is no yle of lengthless than or equal to g that ontains vertex i and let Xi = 0 denote that there is some yleof length at most g that ontains vertex i. Then pi = 78 for all i. X is the random variablerepresenting the total number of verties inluded in yles of length less than or equal tog and � = 7n8 . By Theorem 5, we have:Pr[X < (1� �)7n8 ℄ � e �2 7n82For any �xed �, this is very high probability, so we an assume that we have extremelylose to 7n8 verties that are not ontained in yles of length less than or equal to g. Theremaining set of n8 verties may be ontained in yles of length less than or equal to g,but we an remove these verties and all edges adjaent to them. This entails removing nomore than dn8 edges, so we are left with dn2 � dn8 = 3dn8 edges.Now we solve for d: dg = n8 , so d = n8 1g . Therefore jEj = 3n8 d = 3n8 (n8 1g ). So we havefound a graph with �(n � (n8 ) 1g ) edges and girth at least g. 2
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Chapter 4Restrited ProblemIn this hapter, we investigate the maximum ayli subgraph problem restrited to ertainlasses of graphs, namely Eulerian graphs and graphs with maximum degree 3. Somewhatsurprisingly, the general problem an be redued to these speial ases. First, we present anapproximation-preserving redution from the maximum ayli subgraph problem in generalgraphs to the maximum ayli subgraph problem restrited to Eulerian graphs. Then weuse this redution to give an approximation-preserving redution from the maximum aylisubgraph problem in general graphs to the maximum ayli subgraph problem in graphswith maximum degree 3.4.1 Eulerian GraphsThis redution is due to L�azl�o Lov�asz and Fang Chen [8℄.Theorem 6 If for any Æ > 0, there exists a (12 + Æ)-approximation algorithm for the maxi-mum ayli subgraph problem in Eulerian graphs, then there exists a (12+ Æ8)-approximationalgorithm for the maximum ayli subgraph problem in general graphs.Proof. We will say a graph G is �-far from Eulerian if there is a v 2 V for whih d+(v)or d�(v) > (12 + �)d(v). If 8� > Æ ) � > Æ8 , then we an make at least an � (or Æ8) gain ateah vertex (by plaing the greater of the in and out edges in the ayli subgraph) untilthe graph is less the �-far from Eulerian.If 8� < Æ ) � < Æ8 , we will add a new vertex v� to G to obtain a new graph G + v�.To the vertex v� we will attah in edges and out edges from and to eah vertex in G forwhih jd+(v) � d�(v)j > 0, thus making G + v� Eulerian. Let OPT (G) denote the size ofthe maximum ayli subgraph of G. Then:22



d(v�) =Xv2G jd+(v)� d�(v)j �Xv2G 2�d(v) � 2�Xv2G d(v) � 4�jEjSine jEj2 � OPT (G), we have, jEj � 2OPT (G). Thus:4�jEj � 8�OPT (G)) d(v�) � 8�OPT (G)If we have a (12 + Æ){approximation for G+ v�, then:OPT (G+ v�) � OPT (G) + 12d(v�) ) OPT (G+ v�)� d(v�) �(12 + Æ)OPT (G + v�)� d(v�) �(12 + Æ)OPT (G) + (12 + Æ)12d(v�)� d(v�) � (12 + Æ)OPT (G) � 34d(v�) �(12 + Æ)OPT (G) � 6�OPT (G) � (12 + Æ � 6�)OPT (G)Sine 8� < Æ ) � < Æ8 : (12 + Æ � 6�) > (12 + Æ � 68Æ) = (12 + Æ4)So in either ase, we an get at least (12 + Æ8) of the optimal solution for an arbitrary graphgiven a (12 + Æ)-approximation algorithm for Eulerian graphs. 24.2 Degree-3 GraphsThe maximum ayli subgraph problem remains NP-hard even for graphs with maximumdegree 3 [7℄. (For graphs with maximum degree 2, the problem is easy.) In this setion, wegive an approximation-preserving redution from the maximum ayli subgraph problemfor Eulerian graphs to the maximum ayli subgraph problem for graphs with maximumdegree 3.Theorem 7 If for any � > 0, there exists a (1718 + �)-approximation algorithm for themaximum ayli subgraph problem in graphs with maximum degree 3, then there existssome Æ > 0 suh that there is a (12 + Æ)-approximation algorithm for the maximum aylisubgraph problem in general graphs.To prove this theorem we will �rst introdue the following lemmas.Lemma 12 Given an Eulerian graph G = (EG; VG) we an onstrut a 3-regular graphG0 = (EG0 ; VG0) with jEG0 j = 9jEGj � 9jVGj suh that the size of the minimum feedbak arset in G is the same size as the minimum feedbak ar set in G0.23



Proof. Sine G is Eulerian, we will use d(v) to denote both the in- and out-degree ofvertex v for this proof. The �gure below shows a vertex v in G before we add any vertiesor edges.
v

The onstrution of G0 is as follows: we �rst plae a vertex in the middle of eah edge of G.
v

The number of verties is now jVGj + jEGj. Then for eah vertex v 2 VG, we math eahinoming edge with a distint outgoing edge by adding an edge from the vertex plaed onthe inoming edge to the vertex plaed on the outgoing edge. (Sine G is Eulerian, we willalways be able to �nd suh a mathing.)
v

All of the jEGj new verties now have in- and out-degree 2. We want to replae theverties from VG with a new set of verties in whih eah vertex has in- and out-degree 2so that the entire graph will be 4-regular and Eulerian. Consider vertex v 2 VG. We builda binary tree from v to the d(v) new verties plaed on the outgoing edges.
24



v

This requires d(v) � 2 new verties. We an see this by the following reasoning: let p bethe highest power of 2 not greater than d(v). For a binary tree that onnets p verties tov, we need p2 + p4 + : : :+2 = d(v)� 2 new verties or verties that are internal nodes on thebinary tree. For eah of the remaining d(v)� p verties, we will onnet two verties to oneof the p leaves thus adding just one internal vertex for eah of these verties. Therefore, wehave a total of d(v) � p+ p� 2 = d(v)� 2 internal or new verties on the binary tree.We also build a binary tree from v to the d(v) new verties plaed on the inomingedges. Then we math eah vertex from the inoming binary tree with a distint vertexfrom the outgoing binary tree by adding an edge from the former to the latter.
v

We build these two binary trees and math their verties as we just desribed for all vertiesv 2 VG. The total number of new verties needed to build these two binary trees for vertexv is 2d(v) � 4. The total number of new verties needed to build two binary trees for allv 2 VG is therefore Pv2VG 2d(v) � 4 = 2jEGj � 4jVGj.We now have a 4-regular Eulerian graph with (jEGj+ jVGj)+ (2jEGj� 4jVGj) = 3jEGj�3jVGj verties. We are not yet �nished onstruting G0 sine we want G0 to be a 3{regulargraph, but we will all this intermediate graph G00. The last step in the onstrution of G0is to streth eah vertex in the urrent graph into an edge so that G0 is 3{regular.
After the �nal step in the onstrution of G0, jEG0 j = 3(3jEGj � 3jVGj) = 9jEGj � 9jVGj.25



We will use the following de�nition later on in the proof.De�nition 1 A blue edge is an edge (i; j) suh that vertex i has in-degree 2 and vertex jhas out-degree 2.Note that the edges in G0 that orrespond to verties in G00 are blue edges.We will now show that this redution preserves the size of minimum feedbak ar set,i.e. the size of the minimum feedbak ar set of G0 is equal to the size of the minimumfeedbak ar set of G. Spei�ally, we will show that given a feedbak ar set in G, we anonstrut a feedbak ar set in G0 of the same size. Conversely, given a feedbak ar set inG0, we an onstrut a feedbak ar set in G of size at most the size of the feedbak ar setin G0.(i) Suppose F is a feedbak ar set of G. We will onstrut F 0, a feedbak ar set of G0.For eah edge eij 2 F , we add to F 0 the blue edge from EG0 that orresponds to the vertexused to subdivide edge eij in the �rst stage of the onstrution of G0. Then jF 0j = jF j andEG0 � F 0 is ayli by the following proof.Assume EG0 � F 0 is not ayli. Note that every blue edge orresponds to an originaledge, to an original vertex, or to a vertex on a binary tree in G00. If we take a walk on thegraph G0 starting from a blue edge orresponding to an edge eij in G (i.e. to a vertex usedto subdivide an edge in the �rst step of the onstrution) we will either follow a path onthe binary tree leading to a blue edge orresponding to edge ejk or we will walk diretly toedge ejk for some k. Therefore, if we �nd a yle in G0, the set of edges in that yle thatorrespond to edges in EG are still present in G implying that there is a yle in G, whihis a ontradition to the fat that F is a feedbak ar set.(ii) Suppose F 0 is a feedbak ar set in G0. Assume all edges in F 0 are blue edges. If theyare not, we an replae them with blue edges adjaent to the non-blue edges and obtaina feedbak ar set of equal or smaller size. Then for every edge in F 0 that orresponds toan edge in EG, add the orresponding edge in EG to F . Then EG � F is ayli by thefollowing proof.Assume EG � F is not ayli. Then onsider some yle in EG � F . The blue edgesorresponding to eah edge eij in the yle are still in EG0 � F 0. Sine EG0 � F 0 is ayli,at least one of the edges used to onnet verties that we plaed in the middle of the edgesin EG must have been removed. But this is a ontradition, beause these edges are notblue edges, and we onverted F 0 to a feedbak ar set that ontained only blue edges. 2Corollary 13 A maximum ayli subgraph in G of size S orresponds to a maximumayli subgraph in G0 of size S + 8jEGj � 9jVGj.26



Proof. Given a maximum ayli subgraph in G of size S, we an �nd a feedbak arset in G of size EG � S. Therefore, we an �nd a feedbak ar set in G0 of size EG � S.There will be S+8jEGj� 9jVGj edges remaining in EG0 and these edges make up an aylisubgraph of G0. 2Lemma 14 We an onvert an ayli subgraph of G0 of size at least (1718 + �)MAS(G0) toan ayli subgraph of G of size at least (12 + Æ)MAS(G) for some onstants �; Æ > 0.Proof. Let MAS(G) denote the size of the maximum ayli subgraph of G. We assumethat MAS(G) is at least �EG for some �xed � < 1 (we will explain � later). If MAS(G)is less than �EG, then we an �nd an ayli subgraph in G with at least half the edges ofG thereby obtaining a (12 + �)-approximation for some � > 0.Say we are given an �-approximation algorithm for 3-regular graphs. We an takean Eulerian graph G and onvert it a 3-regular graph G0 using the onstrution desribedpreviously. Then we an �nd an ayli subgraph S0 forG0 that is of size at least �MAS(G0).By Corollary 13 we have:�MAS(G0) = �(MAS(G) + 8EG � 9VG)To �nd an ayli subgraph S of G given S0, we remove all edges from S0 that do notorrespond to blue edges representing original edges of G. There are at most 8EG � 9VGsuh edges, sine EG of the edges in G0 orrespond to edges in G. So when we remove theseedges from S0, we are left with a set S of size at least:�(MAS(G) + 8EG � 9VG)� (8EG � 9VG) = �MAS(G) + (8� � 8)EG + (9� 9�)VGSine EG � MAS(G)� , 8�� 8 < 0, and VG � EGd > MAS(G)d , where d is the average degree ofG, we have:�MAS(G) + (8� � 8)EG + (9� 9�)VG � �MAS(G) + (8�� 8)MAS(G)� + (9� 9�)MAS(G)dAnd: �+ 8�� � 8� + 9d � 9�d > �+ 8�� � 8� > 12 ) �+ 8�� > 12 + 8�Sine � < 1: � > (�+16)(�+8) 12 > 1718
27



Therefore, if we found a (1718+Æ)-approximation for 3-regular graphs, then we ould �nd some� suh that the above inequality is true. IfMAS(G) � �EG, then we ould use the redutionand the (1718+Æ)-approximation algorithm for degree-3 graphs to �nd a (12+�){approximationfor Eulerian graphs, whih would by Theorem 6 lead to a (12 + �8)-approximation for generalgraphs. 2Theorem 8 There is no PTAS for the maximum ayli subgraph in degree-3 graphs unlessP = NP.Proof. If we have an �-approximation for the maximum ayli subgraph in degree-3graphs, then we will get a (� + 8(��1)� )-approximation for Eulerian graphs. Therefore, if� = 1� � and if � � 12 , then:�+ 8(��1)� = 1� �� 8�� � 1� 17�Thus, if we an �nd a (1� �){approximation for the maximum ayli subgraph in degree-3graphs, then we an �nd a (1� Æ)-approximation for Eulerian graphs, where Æ = 17�, whihimplies that we an �nd a PTAS for Eulerian Graphs. This implies that we an �nd a PTASfor general graphs, whih is a ontradition, sine the maximum ayli subgraph problemfor general graphs does not admit a PTAS. (See Chapter 2 for a proof of this.) 2
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Chapter 5Algorithms for Degree-3 GraphsIn [1℄ an algorithm that returns an ayli subgraph of size 23 jEj is given for graphs withmaximum degree 3 and an algorithm that returns an ayli subgraph of size 1318 jEj is givenfor 3-regular graphs. In this hapter, we show that the maximum ayli subgraph problemin graphs with maximum degree 3 an be approximated to within 89 of optimal using simpleombinatorial methods.5.1 AssumptionsGiven a graph G with maximum degree 3 for whih we want to �nd an ayli subgraph S,we an assume the following in any algorithm:(i) All verties have total degree exatly 3. If there is any vertex v suh that d+(v) =d�(v) = 1, then we an remove the vertex and treat the adjaent edges as one edge. Thusan edge in the modi�ed graph may represent a path in the original graph. If we ever addan edge representing a path to S, then we are really adding all the edges in the path to S.If we do not add this edge to S, then we an remove any one edge from the path and addthe rest of the edges on the path to S. If for any vertex d+(v) = 0 or d�(v) = 0, we anadd all edges adjaent to v to S.(ii) G has no 2- or 3-yles, sine we an treat both optimally. For 2-yles, onsiderthe 2 adjaent non-yle edges. If they are both in edges, or both out edges, then we anbreak the two yle by removing an arbitrary edge. If one is out and the other is in, thenone of the edges in the 2-yle is onsistent with the diretion of a possible yle ontainingboth of the two non-yle edges, so we an remove this edge. For 3-yles, if we ontratedthe 3-yle, we would get a new vertex of degree 3. If this vertex is a soure or a sink, thenwe an remove an arbitrary edge from the 3-yle. Otherwise, we remove an edge from the3-yle, so that the path to or from the single in or out edge is broken.29



5.2 Algorithm 1We will now onsider the ase where G has no blue edges. See Setion 4.2 for the de�nitionof a blue edge. If there are no blue edges, then we an �nd the maximum ayli subgraphin polynomial time. For our algorithm, we will use the following lemma:Lemma 15 If G has maximum degree 3 and ontains no blue edges, then all yles in Gare edge disjoint.Proof. Assume that there are some 2 yles in G that have an edge (or a path) inommon. First ase: assume that these two yles have an isolated edge (i; j) in ommon,i.e. edge (i; j) belongs to both yles, but edges (a; i) and (j; b) eah belong to only oneof these yles. Then vertex i must have in-degree 2 and vertex j must have out-degree2. Thus, edge (i; j) is a blue edge, whih is a ontradition. Seond ase: assume thesetwo yles have a path fi; � � � ; jg and that this path is maximal, i.e. edge (a; i) and (j; b)eah belong to only one of these yles. Vertex i must have in-degree 2 and vertex j musthave out-degree 2. Therefore, one of the edges on the path must be a blue edge, whih is aontradition. 2.Sine all the yles in a graph with no blue edges are edge disjoint, we an �nd themaximum ayli subgraph of suh a graph in polynomial time. Given a graph G ontainingno blue edges, the following is an algorithm to �nd the maximum ayli subgraph of G:Algorithm 1:Step 0. Let S={},G'=G.Step 1. While G' is not ayli, do:Step 1a. Find a yle in G'.Step 1b. Remove an edge in this yle from G'.Step 1. Remove the rest of the edges in this yle from G' andadd them to S.Step 2. Add the remaining edges to S.Step 3. Output S.5.3 Algorithm 2If G has blue edges, then the problem is NP-hard. For this ase, we will give the following89 -approximation algorithm. See Setion 5.1 for an explanation of Step 1a.30



Algorithm 2:Step 0. Let S={}, G'=G.Step 1. While there are still blue edges in G', do:Step 1a. Optimally treat any 2- and 3-yles.Step 1b. Find a blue edge e in G'.Step 1. If e is ontained in a omponent with exatly 9edges then:Solve for the maximum ayli subgraph ofthis omponent exatly.Else: Remove the four edges neighboring e from G'and add them to S.Step 1d. Contrat any verties with in-degree and out-degree 1.Step 2. If G' is ayli, then add all edges in G' to S. If G' is notayli, then sine it ontains no blue edges, useAlgorithm 1 to find the maximum ayli subgraph of G' andadd it to S.Step 3. Unontrat every edge added to S that was ontrated in Step4. For every ontrated edge that was removed from G' andnot added to S, remove any edge from the orresponding pathin G and add the remaining edges to S.Step 4. Output S.Theorem 9 Algorithm 2 is an 89 -approximation for the maximum ayli subgraph problemin graphs with maximum degree 3.Proof. We will show that for eah iteration of Step 1 through Step 5 of the algorithm,for every edge we remove, we ontrat or add to S a total of at least 8 edges. Edges thatwe ontrat will be added to S in Step 3.Consider a blue edge (i; j) in G. There must be four distint verties within distane 1from i and j (sine there are no 2- or 3-yles). So there are 6 verties that are at no morethan one edge away from vertex i or vertex j (inluding verties i and j). Therefore, theremust be at least 3�62 = 9 edges in this neighborhood. If there are exatly 9 edges, thenwe have found a onneted omponent and Algorithm 2 will solve this omponent exatly.Otherwise, if there are more than 9 edges in the neighborhood of edge (i; j) (i.e. thereould be as many as 12 edges) then for eah of the 4 distint verties that are exatly oneedge away from i or j, we an either ontrat this vertex, or we an add two more edges31



to S (whih would let us add more than 8 edges to S in this round). Thus, for every oneedge we remove from G, we add at least 8 edges to S whih proves that Algorithm 2 is a89 -approximation algorithm. 2
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