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Abstract

In the traveling salesman path problem, we are given a set of cities, traveling costs between
city pairs and fixed source and destination cities. The objective is to find a minimum cost path
from the source to destination visiting all cities exactly once. In this paper, we study polyhedral
and combinatorial properties of a variant we call the traveling salesman walk problem, in which
the objective is to find a minimum cost walk from the source to destination visiting all cities at
least once.

We first characterize traveling salesman walk perfect graphs, graphs for which the convex
hull of incidence vectors of traveling salesman walks can be described by linear inequalities. We
show these graphs have a description by way of forbidden minors and also characterize them
constructively. We also address the asymmetric traveling salesman path problem and give a
factor O(

√
n)-approximation algorithm for this problem.

1 Introduction

The traveling salesman problem (TSP) is a well-studied problem in combinatorial optimization. The
books [Ge02, LLKD85] provide a compendium of results and history on the problem. In this paper,
we study a generalization of the problem, which has not received much attention: the traveling
salesman path problem. Given an undirected graph G = (V,E), a cost function on the edges, and
two nodes s, t ∈ V , the traveling salesman path problem (TSPP) is to find a Hamiltonian path
from s to t visiting all cities exactly once. Note that nodes s and t need not be distinct; however
the case s = t is equivalent to the TSP.

A common approach to studying the TSP is to use polyhedral methods. For each traveling
salesman path P , we associate a vector xP ∈ RE, where edge variable xP

e takes value 1 if e appears
in path P and 0 otherwise. For any set S ⊂ V , let δ(S) denote the set of edges with exactly one
endpoint in S and for a set F ⊆ E, let x(F ) =

∑
e∈F xe. Then the problem of finding a min cost

s-t traveling salesman path can be captured by the following integer program:
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min
∑

e∈E cexe (1)

subject to x(δ(S)) ≥ 1 if |{s, t} ∩ S| = 1 for S ( V, S 6= ∅ (2)

x(δ(S)) ≥ 2 if |{s, t} ∩ S| = 0 or 2 for S ( V, S 6= ∅ (3)

x(δ(v)) = 2 for all v ∈ V \{s, t} (4)

x(δ(s)) = x(δ(t)) = 1 if s 6= t (5)

x(δ(s)) = x(δ(t)) = 2 if s = t (6)

xe ∈ {0, 1} for all e ∈ E. (7)

We obtain a linear program by replacing the integrality constraints (7) with constraints 0 ≤ xe ≤ 1.

One problem that arises from restricting the traveling salesman route to Hamiltonian paths is
that the shortest way to visit all the vertices of G may not be a simple path, i.e., may visit some
vertices or edges multiple times. Another problem, arising from the linear programming relaxation,
is that the polytope defined by the constraints of the linear program is not full dimensional. We
resolve these problems by relaxing the condition of visiting every vertex exactly once and define
an s-t traveling salesman walk (or s-t walk for short) as a walk from s to t visiting all vertices at
least once, possibly with multiple visits to edges or vertices. The traveling salesman walk (TSW)
problem asks for the minimum cost s-t traveling salesman walk. This is equivalent to the traveling
salesman path problem on the metric completion of G, where the cost between any pair of cities
is the cost of the shortest path connecting the cities. In the case s = t, we will call an s-t walk a
graphical traveling salesman tour (following the terminology of [FN92]).

1.1 Notation and definitions

Let X(G, s, t) denote the set of s-t traveling salesman walks. For each walk W ∈ X(G, s, t), we
associate a vector xW ∈ RE such that xW

e represents the number of times edge e appears in W . We
will identify a walk with the vector that represents it. The s-t-traveling salesman walk polyhedron
is the convex hull of all vectors xW with W ranging over all s-t traveling salesman walks of G. If
s = t, the polyhedron conv(X(G, s, t)) is the graphical traveling salesman tour polyhedron studied
in [FN92]. A point of a polyhedron is an extreme point if and only if it is the unique solution to a
set of equations taken from the linear description of that polyhedron.

Note that if xW is an s-t traveling salesman walk of G, then so is xW +2χe for any edge e (where
χe denotes the characteristic vector for edge e). Therefore, the traveling salesman walk polyhedron
of G is an unbounded polyhedron if G is connected.

The fractional traveling salesman walk polyhedron for a graph G with fixed vertices s and t is
defined by

P (G, s, t) =






x(δ(S)) ≥ 1 if |{s, t} ∩ S| = 1 for S ( V, S 6= ∅
x ∈ RE : x(δ(S)) ≥ 2 if |{s, t} ∩ S| = 0 or 2 for S ( V, S 6= ∅

x ≥ 0




 .

Note that not all integral points in P (G, s, t) correspond to s-t traveling salesman walks, as
shown by the following example.
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Example 1.1 Consider the 6-cycle C6 with s and t at distance 3. The assignment x∗
e = 1 for all

edges e is an integral solution in P (G, s, t) but does not correspond to an s-t traveling salesman
walk.

1.2 Our results

In this paper, we address two aspects of the traveling salesman walk problem. The first is inspired
by the work of Fonlupt and Naddef which characterizes the set of graphs for which the extreme
points of the fractional graphical traveling salesman polyhedron are graphical traveling salesman
tours [FN92]. These graphs are called TSP-perfect and are characterized by a list of forbidden
minors. For such graphs, the graphical TSP polyhedron and fractional graphical TSP polyhedron
have the same extreme points, implying that the graphical TSP polyhedron has a known description
by linear inequalities and therefore, the graphical TSP can be solved in polynomial time.

We consider the analogous problem for the TSW problem and give a complete characterization
of graphs for which the extreme points of the traveling salesman walk polyhedron correspond to
traveling salesman walks. Our characterization of these walk-perfect graphs is also by forbidden
minors. In Section 3, we give a constructive description for this set of graphs and in Section 4,
we use the description to prove our main theorem. In Section 5, we give an alternate proof of the
characterization of these graphs based on the characterization of TSP-perfect graphs from [FN92].

Next, we consider approximation algorithms for traveling salesman walk problems. For the
symmetric traveling salesman walk problem, Hoogeveen [Hoo91] studies approximation algorithms
for walks on metric instances. For fixed s and t, he gives a 5/3-approximation for the minimum cost
s-t traveling salesman walk and for fixed s (and varying endpoint), he gives a 3/2-approximation
for the minimum cost traveling salesman walk starting at s.

We address the asymmetric version of the traveling salesman walk problem (ATSW), in which
edge costs satisfy the triangle inequality but may be asymmetric (i.e. cij 6= cji). For the case s = t,
Frieze, Galbiati and Maffioli give a log n-approximation algorithm in [FGM82]. In Section 6, we use
similar methods to give the first non-trivial ATSW approximation algorithm, with approximation
factor O(

√
n).

2 Walk-Perfection

In this section, we introduce the notion of walk-perfection of a graph. We first review previous
work on TSP-perfect graphs. For graph G, a graphical traveling salesman tour, or tour for short, is
a connected multigraph with even degree at every vertex. Let XTSP (G) denote the set of graphical
traveling salesman tours of G and consider the fractional graphical traveling salesman polyhedron

P (G) =

{
x ∈ RE : x(δ(S)) ≥ 2 for S ( V, S 6= ∅

x ≥ 0

}
.

Properties of this polyhedron and other combinatorial results have been studied in [CFN85],
[Fle85], [FN92], [NR91], and [NR93]. Clearly, conv(XTSP (G)) ⊆ P (G); however, there are graphs
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for which the inclusion is strict. A graph G is TSP-perfect if conv(XTSP (G)) = P (G), i.e., the
vertices of the polyhedron are graphical traveling salesman tours. Note that the equality always
holds for disconnected graphs G, since in this case, both the convex hull of tours and the fractional
graphical TSP polyhedron are the empty set. Therefore, all disconnected graphs are TSP-perfect.

A minor of a graph G = (V,E) is a graph that can be obtained from G by a sequence of
edge deletions (denoted G\{e}) and edge contractions (denoted G.e). A graph G is H minor free
if G does not contain H as a minor. Fonlupt and Naddef show that there is a forbidden minor
characterization of TSP-perfect graphs using the graphs M1,M2,M3 in Figure 1.

Theorem 2.1 [FN92] A connected graph G is TSP-perfect if and only if G is [M1,M2,M3] minor
free.

M MM1 2 3

Figure 1: Excluded minors for TSP-perfect graphs.

We consider the analogous problem for the TSW problem. As with the traveling salesman
problem, there are graphs for which the inclusion conv(X(G, s, t)) ⊆ P (G, s, t) is strict. Our goal
is to characterize graphs G for which equality holds for any choice of s and t.

Definition 2.2 A graph G is s-t walk-perfect if P (G, s, t) = conv(X(G, s, t)) and G is walk-perfect
if it is s-t walk-perfect for all choices of s and t.

As in the case of TSP-perfection, any disconnected graph G satisfies conv(X(G, s, t)) = P (G, s, t).
Therefore, all disconnected graphs are walk-perfect and we focus our attention on characterizing
the set of connected walk-perfect graphs.

In Example 1.1, if all edge costs in the 6-cycle are equal to a fixed positive value, then x∗ is an
optimal solution over P (G, s, t) that does not correspond to an s-t traveling salesman walk. This
shows that C6 with s and t at distance 3 is not s-t walk-perfect and therefore, C6 is not walk-perfect.
A graph is called minimally non walk-perfect if it is not walk-perfect but all of its proper minors
are walk-perfect. Our main theorem, which we prove in the next two sections, states that C6 is the
only minimally non walk-perfect graph.

Theorem 2.3 A connected graph G is walk-perfect if and only if G is C6 minor free.

In [FN92], Fonlupt and Naddef prove their main result by characterizing properties of minimally
non TSP-perfect graphs, graphs that are not TSP-perfect but all of whose minors are TSP-perfect.
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They show that the only minimally non TSP-perfect graphs are the graphs M1,M2,M3 in Figure
1 and leave as an open problem a direct characterization of TSP-perfection using the structure of
[M1,M2,M3] minor free graphs. One of the goals in our research was to address this open problem.
As an initial step, we need a proof characterizing walk-perfect graphs that is independent of the
results of Fonlupt and Naddef. We therefore include two proofs of our main result. The first
proof leads to an independent constructive characterization of TSP-perfect graphs, thus settling
the aforementioned open question of Fonlupt and Naddef [Lam05]. The second proof relies directly
on the results of Fonlupt and Naddef, but is more concise.

3 C6 Minor Free Graphs

In this section, we give a constructive characterization of the set of C6 minor free graphs. We will
use this characterization in the first proof of our main theorem.

We first show that we can reduce our problem to the characterization of 2-connected walk-
perfect graphs. Suppose G1 and G2 are connected graphs with specified vertices s1, t1 ∈ V (G1)
and s2, t2 ∈ V (G2). Let v1 ∈ V (G1) and v2 ∈ V (G2) be chosen so that at least two of s1, s2, t1, t2
are equal to v1 or v2. The operation Φ1 identifies vertices v1 and v2 to obtain graph G (see Figure
2) with cut vertex v. If the set {s1, s2, t1, t2}\{v1, v2} has two vertices, then relabel these vertices
by s and t. If it has one vertex, then relabel this vertex by s and let t = v; if it has no vertices,
then let s = v and t = v.

ΦG G

v
1 2

v

1
2

1
v

Figure 2: Operation Φ1.

Every 1-connected graph can be built by repeated applications of operation Φ1 from blocks
which are either 2-connected graphs or single edges. In Lemma 4.6, we will show that walk-
perfection of a graph is preserved under operation Φ1 and therefore, we can focus our attention on
the characterization of 2-connected walk-perfect graphs.

An ear decomposition G1, G2, . . . Gm = G of a graph G is a sequence of subgraphs starting from
a simple graph G1 (a vertex, edge or cycle) such that for each i, Gi+1 is obtained from Gi by
adding an ear. The operation of adding an ear is performed by choosing two vertices u and v (the
endpoints of the ear) from Gi and adding a path from u to v using new vertices (or no vertices if
the path is edge (u, v)). If u 6= v, the ear is proper and a proper ear decomposition is one in which
every ear operation is proper. The following theorem is due to Robbins ([Sch03]).

Theorem 3.1 G is 2-connected if and only if G has a proper ear decomposition starting from any
cycle of G.
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One particular ear operation is duplication of a degree-2 vertex. In such an operation, for a
vertex u of degree 2 in Gi with neighborhood N(u) = {a, b}, duplication of u results in a graph
Gi+1 on vertices and edges

V (Gi+1) = V (Gi) ∪ {u′}
E(Gi+1) = E(Gi) ∪ {(a, u′), (u′, b)}).

a

b

a

b

uu u’

Figure 3: Vertex duplication of a degree-2 vertex.

Let K5 denote the complete graph on five vertices and consider the class T of 2-connected graphs
obtained from K5 by repeated applications of the operations edge deletion, edge contraction, and
duplication of degree-2 vertices. We show that this set of graphs is exactly the set of 2-connected
graphs not containing a C6 minor.

Figure 4: Examples of graphs in T .

Theorem 3.2 A 2-connected graph G is C6 minor free if and only if G ∈ T .

Proof. Since K5 does not contain a 6-cycle and the size of the largest cycle cannot increase under
edge deletion, contraction, or vertex duplication, no graph in T contains a C6 minor.

Conversely, suppose G is 2-connected and C6 minor free. We will show G ∈ T by showing
that there is an ear decomposition of G starting with a minor of K5 such that each ear operation
corresponds to edge addition or vertex duplication of a degree-2 vertex. By Theorem 3.1, G has
a proper ear decomposition G1, G2, . . . Gm = G and we can choose the initial graph G1 in the
decomposition to be the largest cycle Ck = {v1, v2, . . . vk} in G (k ≤ 5 by assumption). The edges
(vi, vi+1) for i = 1, 2, . . . k − 1 and (vk, v1) will be called cycle edges and the edges (vi, vj) with
j 6= i − 1, i + 1(mod k) will be called chords. If there are j − 1 induced chords in G between
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vertices v1, v2, . . . vk, let Gj denote the cycle v1, v2, . . . vk together with all induced chords and let
a, b ∈ {v1, . . . vk} be the two vertices that are endpoints for the next ear operation. Because we
have already included all chords, the next ear cannot be edge (a, b). Also, note that the length of
the longest path between a and b in Gj is at least ⌈k

2⌉, so if the next ear is a path of length at

least 3, then it would create a cycle of length at least ⌈k
2⌉+ 3 > k (since k ≤ 5), a contradiction to

our choice of k. Therefore, it must be a path of length 2 which consists of an additional vertex u′

and edges (a, u′), (u′, b). Now, if (a, b) is a cycle edge in Ck, then the longest path from a to b has
length k − 1, so adding an ear of length 2 would create a k + 1 cycle, a contradiction. Therefore,
(a, b) cannot be a cycle edge (but a and b may be connected by a chord). Since k ≤ 5, a and b have
a common neighbor, say u.

Claim: degGj
(u) = 2, i.e., the neighborhood of u in Gj is NGj

(u) = {a, b}. Otherwise, let w ∈
NGj

(u)\{a, b}. Since k ≤ 5, w must also be adjacent to either a or b, say a. Then the cycle formed
by concatenating the path (w, u), (u, a), (a, u′), (u′, b) and the path from b to w (along G1, but not
through a) has length at least k + 1, which is a contradiction (see Figure 5).

a

uu

a b b

w

u’ u’

Figure 5: Forbidden adjacencies in the ear operation.

Therefore, u has degree 2 in Gj and the operation of adding vertex u′ and edges (a, u′), (u′, b)
corresponds to vertex duplication of u. Note that since (Gj\{u}) ∪ {u′} = Gj , the same argument
shows we cannot add a path p of any length from either u or u′ to any other vertex in Gj\{a, b}.
Similarly, we cannot add a path p of any length between u and u′ (denoted u

p→ u′), since the cycle

formed by concatenating the path (a, u), u
p→ u′, (u′, b) and the path of k − 2 cycle edges from b to

a has length at least k +1 (see Figure 5). Therefore, neither u nor u′ can be chosen as endpoints of
the next ear. This implies we must always use vertices among {v1, v2, . . . vk} as ear endpoints and
each ear operation corresponds to duplicating a vertex. Since G1 is a minor of K5, it follows that
G ∈ T . 2

This theorem gives us a constructive characterization of the set of 2-connected C6 minor free graphs.
Note that the proof of Theorem 3.2 also shows the following.

Corollary 3.3 Suppose G ∈ T is obtained from K5 by a sequence of edge deletions, contractions
and degree-2 vertex duplications. Then first performing all edge deletions and contractions followed
by any permutation of the degree-2 vertex duplications also results in graph G.

From this corollary, if graph G ∈ T has two specified vertices s and t which result from
the duplication of a degree-2 vertex u, then we can reorder the vertex duplications so that the
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duplication of u to obtain s and t comes first in the ordering and all other vertex duplications
follow. Otherwise, if s and t do not result from the duplication of a degree-2 vertex, we can assume
that s and t are vertices in the initial subgraph of K5 to which the operations of edge deletion,
edge contraction, and degree-2 vertex duplication are performed to obtain G.

4 Characterization of Walk-Perfect Graphs

In this section, we will show that C6 is the only forbidden minor in the set of 2-connected traveling
salesman walk-perfect graphs. Since graph G has specified vertices s and t, we first define the
notion of a labeled minor of a graph. The operation of edge deletion remains the same as for
unlabeled graphs. For the operation of edge contraction, if an edge e is chosen for edge contraction,
the resulting vertex from the contraction receives the labels of both endpoints of e, with possibly
both labels s and t. In the case s and t label the same vertex in the resulting graph, an s-t traveling
salesman walk is a traveling salesman tour.

We first show that walk-perfection is preserved under the labeled minor operations; the proof
is modeled on Fonlupt and Naddef’s proof that TSP-perfection is preserved under the minor oper-
ations [FN92].

Lemma 4.1 Any connected labeled minor of a connected walk-perfect graph is walk-perfect.

Proof. Suppose a connected graph G has specified vertices s, t ∈ V (G) and suppose G is s-t
walk-perfect. We show that if deletion of an edge e results in a connected graph, then the minor
G \ {e} is s-t walk-perfect. Since G \ {e} is connected, P (G \ {e}, s, t) is nonempty. Then let y be
an extreme point of P (G \ {e}, s, t) and let

xf =

{
yf if f ∈ E \ {e},
0 if f = e.

Since y is an extreme point of P (G\{e}, s, t) and since x has one more variable and one more linearly
independent tight constraint than y, x is an extreme point in P (G, s, t). By s-t walk-perfection of
G, x is an s-t traveling salesman walk in G, and since x does not use edge e, y is an s-t traveling
salesman walk in G \ {e}. Thus, G\{e} is s-t walk-perfect.

Now, for the edge contraction operation, if G is connected, then G.e is connected, so for any
vertices s and t, P (G.e, s, t) is nonempty. Let y be an extreme point of P (G.e, s, t) and let

xf =

{
yf if f ∈ E \ {e},
0 if f = e.

Consider cuts δ(W ′) of G containing e such that s and t are on the same side of the cut and let
α = min x(δ(W ′)). Similarly, consider cuts δ(W ′′) of G containing e such that s and t fall on
different sides of the cut and let β = min x(δ(W ′′)). Now, let

xf =

{
yf if f ∈ E \ {e},
max{0, 2 − α, 1 − β} if f = e.

(8)
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Note that x ∈ P (G, s, t) since any cut δ(W ′) containing e that does not separate s and t satisfies
x(δ(W ′)) ≥ 2, any cut δ(W ′′) containing e that separates s and t satisfies x(δ(W ′′)) ≥ 1, and any
cut not containing e is also a cut in G.e.

Let θ(x) and θ(y) denote the set of tight constraints for x and y. By possibly taking comple-
ments, we can assume any tight constraint C in θ(y) does not contain the vertex resulting from
contraction of edge e. Then C is also a tight constraint for x. Since any tight edge constraint for
y is also tight for x, it follows that x is defined by θ(y) and

xe = 0 if α ≥ 2 and β ≥ 1

x(δ(W
′
)) = 2 if α < 2 and 2 − α ≥ 1 − β

x(δ(W
′′
)) = 1 if β < 1 and 1 − β ≥ 2 − α,

where W
′

= arg min x(δ(W ′)) and W
′′

= arg minx(δ(W ′′)). Since x has one more variable and
one more linearly independent tight constraint, it is an extreme point of P (G, s, t) and thus an s-t
traveling salesman walk in G (by s-t walk-perfection of P (G, s, t)). Therefore, y is an s-t traveling
salesman walk in G.e, implying G.f is s-t walk-perfect. 2

We first prove walk-perfection for graph K5 by enumerating the extreme points of the fractional
walk polyhedron using the program polymake [GJ00]. We check that for each extreme point, the
degree of every vertex v ∈ {s, t} is even and the degrees of s and t are odd (see [Lam05] for a
complete enumeration of extreme points). Since these conditions are satisfied, all of the extreme
points correspond to s − t traveling salesman walks and the lemma follows.

Lemma 4.2 K5 is walk-perfect.

We give a second proof of this result in Section 5 using the characterization of TSP-perfect
graphs. However, it is important to note that we have verified this result independently of the
TSP-perfect graph characterization, as we would like a proof of our main result that is independent
of this result.

Note that if G is a connected graph, then the fractional s-t walk polyhedron P (G, s, t) is full
dimensional (otherwise, P (G, s, t) is empty). The following theorem from [Goe94] (which we restate
in our context) gives a condition for showing the extreme points of polyhedron P (G, s, t) are integral.

Theorem 4.3 [Goe94] Let G be a connected graph and let P = {x : Ax ≤ b} be any polyhedron
with X(G, s, t) ⊂ P . Then P = conv(X(G, s, t)) if for any non-zero cost function c, we can
show that there exists an inequality in {Ax ≤ b} satisfied at equality by all optimal solutions to
min{cx : x ∈ X(G, s, t)} whenever this minimum is finite.

We use this theorem to show that walk-perfection is preserved under duplication of degree-2
vertices. Let G be a C6 minor free graph, let s, t ∈ V (G), and consider the ear decomposition of G
in Theorem 3.2. If s and t are obtained by duplicating a vertex u, then by Corollary 3.3, we can
reorder the vertex duplications so that the operation of duplicating u to obtain s and t comes first
in the ordering and all other vertex duplications follow. In this case, the sequence of ear operations

9



gives graphs G1, G2, . . . Gk = G, where Gi+1 is obtained from Gi by an edge addition for i < j,
Gj+1 is obtained from Gj by duplicating u to obtain s and t and Gi+1 is obtained from Gi by a
degree-2 vertex duplication for i > j. Otherwise, if s and t are not obtained by duplicating the
same vertex, we can choose the first graph G1 to be the largest cycle containing s and t and no
subsequent vertex duplication relabels a new vertex as s or t. We first show that for i > j and for
fixed s, t ∈ V (Gi), if Gi is s-t walk-perfect, then Gi+1 is also s-t walk-perfect.

Lemma 4.4 For fixed s, t ∈ V (G), suppose G is s-t walk-perfect and contains a vertex u of degree
2 with N(u) = {a, b} (possibly u = s or u = t). Then the graph G′ = (V ∪{u′}, E∪{(a, u′), (u′, b)})
is also s-t walk-perfect.

Proof. For any cost function c on G′, consider the set P of minimum cost s-t traveling salesman
walks in G′. If c has a negative component then the optimum is not finite, so we can assume that c
is nonnegative. We show that there is an inequality of the fractional s-t walk polyhedron satisfied
at equality by all s-t traveling salesman walks in P. If c does not satisfy the triangle inequality,
then there is an edge (i, j) such that cij > cik + ckj and in all optimal solutions, xij ≥ 0 is a tight
inequality.

Now, let c be a cost function satisfying the triangle inequality on G′, let I = N(a)∩N(b) denote
the set of vertices in G′ adjacent to both a and b, and for any proper subset S, let f(S) = 1 if
|S ∩ {s, t}| = 1, f(S) = 2 otherwise. By abuse of notation, we will use f(u) to denote f({u}).
Case 1. caw + cwb > cav + cvb for some v,w ∈ I.

If the inequality x(δ(w)) ≥ f(w) is not tight for all optimal solutions x ∈ P, there exists an optimal
traveling salesman walk x∗ such that x∗(δ(w)) > f(w). In this case, we show one of the non-
negativity constraints xaw ≥ 0 or xwb ≥ 0 is tight for all x ∈ P. If x∗

aw ≥ 1, x∗
wb ≥ 1, decreasing

both values by 1 and increasing x∗
av, x∗

vb by 1 results in a s-t traveling salesman walk of strictly
smaller cost (since degree parity is preserved at every vertex and no vertex is disconnected), a
contradiction to the optimality of x∗. Therefore, it must be the case that one of x∗

aw or x∗
wb is zero,

say x∗
aw = 0. Then x∗

wb ≥ 3 (since x∗(δ(w)) > f(w) and the degrees of s and t are odd). Since
another traveling salesman walk is obtained by decreasing x∗

wb by 2, the optimality of x∗ implies
cwb = 0. Now, caw > cav + cvb = cav + cvb + cwb, so no optimal s-t traveling salesman walk uses
edge (a,w), implying inequality xaw ≥ 0 is tight for all x ∈ P.

Case 2 cav + cvb = caw + cwb for all v,w ∈ I.

Case 2.1 cav or cvb = 0 for some v ∈ I\{s, t}.
Without loss of generality, let cvb = 0. Then any s-t traveling salesman walk in G = G′\v
can be extended by edge (v, b) (traversed twice) to an s-t traveling salesman walk in G′

of the same cost. Conversely, since cav = cav + cvb = caw + cwb for all w ∈ I, w 6= v,
any s-t traveling salesman walk x in G′ can be converted into an s-t traveling salesman
walk y in G of the same cost as follows. Choose some w ∈ I\v and let yaw = xaw + xav

and ywb = xwb + xav. Since the parity of degrees at all vertices remain the same and
the costs of solutions x and y are the same, the optimal s-t traveling salesman walks
in G and the optimal s-t traveling salesman walks in G′ have the same cost. Now,
since G = G′\{v} is s-t walk-perfect, there exists some constraint that is tight for all
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optimal s-t traveling salesman walks in G. If this is a non-negativity constraint ye ≥ 0,
then constraint xe ≥ 0 is also tight for all optimal s-t traveling salesman walks x in G′.
Otherwise, it is a cut constraint C and we can assume without loss of generality that
b ∈ C. Then constraint C ′ = C ∪ {v} is tight for every x ∈ P.

Case 2.2 cav , cvb > 0 for all v ∈ I\{s, t}.
We claim that for v ∈ I\{s, t}, any optimal integral solution x∗ satisfies x∗(δ(v)) =
f(v) = 2. To prove this, assume x∗(δ(v)) ≥ 3. If x∗

av or x∗
vb ≥ 3, decreasing x∗ by

2 on this edge yields another integral solution of strictly smaller cost, contradicting
minimality of x∗. Since x∗(δ(v)) is even for v ∈ I\{s, t}, we must have x∗

av = x∗
vb = 2.

For any other vertex w ∈ I\v, either x∗
aw ≥ 1 or x∗

wb ≥ 1, say x∗
aw ≥ 1. Then by

decreasing x∗
aw, x∗

av , x
∗
vb by 1 and increasing x∗

wb by 1, we obtain another s-t traveling
salesman walk of strictly smaller cost, again a contradiction. Therefore, x∗(δ(v)) =
f(v) = 2 for all v ∈ I\{s, t}. 2

We have shown that performing vertex duplication on G to obtain a new vertex not labelled s
or t preserves s-t walk-perfection of G. Now, we show walk-perfection is also preserved under vertex
duplication when the two resulting vertices are relabeled s and t. Consider the ear decomposition
G1, G2, . . . Gk = G discussed above, where Gi+1 is obtained from Gi by an edge addition for i < j
and Gj+1 is obtained from Gj by duplicating u to obtain s and t.

Lemma 4.5 If Gj is walk-perfect and Gj+1 is obtained from Gj by duplicating vertex u to obtain
s and t, then Gj+1 is also walk-perfect.

Proof. By construction of the ear decomposition, Gj is obtained from the cycle G1 by edge
additions and therefore has no other vertex duplications (i.e., is a subgraph of the graph in Figure
6). Note that this graph is a subgraph of K5 and is therefore walk-perfect.

s

tu

aa b b

Figure 6: u is duplicated to obtain s and t.

Case 1. cas + csb > cat + ctb or cas + csb < cat + ctb

The analysis of Case 1 in Lemma 4.4 gives a tight constraint for this case.

Case 2. cas + csb = cat + ctb.

Case 2.1. One of cas, csb, cat or ctb equals 0.

Without loss of generality, let csb = 0. For ŝ = b and t̂ = t, any ŝ-t̂ traveling salesman
walk in G = G′\s can be extended by edge (s, b) to an s-t traveling salesman walk in
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G′ of the same cost. Conversely, since cas = cas + csb = caw + cwb for all w 6= s, any s-t
traveling salesman walk x in G′ can be converted into an ŝ-t̂ traveling salesman walk
y in G of the same cost as follows. Choose w ∈ I\s and let yaw = xaw + xas and
ywb = xwb + xas. Since the parity of degrees at all vertices remain the same except at
vertex ŝ = b and the costs of solutions x and y are the same, the optimal ŝ-t̂ traveling
salesman walks in G and the optimal s-t traveling salesman walks in G′ have the same
cost. Now, since G = G′\{s} is walk-perfect, there exists some constraint that is tight
for all optimal ŝ-t̂ traveling salesman walks in G. If this is a non-negativity constraint
ye ≥ 0, then constraint xe ≥ 0 is also tight for all optimal s-t traveling salesman walks x
in G′. Otherwise, it is a cut constraint C and we can assume without loss of generality
that b ∈ C. Then constraint C ′ = C ∪ {s} is tight for every x ∈ P.

Case 2.2. cas, csb, cat, ctb > 0.

If cas = cat (and therefore csb = ctb), then let F be the graph with vertices V (F ) =
G′\{s, t} ∪ {u} and edges E(F ) = E(G′) ∪ {(a, u), (u, b)}. Let yau = x∗

as + x∗
at and

yub = x∗
sb +x∗

tb and ye = xe for all other edges e. Then y is a traveling salesman tour on
F with cost at most the cost of x∗ in G′. Also, any optimal traveling salesman tour on
F can be converted to an s-t traveling salesman walk x in F of smaller cost by letting
xas = yau, xat = 0, xsb = xtb = yub/2 if yau, yub are both even (and therefore equal to 2,
by optimality of y) and xas = yau, xat = xsb = 0, xtb = yub if yau, yub are both odd. This
shows minimum s-t traveling salesman walks in G′ and minimum traveling salesman
tours in F have the same cost and since F ≃ G is walk-perfect, there is a constraint
that is tight for all optimal traveling salesman tours of F . If this is a non-negativity
constraint ye ≥ 0, then xe ≥ 0 is also tight for all x ∈ P. Otherwise the tight constraint
is a cut constraint C and we can assume without loss of generality that u ∈ C. Then
C ′ = C\{u} ∪ {s, t} is a tight constraint for all x ∈ P.

Therefore, cas 6= cat and csb 6= ctb. If the inequality x(δ(s)) ≥ f(s) = 1 is not tight for
all x ∈ P, let x∗ be an optimal solution with x∗(δ(s)) > 1. Since deg(s) is odd and
x∗

as, x
∗
sb < 3 (by optimality of x∗), we can assume x∗

as = 2, x∗
sb = 1. Then cas < cat

and csb > ctb (otherwise, decreasing x∗
as by 2 and increasing x∗

at by 2 gives a solution of
strictly smaller cost). If deg(t) = 3, we have the following cases.

Case 2.2.i. x∗
at ≥ 1, x∗

tb ≥ 1. In this case, decreasing x∗
as by 2 gives an s-t traveling

salesman walk of strictly smaller cost, a contradiction.

Case 2.2.ii. One of x∗
at, x

∗
tb is zero and the other is at least 3. Then subtracting 2 from

the edge of value at least 3 gives an s-t traveling salesman walk of strictly smaller cost,
again a contradiction.

Since deg(t) is odd, it must be the case that x∗
as = 2, x∗

sb = 1 and deg(t) = 1. Now,
consider the support graph H = {e ∈ E(V (G′)\{s, t}) : x∗

e > 0} and let x∗
H denote the

restriction of x∗ to this graph. The remaining cases are the following.

Case 2.2.iii. x∗
at = 1, x∗

tb = 0. In this case, x∗
H contains an Eulerian walk from a to b

in H since x∗
H(w) is even for all w ∈ H\{a, b} and odd for w = a or b. Therefore, H is

12



connected and a traveling salesman walk of strictly smaller cost can be obtained from
x∗ by decreasing x∗

as by 2.

Case 2.2.iv. x∗
at = 0, x∗

tb = 1. If H is connected, the same argument in Case 2.2.iii gives
a traveling salesman walk of strictly smaller cost, so we can assume H is not connected.
Let C be the component of H containing a (note that b 6∈ C) and let C ′ = C ∪{s}. For
any edge e = (i, j) ∈ E(G) with i ∈ C, j 6∈ C, let qs

ij (qt
ij) denote the shortest path in x∗

from i to a together with edges (a, s), (s, b) (edges (a, t), (t, b)) and the shortest path in
x∗ from b to j. The cost of edge e = (i, j) must be at least the cost of path qs

ij (which is
equal to the cost of path qt

ij); otherwise, by replacing path qs
ij by edge (i, j), we do not

disconnect any vertices of the graph (since Gj is a subset of the graph in Figure 6) while
preserving the degree parity at every vertex, which yields an s-t traveling salesman walk
of strictly smaller cost.

We claim x(δ(C ′)) = 1 for every x ∈ P. Otherwise, if x∗(δ(C ′)) ≥ 2 for some x∗ ∈ P,
then s ∈ C ′, t 6∈ C ′ implies x∗(δ(C ′)) ≥ 3. One of x∗

sb, x
∗
at must be zero, say x∗

at = 0
(otherwise, if x∗

sb, x
∗
at ≥ 1, then decreasing both of these by 1 and increasing x∗

as, x
∗
tb

by 1 gives an s-t traveling salesman walk of strictly smaller cost). Now, consider edges
(k1, l1), (k2, l2), (k3, l3) (possibly including multiple copies of the same edge) crossing C ′

in path x∗. By rerouting x∗
k1l1

, x∗
k2l2

and x∗
k3l3

along the paths qs
k1l1

, qs
k2l2

and qs
k3l3

(or
keeping x∗

ki,li
if (ki, li) = (s, b)), we obtain an s-t traveling salesman walk y of smaller

or equal cost with either yas ≥ 3 or ysb ≥ 3 (if x∗
sb = 0, then reroute along the paths

qt
k1l1

, qt
k2l2

and qt
k3l3

). Now, by decreasing this value by 2, we obtain an s-t traveling
salesman walk of strictly smaller cost, a contradiction. Therefore, x(δ(C ′)) = 1 for
every x ∈ P. 2

We now show that walk perfection for any graph can be reduced to walk-perfection of its blocks.

Lemma 4.6 s-t walk-perfection is preserved under operation Φ1.

Proof. Suppose vertices v1 and v2 in connected graphs G1 and G2 are identified to obtain graph
G and let s, t ∈ V (G). Consider the labeled minor H1 obtained by contracting G2 to a single vertex
in G. The result is graph G1 where vertex v1 has label s if s ∈ V (G2), label t if t ∈ V (G2), labels
s and t if s, t ∈ V (G2) and is unlabeled if s, t ∈ V (G1)\{v1}. Similarly, conisder labeled minor H2

obtained by contracting G1. Since s-t walk-perfection is preserved under connected labeled minors,
if G is s-t walk-perfect, then so are H1 and H2.

Conversely, suppose H1 and H2 are s-t walk-perfect, let X(G, s, t) denote the set of optimal s-t
traveling salesman walks in G, and let x ∈ X(G, s, t). Then optimality and degree parity constraints
imply that x is the union of two optimal s-t traveling salesman walks in labeled minors H1 and H2.
For any non-zero cost function c, the restriction of c to one of H1 or H2 must be non-zero; without
loss of generality, assume c restricted to H1 is non-zero. By Theorem 4.3, there is a constraint C
in P (H1) which is tight for all optimal traveling salesman tours in H1. If constraint C is a non-
negativity constraint xe ≥ 0, then this edge constraint is tight for all x ∈ XTSP (H1). Otherwise,
we can assume constraint C is a cut constraint with v1 6∈ C; in this case, C is a tight constraint for
all x ∈ XTSP (G). 2
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Now, any 1-connected graph is C6 minor free if and only if can be built by repeated applications
of Φ1 from blocks which are C6 minor free. Therefore, our main theorem follows from Lemmas 4.2,
4.4, 4.5, and 4.6.

Theorem 2.3 A connected graph G is walk-perfect if and only if G has no C6 minor.

5 Connection with TSP-Perfection

In this section, we establish a connection between walk-perfection and TSP-perfection. Using
this connection and the characterization of TSP-perfect graphs, we give a second proof of the
characterization of walk-perfect graphs.

If graph G is walk-perfect, then it is also TSP-perfect, since by choosing s = t, s-t walk-
perfection corresponds to TSP-perfection. We would like a condition in the reverse direction, i.e., a
sufficient condition for walk-perfection based on TSP-perfection. For graph G = (V,E) and vertices
s, t ∈ V , let Gs,t(3) denote the graph obtained from G by adding a 3-edge ear (i.e. a path of length
3) between s and t (see Figure 7).

V (Gs,t(3)) = V (G) ∪ {u, v} (u, v 6∈ V (G))

E(Gs,t(3)) = E ∪ {(s, u), (u, v), (v, t)}.

G

t

s

Figure 7: Graph Gs,t(3).

Consider the fractional TSP polyhedron

P (Gs,t(3)) =

{
x ∈ R|E| : x(δ(S)) ≥ 2 for S ( V (Gs,t(3)), S 6= ∅

x ≥ 0 for all e ∈ E(Gs,t(3))

}
.

The following lemma relates the extreme points of the fractional traveling salesman walk polyhedron
P (G, s, t) with the extreme points of the fractional traveling salesman polyhedron P (Gs,t(3)).

Lemma 5.1 If x ∈ R|E| is an extreme point of P (G, s, t), then x′ = (x, 1, 1, 1) ∈ R|E(Gs,t(3))| is an
extreme point of P (Gs,t(3)), where the three additional variables correspond to edges (s, u), (u, v),
and (v, t).
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Proof. Let x be an extreme point of P (G, s, t). Then it is tight for m = |E| of the constraints
in P (G, s, t). We will show that the point x′ = (x, 1, 1, 1) is the unique solution to a set of m + 3
inequalities involving edges E(Gs,t(3)) and therefore is an extreme point P (Gs,t(3)).

First, we show the m tight constraints for x in P (G, s, t) generate m tight constraints for x′

in P (Gs,t(3)). Each tight constraint x(δ(S)) = f(S) in P (G, s, t) gives rise to a tight constraint
x′(δ(S′)) = 2 in P (Gs,t(3)) with

S′ =






S ∪ {u, v} if s, t ∈ S

S′ = S ∪ {u} if s ∈ S, t ∈ S

S′ = S ∪ {v} if s ∈ S, t ∈ S

S′ = S if s, t ∈ S.

This gives m tight constraints for x′ in P (Gs,t(3)). Consider these constraints together with the
following three inequalities:

x(δ(V )) = xsu + xvt ≥ 2

x(δ(V ∪ {u})) = xuv + xvt ≥ 2

x(δ(V ∪ {v})) = xsu + xuv ≥ 2.

The unique solution on edges (s, u), (u, v), (v, t) satisfying the last three inequalities at equality is
xsu = xuv = xvt = 1. Furthermore, since x is the unique solution to the m tight constraints in
P (G, s, t), it follows that x′ = (x, 1, 1, 1) is the unique solution to the m + 3 tight constraints in
P (Gs,t(3)) and therefore, x′ is a extreme point of P (Gs,t(3)). 2

Lemma 5.2 If Gs,t(3) is TSP-perfect, then G is s-t walk-perfect. If Gs,t(3) is TSP-perfect for
every choice of s and t, then G is walk-perfect.

Proof. By Lemma 5.1, if x is an extreme point of P (G, s, t), then (x, 1, 1, 1) is an extreme point
of P (Gs,t(3)). Since Gs,t(3) is TSP-perfect, the extreme point (x, 1, 1, 1) is a tour of Gs,t(3), which
corresponds to an s-t traveling salesman walk in G together with the three edges (s, u), (u, v), and
(v, t). Thus, the extreme point x corresponds to an s-t traveling salesman walk, implying G is s-t
walk-perfect. If this holds for every choice of s and t, G is walk-perfect. 2

Claim 5.3 For any i ∈ {1, 2, 3} and any edge e ∈ Mi, Mi \ {e} contains C6 as a minor.

Proof. This follows by inspection of Figure 1. 2

Theorem 5.4 If G is C6 minor free, then Gs,t(3) is [M1,M2,M3] minor free for any choice of s
and t.

Proof. The theorem is clearly true if s = t, so we can assume s 6= t. Suppose Gs,t(3) contains Mi

(i = 1, 2, or 3) as a minor and label the edges of Gs,t(3) according to whether they are contracted,
deleted, or unchanged in the sequence of minor operations to obtain Mi. Consider the 3-path
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(s, u), (u, v), (v, t). None of these edges can be marked for deletion, since this would imply G
contains an Mi minor, and therefore a C6 minor. If any of these edges is unchanged, then after
performing the minor operations to obtain Mi, deleting this edge would leave a C6 minor which
must have been contained in G, a contradiction. Therefore, all 3 edges (s, u), (u, v), (v, t) must be
marked for contraction.

Note that since edge contractions and edge deletions can be performed in any order, we can
perform the contraction of edges (s, u), (u, v), (v, t) as the final three steps in the sequence of minor
operations. Consider the graph at this stage, with only the three edge contractions remaining and
let G′ denote the subgraph of G with all minor operations on E(G) carried out. At this stage,
if edges (s, u), (u, v), (v, t) are contracted in graph G′ ∪ {(s, u), (u, v), (v, t)}, the result is graph
Mi. Note that the contraction cannot result in any multi-edges. Now, since all vertices in Mi

have degree at most 3 and no multi-edges arise from the contraction of (s, u), (u, v), (v, t), one of
s or t (say t) satisfies degG′(t) ≤ 1 in G′. Let e be the edge adjacent to t in G′ if degG′(t) = 1,
and let e be an arbitrary edge in G′ if degG′(t) = 0. Then vertex t has degree 0 in G′\{e}
and degree 1 in graph (G′\{e}) ∪ {(s, u), (u, v), (v, t)} and therefore, any C6 minor in the graph
(G′\{e}) ∪ {(s, u), (u, v), (v, t)} cannot contain vertices t, u, or v. By Lemma 5.3, deleting edge e
from G′ results in a graph with a C6 minor and since this C6 minor does not contain any of t, u, or
v, it is also a minor of graph G, a contradiction. 2

Note that since K5 is C6 minor free, this provides a second proof for the walk-perfection of K5,
which was also shown by computational methods (see Section 4).

Corollary 5.5 K5 is walk-perfect.

6 Asymmetric Traveling Salesman Path Problem

In this section, we consider the traveling salesman path problem from the perspective of approxi-
mation algorithms. For the graphical traveling salesman problem on graphs with symmetric edge
costs satisfying the triangle inequality, Christofides [Chr76] gave a 3

2 approximation algorithm; de-
spite many attempts to find a better approximation guarantee, improving this factor has remained
an open problem for almost thirty years. For the more general traveling salesman walk problem,
Hoogeveen [Hoo91] studies approximation algorithms for walks on metric instances with symmetric
edge costs. For fixed s and t, he gives a 5/3-approximation for the minimum cost s-t traveling
salesman walk and for fixed s (and varying endpoint), he gives a 3/2-approximation for the min-
imum cost traveling salesman walk starting at s. An alternate proof for the 5/3 approximation
algorithm for two fixed endpoints is due to Vempala [Vem] and approximations for other variants
of this problem can be found in [ABH99] and [GBHKR00].

In this section, we give an approximation algorithm for the asymmetric traveling salesman path
(ATSPP) problem. In this problem, we have fixed vertices s and t in a graph G = (V,A) with
directed arcs and possibly asymmetric arc costs. The objective is to find a minimum cost directed
Hamiltonian path from s to t. For the case s = t, Frieze, Galbiati, and Maffioli gave a log2 n-
approximation algorithm for the asymmetric traveling salesman tour problem, which was subse-
quently improved by Bläser to .999 log2 n ([Blä02]) and by Kaplan et al to .842 log2 n ([KLSS03]).
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The ATSW problem is to find a minimum cost directed walk from s to t that visits all vertices at
least once. This problem is equivalent to finding a minimum cost directed Hamiltonian path from
s to t in the metric completion of graph G. Therefore, we focus our attention on complete graphs
satisfying the triangle inequality and assume we are given such an instance in our approximation
algorithm. Our results are stated for the ATSPP, but apply to the ATSW problem by replacing
each arc (i, j) in the solution with a shortest directed path in the graph from i to j.

In the following example, we show that there are graphs for which the cost of the optimal
asymmetric traveling salesman tour can be arbitrarily higher than that of the optimal asymmet-
ric traveling salesman path. Thus, an α-approximation algorithm for the asymmetric traveling
salesman tour problem does not immediately yield an α-approximation for the ATSPP.

Example 6.1 Figure 8 shows an instance for which the value of the minimum cost tour is arbitrar-
ily higher than the value of the minimum cost s-t traveling salesman path. For this graph, arc (t, s)
has arbitrarily high cost cts = α, solid directed arcs have cost 1 and all remaining arcs have costs
determined by the metric completion. The minimum cost s-t path has value 10 and the minimum
cost tour has value α + 10.

α

s

t

Figure 8: Example showing an α-approximation algorithm for the ATSP does not give an α-
approximation for the ATSPP.

However, using a technique based on recursively building the asymmetric s-t traveling salesman
path, we prove that there is an O(

√
n)-approximation algorithm for the ATSPP.

6.1 Path/Cycle Covers

An s-t-path/cycle cover in a directed graph G is a directed path from s to t together with a collection
of directed cycles such that every vertex in V is contained in exactly one of these subgraphs. In
particular, this implies the path and cycles must be disjoint and cover all vertices V (G). Note
that the value of the minimum s-t-path/cycle cover on G is a lower bound on the minimum cost
asymmetric traveling salesman path in G. We first show that we can find a minimum s-t path/cycle
cover for G efficiently via a reduction to the minimum cost perfect matching problem.

Construct bipartite graph G′ by including two copies of each vertex v ∈ V \ {s, t}; call these
copies v and v′. For each pair i, j ∈ V \{s, t}, assign cost cij to arc (i, j′). Now, include vertices s
and t′ and for all i ∈ V \ {s, t}, assign cost csi to arc (s, i′) and cit to arc (i, t′).

Lemma 6.2 The cost of a minimum cost perfect matching in G′ is equal to the cost of a minimum
s-t-path/cycle cover in G.
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Proof. Let d−(v) and d+(v) denote the indegree and outdegree of vertex v respectively. An
s-t-path/cycle cover is a subgraph of G in which vertices s and t satisfy d+(s) = d−(t) = 1 and
d−(s) = d+(t) = 0, and every vertex v ∈ V \ {s, t} satisfies d−(v) = d+(v) = 1. We first show
that every s-t-path/cycle cover of G corresponds to a matching in G′ with the same cost. For
every directed arc (i, j) in the s-t-path/cycle cover, include arc (i, j′) in the matching. Since every
vertex in i ∈ V \ {s, t} has in-degree 1 and out-degree 1, both i and i′ are matched in G′ and since
s has out-degree 1 and t has in-degree 1, s and t are also matched. Thus, there is a minimum
cost perfect matching with the same cost as the s-t-path/cycle cover. Conversely, a minimum cost
perfect matching in G′ yields an s-t-path/cycle cover in G with the same cost; for every arc (i, j′)
in the matching, include arc (i, j) in the path/cycle cover. 2

6.2 O(
√

n)-Approximation

The first step of the algorithm is to find a minimum cost s-t-path/cycle cover. If this subgraph
contains at least

√
n cycles, then let V ′ ⊂ V be the set of vertices in the path together with

one vertex from each cycle and let G′ be the graph induced by the vertices in V ′ (note that
|V ′| ≤ n −√

n). We then recurse on the graph G′. Such a recursion can occur at most
√

n times.
When we reach a stage in which the path/cycle cover returns fewer than

√
n cycles, we then attach

each cycle to the path resulting in a single s-t path.

This attachment operation proceeds as follows. For each cycle, pick an arbitrary vertex v in
the cycle. The current s-t path contains an arc (a, b) such that in an optimal s-t traveling salesman
path −→p , vertex v falls after a and before b. To see why this is true, label all vertices in the current
s-t path that appear after v in −→p by 1 and label all vertices that appear before v in −→p by 0. Then
s has label 0 and t has label 1 and therefore, there is some arc (a, b) such that a has label 0 and b
has label 1. Although we do not know which arc will satisfy the desired property, we can test all
consecutive vertices along the s-t path and choose a and b to minimize the length of the sum of the
two arcs (a, v) and (v, b). Then by connecting vertex v to the s-t path by adding these two arcs,
the cost incurred is at most OPT (see Figure 9).

Since there are at most k ≤ √
n cycles, the total cost of adding all these arcs is at most

√
n·OPT .

In the final step, we have an s-t-path on a subset of the vertices and we expand each vertex that
represented a cycle at some stage of the algorithm by replacing the vertex with a complete traversal
of that cycle. If a vertex v is visited multiple times in the result, then let (i, v) and (v, j) be two
arcs in the solution. Since the graph is assumed to be a complete directed graph satisfying the
triangle inequality, we can shortcut the solution by including arc (i, j) and deleting arcs (i, v) and
(v, j). Repeating this procedure until every vertex is visited exactly once results in a directed s-t
traveling salesman path. 2
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v

Figure 9: Attaching the cycles to the path.

ATSPP-Approx(G)

1. Find a minimum cost s-t path/cycle cover C for G.

(i) If C has less than
√

n cycles, then attach the cycles to the s-t path and let S be the
resulting path.

(ii) Else if C has more than
√

n cycles, then let V ′ be the set of vertices in the s-t
path plus one representative vertex from each cycle. Run ATSPP-Approx(G′) for
G′ = (V ′, A(V ′)).

2. For each vertex that represents a cycle in S, expand the cycle while traversing the path,
shortcutting arcs through vertices that are visited multiple times.
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7 Appendix: Proof of Lemma 4.2

If s = t, then s-t walk-perfection is equivalent to TSP-perfection and the lemma follows from the
characterization of TSP-perfect graphs (Theorem 2.1). For s 6= t, we can arbitrarily choose vertices
s and t by symmetry. For the edge labeling in Figure 10, we input the following inequalities to the
program polymake [GJ00]. The first 15 inequalities are cut constraints and the final 10 inequalities
are nonnegativity constraints.

xx

x

x

x

x

x

xx

x

1

2

3

5

4

6

7

8

9

10

t

s

Figure 10: Labeling on edges of K5.

The output of the program is the following list of extreme points. We check that for each
extreme point, the degree of every vertex v 6∈ {s, t} is even and the degrees of s and t are odd.
Since these conditions are satisfied, all of the extreme points correspond to s-t traveling salesman
walks, proving the lemma. 2

K5 INEQUALITIES

-1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

-2 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

-2 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

-2 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0

-1 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

-1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0

-2 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

-2 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0

-1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0

-2 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1

-1 1 1 1 0 1 0 0 0 1 1

-1 1 0 1 1 1 0 1 1 0 0

-2 1 1 1 1 0 1 0 0 0 1

-1 1 1 0 1 1 0 1 0 1 0

-1 0 1 1 1 1 1 0 1 0 0

21



K5 EXTREME POINTS

0 0 1 1 0 2 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 2 0 1 0 0 0 1 0 2 0 2 0 1

0 0 0 0 0 1 1 0 2 1 0 0 0 2 0 2 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 2 0 1 1 2

0 0 0 0 0 2 2 1 1 0 0 0 0 1 0 2 0 0 2 1 0 0 0 2 0 0 2 1 1 0 0 0 2 0 0 1 1 0 0 1

0 0 2 0 0 2 0 1 1 0 0 0 1 0 0 2 0 0 1 1 0 0 1 1 0 0 2 1 0 0 0 0 2 1 0 2 0 0 0 1

0 2 1 0 0 0 0 0 1 1 0 1 2 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 2 0 1 0 2 0 0 0 1

0 1 0 1 0 1 0 0 1 1 0 2 0 1 0 0 0 0 2 1 0 2 0 0 0 1 1 0 0 1 0 1 0 0 0 1 2 1 0 0

0 1 0 0 0 1 0 1 0 2 0 1 0 1 0 0 1 1 0 0 0 1 0 2 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0

0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 2 0 2 1 0 0 1 0 1 0 2 1 0 1

0 0 1 0 0 0 2 0 1 1 0 0 0 0 0 0 2 1 1 2 0 0 0 0 1 0 2 2 0 2 0 0 0 1 0 0 2 2 0 1

0 0 0 0 1 0 2 0 2 2 0 0 2 0 1 0 2 0 0 2 0 0 2 1 0 0 2 0 0 1 0 0 0 1 1 1 1 0 2 0

0 0 1 0 1 1 1 0 1 0 0 0 0 2 1 2 0 2 0 0 0 0 0 1 1 1 1 2 0 0 0 0 0 0 1 2 0 2 0 2

0 0 0 0 1 2 2 2 0 0 0 0 0 0 1 2 0 0 2 2 0 0 0 0 1 2 2 0 2 0 0 0 0 2 1 2 0 0 2 0

0 0 2 0 1 2 0 2 0 0 0 0 1 0 1 2 0 1 0 1 0 0 2 0 1 2 0 0 0 2 0 0 2 0 1 2 2 0 0 0

0 0 2 0 1 2 0 0 2 0 0 0 2 1 1 1 1 0 0 0 0 0 2 2 1 2 0 0 0 0 0 0 1 1 1 2 0 0 1 0

0 0 2 0 1 0 2 0 2 0 0 0 0 2 1 0 2 0 2 0 0 0 1 1 1 0 2 0 1 0 0 0 0 2 1 0 2 2 0 0

0 0 2 2 1 0 2 0 0 0 0 0 2 0 1 0 2 2 0 0 0 0 2 0 0 0 2 1 1 0 0 2 0 0 0 0 0 1 1 2

0 2 0 0 1 0 0 2 0 2 0 2 0 0 0 0 2 1 1 0 0 2 0 0 1 0 2 2 0 0 0 2 0 2 0 0 0 1 1 0

0 2 0 1 0 0 0 2 0 1 0 2 0 2 1 0 0 2 0 0 0 2 0 0 1 0 2 0 0 2 0 2 0 1 0 0 2 0 0 1

0 1 0 0 1 1 0 0 1 2 0 2 0 0 1 2 0 0 0 2 0 1 0 0 1 1 2 0 1 0 0 2 0 0 1 2 2 0 0 0

0 1 0 2 1 1 0 0 1 0 0 2 0 1 1 1 1 0 0 0 0 2 0 2 1 2 0 0 0 0 0 2 0 0 1 0 0 0 2 2

0 2 0 0 1 0 2 0 2 0 0 2 0 2 1 0 0 0 2 0 0 2 0 2 1 0 2 0 0 0 0 1 1 0 0 0 1 1 1 0

0 1 1 0 1 0 1 2 0 0 0 2 2 0 0 0 0 1 1 0 0 2 1 0 1 0 0 1 0 1 0 2 2 0 1 0 0 2 0 0

0 1 1 0 1 0 1 0 0 2 0 2 2 0 1 0 0 0 0 2 0 1 2 0 1 1 0 0 1 0 0 1 1 0 1 2 1 0 0 0

0 2 2 0 1 2 0 0 0 0 0 1 1 0 1 0 1 0 2 0 0 2 2 0 1 0 0 0 2 0 0 2 1 1 0 0 0 1 0 0

0 1 1 1 0 0 1 0 0 1 0 2 2 1 0 0 0 0 0 1 0 2 2 2 1 0 0 0 0 0 0 2 1 1 1 0 0 0 1 0

0 1 1 2 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 2 1 1 0 0 1 0 0 1 0 2

1 2 0 0 0 1 0 0 0 2 2 2 0 0 1 0 0 0 0 2 1 1 0 0 0 0 2 0 1 0 1 1 0 0 1 0 2 1 0 0

1 2 0 0 0 1 2 0 0 0 1 2 0 0 1 0 1 0 0 1 2 2 0 0 1 0 2 0 0 0 1 1 0 2 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0 1 2 2 0 1 0 0 0 0 0 1 1 2 0 1 0 0 1 0 0 0 1 2 0 2 0 1 0 0 0 0

2 2 0 2 1 0 0 0 0 0 1 1 0 2 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 2 1 1 0 1 0 1 0 0 0

1 1 2 0 1 0 0 1 0 0 2 2 2 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 2 2 0 0 1 0 0 0 0

1 1 1 0 0 1 1 0 0 0 1 1 2 0 0 0 0 0 1 0 2 0 1 1 1 0 0 0 1 0 2 0 2 2 1 0 0 0 0 0

1 0 1 1 0 1 0 0 1 0 1 0 2 2 0 1 0 0 0 0 1 0 2 1 0 0 1 0 0 0 2 0 2 1 0 0 0 0 0 1

2 0 1 1 0 0 0 1 0 0 2 0 2 0 1 0 0 0 2 0 1 0 2 0 0 1 0 0 2 0 2 0 2 0 1 0 2 0 0 0

1 0 2 0 1 0 1 0 0 1 1 0 2 0 0 1 2 0 0 0 2 0 2 0 1 0 0 0 0 2 1 0 2 0 0 1 0 0 0 2

2 0 2 0 1 0 0 2 0 0 2 0 1 0 1 0 0 1 0 1 2 0 2 0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1

1 0 2 0 0 1 0 2 0 0 2 0 0 2 1 0 0 0 2 0 2 0 0 0 1 0 2 0 2 0 2 0 0 0 1 0 0 0 2 2

1 0 0 0 1 0 1 0 2 1 1 0 0 2 0 1 0 0 2 0 1 0 0 0 0 1 2 0 2 0 1 0 0 0 0 1 0 0 2 2

2 0 0 2 1 0 0 2 0 0 2 0 0 1 0 0 0 2 0 1 2 0 0 2 0 0 0 1 1 0 2 0 0 0 1 0 2 2 0 0

1 0 0 0 0 1 2 2 0 0 2 0 0 0 0 0 2 1 1 0 2 0 0 0 1 0 0 2 0 2 1 0 0 0 0 1 0 2 0 2

1 0 0 1 0 0 1 2 0 0 1 0 0 2 0 1 0 2 0 0 1 0 0 0 1 0 1 2 0 1 2 0 0 0 0 0 0 1 1 2

1 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 1 0 2 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0

2 0 0 1 0 0 0 0 2 1 1 0 0 1 0 0 1 0 2 0
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