

1

Chapter

HDDI����: Hierarchical Distributed Dynamic Indexing

William M. Pottenger, Yong-Bin Kim, and Daryl D. Meling

Abstract: The explosive growth of digital repositories of information has been enabled by

recent developments in communication and information technologies. The
global Internet/World Wide Web exemplifies the rapid deployment of such
technologies. Despite significant accomplishments in internetworking, however,
scalable indexing and data-mining techniques for computational knowledge
management lag behind the rapid growth of distributed collections. Hierarchical
Distributed Dynamic Indexing (HDDI) is an approach that dynamically
creates a hierarchical index from distributed document collections. At each node
of the hierarchical index, a knowledge base is created and subtopic regions of
semantic locality in conceptual space are identified. This chapter introduces
HDDI , focusing on the model building techniques employed at each node of
the hierarchy. A novel approach to information clustering based on the
contextual transitivity of similarity between terms is introduced. We conclude
with several example applications of HDDI in the textual data mining and
information retrieval fields.

Key words: Textual data mining, information retrieval, machine learning, computational

knowledge management, artificial intelligence, HDDI

1. Introduction

Current developments in computer technology are radically changing the
nature of distributed information management. Clearly, widespread
digitization of information and the ubiquity of networking have created
fundamentally new possibilities for collecting and distributing information.
Just as clearly, it is critical that new information infrastructure be developed
that enables effective mining of the huge volume of distributed information
emerging in digital form [PCP00]. A recent article estimated that no more
than about 16% of the publicly accessible web has been indexed by any single
search engine [LG99].

Traditional methods of indexing combine multiple subject areas into a
single, monolithic index. There are enough documents on the Web that such

2
indexing technology often fails to perform effective search. The difficulty
lies in the fact that since so many documents and subjects are being combined
together, retrieving all the documents that match a particular word phrase
often returns too many documents for effective use. This problem has been
known for some time [NRC92]. Solutions based on link analysis have
mitigated these difficulties yet fail to adequately address issues of recall
[BP98].

In order to properly address this problem, a paradigm shift is needed in
the approach to indexing. First and foremost, it is clear that digital collections
are now and will continue to be distributed. Our first premise is thus that
indices must also be distributed. Secondly, it must be realized that the
information contained in these distributed digital repositories can be classified
in a hierarchical manner. Traditionally, knowledge hierarchies, or ontologies,
have been created with human expertise. One popular form is the thesaurus
(e.g., the National Library of Medicine's MeSH thesaurus). Such an
approach does not scale to the tremendous amount of emerging digital
information for two reasons: as knowledge increases, new topics are emerging
at a greater rate, and both this and the sheer volume of information preclude
manual approaches to indexing. Our second premise is thus that distributed
indices must properly reflect the hierarchical nature of knowledge. Thirdly,
due to the vast increase in communications bandwidth and computing and
online storage capabilities mentioned above, digital collections are frequently
updated. This process reflects a key characteristic of 21st century collections:
namely, they are dynamic in nature. Our third premise is thus that any new
information infrastructure must include dynamic indexing capabilities.

In the final analysis, these three technologies must be integrated into a
cohesive whole: HDDI�, Hierarchical Distributed Dynamic Indexing.
HDDI� is a novel approach to organizing large quantities of unstructured
data in a loosely coupled distributed environment under development at
Lehigh University and at the National Center for Supercomputing
Applications. The approach is based on the algorithmic creation of subtopic
regions of semantic locality in sets of distributed documents; this allows
automatic discovery of similarities at a fine level of granularity amongst
concepts within documents. In this way, hierarchical indices (such as those
created now �by hand� in many places on the web; www.yahoo.com is
probably the most well-known example) are generated for topics in
documents in a volatile, distributed environment, providing the information
seeker with an always up-to-date map of information spaces. The ability to
generate large hierarchical indices on the fly allows for a realistic, useful
mapping of cyberspace without the need for time-consuming human
intervention. This technique is most valuable when applied to items within
some institutional zone � to map out, for instance, large sets of corporate or
scientific documents. Here, subjective issues relating to �importance� or
�quality� can be sidestepped, and the power of the HDDI� strategy can be

HDDITM: Hierarchical Distributed Dynamic Indexing 3

fully leveraged�an unstructured set of documents lacking any sort of
metadata can be bound to a hierarchical knowledge structure generated
automatically based on word frequencies.

HDDI� is a natural outgrowth of advances in technology that leverage
existing, inherited knowledge structures popular in today�s web-based
networked environment. As HDDI� technology develops, we are discovering
novel approaches that address several issues of managing distributed digital
information within the context of the HDDI� paradigm.

This chapter will focus on the core computational knowledge
management algorithms employed in building models at the nodes of
hierarchical indices. Although the focus of this book is on data mining of
scientific data sets, we do not limit our discussion to scientific data in this
chapter, but rather consider textual data in all forms. This is only natural
given the ubiquitous employment of the written word in human endeavor.

In the following sections we present an outline of HDDI� technology
employed in building hierarchical indices. We close with a summary of
applications in which HDDI� technology is being deployed.

2. Building a Hierarchical Index

The following steps are involved in the process of building a hierarchical
index: concept identification/extraction; concept co-occurrence matrix
formation; hierarchy construction; knowledge base creation; identification of
regions of semantic locality; and hierarchy mapping. Each of these steps is
outlined in more detail below. Several aspects of this approach reflect our
initial intuition on how the problem should be addressed. Each of these six
steps is being addressed in the course of our research in order to refine our
approach.

2.1. Concept Identification/Extraction

Our approach to concept identification/extraction includes the following
three steps: input item (document) parsing, part of speech tagging and concept
identification. The parsing stage takes SGML, HTML or generalized XML
tagged items as input. We have utilities to convert from a variety of input
formats to XML, including proprietary airline safety data and US government
patent data. Based on AI techniques [C00], [B92], our part of speech tagging
approach includes the use of both lexical and contextual rules for identifying
various parts of speech. After identifying each word�s part of speech, we
invoke a finite-state machine (pictured below) that accepts maximal length
English-language noun phrases. [BCGKMP01], [K96].

4

A Finite State Automaton for Recognizing
Complex Noun Phrases State 0 is the start state,
and state 1 the final state. C is a cardinal number,
G a verb (gerund or present participle), P a verb
(past participle), J an adjective, N a noun, I a
preposition and D a determiner.

Our enhanced state-machine identifies and extracts concepts consisting of

complex noun phrases composed of multiple modifiers, including gerund verb
forms. The final result of these three steps is a reformulation of the original
collection that includes a summation of the location and number of
occurrences of each extracted concept. The next stage of the process receives
this reformulated collection.

2.2. Concept Co-occurrence Matrix Formation

�Co-occurring� defines concepts that occur within the same item. An item
can be defined as an intelligently created logical unit of text that is cohesive
semantically. Examples include abstracts, titles, web pages, airline safety
incident reports, patents, etc. The co-occurrence relation is reflexive and
symmetric but not transitive. Given concepts extracted by the above process,
we compute concept frequency and co-occurrence matrices. We also compute
the frequencies of co-occurrences of concept pairs among all items in the set.

The literature discusses various definitions of co-occurrence [BYRN99].
Our approach incorporates measures based on proximity as well as techniques
that dynamically define the extent of sub-items within a given item (see
Section 2.5). Our preliminary results indicate that this latter approach is

HDDITM: Hierarchical Distributed Dynamic Indexing 5

crucial in dealing with the full text of items. We also reported on research in
parallelizing the computation of such semantic relations based on the theory
of coalescing loop operators [P98]. Similar techniques are being applied to
scale the computational information management algorithms developed as
part of this research to large collections.

2.3. Hierarchy Construction

Hierarchy construction is a meta-level organizational process that
combines the matrices formed in the previous step. These co-occurrence
matrices provide the basis for organizing concepts into an ontology of
knowledge based on the content of the collections. Systematic filtering,
pruning, and meshing lower level (child) matrices form the hierarchical
structure, producing higher level (parent) combined matrices. The process is
iterative in that matrices are pruned and merged at successively higher levels.
The resulting hierarchical index consists of high-resolution leaf-level index
nodes that become increasingly less precise (i.e., more general) as the
hierarchy is built. This process is visualized in Section 3 below, and is a topic
of ongoing research [K01].

2.4. Knowledge Base Creation

Knowledge base creation is the second meta-level organizational process.
For each matrix in the hierarchy constructed in the previous step, and for each
concept in each matrix we compute a similarity with other concepts. This one-
to-many mapping associates each concept with a list of related concepts
ranked by similarity. Co-occurring concepts are ranked in decreasing order of
similarity. More general concepts occur lower in the list. Each concept pair is
weighted, creating asymmetric measures of pair-wise similarity between

 Knowledge Base Knowledge Neighborhood

6
concepts. The similarity is a mapping from one concept to another that
quantitatively determines how similar they are semantically. We term the
resultant mapping a knowledge base1. A knowledge base is represented as an
asymmetric directed graph in which nodes are concepts and arc weights are
similarity measures. The knowledge base can be visualized as a graph,
illustrated by example on the left below, in which vertices represent concepts
and edges represent the pair-wise similarity between concepts.

In [P97] techniques were implemented that produce a knowledge base
using an extension of the statistical model developed in [CL92]. The model
building techniques are based on a cluster function defined as follows
[CMNS97]:

() ()kn

i ij

n

i ijk
kj CactorWeightingF

d

d
CCghtClusterWei ×=

�

�

=

=

1

1,

() ()jn

i ik

n

i ikj
jk CactorWeightingF

d

d
CCghtClusterWei ×=

�

�

=

=

1

1,

These two equations indicate the cluster weights, or similarity, from

concept Cj to concept Ck (the first equation) and from concept Ck to concept
Cj (the second equation). dij and dik are the product of concept frequency and
inverse document frequency and are defined in a similar manner (this is a
variation of the popular tf∗ idf measure used primarily in text-based vector
space modeling where tf is concept frequency and idf is inverse document
frequency [S89]). dij, for example, is defined as:

�
�

�

�

�
�

�

�
××= wj

j
ijij df

Ntfd log

where N represents the total number of documents in the collection, tfij is the
frequency of occurrence of concept Cj in document i, dfj is the number of
documents (across the entire collection of N documents) in which concept Cj
occurs, and wj is the number of words in concept Cj.

dijk and dikj represent the combined weights of both concepts Cj and Ck in
document i and are also defined in a similar manner. dijk, for example, is
defined as follows:

�
�

�

�

�
�

�

�
××= wj

jk
ijkijk df

Ntfd log

1 Note that follow-on work that builds on [CL92] terms this a Concept Space.

HDDITM: Hierarchical Distributed Dynamic Indexing 7

 Here tfijk represents the minimum number of occurrences of concept Cj
and concept Ck in document i. dfjk represents the number of documents (in a
collection of N documents) in which concepts Cj and Ck occur together. The
final expression, wj, is the number of words in concept Cj.

 In order to penalize general concepts that appear in many places in the
co-occurrence analysis, a weighting scheme similar to the inverse document
frequency function is employed. Cj, for example, has the following weighting
factor:

()
N

df
N

CactorWeightingF j
j log

log
=

 Concepts with a higher value for dfj (i.e., more general concepts) have a

smaller weighting factor, which results in a lower similarity. Co-occurring
concepts are ranked in decreasing order of similarity, with the result that more
general concepts occur lower in the list of co-occurring concepts.

Ongoing research includes enhancement of this cluster function to
account for several additional factors including, for example, metrics such as
the ratio of commonly used to total words in a concept.

 Our high-performance implementation for computing knowledge bases
employs cluster functions of this nature in a parallel C++ application optimized
to achieve efficiencies of over 100% on the SGI/Cray Origin2000 and SGI
Power Challenge supercomputers [P98]. Based on the theory of coalescing
loop operators, the outermost loop in this application was parallelized [P97].
In conjunction with this outer-loop parallelism, a custom memory manager
enabled the superlinear speedups reported in the table following on the SGI
Power Challenge. Runtimes are recorded as wall-clock execution time for
repositories of different sizes.

Speedups on SGI Power Challenge

 Num.
Procs.

CR
h:m:s

CR
Sp

DR
h:m:s

DR
Sp

Serial 1 1:17:19 1 10:30:27 1
Parallel 2 0:27:16 2.84 3:32:49 2.96
 4 0:14:28 5.34 1:53:52 5.54
 8 0:08:41 8.90 1:08:20 9.23
 16 0:05:44 13.49 0:39:22 16.01

8

2.5. Identification of Regions of Semantic Locality

The resulting weight assignments from knowledge base creation are
context-sensitive. We use these weights to determine regions of semantic
locality (i.e., conceptual density) within each collection. We then detect
clusters of concepts within a knowledge base [BP00], [B99], [T72].

The result is a knowledge base consisting of regions of high-density
clusters of concepts � subtopic regions of semantic locality. These regions
consist of clusters of concepts that commonly appear together and collectively
create a knowledge neighborhood. Our premise is that we can impute a
constrained, contextual transitivity to the co-occurrence relation [BP00],
thereby forming regions of semantic locality (see illustration on the right in
section 4 above). The motivation for the use of the term semantic locality
comes from the commonly applied premise that grouping similar concepts
together leads to increased effectiveness and efficiency in query search and
retrieval [SJ71]. Note however that the similarity relation is by definition not
transitive. The theoretical basis for our algorithm, sLoc, is a concept we term
contextual transitivity in the similarity relation. In essence this means that a
threshold is chosen based on the structure and distribution of the similarities
in the knowledge base and transitivity is constrained accordingly.

Contextual transitivity extends Schütze�s conceptualization of second
order co-occurrence [S98] by using n-order co-occurrence, where n varies
with the underlying semantic structure of the model. Here is a simple example
of how sLoc employs contextual transitivity to group concepts together in a
region of semantic locality. Let us consider the three concepts Java, applet
and e-commerce. If the concepts occur in the same document, they are called
co-occurring concepts. Let us assume that Java and applet co-occur and that
Java and e-commerce also co-occur. This means that there is at least one
document that contains both Java and applet, and that there is at least one
document that contains both Java and e-commerce, but applet and e-
commerce do not necessarily co-occur. It may, however, be useful to gather
the three concepts in one unique class and infer that e-commerce and applet
are actually related. That is what we mean by contextual transitivity. Note that
similarity is not a boolean relation � rather, it can take on a range of values.
Two concepts can thus be more or less similar. The characteristics of the
structure of a given knowledge base lead to a heuristic minimum similarity
value needed for two concepts to occur in the same cluster, and therefore to
constrain transitivity. It is called contextual because this minimum similarity
value depends on the structure and distribution of the similarities in the
knowledge base.

The computational core of sLoc is based on an algorithm due to Tarjan
[T72]. Tarjan�s algorithm uses a variant of depth-first search to determine the
strongly connected components of a directed graph. This was the first
algorithm to solve the problem in linear time. This is an important feature due
to the fact that graph clustering is an NP-hard problem and the only heuristics

HDDITM: Hierarchical Distributed Dynamic Indexing 9

we are aware of are not linear. The theory can be found in [AHU74]. The
figure below depicts the operation of Tarjan�s algorithm as it identifies
strongly connected regions (R1, R2, R3) in a simple graph.

Before tackling the algorithm itself we must first introduce the following

notation: Let N be the set of nodes i in the input graph, and let N be the total
number of nodes. Let A be the set of arcs in the input graph and A the total
number of arcs. An arc ∈ija A connects node i to node j. Let W be the set of
arc weights in the graph and wi,j the weight of the arc going from node i to
node j. Therefore W = {wi,j}(i,j) ∈ N2.

A knowledge base is an asymmetric graph and therefore wi,j may differ
from wj,i. Moreover, if ∉jia , A then wi,j = 0; in particular, for all i, wi,i = 0.

Finally, let M be the mean of the arc weights �
∈

=
2),(

,1
Nji

jiwAM and SD the

standard deviation of the distribution of arc weights

�
∈

−−=
2),(

2
,)()1(1

Nji
ji MwASD .

2.5.1. The sLoc Algorithm Step by Step

The figure below depicts the three steps of the sLoc process. Prior to the
first step, the weights in the knowledge base are normalized (step 0 below).
The first step in sLoc is to statistically prune the input graph. Arcs of weight
smaller than a certain threshold ττττ are virtually pruned. Note that since the

6

4

1

R3 R2

R1

3

2

5

10
similarities are asymmetric, an arc from concept a to concept b can be pruned
while the arc back from b to a remains. The second step involves the
identification of the clusters within the graph. Tarjan�s algorithm is applied to
find strongly connected regions. At this stage each strongly connected region
is a cluster. The size of a given cluster is the number of nodes (concepts) it
contains. During the third and final step, clusters of size smaller than
parameter s are discarded (they are assumed to be outliers). We interpret the
remaining clusters as regions of semantic locality in the knowledge base. The
greater ττττ, the more arcs are cut off, and therefore the smaller in size the

strongly connected regions. Thus the greater ττττ the smaller in size and the
more focused will be the regions of semantic locality.

The question that has arisen is twofold: Given an input knowledge base,
what threshold ττττ should be applied? Secondly, can we determine a value for
the threshold that scales across domain and collection size?

Let us tackle the first question on how to determine the value of ττττ yielding
an optimum clustering. Our premise is that the optimum ττττ can be determined
statistically as a function of the mean M, the standard deviation SD and other
knowledge base dependent variables (e.g., size, maximum weight, etc.). We
have conducted preliminary experiments to study the distribution of weights
in various knowledge bases. Our preliminary results indicate that the

(1) Prune the graph

regions in the pruned graph

the raw knowledge base
(0) Standardize weights in

than s (here s = 2)
(3) Discard clusters of size smaller (2) Find strongly connected

HDDITM: Hierarchical Distributed Dynamic Indexing 11

distribution of weights is quite consistent across both subject domain and
collection size. The figure above represents one such common distribution.

This was computed from the MED gold standard information retrieval
collection [S75].

It should be stressed that we have yet to compute a knowledge base that
does not exhibit a distribution of this nature. Given this fact, we have
developed the following heuristic for the threshold ττττ: ττττ(αααα) = max(wwww) - αααα *
SD. In this equation, ττττ is the cut-off weight used to prune the graph and αααα is
the number of standard deviations. For example, ττττ(1/2) is the threshold
corresponding to the maximum weight in the graph minus half of the standard
deviation of the distribution of arc weights.

At this point in time we are still investigating answers to the second
question posed above. We have conducted initial experiments in some of the
application domains mentioned in Section 3 that indicate the range of α
between [1.5, 2.0] is suitable [BP00], [Y00], [PY00].

2.6. Hierarchy mapping

The final process is to create a mapping of the information space by
developing linkages between the clusters identified during semantic locality
detection. These mappings supply the necessary paths between information
areas at higher and lower levels of the hierarchy. Links between clusters are
based on overlap of content between clusters as well as similarities in
topology. This process defines relationships between clusters, so that clusters
are interconnected both with the child clusters that they were merged from
and the higher-level parent clusters they were used to create. Upon
completion of this phase, each level of the hierarchical index contains
sufficient information to determine its relative position as a knowledge area in
the overall knowledge hierarchy. This is an area of ongoing research [K01].

12

3. Applications of HDDI����

One of the first applications of HDDI� is in the organization of large
distributed and dynamic data sets into a cohesive hierarchical framework for
optimal probabilistic search. Our research objective is to create a distributed
system whereby collections are automatically indexed hierarchically for use in
concept-based knowledge searches as depicted in the figure below.

Using the HDDI� technology infrastructure, we are also investigating the
automatic detection of emerging content. Trends in scientific research,
technology forecasting, and automatic detection of emerging interpretations in
case law are just a few examples of the variety of applications in which
ongoing research that employs HDDI� technology is being conducted
[PY00].

We have also recently explored scaling HDDI� technology from the
textual to the numeric domain. HDDI� techniques cluster concepts into
classes. An example of a concept in textual data mining is a noun phrase.
Our approach to asset management is to identify distinct financial concepts in
financial data, and apply the HDDI� model building and clustering-
partitioning techniques to group financial concepts into regions exhibiting

10%
20%

90%

? %

? %

? %

Probabilistic Mapping of
Query Vector to
Hierarchical Distributed
Dynamic Index

Root Level Cluster Node

Second Level Cluster
Nodes

? %

? %

? %

Query has a 20%
probability of match
within this sub-cluster.

Query has a 10%
probability of match
within this sub-cluster.

Query has a 90%
probability of match
within this sub-cluster.

Query has a 50%
probability of match from
this sub-cluster to a
second level cluster.

Query has a 40%
probability of match from
this sub-cluster to a
second level cluster.

50%
40%

Total Probabilities for each Second Level Cluster Node for Matching Query

90% x 50% = 45%

90% x 40% = 36%

HDDITM: Hierarchical Distributed Dynamic Indexing 13

similar characteristics that can then be employed in predictive financial
modeling.

Another area of HDDI� research involves processing data that records
both synchronous and asynchronous interactions between individuals. Using
HDDI� technologies, we are scaling our models to build relationship
networks between people that can then be correlated with semantic regions of
locality in the topics under discussion. Tools based on these methods provide
insight into the types and range of topics and associations in social
interactions and can be used, for example, to identify social and semantic
links between groups of authors and collections of publications.

A related research initiative involves the design of a multimedia
framework for constructive, inquiry-based learning for introductory and upper
level computer science courses. The content is drawn from the field of Object-
Oriented Software Engineering (OOSE). This National Science Foundation
project includes development of HDDI� textual data mining techniques for
establishing temporal context that will be automatically employed by learners
to detect emerging trends in OOSE research [BPK01]

4. Conclusion

We have outlined a set of core algorithms for building models in HDDI�,
a framework for mining and management of distributed textual data. Current
research includes the use of stochastic approximation to determine confidence
intervals for optimal values of various parameters used in HDDI� (such as
the parameter αααα in sLoc), as well as the construction of an agent system that
executes HDDI� in a distributed environment. Ongoing work continues to
focus on the validation of HDDI� model building and indexing techniques in
a variety of applications.

5. Acknowledgements

We gratefully acknowledge the assistance of our Lord and Savior Jesus
Christ in completing this work. We also gratefully acknowledge the
assistance of the many who worked together with us at the National Center for
Supercomputing Applications and at Lehigh University to make this a reality.

6. References

[AHU74] V. Aho, J. E. Hopcroft, and J. Ullman, The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading,
MA.

14

 [BCGKMP01] R. Bader, M. Callahan, D. Grim, J. Krause, N. Miller and

William M. Pottenger, The Role of the HDDITM Collection
Builder in Hierarchical Distributed Dynamic Indexing,
Proceedings of the Textmine �01 Workshop, First SIAM
International Conference on Data Mining, April.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto, Eds. Modern

Information Retrieval, ACM Press, New York.

[BPK01] G. Blank, William M. Pottenger, G. D. Kessler, The CIMEL

Project: Constructive, Collaborative, Inquiry-based
Multimedia E-Learning, http://www.eecs.lehigh.edu/~cimel.

[B99] F. D. Bouskila, The Role of Semantic Locality in

Hierarchical Distributed Dynamic Indexing and Information
Retrieval, M.S. Thesis, Department of Electrical and
Computer Engineering at the University of Illinois at Urbana-
Champaign, December (Bouskila's thesis work was
supervised by William M. Pottenger).

[BP00] F. D. Bouskila and William M. Pottenger, The Role of

Semantic Locality in Hierarchical Distributed Dynamic
Indexing, Proceedings of the International Conference on
Artificial Intelligence (IC-AI�2000), Las Vegas, NV, June.

[B92] E. Brill, A Simple Rule-based Part of Speech Tagger,

Proceedings of the Third Conference on Applied Natural
Language Processing, ACL.

[BP98] S. Brin and L. Page, The Anatomy of a Large-Scale

Hypertextual Web Search Engine, Proceedings of the Seventh
International World Wide Web Conference, Brisbane,
Australia, April.

[CL92] H. Chen and K. J. Lynch, Automatic Construction of

Networks of Concepts Characterizing Document Databases,
IEEE Transactions on Systems, Man and Cybernetics,
22(5):885-902, September/October.

[CMNS97] H. Chen, J. Martinez, T. Ng and B. R. Schatz, A Concept

Space Approach to Addressing the Vocabulary Problem in
Scientific Information Retrieval: An Experiment on the
Worm Community System, Journal of the American Society
for Information Science, Volume 48, Number 1, January.

[C00] G. Cooke, SemanTag, gcooke@rt66.com.

HDDITM: Hierarchical Distributed Dynamic Indexing 15

[K96] L. Karttunen, Directed Replacement. Proceedings of the 34th

Annual Meeting of the Association for Computational
Linguistics, Santa Cruz, California.

[K01] Y. B. Kim, The Role of Hierarchical Models in Hierarchical

Distributed Dynamic Indexing, M.S. Thesis, Department of
Computer Science at the University of Illinois at Urbana-
Champaign, June.

[LG99] S. Lawrence and C. L. Giles, Accessibility of Information on
the Web, Nature, Volume 400, pages 107�109.

[NRC92] National Research Council, Computing the Future: A

Broader Agenda for Computer Science and Engineering,
National Academy Press.

[P97] William Morton Pottenger, Theory, Techniques, and

Experiments in Solving Recurrences in Computer Programs,
Ph.D. thesis, Center for Supercomputing Research and
Development in the Department of Computer Science at the
University of Illinois at Urbana-Champaign,
www.eecs.lehigh.edu/~billp/pubs/PhDThesis.ps, May.

[P98] William M. Pottenger, The Role of Associativity and

Commutativity in the Detection and Transformation of Loop-
Level Parallelism, In the Proceedings of the 12th International
Conference on Supercomputing,
www.eecs.lehigh.edu/~billp/pubs/2057.ps.gz, Melbourne,
Australia, July.

[PY00] William M. Pottenger, Detecting Emerging Concepts in

HDDITM. Proceedings of the Computational Information
Retrieval Workshop (CIR00), Raleigh, NC. October.

[PCP00] William M. Pottenger, M. R. Callahan, and M. D. Padgett,

Distributed Information Management, Annual Review of
Information Science and Technology (ARIST), The
American Society for Information Science.

[S75] G. Salton, Dynamic Information and Library Processing,

Prentice Hall, Englewood Cliffs, New Jersey.

[S89] G. Salton, Automatic Text Processing, Addison-Wesley

Publishing Company, Inc., Reading, MA.

16
[S98] H. Schütze, Automatic Word Sense Discrimination,

Computational Linguistics, vol. 24, no. 1, pp. 97-124.

[SJ71] K. Sparck-Jones, Automatic Keyword Classification for

Information Retrieval, Butterworths, London, 1971.

[T72] R. E. Tarjan, Depth first search and linear graph algorithms,

SIAM J. Computing, 1:146-160.

[Y00] T. Yang, Detecting Emerging Conceptual Contexts in

Textual Collections, M.S. Thesis, Department of Computer
Science at the University of Illinois at Urbana-Champaign,
February.

