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Chapter  

HDDI����: Hierarchical Distributed Dynamic Indexing 

William M. Pottenger, Yong-Bin Kim, and Daryl D. Meling  
 
Abstract: The explosive growth of digital repositories of information has been enabled by 

recent developments in communication and information technologies.  The 
global Internet/World Wide Web exemplifies the rapid deployment of such 
technologies.  Despite significant accomplishments in internetworking, however, 
scalable indexing and data-mining techniques for computational knowledge 
management lag behind the rapid growth of distributed collections. Hierarchical 
Distributed Dynamic Indexing (HDDI ) is an approach that dynamically 
creates a hierarchical index from distributed document collections. At each node 
of the hierarchical index, a knowledge base is created and subtopic regions of 
semantic locality in conceptual space are identified.  This chapter introduces 
HDDI , focusing on the model building techniques employed at each node of 
the hierarchy. A novel approach to information clustering based on the 
contextual transitivity of similarity between terms is introduced. We conclude 
with several example applications of HDDI  in the textual data mining and 
information retrieval fields. 

 
Key words: Textual data mining, information retrieval, machine learning, computational 

knowledge management, artificial intelligence, HDDI  

1. Introduction 
 

Current developments in computer technology are radically changing the 
nature of distributed information management. Clearly, widespread 
digitization of information and the ubiquity of networking have created 
fundamentally new possibilities for collecting and distributing information. 
Just as clearly, it is critical that new information infrastructure be developed 
that enables effective mining of the huge volume of distributed information 
emerging in digital form [PCP00].  A recent article estimated that no more 
than about 16% of the publicly accessible web has been indexed by any single 
search engine [LG99].  

Traditional methods of indexing combine multiple subject areas into a 
single, monolithic index.  There are enough documents on the Web that such 



2 
indexing technology often fails to perform effective search.  The difficulty 
lies in the fact that since so many documents and subjects are being combined 
together, retrieving all the documents that match a particular word phrase 
often returns too many documents for effective use. This problem has been 
known for some time [NRC92]. Solutions based on link analysis have 
mitigated these difficulties yet fail to adequately address issues of recall 
[BP98]. 

In order to properly address this problem, a paradigm shift is needed in 
the approach to indexing. First and foremost, it is clear that digital collections 
are now and will continue to be distributed.  Our first premise is thus that 
indices must also be distributed. Secondly, it must be realized that the 
information contained in these distributed digital repositories can be classified 
in a hierarchical manner. Traditionally, knowledge hierarchies, or ontologies, 
have been created with human expertise. One popular form is the thesaurus 
(e.g., the National Library of Medicine's MeSH thesaurus).   Such an 
approach does not scale to the tremendous amount of emerging digital 
information for two reasons: as knowledge increases, new topics are emerging 
at a greater rate, and both this and the sheer volume of information preclude 
manual approaches to indexing.  Our second premise is thus that distributed 
indices must properly reflect the hierarchical nature of knowledge.  Thirdly, 
due to the vast increase in communications bandwidth and computing and 
online storage capabilities mentioned above, digital collections are frequently 
updated.  This process reflects a key characteristic of 21st century collections: 
namely, they are dynamic in nature.  Our third premise is thus that any new 
information infrastructure must include dynamic indexing capabilities. 
 

In the final analysis, these three technologies must be integrated into a 
cohesive whole: HDDI�, Hierarchical Distributed Dynamic Indexing. 
HDDI� is a novel approach to organizing large quantities of unstructured 
data in a loosely coupled distributed environment under development at 
Lehigh University and at the National Center for Supercomputing 
Applications. The approach is based on the algorithmic creation of subtopic 
regions of semantic locality in sets of distributed documents; this allows 
automatic discovery of similarities at a fine level of granularity amongst 
concepts within documents.  In this way, hierarchical indices (such as those 
created now �by hand� in many places on the web; www.yahoo.com is 
probably the most well-known example) are generated for topics in 
documents in a volatile, distributed environment, providing the information 
seeker with an always up-to-date map of information spaces.   The ability to 
generate large hierarchical indices on the fly allows for a realistic, useful 
mapping of cyberspace without the need for time-consuming human 
intervention.  This technique is most valuable when applied to items within 
some institutional zone � to map out, for instance, large sets of corporate or 
scientific documents.  Here, subjective issues relating to �importance� or 
�quality� can be sidestepped, and the power of the HDDI� strategy can be 
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fully leveraged�an unstructured set of documents lacking any sort of 
metadata can be bound to a hierarchical knowledge structure generated 
automatically based on word frequencies.   

HDDI� is a natural outgrowth of advances in technology that leverage 
existing, inherited knowledge structures popular in today�s web-based 
networked environment. As HDDI� technology develops, we are discovering 
novel approaches that address several issues of managing distributed digital 
information within the context of the HDDI� paradigm. 

This chapter will focus on the core computational knowledge 
management algorithms employed in building models at the nodes of 
hierarchical indices. Although the focus of this book is on data mining of 
scientific data sets, we do not limit our discussion to scientific data in this 
chapter, but rather consider textual data in all forms.  This is only natural 
given the ubiquitous employment of the written word in human endeavor. 

In the following sections we present an outline of HDDI� technology 
employed in building hierarchical indices.  We close with a summary of 
applications in which HDDI� technology is being deployed. 
 
2. Building a Hierarchical Index 
 

The following steps are involved in the process of building a hierarchical 
index: concept identification/extraction; concept co-occurrence matrix 
formation; hierarchy construction; knowledge base creation; identification of 
regions of semantic locality; and hierarchy mapping. Each of these steps is 
outlined in more detail below.   Several aspects of this approach reflect our 
initial intuition on how the problem should be addressed.  Each of these six 
steps is being addressed in the course of our research in order to refine our 
approach. 
 
2.1. Concept Identification/Extraction 
 

Our approach to concept identification/extraction includes the following 
three steps: input item (document) parsing, part of speech tagging and concept 
identification.  The parsing stage takes SGML, HTML or generalized XML 
tagged items as input. We have utilities to convert from a variety of input 
formats to XML, including proprietary airline safety data and US government 
patent data. Based on AI techniques [C00], [B92], our part of speech tagging 
approach includes the use of both lexical and contextual rules for identifying 
various parts of speech. After identifying each word�s part of speech, we 
invoke a finite-state machine (pictured below) that accepts maximal length 
English-language noun phrases. [BCGKMP01], [K96]. 
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A Finite State Automaton for Recognizing 
Complex Noun Phrases  State 0 is the start state, 
and state 1 the final state. C is a cardinal number, 
G a verb (gerund or present participle), P a verb 
(past participle), J an adjective, N a noun, I a 
preposition and D a determiner. 

 
Our enhanced state-machine identifies and extracts concepts consisting of 

complex noun phrases composed of multiple modifiers, including gerund verb 
forms.  The final result of these three steps is a reformulation of the original 
collection that includes a summation of the location and number of 
occurrences of each extracted concept. The next stage of the process receives 
this reformulated collection. 
 
2.2. Concept Co-occurrence Matrix Formation 
 

�Co-occurring� defines concepts that occur within the same item. An item 
can be defined as an intelligently created logical unit of text that is cohesive 
semantically. Examples include abstracts, titles, web pages, airline safety 
incident reports, patents, etc. The co-occurrence relation is reflexive and 
symmetric but not transitive.  Given concepts extracted by the above process, 
we compute concept frequency and co-occurrence matrices.  We also compute 
the frequencies of co-occurrences of concept pairs among all items in the set. 

The literature discusses various definitions of co-occurrence [BYRN99]. 
Our approach incorporates measures based on proximity as well as techniques 
that dynamically define the extent of sub-items within a given item (see 
Section 2.5).  Our preliminary results indicate that this latter approach is 
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crucial in dealing with the full text of items. We also reported on research in 
parallelizing the computation of such semantic relations based on the theory 
of coalescing loop operators [P98]. Similar techniques are being applied to 
scale the computational information management algorithms developed as 
part of this research to large collections. 
 
2.3. Hierarchy Construction 
 

Hierarchy construction is a meta-level organizational process that 
combines the matrices formed in the previous step. These co-occurrence 
matrices provide the basis for organizing concepts into an ontology of 
knowledge based on the content of the collections. Systematic filtering, 
pruning, and meshing lower level (child) matrices form the hierarchical 
structure, producing higher level (parent) combined matrices. The process is 
iterative in that matrices are pruned and merged at successively higher levels. 
The resulting hierarchical index consists of high-resolution leaf-level index 
nodes that become increasingly less precise (i.e., more general) as the 
hierarchy is built.  This process is visualized in Section 3 below, and is a topic 
of ongoing research [K01]. 
 
2.4. Knowledge Base Creation 
 

Knowledge base creation is the second meta-level organizational process. 
For each matrix in the hierarchy constructed in the previous step, and for each 
concept in each matrix we compute a similarity with other concepts. This one-
to-many mapping associates each concept with a list of related concepts 
ranked by similarity. Co-occurring concepts are ranked in decreasing order of 
similarity. More general concepts occur lower in the list. Each concept pair is 
weighted, creating asymmetric measures of pair-wise similarity between 

  Knowledge Base     Knowledge Neighborhood 
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concepts. The similarity is a mapping from one concept to another that 
quantitatively determines how similar they are semantically. We term the 
resultant mapping a knowledge base1. A knowledge base is represented as an 
asymmetric directed graph in which nodes are concepts and arc weights are 
similarity measures. The knowledge base can be visualized as a graph, 
illustrated by example on the left below, in which vertices represent concepts 
and edges represent the pair-wise similarity between concepts. 

In [P97] techniques were implemented that produce a knowledge base 
using an extension of the statistical model developed in [CL92].  The model 
building techniques are based on a cluster function defined as follows 
[CMNS97]: 
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These two equations indicate the cluster weights, or similarity, from 

concept Cj to concept Ck  (the first equation) and from concept Ck to concept 
Cj (the second equation).  dij and dik are the product of concept frequency and 
inverse document frequency and are defined in a similar manner (this is a 
variation of the popular tf∗ idf measure used primarily in text-based vector 
space modeling where tf is concept frequency and idf is inverse document 
frequency [S89]). dij, for example, is defined as: 
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where N represents the total number of documents in the collection, tfij is the 
frequency of occurrence of concept Cj in document i, dfj is the number of 
documents (across the entire collection of N documents) in which concept Cj 
occurs, and wj is the number of words in concept Cj. 

dijk and dikj represent the combined weights of both concepts Cj and Ck in 
document i and are also defined in a similar manner. dijk, for example, is 
defined as follows: 
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1 Note that follow-on work that builds on [CL92] terms this a Concept Space. 
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 Here tfijk represents the minimum number of occurrences of concept Cj 
and concept Ck in document i. dfjk represents the number of documents (in a 
collection of N documents) in which concepts Cj and Ck occur together.  The 
final expression, wj, is the number of words in concept Cj. 

 In order to penalize general concepts that appear in many places in the 
co-occurrence analysis, a weighting scheme similar to the inverse document 
frequency function is employed. Cj, for example, has the following weighting 
factor: 

( )
N

df
N

CactorWeightingF j
j log

log
=  

 
 Concepts with a higher value for dfj (i.e., more general concepts) have a 

smaller weighting factor, which results in a lower similarity. Co-occurring 
concepts are ranked in decreasing order of similarity, with the result that more 
general concepts occur lower in the list of co-occurring concepts. 

Ongoing research includes enhancement of this cluster function to 
account for several additional factors including, for example, metrics such as 
the ratio of commonly used to total words in a concept. 
 

 Our high-performance implementation for computing knowledge bases 
employs cluster functions of this nature in a parallel C++ application optimized 
to achieve efficiencies of over 100% on the SGI/Cray Origin2000 and SGI 
Power Challenge supercomputers [P98]. Based on the theory of coalescing 
loop operators, the outermost loop in this application was parallelized [P97].  
In conjunction with this outer-loop parallelism, a custom memory manager 
enabled the superlinear speedups reported in the table following on the SGI 
Power Challenge. Runtimes are recorded as wall-clock execution time for 
repositories of different sizes. 
 

 

Speedups on SGI Power Challenge 

 

 Num. 
Procs. 

CR 
h:m:s 

CR 
Sp 

DR 
h:m:s 

DR 
Sp 

Serial    1 1:17:19 1 10:30:27 1 
Parallel  2 0:27:16 2.84 3:32:49 2.96 
 4 0:14:28 5.34 1:53:52 5.54 
 8 0:08:41 8.90 1:08:20 9.23 
 16 0:05:44 13.49 0:39:22 16.01 
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2.5. Identification of Regions of Semantic Locality 
 

The resulting weight assignments from knowledge base creation are 
context-sensitive. We use these weights to determine regions of semantic 
locality (i.e., conceptual density) within each collection.  We then detect 
clusters of concepts within a knowledge base [BP00], [B99], [T72].  

The result is a knowledge base consisting of regions of high-density 
clusters of concepts � subtopic regions of semantic locality.  These regions 
consist of clusters of concepts that commonly appear together and collectively 
create a knowledge neighborhood. Our premise is that we can impute a 
constrained, contextual transitivity to the co-occurrence relation [BP00], 
thereby forming regions of semantic locality (see illustration on the right in 
section 4 above).  The motivation for the use of the term semantic locality 
comes from the commonly applied premise that grouping similar concepts 
together leads to increased effectiveness and efficiency in query search and 
retrieval [SJ71].  Note however that the similarity relation is by definition not 
transitive.  The theoretical basis for our algorithm, sLoc, is a concept we term 
contextual transitivity in the similarity relation.  In essence this means that a 
threshold is chosen based on the structure and distribution of the similarities 
in the knowledge base and transitivity is constrained accordingly. 

Contextual transitivity extends Schütze�s conceptualization of second 
order co-occurrence [S98] by using n-order co-occurrence, where n varies 
with the underlying semantic structure of the model. Here is a simple example 
of how sLoc employs contextual transitivity to group concepts together in a 
region of semantic locality. Let us consider the three concepts Java, applet 
and e-commerce. If the concepts occur in the same document, they are called 
co-occurring concepts. Let us assume that Java and applet co-occur and that 
Java and e-commerce also co-occur. This means that there is at least one 
document that contains both Java and applet, and that there is at least one 
document that contains both Java and e-commerce, but applet and e-
commerce do not necessarily co-occur. It may, however, be useful to gather 
the three concepts in one unique class and infer that e-commerce and applet 
are actually related. That is what we mean by contextual transitivity. Note that 
similarity is not a boolean relation � rather, it can take on a range of values.  
Two concepts can thus be more or less similar.  The characteristics of the 
structure of a given knowledge base lead to a heuristic minimum similarity 
value needed for two concepts to occur in the same cluster, and therefore to 
constrain transitivity. It is called contextual because this minimum similarity 
value depends on the structure and distribution of the similarities in the 
knowledge base. 

The computational core of sLoc is based on an algorithm due to Tarjan 
[T72]. Tarjan�s algorithm uses a variant of depth-first search to determine the 
strongly connected components of a directed graph. This was the first 
algorithm to solve the problem in linear time. This is an important feature due 
to the fact that graph clustering is an NP-hard problem and the only heuristics 
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we are aware of are not linear. The theory can be found in [AHU74]. The 
figure below depicts the operation of Tarjan�s algorithm as it identifies 
strongly connected regions (R1, R2, R3) in a simple graph. 

 
Before tackling the algorithm itself we must first introduce the following 

notation: Let N  be the set of nodes i in the input graph, and let N be the total 
number of nodes. Let A be the set of arcs in the input graph and A the total 
number of arcs. An arc ∈ija A connects node i to node j. Let W  be the set of 
arc weights in the graph and wi,j the weight of the arc going from node i to 
node j. Therefore W = {wi,j}(i,j) ∈  N2. 

A knowledge base is an asymmetric graph and therefore wi,j may differ 
from wj,i. Moreover, if ∉jia , A then wi,j = 0; in particular, for all i, wi,i = 0. 

Finally, let M be the mean of the arc weights �
∈

=
2),(

,1
Nji

jiwAM and SD the 

standard deviation of the distribution of arc weights 
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2.5.1. The sLoc Algorithm Step by Step 
 

The figure below depicts the three steps of the sLoc process. Prior to the 
first step, the weights in the knowledge base are normalized (step 0 below). 
The first step in sLoc is to statistically prune the input graph. Arcs of weight 
smaller than a certain threshold ττττ are virtually pruned. Note that since the 

6

4
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R3 R2

R1
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similarities are asymmetric, an arc from concept a to concept b can be pruned 
while the arc back from b to a remains. The second step involves the 
identification of the clusters within the graph. Tarjan�s algorithm is applied to 
find strongly connected regions. At this stage each strongly connected region 
is a cluster. The size of a given cluster is the number of nodes (concepts) it 
contains. During the third and final step, clusters of size smaller than 
parameter s are discarded (they are assumed to be outliers). We interpret the 
remaining clusters as regions of semantic locality in the knowledge base. The 
greater ττττ, the more arcs are cut off, and therefore the smaller in size the 

strongly connected regions. Thus the greater ττττ the smaller in size and the 
more focused will be the regions of semantic locality. 

The question that has arisen is twofold: Given an input knowledge base, 
what threshold ττττ should be applied? Secondly, can we determine a value for 
the threshold that scales across domain and collection size? 

Let us tackle the first question on how to determine the value of ττττ yielding 
an optimum clustering. Our premise is that the optimum ττττ can be determined 
statistically as a function of the mean M, the standard deviation SD and other 
knowledge base dependent variables (e.g., size, maximum weight, etc.). We 
have conducted preliminary experiments to study the distribution of weights 
in various knowledge bases.  Our preliminary results indicate that the 

(1) Prune the graph

regions in the pruned graph

the raw knowledge base
(0) Standardize weights in

than s (here s = 2)
(3) Discard clusters of size smaller (2) Find strongly connected
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distribution of weights is quite consistent across both subject domain and 
collection size.  The figure above represents one such common distribution.  

This was computed from the MED gold standard information retrieval 
collection [S75]. 

It should be stressed that we have yet to compute a knowledge base that 
does not exhibit a distribution of this nature.  Given this fact, we have 
developed the following heuristic for the threshold ττττ: ττττ(αααα) = max(wwww) - αααα * 
SD. In this equation, ττττ is the cut-off weight used to prune the graph and αααα is 
the number of standard deviations. For example, ττττ(1/2) is the threshold 
corresponding to the maximum weight in the graph minus half of the standard 
deviation of the distribution of arc weights. 

At this point in time we are still investigating answers to the second 
question posed above. We have conducted initial experiments in some of the 
application domains mentioned in Section 3 that indicate the range of α 
between [1.5, 2.0] is suitable [BP00], [Y00], [PY00]. 
 
2.6. Hierarchy mapping 
 

The final process is to create a mapping of the information space by 
developing linkages between the clusters identified during semantic locality 
detection. These mappings supply the necessary paths between information 
areas at higher and lower levels of the hierarchy. Links between clusters are 
based on overlap of content between clusters as well as similarities in 
topology. This process defines relationships between clusters, so that clusters 
are interconnected both with the child clusters that they were merged from 
and the higher-level parent clusters they were used to create. Upon 
completion of this phase, each level of the hierarchical index contains 
sufficient information to determine its relative position as a knowledge area in 
the overall knowledge hierarchy. This is an area of ongoing research [K01]. 
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3. Applications of HDDI���� 
 

One of the first applications of HDDI� is in the organization of large 
distributed and dynamic data sets into a cohesive hierarchical framework for 
optimal probabilistic search. Our research objective is to create a distributed 
system whereby collections are automatically indexed hierarchically for use in 
concept-based knowledge searches as depicted in the figure below. 

 

Using the HDDI� technology infrastructure, we are also investigating the 
automatic detection of emerging content. Trends in scientific research, 
technology forecasting, and automatic detection of emerging interpretations in 
case law are just a few examples of the variety of applications in which 
ongoing research that employs HDDI� technology is being conducted 
[PY00]. 

We have also recently explored scaling HDDI� technology from the 
textual to the numeric domain.  HDDI� techniques cluster concepts into 
classes.  An example of a concept in textual data mining is a noun phrase.  
Our approach to asset management is to identify distinct financial concepts in 
financial data, and apply the HDDI� model building and clustering-
partitioning techniques to group financial concepts into regions exhibiting 
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similar characteristics that can then be employed in predictive financial 
modeling. 

Another area of HDDI� research involves processing data that records 
both synchronous and asynchronous interactions between individuals.  Using 
HDDI� technologies, we are scaling our models to build relationship 
networks between people that can then be correlated with semantic regions of 
locality in the topics under discussion.  Tools based on these methods provide 
insight into the types and range of topics and associations in social 
interactions and can be used, for example, to identify social and semantic 
links between groups of authors and collections of publications. 

A related research initiative involves the design of a multimedia 
framework for constructive, inquiry-based learning for introductory and upper 
level computer science courses. The content is drawn from the field of Object-
Oriented Software Engineering (OOSE). This National Science Foundation 
project includes development of HDDI� textual data mining techniques for 
establishing temporal context that will be automatically employed by learners 
to detect emerging trends in OOSE research [BPK01] 
 
4. Conclusion 
 

We have outlined a set of core algorithms for building models in HDDI�, 
a framework for mining and management of distributed textual data. Current 
research includes the use of stochastic approximation to determine confidence 
intervals for optimal values of various parameters used in HDDI� (such as 
the parameter αααα in sLoc), as well as the construction of an agent system that 
executes HDDI� in a distributed environment. Ongoing work continues to 
focus on the validation of HDDI� model building and indexing techniques in 
a variety of applications. 
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