The notion of summarization is to provide a compact representation of data which approximately captures its essential characteristics. If such summaries can be created, they can lead to efficient distributed algorithms which exchange summaries in order to compute a desired function.In this talk, I’ll describe recent efforts in this direction for problems inspired by machine learning: building graphical models over evolving, distributed training examples, and solving constrained regression problems over large data sets.

The talk starts with a tutorial on the preliminaries and the theoretical foundations of this topic.

[ bib | video | Alternate Version | slides ] Back

*This file was generated by
bibtex2html 1.92.*