G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. Synopses for Massive Data: Samples, Histograms, Wavelets and Sketches. now publishers, 2012.

Methods for approximate query processing are essential for dealing with massive data. They are often the only means of providing interactive response times when exploring massive datasets, and are also needed to handle high speed data streams. These methods proceed by computing a lossy, compact synopsis of the data, and then executing the query of interest against the synopsis rather than the entire data set. We describe basic principles and recent developments in approximate query processing. We focus on four key synopses: random samples, histograms, wavelets, and sketches. We consider issues such as accuracy, space and time efficiency, optimality, practicality, range of applicability, error bounds on query answers, and incremental maintenance. We also discuss the trade-offs between the different synopsis types.

bib | .pdf ] Back

This file was generated by bibtex2html 1.92.