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Abstract

Private data generated by edge devices — from smart phones to automotive elec-
tronics — are highly informative when aggregated but can be damaging when
mishandled. A variety of solutions are being explored but have not yet won the
public’s trust and full backing of mobile platforms. We propose numerical aggre-
gation protocols that empirically improve upon prior art, while providing compa-
rable local differential privacy guarantees. Sharing a single private bit per value
supports (i) privacy metering that enables privacy controls and (ii) guarantees that
are not covered by differential privacy. We emphasise ease of implementation,
compatibility with infrastructure, and compelling empirical performance.

1 Introduction

Smart phones and smart watches, fitness trackers, automotive electronics, building sensors, and
other edge devices collect large amounts of private data, including locations, timestamps, behav-
iors, personal preferences, as well as data related to financial and medical information. To limit
the impact and potential damage caused by a private datum, aggregation (e.g., a sample mean, the
90th percentile or a histogram) is used whenever possible and often suffices. A potential danger is
that aggregated data may nevertheless reveal some information about individual contributors in rare
cases. To prevent that, federated analytics methods [10] use aggregation protocols with mathemat-
ical guarantees (differential privacy [6] for federated learning [9, 3, 7]), where the noise is added
before aggregation to provide plausible deniability through randomized response techniques [12].

The mathematical sophistication of existing methods complicates audit and verification, increases
the chances of implementation mistakes, and leaves many possible attack vectors. Our work ad-
dresses these challenges, while absorbing or extending prior solutions. We do not assume secure
hardware but can make use of it; likewise, we do not introduce novel differentially private mecha-
nisms, but provide a DP guarantee by leveraging an off-the-shelf mechanism.

Privacy metering. We propose to meter private data not at the value level (such as an integer repre-
senting someone’s current longitude), but at the bit level. Rather than transmit an entire private value
with noise added, our aggregation protocols only transmit a single private bit (and limit subsequent
bits per value and per client).

Bit-efficient numerical aggregation. Our mathematical contributions are the introduction and anal-
ysis of more efficient techniques for the computational estimation of means, variances, etc. Prior
LDP techniques either operate directly on real numbers, e.g., adding Laplace noise, or produce
some noisy discrete values as a result of rounding, range checks, comparisons to thresholds, etc. In
contrast, we approximate real numbers with fixed-point (or integer) representations, expand them in
binary, select some of the resulting bits, and postprocess those bits before communicating them. We
observe that the efficiency of existing approaches often relies on knowing tight bounds on the range
in which the values fall. We relax this assumption and allow our approach to adapt to the distribution
of values observed in practice. More details are presented in the full version of this work [2].
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Prior work. Several LDP mechanisms add noise at the bit level, e.g. Duchi et al. [5] combine ran-
domized response [12] with randomized rounding. Similar ideas have been deployed by Microsoft
for Windows app usage data collection [4]. Subsequent work by Wang et al. modifies the procedure
to sample a value so that values closer to the input are chosen with higher probability than those that
are further away, referred to as the “piecewise” mechanism [11].

Communication-efficient numerical aggregation (regardless of privacy) was considered for low-
bandwidth sensor networks [8] Dealing with multi-dimensional data, distributed ML applications
can leverage bit-level efficiency to reduce their communication. Ben-Basat et al. analyze leading
approaches for estimating a real value using a single bit sent from a client to a server, as a function
of the amount of shared randomness between the two parties [1]. In our setting, the relevant point of
comparison is given by subtractive dithering, wherein each client samples a random threshold and
indicates whether its value is above or below it.

The need for adaptive protocols. All these methods assume inputs in the range [0, 1] or, equivalently,
in some range [L,H] mapped to [0, 1] via f(x) = x−L

H−L . Assuming loose bounds on input values
has a negative impact on accuracy: when methods that are optimal for [0, 1] are applied to [L,H],
the variance of their estimates scales with (H − L)2 [1]. More promising are protocols that adapt
to the data distribution and “zoom in” on the range where the data truly lies. We implement such
adaptation in our protocols using few rounds and show (i) sharper analytical bounds for variance,
backed by (ii) reduced variance in simulations. When combined with the intuitive nature of the
bit-level privacy metering and ease of achieving a formal ε-LDP guarantee, bit-pushing becomes an
attractive option for mean estimation and related tasks.

2 The Bit-pushing Approach

Basic bit pushing algorithm. Assume that each client i out ofN owns a private value xi: we work
with b-bit integer and fixed-point values. In the narrative below, we assume non-negative integers,
but this is not a limitation of the approach. Our goal is to estimate the mean x̄ =

∑N
i=1(xi/N). We

write x(j) to denote the j’th bit in the binary representation of x, and x̄(j) to denote the j’th bit of the
mean, x̄. In the basic form of bit pushing, each client selects bit j with probability pj , and sends the
value of their input at this bit location, as the pair 〈x(ji)

i , ji〉. Algorithm 1 (in the Appendix) gives
the corresponding pseucocode for bit pushing, given a probability vector p to sample bits with.
Lemma 1. The basic bit pushing protocol provides an estimate that is unbiased and has variance
equal to 1

N

∑b−1
j=0 4j x̄(j)(1− x̄(j))

/
pj .

Corollary 2. If each client sends bsend bits, the variance decreases to 1
Nbsend

∑b−1
j=0

4j x̄(j)(1−x̄(j))
pj

The proofs of all claims are presented in the Appendix. This result relies on the fact that the mean
is a linear function of the values at each bit location. It seems intuitive that higher-order bits should
have greater probability of being sampled, since they contributed more highly to the computation.
Some natural choices are pj ∝ 2j , or more generally, pj ∝ cj = 2αj for some c or α.

Lemma 3. The variance of the bit-pushing estimator is minimized by picking pj =
∑b−1
j=0

√
βj

B ,

where βj = 4j x̄(j)(1− x̄(j)), and B =
∑b−1
j=0

√
βj .

From Lemma 1 and our independence assumption, we have βj = x̄(j)(1 − x̄(j))4j , where x̄(j)

denotes the mean value at the j’th bit index. If we simply bound the contribution of x̄(j)(1 − x̄(j))
values by 1

4 , so that βj = 1
44j , this leads us to set pj = 2j/(2b − 1), and so we obtain

V[X] ≤ 1
N

∑
j(2

b − 1)x̄(j)(1− x̄(j))2j < x̄(2b−2)/N. (1)

If the inputs make use of most input bits, then x̄ is reasonably large, i.e., x̄ ∝ 2b, and so V[X] ∝
x̄2/N . Hence, the expected absolute error will be of magnitude x̄/

√
N . Sending bsend > 1 bits per

client would further reduce this absolute error by a factor of 1/
√
bsend.

Adaptive Bit Pushing. A more sophisticated approach is to use a first round of bit pushing to
estimate the bit means x̄(j). That is, we first choose a set of sampling probabilities pj independent
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of the input, and ask a δ fraction of the clients to report an input bit according to this distribution.
From these reports, we estimate x̄(j) as x̂(j) for all j, and use these estimates to compute a new set
of weights based on β′j = x̂(j)(1 − x̂(j))4j . We can then perform a second round of bit pushing

using sampling probabilities pj =
√
β′j/

∑b−1
j=0

√
β′j for the remaining 1− δ fraction of clients. To

instantiate this two-round approach, we need to determine (i) what split parameter δ to apply; and
(ii) how to choose the initial weights βj . Naively, we might choose δ = 1

2 to balance accuracy
of learned β′js and accuracy of reported results. For βjs, we might default to choosing βj = 4j

(and hence pj ∝ 2j), according to the above argument. Our analysis guides the choice of δ = 1
3 .

Algorithm 2 in the Appendix provides pseudocode for the adaptive bit pushing approach.

Lemma 4. The variance of adaptive bit pushing is bounded by bmaxσ
2

N +O(bmax4bmax/N3/2), where
bmax is the index of the highest-order bit that is non-zero in the input.

Comparison to alternate approaches. The benefit of adaptive bit pushing can be most easily
understood when we have only a loose estimate of b, the number of bits to represent the input values.
For methods which scale the input down to the range [0, 1] and then scale the estimated fraction back
up, the variance of the resulting estimate is proportional to (2b)2. For (non-adaptive) bit pushing,
it is proportional to 2bx̄, as shown in (1). Since adaptive bit-pushing allows us to identify any bits
j with x̄j = 0, we can bound the variance of the estimate by 2bmax x̄, or use the above analysis to
argue that the variance is proportional to bmaxσ

2 plus lower order terms. Compared to the bound (1)
for our non-adaptive protocol, variance is reduced by a factor of at least 2b−bmax .

Local Differential Privacy. It is straightforward to give bit pushing an ε-LDP guarantee: we apply
randomized response [12] to each bit before it is sent, and unbias the results at the server side. The
variance of this unbiased estimator is exp ε

(exp ε−1)2 . In contrast to the above analysis, this variance is

independent of the bit means x̄(j). When we apply randomized response to bit pushing, where we
assign pjN clients to report on bit j, which is scaled by 2j , then we obtain a total bound on the
variance of

∑b−1
j=0

4j

pjN
exp ε

(exp ε−1)2 . This is optimized according to the above argument by choosing

pj = 2j/(2b − 1), which yields a total variance bound of O
(

4b

N
exp ε

(exp ε−1)2

)
. For small ε < 1, this

expression is O(4b/Nε2), and so the expected absolute error is O(2b/ε
√
N).

Variance estimation. The (empirical) variance is a fundamental primitive that can be easily ex-
pressed as an expectation, and hence computed via bit-pushing. Specifically, we can write two math-
ematically equivalent expressions for the variance: V[X] = E[(X − E[X])2] = E[X2] − (E[X])2.
The former gives better results when using approximate means, so we adopt it in our experiments.

3 Experiments

We simulate the computational costs and accuracy of mean estimation for bit-pushing—the two-
round adaptive bit pushing (“adaptive”), and the single round approach based on a fixed allocation
of weights to bits (“weighted”)—and compare against subtractive dithering [1] (“dithering”). We
perform experiments on both human-generated and synthetic data. To generate synthetic data, we
draw values from Normal, uniform and exponential distributions with varying parameters, as spec-
ified below. The human-generated data (real data for short) are the reported ages from publicly-
available de-identified data from the US Census1. Our main focus is on comparing the accuracy of
the different techniques, measured by the normalized root-mean-squared error (NRMSE): in each
experiment, we compare the true (empirical) value of the mean µ to the estimate x̂, and compute
the mean of the squared difference over 100 independent repetitions, then divide by the true mean µ
for normalization. When error bars are shown on our plots, they indicate the standard error of these
repetitions. Our default number of clients (10K) is representative of typical federated scenarios.
Initial parameter tuning experiments lead us to set δ = 1/3, and α = 0.5 or α = 1.0.

Figure 1a shows the accuracy as we vary the mean µ of the input (Normal) distribution. There is
a general trend for the normalized error to decrease as µ increases, since the normalizing constant

1https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29
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Figure 1: Accuracy experiments on Normal data varying µ (σ = 100) and on real data (varying N )

increases faster than the magnitude of the errors. For the dithering approach, there is a step-up in
error around powers of two, the point at which we increase the bound on the input values by a factor
of 2. In a single round, choosing weights based on α = 0.5 generally leads to more accurate results.
Across the whole domain, the adaptive approach reliably achieves the least error. The absolute
values of NRMSE are also encouraging: the error is typically around 1-2% of the true mean value.

We study the importance of finding accurate bounds on the magnitude of the quantities involved in
Figure 1b. We vary the “bit depth”, i.e., the number of bits b used in the bit-pushing algorithms (so
2b is the bound used for the dithering approach). We see that all the one-round approaches grow
in error as b increases: less so for α = 0.5, since less weight is apportioned to the (vacuous) high
order bits than in the α = 1.0 case. The adaptive approach can identify the redundant bits in the first
round, and discard them in round two, so it is largely oblivious to the increase in bit depth.

Experiments varying N on real data are shown in Figure 1. The normalized error for both mean
(Figure 1c) and variance (Figure 1d) estimation tends to decrease as N increases, broadly consistent
with the predicted dependence on N−1/2. Variance estimation is the harder task, as evidenced by
the substantially larger error values, even though we allocate a larger cohort of 100,000 clients to
this task. Here, the dithering approach is orders of magnitude worse, due to its inability to adapt to
the scale of the input values. The adaptive approach achieves the best accuracy overall, particularly
with a larger user cohort: it achieves normalized errors in the 1-2% range. Experiments for DP noise
are shown in Appendix B, and additional results in the full paper [2].

4 Conclusions and Perspectives

Notions of optimality for single-bit estimates have been explored in the recent literature, and meth-
ods such as subtractive dithering were shown optimal [1]. Hence, it may look surprising that bit
pushing empirically outperforms those methods. This apparent paradox stems from the assumptions
made in prior proofs of optimality. In particular, optimality is invalidated when the true mean can be
narrowed down further within the fixed subrange [0, 1], and this bracketing is performed by adaptive
bit pushing using the same type of inputs as other protocols. Limitations of this approach are the flip
side of its advantages: when a tight bound on the values is known in advance, then bit pushing attains
similar accuracy to existing methods . However, accuracy is not the only relevant metric. In many
cases, a single bit of the client’s input does not reveal any sensitive information, and so bit pushing
alone can provide an intuitive privacy promise to non-experts. When some bits of a value can be
privacy-revealing (say, disclosing if a value is above or below a threshold), plausible deniability for
communicated bits is ensured using differential privacy (randomized response) [12].

Privacy metering at the bit level can be used in conjunction with bit pushing and differential privacy
to provide stronger privacy guarantees and help the general public improve trust in technology. Our
work shows how to communicate fewer private bits when aggregating data, and metering private
bits shared by an edge device may provide a language more accessible and more convincing to the
general public than the language of differential privacy. Privacy infrastructure is needed to turn
our proposal into a reality. Platforms for federated analytics and federated learning should provide
configurable aggregation services that would package private bits into larger network packets and
provide layers of separation to rule out the mixing of private and non-public bits. With such infras-
tructure, it should be relatively easy to add privacy metering and monitoring, potentially giving the
users greater control of their data privacy.
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Algorithm 1: Basic bit pushing algorithm
Input : No. of bits b, bit weights p, no. of clients N
Output: (Result r, mean of bits m, sum of bits s)

1 Initialize result r = 0
2 for j = 0 to b− 1 in parallel do
3 Contact c[j] = p[j] ·N clients to request bit j
4 Gather weighted sum of bits as s[j]
5 Compute bit means m[j] = s[j]/c[j]

6 r ← r + (2j ·m[j])
7 return (r,m, s)

Algorithm 2: Adaptive bit pushing algorithm
Input : No. of bits b, no. of clients N , parameters α, γ, δ
Output: Result r
/* Round 1: */

1 for j = 0 to b− 1 do
2 Compute p1[j] = (2j)γ

3 Normalize p1: p1 ← p1/sum(p1)
4 Run basic bit pushing to estimate bit means: (r1,m1, s1) = BitPushing(b, p1, δN)
/* Round 2: */

5 for j = 0 to b− 1 do
6 Compute p2[j] = (4j ·m1[j] · (1−m1[j])α

7 Normalize p2: p2 ← p2/sum(p2)
8 Run basic bit pushing based on the computed probabilities:

(r2,m2, s2) = BitPushing(b, p2, (1− δ)N)
/* Final aggregation: */

9 Combine means m3 = (s1 + s2)/(δN ∗ p1 + (1− δ)N ∗ p2)
10 for j = 0 to b− 1 do
11 r ← r + 2j ·m3[j]
12 return r

A Omitted Proofs

Proof of Lemma 1. Let X(j) denote the distribution of the j’th bit value. We can assume that each
X(j) follows a Bernoulli distribution with parameter E[X(j)]. Assuming the quasi-Monte Carlo
case, where bit j is reported on by exactly Npj clients, our estimate X̂(j) is the mean of these Npj
reports. Clearly E[X̂(j)] = E[X(j)], which, by linearity of expectation, is x̄(j). Our estimate X is
the sum of these bit means, weighted by 2j , so X =

∑b−1
j=0 2jX̂(j) (applying linear decomposition),

and by definition,

E[X] = E

b−1∑
j=0

2jX(j)

 =

b−1∑
j=0

2j x̄(j) = x̄. (2)

For bit j, each report on this bit is assigned weight 2j . The corresponding contribution to the variance
is V[2jX(j)] = 4j x̄(j)(1 − x̄(j)). Averaged over the Npj reports, the contribution to the variance
from the estimate of bit j is 4j x̄(j)(1− x̄(j))/(Npj), so the overall variance of the estimator is

V[X] =

b−1∑
j=0

4j

Npj
x̄(j)(1− x̄(j)) :=

1

N

b−1∑
j=0

αj
pj

(3)

Proof of Corollary 2. This result follows immediately by adapting the previous proof to average
over (Npjbsend) samples for bit j.
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Proof of Lemma 3. For a fixed budget of bit samples, we seek to minimize V[X] = 1
N

∑
j
βj

pj
with

βj , pj > 0. To optimize variance in terms of pj such that
∑
j pj = 1, we perform unconstrained

optimization of
f(p1, . . . , pk−1) = βk

1−
∑k−1

j=0 pj
+
∑k−1
j=0

βj

pj
(4)

Looking for a local extremum inside the probability simplex, we obtain

∀i = 1..k − 1, ∂f(p1,...,pk)
∂pi

= βk

(1−
∑k−1

j=0 pj)2
− βi

p2i
= 0 (5)

Therefore
∀i, l βi

p2i
= βl

p2l
⇒ pi/pl =

√
βi/βl (6)

and this extends to l = k via renumbering. Therefore, pj =
√
βj

pk√
βk

, and to find pj , we can just

L1-normalize the vector of
√
βj . To confirm that this unique critical point is the global minimum,

we compute

∀i, j ∂V
∂pi∂pj

=

{
0, for i 6= j
2βj/p

3
jN for i = j

}
(7)

Given that pj , βj > 0 ∀j, the Hessian is positive semidefinite.

Proof of Lemma 4. With adaptive bit pushing, the first round allows us to find accurate estimates
for each of the βj parameters in (3), and we proceed by substituting our choice of pj into (3).
We first assume that the estimates from the first round give exact values for pj ∝

√
βj . Write

B =
∑b−1
j=0

√
βj , so that pj =

√
βj/B. Then (3) sets

V[X] = 1
(1−δ)N

∑b−1
j=0B

βj√
βj

= B
(1−δ)N

∑b−1
j=0

√
βj = B2

(1−δ)N (8)

Next, we can observe that, using the Cauchy-Schwarz inequality on a vector of up to bmax different
βj values,

B2 ≤ bmax

∑bmax−1
j=0 βj = bmax

∑bmax−1
j=0 4j x̄(j)(1− x̄(j)) := bmaxσ

2 (9)

where, σ2 is the variance of the input distribution since, by linearity of expectation, we can decom-
pose σ2 =

∑b−1
j=0(σ2)(j) =

∑b−1
j=0 4j x̄(j)(1− x̄(j)). Hence, our estimate is as efficient as the trivial

(non-private) estimator of taking the mean of N samples, up to the factor of bmax/(1− δ).

We now consider the effect of sampling δN clients in the first round. For a given bit j, if we estimate
this based on a sample of size s, then the error in our estimate of x̄(j) will be proportional to 1/

√
s,

from standard sampling bounds. Then our estimate of βj (as β̂j) will accordingly have an error of
O(4j/

√
s). Putting this into our expression for σ2 yields

σ̂2 =
∑bmax

j=0 β̂j =
∑bmax

j=0

(
βj +O(4j/

√
s)
)
< σ2 +O

(
4bmax 1√

s

)
. (10)

Hence, the contribution to the total variance from this error term is, from (8), (9), and (10), propor-
tional to 4bmax

(1−δ)N
√
δN

. This term is minimized, as a function of δ, if we maximize the expression

(1 − δ)
√
δ. Writing z =

√
δ, we aim to maximize z − z3. We differentiate to obtain 1 − 3z2 = 0,

and so set z2 = δ = 1/3.

Consequently, our bound on the variance is

bmaxσ
2/N +O(bmax4bmax/N3/2). (11)

Provided the variance in the high-order bits is significant (e.g., if (σ2)(bmax) is at least a constant),
then this is dominated by the first term of σ2/N .
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Figure 2: Differential privacy experiments on real data
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Figure 3: Accuracy experiments on synthetic data with differential privacy

B Experimental Results with Differential Privacy

We study the impact of providing a differential privacy (DP) guarantee on mean estimation. We
include the “piecewise” mechanism [11], as well as our previous one-bit methods augmented with
randomized response to provide a DP guarantee. Figure 2 shows the NRMSE accuracy on synthetic
data as we vary the privacy parameter ε, split into two regimes: high privacy (ε < 1), Figure 2a,
and moderate privacy (ε ≥ 1, Figure 2b). On a log scale plot, the lines are fairly closely clustered,
but we see that in this experiment, the single round approach with α = 1.0 achieves the least error.
Only when ε > 5 do we see points where the piecewise approach achieves lower error. Note that the
absolute value of NRMSE for mean estimation is much larger than without DP noise until ε = 5.
This is all consistent with our theoretical analysis, where we showed that the variance depends only
on ε (as exp ε

(exp ε−1)2 ), and is independent of the value of the bit means.

Because of the DP noise, we cannot rely on the bit means of unused bits to be zero. Instead, we
should apply some filtering to determine which bits are mostly noise, and should have their weight
reduced. This is captured in Figure 3a, where we apply a simple heuristic: if the value of a bit mean
is less than an absolute threshold, we assume that this bit is capturing noise, and ‘squash’ it (i.e.,
we downweigh its importance). The plot shows the effect on RMSE as we vary the threshold, as
a multiple of the expected amount of DP noise. It turns out that applying a threshold of 0.1–0.2
is very effective at improving accuracy by almost two orders of magnitude. Figure 3b shows an
example in more detail, with a histogram of the estimated bit means for the noisy data with ε = 3.
We see that the DP noise causes some of these estimates to exceed 1.0 or fall below 0.0 (when the
DP subtrahend exceeds the true mean). However, there is a clear “dense” region up to bit 10, with
higher bits showing random noise. The bit-squashing approach treats bits 11 and above as noise,
and bases the estimate on bits 0-10 only. Figure 3c shows this in practice as we increase the bit
depth: the adaptive approach using bit squashing maintains the same level of accuracy, while all
other methods grow in error proportional to the magnitude of the (noisy) values.
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