Space- and Time-Efficient Deterministic Algorithms
for Biased Quantiles over Data Streams

Graham Cormode
Bell Laboratories
cor node@ ucent.com

Flip Korn
AT&T Labs — Research
flip@esearch.att.com

ABSTRACT

Skew is prevalent in data streams, and should be taken intaiat
by algorithms that analyze the data. The problem of findingsed
quantiles"— that is, approximate quantiles which must beenac-
curate for more extreme values — is a framework for summagizi
such skewed data on data streams. We present the first daiicni
algorithms for answering biased quantiles queries acelyratith
small—sublinear in the input size— space and time boundsién o
pass. The space bound is near-optimal, and the amortizeateupd
costis close to constant, making it practical for handlirghtspeed
network data streams. We not only demonstrate theoretiopkp-
ties of the algorithm, but also show it uses less space thiatirex
methods in many practical settings, and is fast to maintain.

Keywords

Data Stream Algorithms, Biased Quantiles

General Terms
Algorithms, Performance

Categories and Subject Descriptors
E.1 [Data]: Data Structures; F.2lheory]: Analysis of Algorithms

1. INTRODUCTION

Many queries over large data sets require non-uniform resgs
Consider published lists of wealth distributions: one ¢@fly sees
details of the median income, the 75th percentile, 90thh @bid
99th percentiles, and a list of the 500 top earners. Whilal#tail
around the center of the distribution is quite sparse, atemkof
the distribution we see increasingly fine gradations in twueacy
of the response, ultimately down to the level of individugsémi-
lar variations in the level of accuracy required are seemahyaing
massive data streams: for example, in monitoring perfooman
packet networks, the distribution of round trip times isdiszan-
alyze the quality of service. Again, it is important to knowoad
information about the center of the distribution (mediamles),

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODS’06,June 26-28, 2006, Chicago, lllinois, USA.

Copyright 2006 ACM 1-59593-318-2/06/000355.00.

S. Muthukrishnan
Rutgers University
mut hu@s. rut gers. edu

Divesh Srivastava
AT&T Labs — Research
di vesh@esearch. att.com

and increasingly precise information about the tail of tisribu-
tion, since this is most indicative of unusual or anomalaefsayior

in the network. A particular challenge is how to maintainfsdis-
tributional information in a data streaming scenario, veh@assive
amounts of data are seen at very high speeds: the requiréntent
summarize this huge volume of data into small space to betable
accurately capture the key features of the distributiorthiwial-
lowable approximation bounds.

This problem of capturing the distribution was formalizedlze
biased quantileproblem [3]. Much of the prior work studied the
problem of summarizing the distribution witmiform accuracy
this means reporting the median with the same accuracy &the
percentile [7, 4]. For the applications we have outlined¢hsguar-
antees are insufficient since, for the more extreme valhesun-
certainty can be too large: with1& accuracy, all values above the
99th percentile are indistinguishable. Ttfelly) biased accuracy
guaranteedemands that the accuracy scales with the place in the
distribution that is queried: for example, the accuracyhwihich
the 90th percentile is given should be five times more aceukhein
the median, and the 99th percentile should be ten times noote a
rate than the 90th percentile.

There are many variations of this problem that we addredssn t
paper. An essentially equivalent problem is to reportrérk of a
given item: the rank is the item’s position in the sorted inguan-
tile queries can be used to answer rank queries, and visa:v€he
(partially) biasedaccuracy guarantee gives a cut-off for the tight-
est accuracy that is required: this can be leveraged to ecfduher
the resources needed by the summary. feingetedquantiles prob-
lem is when the quantiles that are required are given in aan
Focusing on answering just these queries allows the ressucc
be reduced further still. Throughout, our focus is on whattae
fundamental costs required to support these queries,rirstef

(a) what is thespacerequired to summarize the whole distribution
and allow these queries to be answered with the requisiteacyg?

(b) what is thetime per updateequired to maintain this summary
as new data arrives in the stream?

In order to handle the large data streams prevalent in n&swor
and other monitoring scenarios, it is vital to keep thesenzallsas
possible, depending either sublinearly or not at all on the af the
data stream.

Our Contributions. In this paper, our contributions are as follows:
e We present the first deterministic algorithms for biasedngqua
tiles, rank queries and targeted quantile queries that basean-
teed space bounds that are strictly sublinear in the sizeeofiata
stream,N, and the universe from which the items are drawn,
In particular, we present a deterministic algorithm th&egonly
spaceO (222 log(eN)) to provide ane approximation on the bi-

ased quantiles of different kinds. In contrast, previolksigwn de-
terministic algorithms use@(V') space and previously known ran-
domized algorithms neeg(-; log(eN)) worst case space which
is greater than ours for even moderat&he space requirements of
our algorithms are close to optimal: they are withiflog U) fac-
tors of the lower bounds. Our algorithms are also fast, witloia
tized time per update that is close to constant, and indegetraf
the size of the data stream.

e We present an experimental study showing that not only do we

have very strong guarantees on accuracy, time cost and space
quired, but that our algorithms are also competitive in cargon
with existing methods, with consistently higher throughgied less
space than prior algorithms for these problems in most jgalct
settings.

1.1 Problem Definitions
The input consists of a stream of items in the rafige. . U} =

DEFINITION 2 (UNIFORM QUANTILES PROBLEM). Auniform
quantile querys, giveng, to returnz so that
rank(z) — eN < ¢ N < rank(z + 1)+ eN

For example, finding the median corresponds to queryinghfor t
¢ = % guantile. Observe that, given a solution to answering uni-
form rank queries, we can answer uniform quantile queriefbby
nary) searching for: that satisfies the above inequalities. These
two problems have been extensively studied on streams oésal
and solutions are known with space guarantees in ternas tbfe
space required is bounded By £ log eN) [4], andO(*2Y) [9].

DEFINITION 3 (BIASED QUANTILES PROBLEM).
Lett(z, N) = max(erank(x),eminN). A biased quantile query
is, giveng, to returnzx so that
rank(z) — t(z, N) < ¢N < rank(z + 1) + t(x + 1, N)

This problem was introduced explicitly in [3] (but inherent

[U], and the input stream can be thought of as defining a multiset prior work such as [5]), where algorithms with good spacejasa

of items from[U]. At any point, the number of points observed
thus far is denoted byV. Therank of an itemx from the do-
main is the number of items from the input which are less than
We denote this byank(z). A basic problem is to findank(z)
givenz € [U]. Trivially, rank(x) can be computed by storing the
whole input in sorted order. However, our focus is on situai
when the size of the inputy, is so large that we cannot afford

practice were demonstrated. As with the uniform case, gaaata
structure for the biased rank query problem, we can ansvaseti
quantile queries by searching for an item whose rank saittie
query. Lastly, theargeted quantileproblem is defined as follows:

DEFINITION4 (TARGETEDQUANTILES PROBLEM [3]). The
parameter is a set of tupleB = {(¢;, ¢;)}. Following a stream of

this much space to store and sort the input, and so we must uselnput values, the goal is to return a set|(df| valuesv; such that

smaller—sublinear—space (consequently, we need to afypnoa-
imate answers to rank and quantile queries). Several éiffestyles
of approximation guarantee are possible:

DEFINITION 1. (a) A uniform rank queryis, givenz to return
an approximation?(x) of rank(z) such that (for an accuracy pa-
rametere, supplied in advance)

rank(z) — eN < 7(z) < rank(z) + eN
(b) Afully biased rank querys, givenz to return an approximation
7(x) of rank(z) such that
(1 —¢)rank(z) < 7(z) < (1 + ¢) rank(z)
(c) Lett(x, N) = max(erank(x), eminN) for parameterse and
emin- A (partially) biased rank querg, givenz to return an ap-
proximation(z) of rank(z) such that
rank(z) — t(z, N) < #(z) < rank(x) + t(z, N)

Note that in all cases, the value being approximated is theesa
and what differs is the nature of the approximation guaenée
quired. The use of bias in accuracy allows us to give shagseits
for the tails of the distribution, which typically are skedyeand are
of more interest in data stream applicatidfi®re = emin = 0, the
notions converge, but for non-zero approximation guaemtehe
fully biased rank query has stricter requirements than thiform

rank(v;) — ;N < ¢; N <rank(v; +1) + ¢; N

The targeted quantiles problem was defined in [3]; it can also
be thought of as a generalization of the “extreme valueshtjiga
finding problem in [7].

2. RELATED WORK

In recent years there has been significant interest in treare
data streams, where the space available for processingsses-
ably smaller than the input, which is presented in a “ones’piash-
ion [1, 8]. For the problem of tracking quantiles in dataains, the
most relevant work is the “GK algorithm” due to Greenwald and
Khanna [4]. It is a deterministic algorithm which allows forim
guantile queries to be answered with error at na@dét using space
O(QE&N). This improved a series of previous results of determin-
istic and randomized algorithms (see, eg. [7]). Runningetiior
this algorithm is not analyzed in the paper, but since it nzémns
a list of items in sorted order, and inserts a new item inte kst
for every update, the algorithm can be implemented with &imext
time costO(log(é) +loglog e N). Another algorithm for the prob-
lem was given in [9], whose space cost$2Y), whereU is the
number of distinct values possible; this is not directly pamable
with the GK algorithm but also uses small space in practidee T

rank query. The biased rank query is a compromise between theamortized time cost i€ (log £ + loglog U).

fully biased and uniform versions. In general, we requélative
error in response to our queries, which is given by dhenk(x)
component. However, giving such guarantees can lead tcchisth
and there is a certain minimum accuracy beyond which it ismet
portant to give finer accuracy. This is thg;, N component of the
guarantee (a special case is then whgn < 1/N, i.e. when the
erank(x) term always dominates, in which case we have the fully
biased case). From these primitives, we can define relatauatitp
queries.

1we focus on the case when the finer accuracy is needed on itéims w
low rank, referred to as the low-biased case in [3]. Resuwitgte high-
biased case follow by reversing the ordering relation, busfmplicity of
presentation we focus only on the low-biased case.

The problem of biased quantiles was formally introducedin [
An algorithm for biased quantiles based on GK was given, and
shown to be effective on real data. However, for carefulbfted
input data, the space used by the algorithm can grow linedatly
the input size [10]. In contrast, we show a new algorithm here
whose space cost grows at most logarithmically with the gizke
input, and which often uses less space in practice than éwégois
algorithm. Although not called biased quantiles as sucipt&and
Zane [5] studied this problem in the context of counting isi@ns
in streams. They gave a randomized algorithm whose spate cos
is O(fg log? ¢N). For small values of, this cost rapidly becomes
too high in practice. Manket al. [7] gave randomized algorithms
for a single targeted quantile in spa@é% log).

Most recently Zhangt al[10] gave a randomized algorithm for
the biased case based on sampling at different rates, vatesost
O(log log(e 2N)). Here,§ is the probability that each query
falls to meet its error bounds. A modified version of the aikiyon
has average space cost Whic}ﬂi@ log? eN), but worst case cost
as before. The running time per update of the first algorithm i
O(log(eN) log(elog(5))), and the second (7).

3. OUR ALGORITHMS

In this section we show that the biased rank and biased dgianti
problems can be solved with space strictly sublinear (it fag-
arithmic) in N andU. The algorithm uses a similar approach to
that of [9], in that it places a binary tree structure overdbenain
and maintains counts associated with certain nodes inelee But
maintaining this structure, the invariants that apply, anobf of
correctness require significantly new approaches andhtssig

Throughout, we make use of standard dictionary data stres{a]
that support the following operations: (a) insert an iteb);delete
an item; (c) test for the presence of an item; and (d) listtaihs.
We will measure the number of per item operations. In our expe
iments we will use a hash table to implement this dictionatad
structure in constant (expected) time per item.

We impose a binary tree of heigloig U over the domaifl . . . U]
in the obvious manner. For any nodén the tree, letf(v) denote
the leftmost leaf item in the subtree of Let par(v) denote the
(unique) parent node af, letleft(v) denote the left child of, and
right(v) the right child ofv.? Lastly, defineanc(v) as the set of
nodes that are ancestorswoin the tree.

A bg-summarys a subset of nodes of this tree, with associated
counts, corresponding to a count of items appearing in thgera

covered by the node. We represent the bg-summary as a set of

nodesbq, and for each node € bgq we also store a count, for
that node. This count represents items from the input thaie we
drawn from the leaves of the subtree of the nedd nodew is not
stored in the bg-summary, we usge= 0 whenc, is queried.

3.1 Accuracy Guarantees

We first describe our algorithm for the fully biased versidéthe
problem. We will prove space bounds for this version, ther tie
results for biased rank queries wheR,, is used. Firstly, we define
two functions over the tree, which we dendtéfor Left-count) and
A (for Ancestor-count).

DEFINITION 5. We define two functiond:(v), a function over
tree nodes, andl(z), a function over universe items:

> > e

If (w) <1f (v) weanc(z)

L(v) cw and A(z) =

By maintaining certain properties on the counts, we willlezas
that the uncertainty in our query answers is bounded, anHeat t
same time the space required is also bounded. We can now define
set of formal correctness criteria for the bg-summary te gjuar-
antees for finding biased quantiles. We use a parameter, that
we will set later based on the analysis. To guarantee queaiebe
answered correctly, we maintain two invariants at all times

Ve € [U]: L(z)— A(z) < rank(z) < L(z) 1)
Yv ebg: v#Ilf(v) = co < al(v) 2)

Given such a data structure, we can answer biased rank guerie
Given a particular value, its rank is at least the sum of all counts

2All of these functions can be computed in constant time uadeasonable
machine model and appropriate representations of nades

Figure 1: One dimensional data structure run on the input
{1,2,2,2,3,4,5,6,6,6,10,12,14, 14, 15,16} with o = 1.

of nodes that are strictly to the left of the leaf in the treereo
sponding taz. Its rank is at most this quantity plus the nodes that
are ancestors of the leaf. We bound the first of these questiyy
L(z) — A(x), and the second b¥(z). Therefore, the uncertainty

in the answer to the query is bounded by the sum of counts of all
ancestors the queried valué((x)).

LEMMA 1. Any bg-summary that obegk) and (2) with « log(U)
<e< % allows fully biased rank queries anto be answered with
7(x) so that|#(z) — rank(x)| < erank(x).

PROOF We compute and outpit= L(z)— s A(z). Applying
invariant (1), we know that
—1A(z) < ((z) — rank(z)) < 2 A().

So the only uncertainty comes from those nodes that are -ances
tors of thex in the tree. For eaclv € anc(z), If (w) < If(z) and
so L(w) < L(z). Thus, using (2) to obtain a bound ol(x) in

terms ofrank(z) and A(z), and rearranging to eliminat&(x):
|7ﬁ(:c) - rank(:c)| S %A() ZwEanc(z) OéL()
< % ZwEanc(z (:C)
< log(U) 5 (rank(x) + A(x))
S log(U) m rank(flf)

< alog(U) rank(z) < erank(z

)
<3 O

The last step makes use of the fact that ande <

lo U

LEMMA 2. Any bg-summary that obeyk) and (2) with a log(U)
<e< % allows fully biased quantile queries ahto be answered
with z so that(1 — ¢) rank(z) < ¢N < (1 + ¢) rank(z + 1).

PROOF We perform a binary search ovfy] for the greatest
z such that?(x) < ¢N. Applying the above Lemma, we have
that (1 — ¢)rank(z) < #(z) < ¢N. Sincer(z + 1) > ¢N,
we also have (using the same Lemma agaify) < 7(z + 1) <
(1+e€) rank(z+1). Combining these gives the required resulL]

3.2 Space Bounds

We have shown that if the bg-summary satisfies conditions (1)
and (2) then it can answer rank and quantile queries actyrsite
now describe how we will maintain our data structure to ghese
guarantees, while ensuring that the space used is tightigdza.
Our approach is common to previous data streaming algosithm
for a variety of problems: we process new updatés/ running a
procedure NSERT(x); periodically (after a set number of arrivals)
we will run a CoMmPRESIoutine which compacts the data structure
and removes redundant information, to ensure that the symacel
always holds; when a query tois posed, we run RNK QUERY(x)
to return the approximate rank efwithin the stated bounds. To
make these routines efficient, we will ensure that our datesire
has some additional properties.

Data Structure. Our data structure will be split into two pieces,
which we refer to abg-leavesandbqg-tree The bg-leaves, denoted
bql, are a set of leaf nodes from the original tree, and assaciate
counts, while the bg-treéygt, is a set of nodes (internal or leaf)
from the original tree. These partitidr;: bg = bgt U bgl and
bgtNbgl = (). We will maintain the additional following properties:

(v € bgt) A (né%qu < If(par(v))) = cpar(v) = aL(par(v))
ueby

(3)
1 . 1
> log(aN) > [bgl| > min(N, E) (4)
g < e ©
Se=N (©)
vEbg

Condition (3) ensures that most internal nodeggnare “full”:
condition (2) limits the count of any node to at mesdt(v), while
this condition demands the count be at least this much, atidde
satisfied at equalify This condition ensures that the space needed
to storebgt is compact, while condition (4) bounds the sizégf;
these two conditions may lapse as the data structure is eghdsd
periodically we will restore them. Condition (5) says thitthe
leaves stored igl occur to the left of all the tree nodes stored in
bgt. These conditions will also enable us to update the data-stru
ture rapidly. Lastly, condition (6) is a check on the comests of
the manipulation of counts (in fact, it is a consequence Bf (1

are illustrated in Figure 1: all nodes#gt in the same equivalence
class are shown in the same shaded vertical strips. Suppese t
are a total ofg equivalence classes. We will sort thegelasses
by the L value shared by all nodes in the class. Egtdenote the
set of nodes in théth equivalence class, and 16t denote thel.
value for that class, sb1 < L2 ... < L4. SinceE; partitionsV,
|V =", |E:|. Observe thatF;| < log U, that is, there can be
at mostlog U nodes inbgt in each equivalence class, at most one
node from each level of the binary tree structure; this isahee of
the preceding observation, that all nodes in the classist share
the saméf(w) value,lf; — there can be at mogig U nodes shar-
ing the samdf() value. Eachbgt nodew in classi must satisfy
¢y > al;, by applying condition (3). Thus for any equivalence
classE;, we have . . cv > alE;|L;. Also, using condition (3)

Z Cw = z Cw+zcu:Li+ch

If (w) <1f; 41 If (w) <1f; vEE; vEE;
> L + Oé|EZ|LL = (1 + (X|Ez|)LL

Lit1 =

Expanding the above expression, we have for aryi
Livi > 1+ olE) (1 +alEia]) ... (1+ o Ej|)L;

If [bgl| < £, then by condition (4)bgl| = N, and sdbgt| = 0.
So if |bgt| > 0, we also havel; > 1/a, by combining (4) and
(5): since all ofbgl precedesqt, and there are at leasf o leaves
in bgl, we have that the, value of every node ithgt must be at
leastl/a. Consider the “artificial” item{/ 4- 1. Using (1), we have
rank(U + 1) = N < L(U + 1). Place a ‘fake’ equivalence class

Example. Figure 1 gives an example conflguratlon of abg-summary ¢ + 1 to the right of all items. We can writgq1 = L(U + 1) >

that obeys the required conditions with = 5 The tree placed
over the universél . .. 16] is shown, with nodes ihg are marked
with a black dot. Their count,, is also shown. These are divided
into two parts:bql, which consists of leaves only, abgt, which
can consist of any nodes. The dividing line betwéeghandbqt is
marked in grey: we insist that for every nodebigt, its parent is
also inbgt unless the parent node falls on this dividing line (this fol-
lows from condition (3) above). The Figure is arranged so afla
nodes with the sami() value fall in the same vertical line; these
nodes also have the sarhevalues. The bg-summary represents the
input{1,2,2,2,3,4,5,6,6,6, 10,12, 14, 14,15, 16} with o = 3.
We can use it to find the rank of the itefn L(6) = 1+3+2+3+
1 =10andA(6) = 1+ 3 = 4, so we know tha6 < rank(6) <
10, and we estimaté(6) = 8. (In fact,rank(6) = 7.)

THEOREM 1. Any bg-summary which satisfi€3), (4) and (5)
with @ < 51+ uses spac@(&l

PrRooF We will consider the set of nodds such thaty € bqt
andc, > aL(v). By bounding the number of such nodes, we
can bound the total number of nodes in the summary. Webe
the set of nodes such that € bgt andc,, < aL(w). By con-
dition (3), eachw € W must have a parent satisfying the prop-
erny cpar(w) > alL(par(w)), or else it satisfiesf(par(w)) <
maxyepq u < If(w). There can be at mokig U nodesw that sat-
isfy this latter property, and §0V| < 2|V |+1log U. We divide the
nodesv € V into a sequence aquivalence classdsased on the
L value computed fov. That is, group together all nodesv € V'
for which L(u) = L(v). Observe that all nodes in the same group
must also share the sarnifé) value: suppose: andv are in the
same group buif(u) < 1f(v). Thenlf(u) < If(v) and, by Defi-
nition 5, L(u) < L(v), sinceL(v) is bigger by at least,,. These

3Note that this means some counts will be fractional. We Iskew that
restricting to integer counts does not affect the asympggace bounds.

rank(U+1) = N, since all items must be to the left of this notional
extra equivalence class. Substituting into the above ssjoe:

N > Lpp > Li(1+ o|E1))(1 + alEa]) ... (1+ alE,|)

q q
maN > > (1 +alEf) > %O‘|Ei|

=1 =1

>3 sz forx <4 5, and also that

and|E | <logU.

Here we use the fact that(1 + :c)
alB;| < 1/2, since we sety < 51—

So|bg| = |bgl| + [bgt| = [bgl| + |V| + W]
logOcN log aN ! _
< +logU +3|V| = O(—=—)+3;|Ez|
logaN 4 1
< — = —
< O(£22) + 2 (logal) = O(= log(aN)
([l

Settinga: = ¢/log U, this is within anO(log U) factor of the
Q(% log(eN)) lower bound for this problem proved in [3].

3.3 Insert Procedure

We next describe how to maintain the data structure in the-pre
ence of arrivals of updates. The3ERT(x) procedure takes a new
itemz and includes it irbg. We first determine whether to include
x in bgl or bgt: if x < maxyesq OF |bgt| = 0, then we insert:
into bgl: if x is already present itgl then we increment.; else
we insertz into bgl and setc, = 1. If we don'’t putz in bgl, we
will insert z into bqt: we will find the closest ancestor afin bqt,

v, and update the count of if this does not violate condition (2)
— ifit would, then we insert the descendantathat is an ancestor
of z into bgt and set its count to 1. This routine is illustrated in
pseudo-code in Figure 2.

INSERT(z) COMPRESS REE(v,dbt, L)
Input: new itemz Input: Start nodev, current debtlbt, L(v) value L
1: N:=N+1; 1: Lw):=L; ¢ :=cu;
2: if (z <mazleaf) or (|bgt| =0) then 2: if (lf(v) =v) then
3: if zebgl then 3: cy = — dbt;
4. Ccp i =cg +1; 4: else
5. else 5! ¢y := min(aL, weight(v) — dbt);
6: bgl :=bgl U{z}; co=1; 6: if (co>al) then
7. else 7: dbt := dbt + ¢, — ¢;
8: w:= binary search right(lca(mazleaf,x)) to z 8: wl := weight(left(v));
for least w ¢ bgt; 9: COMPRESS REE(left(v), min(dbt, wl), L) ;
9: i f (par(w) = lca(mazleaf, z)) then 10: CoMPRESS REE(right(r), max(dbt —wl, 0), L+wl+c’) ;
10: bt == bqt U{w}; cw:=1; L(w):=|bqll; 11: else
11: el se 12: remove all descendants of v from bgt
12: if (cpar(w) + 1 < aL(par(w))) then 13: if (cy=0) then
13: Cpar(w) = Cpar(w) + L; 14. remove v from bgt
14: el se
15: byt :=bgt U{w}; cw:=1; L(w):= Lipar(w)); Figure 3: CoMPRESS REERoutine

Figure 2: INSERTalgorithm for maintaining bg-summary.

LEMMA 3. INSERT(z) maintains conditiongl), (2), (5), and
(6).

PROOF When we insertz into bql, this is seen easily: for all
y < z, rank(y), L(y) and A(y) are unchanged; for ay > =z,
A(y) is unchanged, buL(y) and rank(y) both increase by 1.
Hence, if (1) was true before the insertion, it remains trfiera
ward. For (2),L(v) either stays the same or increases fovadl bq,
while ¢, stays the same. The only exceptior.iswhich increases,
but sincexr = 1If(x), this condition does not apply. We only insert
z into bgl if z < maxy,ecpq v OF |bgt| = 0, so (5) is maintained.
We either add one to an existing, or create a, = 1, so both
Zvebq ¢, and N increase by 1, ensuring condition (6).

For insertinge into bgt, similarly L(y) is either unchanged or in-
creases by 1 for al}. Letv be the node igt that is affected by the
insertion (i.e. eithep was already irbqt andc, was incremented,
or elsev was inserted intdqt). We ensure that (2) is not violated
by the changes t(v, ¢,,)), and no other,s are touched, so it must
remain true. Foy < If(v), thenL(y), rank(y) and A(y) are un-
changed; foy > x thenrank(y) andL(y) both increase by 1, and
A(y) either stays the same or increases by 1; lastly, ¥ 1f(v)
andy < z thenv € anc(y) sorank(y) stays the samd,(y) in-
creases by 1, bul(y) also increases by 1. Hence, in all cases (1)
is preserved. By design of thei$ERT routine, (5) is preserved,
since we ensure thatiax,cq u < 1f(v). As in the leaf case, ei-
ther an existing, is incremented or a new, = 1 is created, so
condition (6) is preserved.[]

LEMMA 4. INSERT(z) can be carried outin timé&(log log U).

PROOF Insertingz into bql takes constant time: we just have
to decide whether to insert infgl, and then updatéql! with the
information about. Insertingz into bqt can be accomplished ini-
tially using timelog U, by linearly searching along the path from
the root tox for a place to inserk; however, using the additional
properties we insist of our data structure this can be retitce
binary search in less time.

Let z = maxuesq u, the largest leaf stored iyl. We consider
the case whem > z. Writelca(z, z) for the least common ances-
tor of z andz. Observe thalf (Ica(z,z)) < z, so by condition (5)
Ica(z, z) cannot be irbgt, and nor can any of its ancestors. Note
thatlca(z, —) can be computed efficiently in tim@(log log U)
with some preprocessing: there &g U possible answers to this
lca query, corresponding to the nodes on the path feoto the

root. By finding this set and thié() value of each node in the set,
we can findlca(z, z) by binary searching into this set of leaves,
at a cost ofO(loglog U). Sincexz > z thenz must be in the left
subtree oflca(z,) andz must be in the right subtree, by defi-
nition of lca. Consequentlylf (right(lca(z,x))) > z, and so by
repeatedly applying (3), if any descendanbf right(lca(z, z)) is

in bgt, then every node betwean andright(lca(z, z)) must be
in bgt. Thus, to find the closest ancestoraofn bqt, we can per-
form a binary search on the path betwegght(lca(z, z)) to find
the (unique) nodev such thatw ¢ bgt but par(w) in bgt, and
try to increment the count af,.. .,y or if this would violate con-
dition (2), we insertw into bgt and sete,, = 1.* Two boundary
conditions are easily handled: if € bgt, then we increment,;
and if right(lca(z,x)) € bgt, then we insert it intdhgt and set
its count to 1. This binary search is over a path of length agtmo
log U, and so can be completed in tirG&log logU). [

3.4 Compress Procedure

The CompRESsprocedure takes the data structure, and ensures
that conditions (1)—(6) hold, ensuring that the data stmecte-
mains accurate for answering queries, but additionallysibece
used is tightly bounded. The procedure has several stejish wie
outline and then explain in detail: first, we reduce the sizi;6to
its smallest permitted size, and insert the leaves thateam@ved
from bgl into bgt. We then recomputé values for all nodes ihgt
to reflect the insertions that have happened, and then weressip
each subtree withibgt by reallocating the weights.

Resizingbgl is straightforward: we aim to ensure thayl| =
min(N, 1). If this is already satisfied, then we need to take no
action. If[bgl| > L, then we find thel-largest leafu (in universe
order), and remove all leavesfrom bql for whichv > u. Letz
denote the previous largest leaftigi; now w fulfills this role. Note
that condition (3) may now be violated, singe< z, and so some
nodes irgt may now have parents that should be present with non-
zero count. To fix this up, we insert all nodes needed to ertbate
every node inbgt also has its parent present unless this parent is
an ancestor ofi. These nodes are introducedbig with ¢, set to

“Note that we do not comput&(v) exactly here, since it would be too
expensive. Instead, for each node we store an old valug(of. Since
L(v) only increases with time, there is no accuracy problem wiimg
an outdatedZ(v) value. We may choose to insert a childwfvhen we
could have increased the count @f but this does not affect our (worst
case) space bounds. Periodically, when we ruroaERES Soperation we
will recalculate thel(v) values.

0. In a subsequent step, we will ensure that these “dummy&sod
are allocated non-zero count and are treated identicabyl tther
nodes inbgt. All these dummy nodes are nodes on the path from
to the root, so there are at mdsg U such nodes needed. We then
take all leave® > w that were inbgl, and run NSERT(v) on each
of them, to put them intéqt.

We now define an operationdMPRESS REE(v, dbt, L), which
takes a node € bqt, and manipulates the counts stored in the sub-
tree defined by so as to restore condition (3). This is illustrated
in Figure 3. It makes use of the weight of a nadewhich is de-
fined byweight(v) = cv + 3=, c anc(w) Cw- We can precompute
weight(v) for all v € bgt with a recursive algorithm that takes time
O(|bgt|). The CoMPRESS REE procedure runs recursively over
the tree, and restores condition (3), by ensuring that evedgv
in bgt that has children has, = aL(v). This is done top down.
For any node, it computes the difference betwegmnd aL(v):
this is the slack that can be filled up by “borrowing” countsnfr
nodes below. The amount of count that is borrowed is denoged b
dbt. This is propagated down to the children, with preference to
the left child. When the total amount of borrowed weight equals
the weight of the descendants of a node, we can remove akkséth
descendants frorbyt, to “repay the debt”. This is where we gain
in COMPRESS since we can redudégt|. A side-effect of @M-
PRESSIREEIS to computel (v) for each node ibgt as it operates.
Throughout, we take care to ensure thaf ¢, = N at all times,
i.e. no counts are lost or added and condition (6). The detdil
this procedure are given in pseudo-code in Figure 3.

For each node» on the path fromu to the root, ifv € bqt,
we run @MPRESI REE 0N the right child ofv (if such a node is
materialized), setting the initial value dbt to zero, and the initial
value of L to the L value ofv, which can be derived easily from
information already computed.

LEMMA 5. Conditions (1) — (6) are true after runninGom-
PRESSover the bg-summary data structure.

PrROOF We first argue that the accuracy bounds (conditions (1)
and (2)) remain true after adPRESSOperation. (2) is straight-
forward: for all nodes irbgt that are not leaves of the tree, we
explicitly ensure that, < «L(v). For (1), both the operations
on the leaves, and inserting some leaves it preserve (1),
following from Lemma 3. So we just have to argue thabnG
PRESS REEOperations also preserve this condition. We first argue
that for anyx € [U], L(z) only increases when @UPRESSREE
is carried out. This is because when we remove all descendant
of a nodev, all the counts associated with these deleted nodes are
added on ta or one of its ancestors. Since for anyin the tree,
everyv € anc(u) satisfiedf(v) < 1f(u), so noL(x) can decrease
when the count of; is moved tov. Thus, ifrank(z) < L(z) was
true before the OMPRESS REEOperation, it must remain true af-
ter. We now argue that i (z) increases, therl(z) increases by
the same amount. Let be some node such that after a@-
PRESSREE Operation,L(z) has increased by some valde This
increase must be due to some nodesatisfyingz < 1f (w) whose
count was allocated to some nodsatisfyinglf (v) < x, elseL(x)
would not increase. Since count is only propagated to anigst
we must havey € anc(w). Sinceanc(w) C anc(lf (w)), we have
v € anc(lf(v)) andv € anc(lf(w)), andlf(v) < = < If(w). So
v € anc(z). ThusA(z) also increases by. HenceL(x) — A(z)
does not change, and so (1) is preserved.

SThis preference does not affect correctness or space bowmdexper-
imented with preferring both left and right, and found dtdlifference in
practice between the two versions.

For the space bounds, observe that condition (4) is true susc
force|bgl| > é and (5) is also true, since we only add nodes
bgt that havdf(v) > maxy,epq u. Lastly, (3) and (6) are enforced
by CoMPRESH REE, and if we delete any nodefrom bqt then we
ensure that the entire subtree rooted & deleted while its count
is added on to that of an ancestof]

LEMMA 6. CoMPRESScan be carried out in tim&(|bgt| +
|bgl|loglog U).

PROOF Scanningyql to find the%-largest leaf takes time linear
in |bgl|, using standard algorithms [2]. Adding dummy nodes to
bqt takes timeO(log U). Inserting each of the larger leaves into
bqt takes timeO(loglogU) per leaf, from Lemma 4. Comput-
ing weight(v) for all v € bqt takes timeO(|bqt|) as observed
above. Calling ©MPRESS REE(v) takes time linear in the num-
ber of nodes that are descendant® ofs can easily be proved by
induction. This routine is called once for eache bqt, a total of
|bgt| nodes, and takes constant time per node visited. Thus, the
total time to run a ©@MPRESSIs given by O((|bgl| loglog U) +
log U + |bgt|) = O(|bgt| + |bgl|loglogU). [

Query Procedure. We have already given the algorithm to return
the approximate rank of an itemt we find L(x) and A(z), and
return?(z) = L(z) — 1 A(z). To computeL(z) requires a linear
scan of the data structure. If many queries are posed in h,baec
can reduce this cost, by computing thevalues for all nodes ifg.
Computing these values requires sorting the nodéglirbut can be
computed in linear time fobgt (indeed, this is done in the@u-
PRESI REE algorithm). Queries can then be answered quickly:
given a queryr, we determine whether < min,epqe If (u). If it

is, then we findv = maxycpqi,u<z and outputL(v). If z falls in
bgt, we findw such thatw is where we would insett if we were
performing an insertion, and outpiifw). Thus, the time cost is
O(loglogU) in thebqt case, and(loglog U + log(1/¢)) in the
bql case (a binary search into a sorted list of leaves).

THEOREM 2. We can maintain a data structure that allows us
to answer biased quantile queries and biased rank queriegyus
spaceO (2% log(eN)). The amortized cost i©(loglog U) per
update.

PROOF In order to ensure that all bounds hold, we must specify
how often to run the GMPRESsprocedure. Too frequent, and the
amortized cost is too high; too rare, and the space bounds may
be exceeded. We first rundMPRESSafter N = 4/« insertions
have been seen. Then we ru@PRESSwWhenever the number
of updates since the lastamPRESSoperation, exceed§°ga;’\",
for the current value ofV’. Note after the previous @UPRESS
the space used was bounded®y*2<~), and in the worst case,
after this many updates, the space used has grov@u(l%(aLN/)),
since every NSERT can add at most one new tuple &g. Thus
the total size of the data structureﬁ&%), sinceN < N'.
The running time of the GMPRESS REE is linear in the worst
case size of the data structure, which in turn is bounded by th
number of updates, so the cost can be amortized againstitiigenu
of updates. We also incur@(log log U) cost for each member of
bql that is moved intdqt, but observe that this conversion happens
at most once for each leaf i, and can be charged back to an
INSERT operation. So, combining @1PRESSand INSERT, the
amortized time cost of each update is dominatediog log U).

The worst case space cost is just prior to a compress, which we
have argued ié)(logSTEN)), giving the stated bounds.]

4. APPLICATIONS AND EXTENSIONS THEOREM 4. We can answer partially biased rank queries with
o) error max(emin N, e rank(v)) using spaced (2% log ——).
4.1 Simplified Algorithm

PROOF To begin with, we use the algorithm of Theorem 1,
We now describe a simplified version of the above algorithm which uses spac@(*%22Y), while N < 2% — < Thus,
which has some slightly weaker bounds but is much simplento i this space for this initial phase is boundedm(gyw ‘i‘(;‘é).
plement. Instead of splittindy into bgt andbgl, it treats all ofbg i g U €min
the same way. We do not maintain conditions (3), (4) or (5), bu For the analysis of the case whén > 2£=, we (notionally)

instead use a new condition for proving space bounds: split the data structure into two parts: a left hand part tacivithe
=iz N bound applies, and a right hand part to which thi(v)

og

bound applies. For this right hand part, we haigv) > eminN.

This allows insertions of: to be performed quickly, by binary =~ We can now apply the same approach as in Theorem 1, of di-

searching along the path framto the root of the tree for anode to viding the nodes into equivalence classes based on fheial-

Vv € bg : par(v) € bg andcpar(yy > |aL(par(v))] (7)

place the new count. However, we must allow some nodég o ues. As before, we havk; 11 > (1 + «|FE;|)L;. Starting from
havec, = 0, which increases the space cost. In addition, we force the first equivalence class wheté(v) > eminV, we can show
all ¢, counts to integral, by replacing the occurrencesa:6fv) in that the total number of internal nodes in this right hand $&
Condition (2), NSERTand GMPRESS REEWith |aL(v)]. O(*2Z log(€/emin)), by modifying the proof of Theorem 1.

o For the left hand part, the sum of counts of all nodes is at leas
THEOREM 3. We can maintain a data structure that allows us eminN /e, by the condition orL(v). There is an equivalence class
to answer biased quantile queries and biased rank queri@gus ; sych thatl; < minN/e bUt Li 1 > eminN/e, which marks the
spaceO(* (log eN + log U)). The amortized cost i8 (log U) division between the left and right parts. The size of thigiat
per update. lence class i$F;| < logU. The total number of internal nodes
PROOF SKETCH We outline the key differences between the retained in the left hand part each have count at leasl/ log U,
simplified algorithm and the preceding algorithm. The main o and the sum of their counts is at mast, N/e. So there can be at
servation that links the two is that the leaves beneath dunmdgs most(1 + 1/€)log U = O(*%5Z) nodes retained, accounting for
that havec, = 0 correspond tadyql from the previous algorithm. the extralog U nodes inf;. Combining these two parts, the space
After the first 125U leaves, we can start populating internal nodes required is dominated by the right hand padt 2% log ——).
with integer counts, sinc&(v) > 1/a and so|aL(v)| > 1. So, irrespective of the value d¥, the space is bounded by this
Further, whenL(v) > 2/a, we have|aL(v)| > 5L(v), thus quantity. [
_?vr?elg:gvr;/] T aé;gp'?gg% I?:stszrlni Z(};;V?;.ipoie;éizsi:ha;gLijtrsﬁe?(te-a Observe that in the case thati, < 1/N, this cost reduces to the
ceding vallje andL one can show the saRfe<N) space boupnd bound for the fully biased case, as one would hope. We note tha
’ T) o J ' in [3], a lower bound o (£ log(e min(N, 1/€min))) on the space
Thus, the total space is given by adding on @,) leaves, each o4 ,jired was shown; hence this data structure is within @ifad
of which hasO(log U) ancestors, giving the stated space bound. 1,6 17 of being optimal. Further, this is the first-knovdeter-

This _“fuII ancestry” property (eyery node in the data St“?‘et ministicalgorithm with proven space and accuracy guarantees.
has all its ancestors also present in the data structuredsmakin-

tenance of the data structure conceptually simplesERT(z) oper- 4.3 Uniform Rank and Quantile Queries
ations just have to binary search the path froto the root to deter- Our data structure can be modified slightly in order to give un

mine where to insert; the only complication is that we may have form quantile error guarantees (Definition 2). That is, tirerds at
to insertz as a leaf and create some missing ancestors with couNt moste,.i N for anyrank queryy, instead of rank(v). To do this

zero, which gives a worst cas@(logU) insertion cost. ©wu- we run the same algorithms, but replace all referenceslitv)
PRESS straightforward: we just have to run the©@PRESS REE with emin N/ log U. This is similar to the structures given in [9, 6],
operation on the root node periodically. Following the sargu- but gives a slightly improved amortized time bour@({og log U/)

ment as Theorem 2, the amortized cost of updates can be lbunde jysteaq 0f0(log log U + log 1/¢)), which follows from [9].

by the worst cas®(log U) cost of INSERT. [. o))
THEOREM 5. Tracking quantiles in 1D with uniform error guar-

4.2 Partially Biased Algorithm antees can be carried out using spa2éi>sY). Each update takes

€min

In the partially biased case (Definition 1 (b)), we are alldwe amortized timeO (log log U), and queries take tim@(25Y),
give slightly weaker accuracy guarantees, so we should lectab Cmin

take advantage of this to reduce the space needed. In order to anglzi?'i:.n:tv:ago\/lv%ngfsrt nhilev((je tt% 'L‘jf';zrﬁhdés;;:‘gciygg Zet(\j,\ftgg
this, we can modify our previous algorithms slightly andegivnew _ a ' J o t . UP '
analysis that shows reduced space costs. We adapt theionadit ~ This ensures tha¥ > 2:22=, and so| emin N/ log U | > 2. COM-

(2) and (3) by replacingvL(v) with max(%,aL(v)). This PRESSIREE ensures that each node stored in our data structure

gives a potentially larger slack to the data structure fonsmodes such that some of its child nodes are stored, has count dt leas

that have smalL values. lemin N/ log U |, and because we maintain a complete subtree, the
We begin by running the unmodified biased quantiles algwrjth ~ number of non-internal nodes is at most twice the numbertef-in

with Spaceo(@), because untiN = IE"L_U, there is little ben- nal nodes. The space bounds follows by considering the numbe

efit from applying the tighter pruning condition. Howeverhen of internal nodes: since the sum of all counts musf\heve have

N = XL every internal node has slack at least 1, and so we can that the number of such nodes is at m&t| cminN/log U] =

convert the data structure into one with the “full ancespyoperty, ~ O(%n,)- Insertions of: take time worst casé(log log U) to bi-

by inserting all the leaves froil into the main tree structure, and ~ nary search for where to insert on the path frorto the root. The

running COMPRESSTREE. We can performNSERT(z) by binary amortized cost of running @IPRESS REE after everyO('2:L)

searching into the path betweerand the root, finding a childless insertions isO(1) per insertion. Queries can be answered with a
node with capacity, or creating its child and inserting ¢her linear scan over the data structure, i.e. in ti@(é:g—U). O

min

700

80000 30000

—— SBQ

600 - BQ

500 -
400
300

200 r

space (#tuples)

100 |

time step (10"3)
(b) synthetic zeta data+ 0.7)

400 600 800
time step (10"3)
(c) flow duration data

600 800 200

Figure 4: Comparison of algorithm from Section 3 with simplified version for fully biased quantiles ¢ = 0.01).

4000

—— SBQ —— SBQ

70000 BQ 25000 | BQ
& 60000 -
S 50000 z 20000 1|
£ 40000 £ 15000 ||
& 30000 3 e
g S 10000 |
@ 20000 @

10000 5000 ¢

0 ‘ ‘ ‘ ‘ 0 ‘ ‘
200 400 600 800 200 400
time step (1073)
(a) uniform data

.

0000 P 800000

60000 ?A%?QC 700000
7 50000 g 600000 |
S 40000 g So0000y
® 400000 |
3 30000 & 300000
@ 20000 @ 200000 |

20000 1] 100000 | 5~

0

0

—— CKMS

3500 ’%I%% Py /\
~/

& 3000 AN

[} /

S 2500 f ave

& 2000 | \/\/

@ /

g 18001 /s

a I

@ 1000 (|

500 |
0

400 600 200
time step (1073)

(a) uniform data

400

400 600 800
time step (1073)
(c) flow durations

800 200

600
time step (1073)
(b) adversarial data

Figure 5: Space usage of the algorithms for fully biased quailes (¢ = 0.01).

4.4 Targeted Quantiles

Recall that the targeted quantiles problem (Definition 4pisc-
ified by a setT’ of pairs{¢;,¢;}, and requires that we return a
set of itemsv; whose rank isp; N + €;N. Any method which
answers quantile queries with uniform guarantees can hbe tase
solve the targeted quantiles problem by setting the acgurae
rameterenin, = min;{e;}. This gives a space requirement of
Q(maxj{ejfl}). However, we know that we should be able to do
better, since we do not need this guarantee over all the wdwmle
main, just forg;. For a single paifl’ = {¢1, €1}, Manku et al. ob-
tained a sampling based randomized algorithm uéméll— log %)

samples [7]. Thus, for larger set3 O(3_; f—J log(|T'|/d)) space
is required. By applying our results for biased and fullysieid

quantiles, we obtain improved deterministic bounds foténgeted
quantiles problem.

THEOREM 6. A single targeted quantile query can be answered
using spaced (£ log(5-) log U)

PROOF For simplicity, assume; < % (if not, then we can re-
verse the ordering and replage with 1 — ¢, to get the tighter
bound). We run the biased quantiles algorithm with pararsete
andemin chosen as appropriate functionsegfand¢., as follows:
The smallest error we need to guaranteens, = ¢;. When the
rank is¢1 N, we need to give errar; N This is a relative error of
€ = e1/¢1. Substituting these values into the bounds for the biased
algorithm givesO(2 log —loglU) = O(f—l1 log(%) logU). O

THEOREM 7. A setof targeted quantile queries can be answered
using spac® (£- log(- min(N, maxi{e, '})) log U) wherek =

)
argmaxj ? .

PROOF As above, consider the relative error implied by each
(¢5,¢€;) pair. The smallest relative error is achievedibyn; ;—J
J

i.e. (¢x, €x). Hence if we can guarantee relative eret ;—’; then
we can satisfy the accuracy requirements of all targetedtiea
requests (and potentially give tighter than required answeNe
apply the fully biased quantiles algorithm above, but sineaever
require accuracy tighter than,i, = min;{¢; }, we can get slightly
tighter bounds for this case, giving the stated bounds.

4.5 Distributed Streams

Given two bg-summaries, one can easily merge the two sum-
maries to create a bg-summary of the union of the inputs. \&fe ju
have to take the union of the tvigis as the newql, and the union
of the bgts as the nevigt: if v is present in both summaries then
we set its count, to be the sum of the counts, else if it is only
present in one summary, then we keep the previous valuerssnts
count. Itis straightforward to show that merging presetiiescon-
ditions on the counts, sinck, A, andrank are linear functions.
Following the merge, one can runro®IPRESStO restore the space
bounds. This means that we can compute biased rank quedes an
biased quantiles over distributed streams, by computiegstm-
maries locally and then merging the summaries at a centeal si

5. EXPERIMENTS

In this section, we discuss our experimental results. Irfitse
subsection, we compare our bg-summary with fully biasedrerr
guarantees against the deterministic algorithm for bigseditiles [3]
as well as the randomized algorithm [10]. For fair time cormpa
son, we obtained the implementations used by the author3]of [
and [10] in their prior experimental evaluations. In thes®tsub-
section, we compare the partially biased version of ourrédtyo

1le+06 1le+06 1le+06

- 100000 - 100000 ¢ o
§ . § §
$ /// $ g
= 7 — L P L
8 10000 /://// /;/ g 10000 g 100000
£ 1000 f?%/ £ 1000 } 2
//// -
100) 100 | A 10000 i] i
CKMS SBQ MRC CKMS SBQ MRC CKMS SBQ MRC
(a) uniform data (b) adversarial data (c) flow durations
Figure 6: Runtime of the algorithms for fully biased quantiles ¢ = 0.01).
against the partially biased version of the one in [3], asl asl time costs for biased quantiles with= 0.01. We compared our
the straightforward application of existing uniform quintlgo- methods with the deterministic algorithm (“CKMS”) from [33nd
rithms [4, 6] using the minimum allowable error boung;, . the randomized algorithm (“MRC”) from [10], even thoughghi

We implemented the simplified version of the proposed algo- algorithm does not give deterministic error guarantees;cibnfi-
rithm described in Section £1 Recall that this version satisfies dence leve[1 — &) was set to be as generous as possible, at 90%.
invariants (1) and (2), and thus gives the desired accuraayag- Figure 5 graphs the space usage for these algorithms ondliree
tees, but in theory may requi(é(% log? U) additional space com- ferent data sets, and Figure 6 plots histograms of the thymutg
pared to the one presented in Section 3. As we shall seeaitesp (stream items per second) for the respective algorithnmegstale.
usage is much less in practice. We also used our implementati Whereas CKMS used very little space on (randomly-orderad) u
the uniform quantiles problem described in Section 4.3. form data (see Figure 5(a)), SBQ required significantly mare

Experiments were run on a Pentium 4 i686 machine running fact, as was observed in [10], CKMS used less space than MRC on
Linux with 2.8 GHz CPU speed, 2 GB of main memory, and 512 uniform data. SBQ used the most space, since uniform dataapp
KB cache size. We used both synthetic and real data in ourexpe to be one of the hardest cases for SBQ — it resulted in thedarge
iments. The synthetic data includes uniform random data fao observed space usage out of all the data sets we tried — and our
universe of siz@3?; skewed data generated using the zeta (discrete experiments below demonstrate much better space and tfine ef
Pareto) distribution with parameter, where the probability of the ciency on real data. However, it was still over two orders afymi-
ith most frequent item is proportional 10“; and adversarial data tude faster than MRC (Figure 6 (a)). Figure 5(b) shows theltes
for the existing algorithm [3] as described in [10]: a sequeenf on the “adversarial” data set described in [10], where SB&dus
batches of items whose values are between the current maximu the smallest space and processing time compared to both CKMS
and second-maximum tuples in the quantile summary. The real and MRC (running time again better by two orders of magnifude

data sets include flow-level IP traffic measurements obdairsing Finally, Figures 5(c) and 6(c) compare the performancehedd
Cisco NetFlow at an ISP router carrying a heavy load of traffic algorithms on (real) flow durations. After a million itemsBQ
and projected out the fieldfpkts #octets duration, srclP anddes- used three times less space than MRC and seven times less than

tIP. We report space usage in terms of the number of tuples kept CKMS; its processing throughput was 12 times better than GKM
by the respective data structures, as a function of the nuwibe and 27 times better than MRC, showing significant wins on both
stream items that have arrived. We measured the time costrof o time and space cost on real data sets.

algorithms, and computed average throughput in items penske

5.1 Fully Biased Quantiles

Our first set of experiments set out to study the space cost in-
curred by using the simplified version of our algorithm (“SBQ
described in Section 4.1, compared to the one in Section @')’'B
we estimated the space cost of BQ by discounting the number of
nodes stored by SBQ with zero counts (this gives an uppercdboun
on the cost of BQ). We observed only small differences in flzee
usage of BQ and SBQ on all of our data sets except on uniforen dat
(Figure 4 (a)). On uniform data, the difference was about afikr
a million input items, which is considerably less than theotteti-
cal worst case cosf; log? U ~ 102K. On skewed data, the space
usage decreases with skew—frgbnp| =30K for zeta witha = 0
(uniform) to|bg| =12K with o = 0.7 (shown in Figure 4(b)) to 6K
with a = 0.9. Figure 4(c) shows that the space usage of SBQ on
real data: as expected, the cost is low, and the differentecka
SBQ and BQ small, since in practice data exhibits signifisaatv.

To compare against prior algorithms, we tested the space and

5.2 Partially Biased Quantiles

We compared the partially biased variant of CKMS (see [3{hwi
our partially biased algorithm, “PBQ", using parameters- 0.1
and ¢,nin, = 0.001. We also ran the GK algorithm (“GK”) as
well as our implementation of a uniform quantile algoritiftdQ”,
(described in Section 4.3), both at the conservative eroomt
emin = 0.001 (thus guaranteeing to meet the accuracy require-
ments). Figures 7(a) and 8(a) present the space usage andhhr
put using the adversarial data. Again, CKMS exhibits lirgzace
usage on this data, whereas PBQ, which is provably sublinsas
significantly less space in practice. Interestingly, CKM@®simuch
worse than the GK algorithm from which it is adapted, sinceMiX
prunes its summary structure more aggressively, whiclstout to
be detrimental in the long term. UQ also required a lot moexep
than PBQ, although unlike CKMS its space requirement is-inde
pendent ofN, and so it levels off. Figures 7(b) and 8(b) present
results using flow duration data. Note the bursty space ushge
CKMS in Figure 7(b). The space increase is due to values at low

SWe have recently implemented the main algorithm, and experi ranks requiring very fine accuracy; the error constrairaxes$ as
mental results will be reported in the full version of thippa these ranks falls below the span of the partial bias, and ivitie

50000 : 8000 : : ‘ ‘
—" ckms —— CKMs I
4 7GK 7000 f s GK |
40000 |} UQ] uQ |
E f'* PBQ »g? 6000 *- PBQ ‘;“
S 30000 | S 5000 , “
&] = 4000 | /|
/ woolropeone
g 20000 | 8 3000 | et eq samevecas?] |
o / =3 = |
? 10000 |/ #2000 ¢ [
[eesssavosesssmssssanasan 1000 f Ao N
o e e P e g s

200 400 600 800
time step (10"3)

(a) adversarial data

200 400 600 800
time step (10"3)

(b) flow durations

Figure 7: Space usage from the algorithms for partially biagd quantiles on (a) adversarial data and (b) flow durations { =

0.1, €min = 0.001).

le+06

100000

10000

items per second
items per second

1000

CKMS GK UQ PBQ

(a) adversarial data

100000 ¢

1le+06

10000

(b) flow durations

Figure 8: Runtime comparison from the algorithms for partially biased quantiles on (a) adversarial data and (b) flow duréions

(e = 0.1, €min = 0.001).

space usage. GK requires less space than CKMS, but stillsibver 7.,
times more than that of PBQ. On this data, it appears thatdhe a (1]
ditional pruning power of PBQ over its uniform counterpaiktes

only a slight decrease in space cost (and a slight increaeén 2]
cost). The overall runtime performance of PBQ/UQ is wellraue
order of magnitude better than that of CKMS and GK. [3]

6. CONCLUDING REMARKS

We have given the first space-efficient deterministic athors
for a variety of problems including biased quantiles, hibssnk
queries, and targeted quantiles. They are fast to processuga [5]
date in high volume data streams, and have strong spacenteesa
that are close to optimal. Experimentally, they often otfgren ex-
isting methods in both time and space requirements. (6]
Our algorithms given here use a “universe-aware” approach t 7]
tracking the distributional information. They require kiedge of
the universe[J/, from which the items are drawn, and incorporate
log U explicitly into the algorithm. This constraint is reasoleb
for many data streaming scenarios—indeed, we saw that b is n
handicap in our experimental study—but for some settindggmnw [8l
U is very large, or unbounded (e.g., arbitrary real valuasjan
become problematic. For uniform guarantees, the GK alyuorit
has no explicit dependency dii. Prior work on biased quan-
tiles gave algorithms derived from GK that did not requirei
edge ofU [3]; however, as shown in [10], these algorithms exhibit [10]
worst case behavior that is linear ih Thus, it remains open to
find solutions to the biased quantiles problems we study lwaie
“universe-agnostic”: they do not require specific knowledd U,
andlog U does not enter into their asymptotic bounds.

(4]

REFERENCES

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.ddIs
and issues in data stream system$?ioceedings of ACM Principles
of Database Systemgages 1-16, 2002.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to
Algorithms MIT Press, 1990.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivast&féective
computation of biased quantiles over data streamiEEE
International Conference on Data Engineerjrizp05.

M. Greenwald and S. Khanna. Space-efficient online cdatfmn of
quantile summaries. IRroceedings of ACM SIGMOD International
Conference on Management of Dagmges 58—66, 2001.

A. Gupta and F. Zane. Counting inversions in listsPimceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms
pages 253-254, 2003.

J. Hershberger, N. Shrivastava, S. Suri, and C. Toth pfida spatial
partitioning for multidimensional data streams.I8AAG 2004.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Randonpam
techniques for space efficient online computation of ortetissics

of large datasets. IRroceedings of ACM SIGMOD International
Conference on Management of Datalume 28(2) oSIGMOD
Record pages 251-262, 1999.

S. Muthukrishnan. Data streams: Algorithms and apgbice. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Déscre
Algorithms 2003.

N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suedians and
beyond: New aggregation techniques for sensor network&Ci
SenSys2004.

Y. Zhang, X. Lin, J. Xi, F. Korn, and W. Wang. Space-effici
relative error order sketch over data streamd$EIBE International
Conference on Data Engineering006.

