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ABSTRACT

In the model of continuous distributed monitoring, a num-
ber of observers each see a stream of observations. Their
goal is to work together to compute a function of the union
of their observations. This can be as simple as counting the
total number of observations, or more complex non-linear
functions such as tracking the entropy of the induced distri-
bution. Assuming that it is too costly to simply centralize
all the observations, it becomes quite challenging to design
solutions which provide a good approximation to the current
answer, while bounding the communication cost of the ob-
servers, and their other resources such as their space usage.
This survey introduces this model, and describe a selection
results in this setting, from the simple counting problem to
a variety of other functions that have been studied.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]:
Distributed Systems; F.2 [Theory of Computation]|: Anal-
ysis of Algorithms and problem complexity

General Terms
Algorithms, Theory

Keywords

Continuous Distributed Monitoring, Data Streams,
Communication Protocols

1. INTRODUCTION

The model of continuous, distributed monitoring is a quite
natural one, which has arisen only in the early years of the
21st century. It abstracts an increasingly common situation:
a number of observers are making observations, and wish
to work together to compute a function of the combination
of all their observations. This abstract description can be
applied to a number of settings:
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e Network elements within the network of a large ISP
are observing local usage of links, and wish to work
together to compute functions which determine the
overall health of the network.

e Many sensors have been deployed in the field, with the
aim of collecting environmental information, and need
to cooperate to track global changes in this data.

e A large social network monitors the usage of many
compute nodes in data centers spread around the world,
and wants to coordinate this information to track shifts
in usage patterns and detect any unusual events, pos-
sibly indicative of an attack or exploit.

Each of these examples maps naturally onto the outline
above: the network elements, sensors and compute nodes
respectively play the part of the observers, who want to
collaborate in the computation.

There are various “trivial” solutions to these problems.
Studying the drawbacks of these helps us to identify the
properties to optimize. A first approach is to simply have all
the observers send all their observations to a single, central-
ized location. For cases where the flow of new observations is
sufficiently slow, then indeed this is a satisfactory solution.
However, in the above scenarios, this places an intolerable
burden on the underlying network. For example, in the ISP
example, the number of observations may be equivalent to
the total number of packets traveling on a link: generating
this much extra traffic on the network for the purpose of
health monitoring will quickly contribute to the ill-health of
the network!

A second approach is to perform “periodic polling”: at
some fixed interval, say every five minutes, or once an hour,
a central monitor polls each observer for information about
their observations since the last poll, and collates these to-
gether to get a snapshot of the current status. Again, in
some situations, this will suffice. Indeed, many network
protocols, such as the Simple Network Management Pro-
tocol (SNMP) operate on exactly this basis. Still, often this
too is insufficient. Firstly, we require that the information
needed can be summarized compactly. For example, SNMP
allows the reporting of the total amount of traffic (measured
in packets or bytes) processed by a network element within
a given time window. Quantities like sums and counts of ob-
servations, therefore, fit naturally within this setting. How-
ever, when the objective is a more complex function, like
measuring some non-linear function of all the (distributed)
observations, or detecting when some complex event has oc-
curred, it is less clear how periodic polling can operate.
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Figure 1: Continuous Distributed Monitoring model

The other limitation of periodic polling is the careful bal-
ance needed in setting the frequency of the polling event. Set
the gap too narrow, and again the network becomes over-
loaded with data which may be of limited usefulness. But
set the gap too large, and the delay between an important
event occurring and it being detected by the protocol may
become too large.

In continuous distributed monitoring, we aim to address
all these concerns. The central idea is to incur minimal com-
munication when there is nothing important being observed,
but at the same time to enable rapid (near-instantaneous)
updates when necessary.

There has been considerable research effort in this area
since its inception. Progress has principally been made by
considering different fundamental functions, and describing
protocols which provide strong guarantees on the accuracy
of the monitoring, while incurring low costs, in the form of
communication required, and computational overhead and
storage needed by the observers.

Outline. The rest of this survey proceeds as follows. First,
we formalize the model, and define the key cost measures.
Then we begin by considering a seemingly simple problem
in this setting, the problem of counting a fixed number of
events, in Section 2. Section 3 considers monitoring the
information theoretic concept of entropy, which varies non-
monotonically as the number of events increase. We then
describe a very general approach to problems in this model
via the “geometric approach”, in Section 4. Section 5 con-
siders how to maintain a random sample, of either the entire
data, or only a recent selection. In Section 6, we outline the
history of the model and other results in this area, while
Section 7 presents some concluding remarks and open prob-
lems.

1.1 Formalizing the model

In total we have k observers (or sites), indexed Si, ... Sk.
Each observer sees a stream of observations. Typically, each
individual observation is quite simple, but in aggregate these
define a complex whole. For example, in a communication
network, each event might be the arrival of a packet at a

router. The description of each event is quite simple: the
destination and payload size, say. But the overall distribu-
tion of traffic to different destinations observed over multiple
routers is very large and complex.

We treat the observations as items A = a1, a2, ... an, such
that each observation is seen by exactly one observer. There
is also a central site, or coordinator, C', who can communi-
cate directly with each observer. For simplicity, we do not al-
low communication between observers (this can be achieved
by sending messages through the coordinator), and we as-
sume each message has unit cost. Varying these assumptions
leads to different cost models, some of which are studied in
the works described in Section 6. The goal of the monitor-
ing is for the coordinator to continually track some function
f(A) over the complete set of observations.

In this survey, we see several different cases of this prob-
lem. In ‘threshold monitoring’, the goal is to determine
whether f(A) is above or below a threshold 7. For exam-
ple, we may want to know when the total network traffic in
the last hour exceeds a given amount; or when the entropy
of this traffic distribution exceeds a given bound. In ‘value
monitoring’, the goal is to provide an estimate f(A) of f(A),
such that the difference |f(A) — f(A)| is bounded. In the
network example, this corresponds to providing an approx-
imate value of the total network traffic; or of the entropy of
the traffic distribution. In ‘set monitoring’, the goal is to
provide a set of values which satisfy some property. This
could be a uniform sample of the input items, or an approx-
imate top-k (e.g. the top-k most popular destinations in the
network).

Figure 1 gives a schematic of the model: communication
is between the coordinator and the k different sites. New
observations are made over time, which prompts more com-
munication between the parties.

1.2 Comparison to Other Models

There are several other models of computation over data
which may be rapidly arriving or distributed. Here, we iden-
tify some common models, and outline the key differences.

Communication Complexity. The model of communi-
cation complexity focuses on the case where there are two
parties, Alice who holds input z and Bob who holds input v,
and they wish to work together to compute f(z,y) for some
fixed function f [31]. The most important difference be-
tween this model and the continuous distributed monitoring
case is that the inputs x and y are fixed for communica-
tion complexity, whereas in our case, they are allowed to
vary. Moreover, it turns out that the main focus of com-
munication complexity is providing lower bounds or impos-
sibility results for various functions, whereas in continuous
distributed monitoring, there has been most interest in pro-
viding protocols with low communication costs. However,
the models are closely related: techniques from communi-
cation complexity have been used to show lower bounds for
problems in continuous distributed monitoring.

The Data Streaming Model. In the streaming model,
a single observer sees a large stream of events, and must
keep a sublinear amount of information in order to approx-
imate a desired function f [33]. This omits the key feature
of the continuous distributed model, the fact that multiple
distributed observers need to compute a function of all their
inputs combined. While each observer in our model sees a



stream of inputs, the model does not insist that they use
sublinear space—rather, the space used by each observer is
an additional property of any given protocol. However, it is
often desirable that the observers use small space, and tech-
niques from stream processing are therefore useful to help
achieve this.

Distributed Computation. Clearly, the continuous dis-
tributed model is a special case within the general area of
distributed computation. The focus on continually main-
taining a function of evolving input distinguishes it from
the general case. There are other models within distributed
computation, such as the Distributed Streams Model [20, 21]
or the Massive, Unordered Data model [18]. These capture
the emphasis on distributed streams of data, but focus on
a one-time computation, rather than continually tracking a
function.

2. THE COUNTDOWN PROBLEM

We begin with a seemingly simple problem which never-
theless admits some fairly sophisticated solutions. In the
countdown problem, each observer sees some events (non-
overlapping, so each event is seen by only one observer),
and we wish to determine when a total of 7 events have
been seen. This is an instance of threshold monitoring. This
abstract problem captures many natural settings: we want
to raise an alert when more than 7 unusual network events
have been seen; report when more than 10,000 vehicles have
crossed a highway; or identify the 1,000,000th customer; and
so on. A trivial solution has each observer send a bit for
each event they observe, which uses O(7) communication.
We aim to considerably improve over this baseline.

2.1 A first approach

A smarter approach takes advantage of the fact that there
have to be many events at each site before the threshold 7
can have been reached. A necessary condition is that at least
one of the k sites must observe 7/k events before the thresh-
old can be reached. This leads to a relatively simple scheme
(derived from [30]): Each site begins with an initial upper
bound value of 7/k, and begins to observe events. When-
ever its local count n; exceeds this upper bound, it informs
the coordinator, which collects n; from each observer, and
the n;s are reset to zero. From these, we can determine the
current “slack” the difference S between the current count
N and the threshold 7, i.e. S =7 — N. This slack can then
be redistributed to the observers, so each site now enforces
an upper bound of S/k on n;. Each iteration reduces the
slack by a factor of (1 — 1/k). When the slack (initially 7)
reaches k, the observers can switch to reporting every event.
The number of slack updates is then

T log() T
log1/a-1) (;) = ﬁ = O(klog 1)

1
-z

The total communication is O(k? log7/k), since each up-
date causes communication of O(k).

2.2 A quadratic improvement

The step of updating every node whenever one node re-
ports that it has exceeded its current local threshold is some-
what wasteful. This can be improved on by tolerating more
updates before a global communication is triggered. This

idea was introduced in [10], and we follow the simplified
version described in [11].

Now the protocol operates over [log(7/k)] rounds. In the
jth round, each observer sends a message to the coordinator
when its local count n; reaches |2777/k|, and then subtracts
this amount from n;. So, in the first round, this bound is
|7/2k|. In the jth round, the coordinator waits until it
has received k messages, at which point the round is ter-
minated, and the coordinator alerts each site to begin the
j + 1th round, causing the bound to approximately halve.
This continues until the bound reaches 1, when each site
reports each event when it occurs. Observe now that the
communication in each round is more “balanced”: the sites
send a total of k£ messages, and the coordinator sends k mes-
sages (to inform each site that the new round has begun).
Each of these messages can be constant size. Thus, the total
communication is O(klog 7/k): a factor k improvement over
the naive approach.

It also follows immediately that protocol is correct: in any
round, the total “unreported” count is at most

k|m277 k| < 1/27,

while the “reported” count is at most
-1 j—1
S kT2 R <7y 27 < r(1-27Y).
i=1 i=1

Hence, the total count never exceeds 7 until the final round,
when every event is reported directly.

Approximate Countdown. We can improve on the cost
of this protocol if we are prepared to tolerate some impreci-
sion in the result. Specifically, we consider protocols which
approximate the answer. To approximate, we introduce a
parameter €, and ask that the coordinator can determine
that the true count is below (1 — €)7 or above 7; when the
true count is in between, then the coordinator can indicate
either state.

The protocol is almost identical, but now we terminate
when the bound on the unreported count reaches er. The
number of rounds is reduced to log1l/e. This removes 7
from the bounds, and makes the total cost of the protocol
O(klog 1/€) communication.

2.3 A randomized twist

Countdown lower bounds. We might ask if we can im-
prove further on this result. For deterministic solutions,
the answer is no: this bound is tight. This was shown for-
mally in [10]. The intuition is natural: consider the perspec-
tive of a single observer, who witnesses a number of events.
When this number is substantial enough, it could be part of
a global trend, and so must be reported in case they push
the total count above the threshold 7. At the same time, it
might just be a local phenomenon, in which case any com-
munication does not change the overall answer. Since the
observer cannot distinguish these two cases unless it receives
a message from the coordinator, then it is forced to commu-
nicate. Based on this argument, it is possible to show that
the total amount of communication is at least Q(klog7/k).

Randomized Countdown Protocol. However, we can
give tighter bounds if we relax the requirements, and allow
both randomization and approximation. Allowing random-
ization means that we let the protocol have a small prob-



ability of giving an erroneous answer at some point in its
operation.

The randomized protocol operates as follows, based on a
constant ¢ determined by the analysis. Each site observes
events, and after collecting a “bundle” €27 /(ck) of observa-
tions, it decides whether to send a message to the coordi-
nator. With probability 1/k it sends a message, but with
probability 1 — 1/k, it stays silent. The coordinator de-
clares that enough events have been seen once it has received
c(1/€®> — 1/2¢) messages. The idea here is that there will be
enough opportunities to send messages that with high prob-
ability the coordinator will not declare too early or too late.

Cost of the randomized protocol. We omit a full anal-
ysis here, but observe that each message corresponds to
k bundles in expectation, which correspond to kGQT/Ck =
€1 /c events. Then the coordinator declares after

c(1/€® —1/26)®1/c = 7(1 — €/2)

elements have arrived (in expectation). Setting ¢ to a moder-
ate constant is sufficient to ensure that this random variable
does not deviate too far from its expectation. Further, the
number of events seen at each site but not reported is at
most €27 /c, which is a tiny fraction of 7, and is absorbed in
the bounds.

Lastly, we can observe that the amount of communication
from sites is O(1/€®). Note that this is independent of k,
the number of observers! It is perhaps surprising that there
can be protocols whose cost is independent of k (although
this ignores the cost to initiate and terminate the protocol,
which should involve contacting all k sites). In this case,
the intuition is that we can (almost) treat the events as if
they are being observed at a single site: the randomization
is independent, and the same across all sites. So it does not
matter how the “bundles” are spread around. And if some
site does not receive enough events to fill a bundle, it can
just stay quiet and not participate in the protocol, without
introducing any significant error.

3. MONITORING ENTROPY

The approach outlined for the countdown problem relied
critically on the fact that the function being monitored was
monotonic: the number of events kept increasing. As a re-
sult, it was easier to bound the communication needed. But
more generally, we are interested in functions that may not
depend monotonically on their input. A key example is the
entropy function. Consider the case where the observers are
now witnessing events in the form of arrivals of different
items. These arrivals generate an empirical probability dis-
tribution (recording the relative proportion of each different
item observed), which we can compute the entropy of.

Entropy. Specifically, suppose that f; denotes the number
of occurrences of item 7 observed across the whole system,
and m denotes the total number of items (so m = ). fi).
Then the empirical probability of ¢ is just f;/m, and the
entropy H of the distribution is given by

H:Z%log%

Observe that H is non-monotone: as the f;s vary, this
quantity can rise and fall. Nevertheless, the entropy H is
an important metric on the distribution: if all f;s are about

equal, then the entropy is high, while if most f;s are small
and only one or a few are significant, then the entropy is low.
It has been argued that changes in entropy are an important
indicator of changes in behavior in distributed systems and
networks [32].

Entropy Protocol Outline. Arackaparambil et al. design
a protocol to monitor entropy in the continuous distributed
monitoring model [2]. Specifically, they design an approx-
imate protocol, which determines whether the current en-
tropy H is above a given boundary 7, or below (1 — ¢€)7.

The first problem to overcome is how to collect informa-
tion on the current distribution at each site that can be
combined to approximate the entropy of the global distribu-
tion. In general, the full description of the distribution can
be large when there are many items with non-zero frequency.
Here, we can take advantage of recent results on sketching
entropy. The idea of a sketch data structure is to create a
compact summary of data, so that multiple sketches can be
combined, and an estimate obtained for a function (in this
case, entropy) of the combination of the inputs. There are
sketches which provide (1 =+ €) approximation of the entropy
using a data structure of size O(}Z), where the O notation
suppresses logarithmic factors [19, 22]. They also carry a
small probability of giving an estimate outside this range,
and some care is required in combining the sketch guaran-
tees to obtain the desired overall accuracy, but we gloss over
these details in this presentation.

Given such sketches, the overall protocol is then surpris-
ingly straightforward. In fact, the key step is an invocation
of an approximate protocol for the countdown problem from
Section 2. The protocol proceeds in a number of rounds. In
the first round, each site sends every item it receives directly
to the coordinator, until some constant number (say, 100) of
items have been observed across all sites. This is because the
entropy can change quickly in this initial stage. In each sub-
sequent round i, the coordinator computes a parameter 7;,
and runs an instance of the approximate countdown protocol
for threshold 7;, with a constant approximation factor € = %
When this protocol terminates, the coordinate contacts each
site, which sends a sketch of its current distribution. The
coordinator combines these to estimate the current entropy,
and uses this to compute the parameter 7,41 for the next
round.

Analysis Details. The reason that this process can work
relies on a basic property of the entropy function: the change
in entropy between two points is bounded in terms of the
number of new observations. Specifically, if the number of
observations at the first point is m, and there are n new
arrivals, the change in entropy is at most = log(2m) [2].
Thus, since we know the entropy (approximately) at the end
of round 4, and we wish to know if it changes by at most er/2
(the minimum change needed to change the output of the
coordinator), we can set

riry = T
1T 21og(2m)’

where m is the total number of observations made at the end
of round 4. Given an upper bound N on the total number
of observations, we can ensure that m;, the total number of



observations at the end of round ¢, satisfies
T
2log(2m;)

€T
>mi |1+ ———
= ( +21og(2N>>

and hence the number of rounds to reach N observations is
O(L log® N) (provided log N > 7¢). The total communi-
cation cost is to send k sketches and run the countdown
protocol in each round, so the cost is dominated by the
O(% log? N ) sketches sent. The precise calculations, which
require some adjusting of constants and rescaling of param-
eters, are given in [2].

Mit1 = M + Tit1 = My (1 +

Lower bounds for entropy monitoring. Lower bounds
for this problem can be generating by defining a set of pos-
sible inputs chosen so that any individual site cannot tell
which case it is in, and so is forced to communicate to resolve
this uncertainty. This leads to a deterministic lower bound
of Q(ke *?1og(eN/k)) and a randomized lower bound of
Qe 1/?1log(eN/k)). Note that, apart from the sketches,
the above protocol is essentially deterministic, and so the
stronger bound applies to this case. It remains to close the
gap between these upper and lower bounds.

4. THE GEOMETRIC APPROACH

The two results we have seen thus far have considered
specific problems (countdown and entropy), and provided
tailored protocols based on exploiting specific properties of
each function. At this point it is natural to ask whether
there are general purpose techniques for generating protocols
in this model. The “geometric approach”, due to Sharfman,
Schuster and Keren aims to do exactly this [36]. The basic
idea is to take any desired function, f, and break down the
testing of whether f(z) > 7 or f(z) < 7 into conditions
which can be checked locally, even though x represents the
global state of the system. The central result relies on a
neat geometric fact, that the area of a convex hull of a set
of points can be fully covered by a set of spheres, one sphere
incident on each point.

4.1 Formal Description

Preliminaries. Each stream observed at each site is as-
sumed to define a current d dimensional vector v;. In the
countdown case, each v; was simply the local count; in the
entropy case it was the local frequency distribution. With
each site we associate a weight \; such that these weights
sum to 1, i.e. Zle Ai = 1. These weights might reflect
the number of observations at each site, so in this case
A = ni/Zle n;. Or they may simply be uniform, i.e.
Ai = 1/k for all 5. Initially, assume that these weights are
fixed and known to all nodes.

The weighted combination of all local vectors v; gives the
global vector v = Zf;l Aiv;. The instance of the threshold
monitoring problem is then to determine whether f(v) < 7
or f(v) > 7, for a fixed function f and threshold 7. For
example, we can map the countdown problem into this set-
ting: here, we set A\; = 1/k, each v; is the single dimensional
quantity n; (number of event observations at site ¢), and
f(w) = ||v|]li. We set 7 here to be 1/k times the desired
threshold. In other words, v is the mean of the event counts
at each site, and we want to alert when this mean exceeds

Figure 2: Current estimate e (central red dot), drift
vectors Av; (arrows out of e), convex hull (dotted
outline) and enclosing balls

a threshold that implies that the total count is above the
global threshold.

Protocol Description. At any moment during the pro-
tocol, each site has previously informed the coordinator of
some prior state of its local vector, v,. So the coordina-
tor knows v}, but not the current state v;. Based on this
knowledge, the coordinator has an estimated global vector
e = Zle Aiv;. Clearly, if the local vectors v; move too far
from their last reported value v, it is possible that the 7
threshold may be violated. Therefore, each site monitors its
drift from its last reported value, as Av; = v; — v;. Thus
we can write the current global vector, v, in terms of the
current estimate e and the drift vectors:

k k k
v = Z)\ﬂ)l = Z)\l(e—l- A’Ui) =e+ Z)\lAvl
i=1 i=1 i=1

Observe that this is a convex combination of drift vectors.
Therefore, the current global vector v is guaranteed to lie
somewhere within the convex hull of the drift vectors v;
around e. Figure 2 shows an example in d = 2 dimensions,
with five drift vectors emanating from an estimate e, and
their convex hull. The current value must lie somewhere
within this shaded region.

To transform the global condition into a local one, we
place a ball on each local drift vector, of radius ||Auv;||
and centered at e + %Avi. This is illustrated in Figure 2. It
can be shown that the union of all these balls entirely covers
the convex hull of drift vectors [36]. Thus, we reduce the
problem of monitoring the global vector to the local problem
of each site monitoring the ball of its drift vector.

Specifically, given the function f, we can partition the
space into two sets: X, which is those points x for which
f(z) < 7, and X, which is those for which f(z) > 7. Note
that these each set is not necessarily connected, but may
consist of many disjoint regions. The basic protocol is now
quite simple: each site monitors its drift vector Aw;, and
checks with each new observation if the ball given by e +
%Avi is monochromatic, i.e. all points in the ball fall in
the same set (X or X). If this is not the case, then the
site communicates to the coordinator. The coordinator then
collects the current vectors v; from each site to compute a



new estimate e, which resets all drift vectors to 0. From the
above discussion of convex hulls, it is clear that when all
balls are monochromatic in the same set (X or X), then v
must also be in the same set, and so the coordinator knows
the correct state.

Countdown Example. Applying this to the example of
the countdown problem, the effect is to set e = Zle Vs,
and the “ball” for each site allows each site to receive up to
(7/k—e) new updates before triggering another communica-
tion. In other words, this scheme is equivalent to the basic
scheme in Section 2.1: each site is given a uniform fraction
of the current “slack”, and a global communication is forced
whenever any site uses up its slack. This exposes both a
strength and a weakness of this approach. The direct ap-
plication of the geometric approach immediately generates
a quite natural protocol for the problem in question, with-
out any detailed study of the local semantics. At the same
time, in this case it is apparent that improved results can be
obtained by generating protocols which take more account
of the function in question. Further, while the geometric
method is very general, it does not lead to bounds on the
communication used, unless we make some statistical as-
sumptions about how the updates vary [36]. To some extent
this is unavoidable, since the scheme allows arbitrary up-
dates to the monitored vectors, allowing a worst case where
the threshold 7 is repeatedly crossed, forcing a lot of com-
munication.

4.2 Extensions

There are several extensions and variations of this basic
geometric monitoring scheme which are able to reduce the
cost, and avoid some bad cases.

e Local Resolution via slack. Whenever a local drift
vector creates a non-monotone ball, it precipitates com-
munication with all sites, to collect their current vec-
tors and distribute the new estimate. This global com-
munication can be be postponed by the coordinator,
who can introduce additional “slack”, in the form of
offset vectors. That is, the coordinator can contact a
small number of sites, and allocate a set of vectors J;
chosen so that the balls for Av; +49; are now monochro-
matic, and Zle 6; = 0. In the countdown example,
this could correspond to one site ¢ which has seen a
large number of events being told to subtract §; from
its count while site j is asked to add ¢; to its count.
In other words, the slack in this case is used to even
out the counts. This idea is discussed in detail in [36];
similar concepts arose earlier, e.g. in work on tracking
top-k of frequency distributions [3].

e Approximate Thresholds. The version of the pro-
tocol described is for an exact version. As we saw in
the earlier examples, demanding to know exactly when
the threshold 7 is reached can require a lot of commu-
nication. In the geometric setting, it is easy to reach
a scenario where the global vector remains on one side
of the threshold, but the balls cannot grow very large
before they become non-monochromatic, which causes
a lot of communication. As before, we can reduce this
impact by relaxing the requirement, and introducing
an € tolerance around 7. Applying this, when f(v) < 7,
we define the sets X and X as before, but when we

are above the threshold, we define the sets based on
f(xz) < (1 —¢€)7. This gives more room for the balls to
grow, and prevents constant communication when the
current value of f(v) is close to 7.

Testing Monotonicity. We have assumed that, given
a description of a ball B, it is easy to compute whether
it is monochromatic (equivalently, to compute the max-
imum or minimum value of f(z) for z € B). For simple
(differentiable) functions, this may be the case, but in
general this can be more complex. In some cases, we
can assume that all vectors fall on a grid, and perform
a simple search of the grid. In other cases, we may
need more insight into the function being monitored
to define fast tests for monochromicity.

e Affine Transformations and Reference Vectors.
The use of spherical balls is a natural one, but it is
not the only choice. In [37], the authors observe that
one can perform any affine transformation on the in-
put, without changing the region covered by the con-
vex hull. Then spherical balls in the transformed space
correspond to (rotated, sheared) ellipsoids in the orig-
inal space. In some cases, these ellipsoids can more
tightly conform to the convex hull than spheres would.
In the same work, the authors discuss a variation of
the scheme, which replaces the estimate e with a dif-
ference reference vector, and argues that this can give
better results by providing a larger “safe area” for the
drift vectors to occupy.

Higher-dimensional data. The geometric moni-
toring scheme as presented operates on vectors in d-
dimensional space, and transmits these to compute
and share the estimate e. In simple cases, such as
the countdown case (d = 1), there is no problem. But
applying this method directly to the entropy case is
problematic: d can grow very large here (when there
are very many distinct items possible), and the fac-
tor of d is unacceptable. The protocol in Section 3
avoids this by sending compact “sketches” of the dis-
tribution, whose size is independent of d. In principle,
sketches can be combined with geometric monitoring.
Now the vectors exist in “sketch space”, with small di-
mension d. This makes most sense when using sketches
that embed high dimensional spaces into low dimen-
sional Euclidean space, via the Johnson-Lindenstrauss
lemma [29, 26], so balls in the original space correspond
to balls in the sketch space. However, care must be
taken, since now we need to test the monochromicity
of these balls in the sketch space.

S. SAMPLING

So far we have concentrated on the case of threshold mon-
itoring: tracking which side of a threshold 7 a given func-
tion f is on. This is actually quite a general task. For
example, we might instead want to monitor the value of
f, so that we always have an approximation to its value
(value monitoring). But this can be modeled as multiple
instances of the threshold monitoring task, for thresholds
1,(1+¢),(1+¢e)?.... Tracking all these in parallel can be
done by running O(% log T') instances of the threshold moni-
toring solution in parallel, where T is maximum value of the
function. Although this 1/e factor is large enough to make



it worthwhile designing solutions for value monitoring prob-
lems, the techniques and approaches that have been used for
value monitoring and threshold monitoring are quite similar.

However, there are some other monitoring tasks which do
not fit either the threshold monitoring or value monitoring
paradigms, and instead require us to track the members of
a set (set monitoring). For example, we might want to ex-
tract information such as which are the k most frequently
observed items across all the event streams [3]. In this sec-
tion, we describe another basic task: to draw a uniform
sample from the different event streams, based on the re-
sults from [11]. We describe two variations: where we want
to draw a sample over all the events ever observed (the in-
finite window case), and where we want a sample only over
the more recent events (the sliding window case).

5.1 Infinite Window

Recall the set-up: we have k distributed sites, each of
which is observing events occurring at unpredictable and
varying rates. We wish to compute a sample of size s of
these events. First, we consider drawing a sample without
replacement. The basic idea is to sample across all sites
with the same probability p. All sampled items are sent
to the coordinator to form a collection, from which s items
can be extracted uniformly. Periodically, the coordinator
will broadcast to all sites to reduce p, and will also prune
its collection. We want to bound the resources taken for
this process, in terms of the amount of communication, and
space needed by the participants.

Binary Bernoulli Sampling. The solution of [11] intro-
duces a sampling idea called “Binary Bernoulli Sampling”.
The idea is that every sampling rate p will be a power of 2.
To sample an item with probability p = 27%, we can create
¢ random bits, so each bit is chosen independently 0 with
probability 1/2, 1 with probability 1/2. Then we include an
item in the sample if its random bits are i zeros. This is quite
straightforward, but is convenient to use, since it makes rea-
soning about probabilities very easy. For example, suppose
we want to switch from sampling with probability 27¢ to
probability 277 for j > 4. For new items, we just pick j bits,
and sample if they are all 0. But we can also subsample
old items: these have a prefix of i random bits, so we just
pick j — ¢ new random bits, and accept if these too are all
zeros. It is then easy to see that both processes give items
the same chance to be sampled, since they are conditioned
on the same event: picking j random bits all zero.

Infinite Window Sampling Protocol. The protocol is
quite straightforward. In round i, each site samples each
item with probability 27¢, as outlined above. If the item
is chosen, it is forwarded to the coordinator. We begin in
round 0, and advance to the next round 7 + 1 when the
coordinator sends a message. The coordinator’s work is a
little more complex. For each item received, it picks an
additional random bit, so the item is now associated with
i + 1 random bits. The coordinator ends round ¢ when it
has s items in its collection with i + 1 zeros in their random
bits. It then ejects all items from the collection whose bits
are 0°1, and keeps those (s) with 0°0. Tt goes on to pick an
extra random bit for those that remain in the collection, and
broadcasts the new round to all sites. At any time during
the protocol, the coordinator can pick a uniform subset from
its current collection to provide a sample of size exactly s.

Correctness and Analysis. The correctness of this pro-

cess follows immediately from the discussion of binary Bernoulli

sampling. That is, the coordinator always maintains a col-
lection of at least s items, so that all items in round i are
chosen uniformly and independently with probability 27¢.
We need to calculate how long each round lasts, in terms
of how many items are sent by sites. As the coordinator
receives each item, it chooses a new random bit, and the
round ends when s of those are 0. So the only way that a
round can be very long is if the coordinator is unlucky, and
picks many more 1 values than 0s. Via Chernoff bounds, the
probability of a round involving more than 4s items being
sent is exponentially small in s; similarly, the total number
of rounds while processing n input items is bounded with
very high probability as O(logn). So the communication
cost is bounded (with high probability) as O((k + s)logn).

Moreover, one can show a lower bound of Q(k + slogn)
by arguing that this many different items should appear in
a random sample over the course of the protocol [11]. So the
protocol is optimal when k£ = s; when this is not the case,
the costs can be reduced to O(klogk/sn + slogn) by mod-
ifying the sampling probabilities slightly [12]. The protocol
can also be extended to sample with replacement. A trivial
solution just runs the above protocol with s = 1 in parallel
s times over. However, this blows up the costs by a factor
of s. Instead, it is possible to take this idea, but to keep all
instances of the protocol operating at the same level i, thus
reducing the communication from the coordinator. Analyz-
ing this process allows us to argue that communication of
this protocol is bounded by O((k + slog s)logn).

5.2 Sliding Windows

A natural variation of continuous distributed monitoring
problems is when we do not want to track events across an
unbounded history, but rather to see only the impact of re-
cent events. For example, in a network we may only want to
include events which have happened within the last hour; in
a sensor network, we may only want to track a window of 1
million recent events, and so on. A naive solution would just
be to pick a fixed interval-—say, 1 hour—and restart the pro-
tocol afresh at multiples of this interval. This has the benefit
of simplicity, but means that we re-enter a ‘start-up’ phase
every time the protocol restarts, and so we lose information
and history around this time. Instead, we describe an ap-
proach that is almost as simple as this naive solution, but
which provides a sample of an exact sliding window.

A Tale of Two Windows. The key insight needed to
generate the solution is due to Braverman, Ostrovsky and
Zaniolo [4], who observed that any sliding window can be de-
composed into two pieces, relative to a fixed point in time:
a growing window as new items arrive after the fixed point,
and a shrinking or expiring window of items from before
the fixed point. Suppose we want to maintain a sample of
items drawn from the last W global arrivals. To draw a
sample uniform from these W, we want to take all unex-
pired sampled items from the expiring window, and make
up the shortfall by sampling from those in the growing win-
dow. A simple probability calculation shows that this does
indeed provide us a uniform sample from the most recent W
arrivals.

To implement this idea, we can run an instance of the
countdown protocol to count off every W arrivals. We can
also run an instance of the above sliding window protocol for



drawing a sample beginning at every multiple of W arrivals,
which we halt when W further items have arrived. The only
additional information needed is that the coordinator needs
to know when an item sampled in the expiring window has
expired. This can be done by starting a fresh instance of
the countdown problem for every sampled item (and ter-
minating this when the item is ejected from the coordina-
tor’s collection). This gives the coordinator exactly what is
needed to perform the above sampling process: drawing un-
expired items from the expiring window, and making up the
shortfall from the growing window. The cost of this protocol
now grows as O(kslog(W/s)) per window, but higher cost is
unavoidable: [11] shows that any protocol for this problem
must incur an Q(kslog(W/ks)) cost.

6. OTHER WORK

The idea of continuous distributed monitoring is a natural
one, and as such it has arisen independently in different
areas, under different labels. An early form was as ‘Reactive
Monitoring’ in the networking world. Here, Dilman and Raz
introduced a problem that was essentially a variant of the
countdown problem, and provided some solutions based on
distributing slack amongst the observers [17]. The notion of
testing whether a function had exceeded a global threshold
appeared under the name of “distributed triggers”, and was
motivated by Jain et al. in a workshop paper [27].

The continuous distributed model has attracted most at-
tention in the data management community. Early work
by Olston, Jiang and Widom focused on tracking a func-
tion over single values which could vary up and down, such
as monitoring the sum [35]. Here, some uncertainty can
be tolerated, so they introduce a natural “filter” approach,
which assigns a local filter to each site so that if the current
value is within the filter, it does not need to be reported.
When a site’s value falls outside its filter, the current value
is reported, and the filter is re-centered on this value. Over
time, some filters can be widened and others narrowed so
that the total uncertainty remains bounded, but more slack
is allocated to values that are less stable.

A similar approach was used by Babcock and Olston to
report the top-k items from a distribution [3]. Again, some
tolerance for approximate answers is necessary to avoid com-
municating every change. The central idea is to choose a set
of “adjustment factors” for each item at each site, so that the
local distribution after adjustment appears identical to the
global distribution. Each site monitors its (adjusted) distri-
bution, and reports if the local (adjusted) top-k changes. In
this case, a costly ‘rebalancing’ stage is invoked.

The concept of “prediction” was introduced by Cormode,
Garofalakis, Muthukrishnan and Rastogi [9]. The idea is
that if items are continually arriving at approximately even
rates, then each site can share a simple prediction model
of where its distribution will be at any given point in time,
rather than relying on a static historical snapshot. This
idea was applied to the problems of tracking quantiles and
heavy hitters (frequent items) of the observed item distribu-
tion. Additional aspects considered included the fact that
the sites should send a compact approximate description of
their distribution, rather than a full description; sites might
have limited space and so can only maintain a small space
summary of their input; and that the network topology may
be a multi-level hierarchy, so communication no longer has
uniform cost.

The prediction idea was extended to more complex func-
tions such as join sizes (or equivalently, the inner product
of large vectors) by Cormode and Garofalakis [7]. Here,
the idea was to operate predominantly in “sketch space”:
a random linear transformation of the input down to low-
dimensional vectors. Due to the linearity of the sketch trans-
formation, a prediction based on linear or quadratic growth
in different dimensions could be captured by a sketch of the
(first order or second order) difference between past values,
which in turn is the appropriate difference of sketches. Viola-
tions of predictions can be detected by testing the deviation
between the actual and predicted sketches.

Huang et al. worked on tracking spectral properties of
distributed data, where each time step adds a new row to a
matrix of observations from different observers. The quan-
tity of interest to be monitored here was the residual energy
of the signal after removing the projections along the princi-
pal components [25]. Other work studied anomaly detection,
where an anomaly occurs when the number of events exceeds
an expected rate, over any historical window [24]. This can
be seen as a variant of the countdown problem where there
is a background process which depletes the number of ob-
served events at a uniform rate. A different approach to this
problem is due to Jain et al. [28], who consider optimizing
slack allocation within a hierarchical network topology, and
robustness within a dynamic network (nodes dying, or new
nodes joining).

Many other specific functions have been studied in this
model, including monitoring the cardinality of set expres-
sions [16] tracking the (large) number of distinct elements

observed [13], tracking clusterings of points in a metric space [14],

sparse approximation of signals [34], and conditional en-
tropy [1].

The continuous distributed model has also been studied
from a more theoretical perspective. [10] revisited various
fundamental functions: Fy (number of distinct elements), Fy
(count/countdown) and F» (self-join size/Euclidean norm),
and gave the first or improved worst-case bounds for these
problems, as well as the first lower bounds. An alternate cost
model was proposed by Yi and Zhang [39]: in the multi-
dimensional online-tracking model, we seek to bound the
competitive ratio of the communication. That is, the ra-
tio between an online protocol and the best offline protocol
which is allowed to see the whole input upfront. This is
model proposed for a single site. We can weakly generalize
these results to the case of multiple sites, by arguing that
each site may be competitive in informing the coordinator of
its value (for example, for tracking a count). But showing a
protocol which is competitive over the global communication
remains an open problem.

Yi and Zhang have also proposed improved bounds for
tracking quantiles and heavy hitters [40]. Specifically, they
show how both problems can be solved with total commu-
nication O(k/elogn) to provide e-approximate results over
streams of total length n. Chan et al. study the same prob-
lems in the context of time-based sliding windows, where
only recent events are counted [5]. Most recently, Cormode
and Yi observed that the ‘two window’ approach used for
sampling can also be applied to simplify the problems, and
achieve improved bounds [15].



7. CONCLUDING REMARKS

This survey has aimed to give a flavour of the line of work
in continuous distributed monitoring, by highlighting a few
problems and approaches, and identifying the breadth of
other related work. For a different perspective (with, ad-
mittedly, a similar authorial tone), there are a couple of
surveys and tutorials from about five years ago [8, 6].

Since those prior surveys, there has certainly been progress
made in this area. In particular, additional problems have
been studied; more robust bounds—both upper and lower
bounds—have been proved on the communication costs, as
well as other costs such as space; variant models have been
introduced, such as sliding windows and the online-tracking
model; and a broader set of researchers have worked on re-
lated problems (see, for example, the EU-supported LIFT
project, http://lift-eu.org/).

At the same time, many questions posed previously have
yet to be fully addressed. Next, I outline two quite different
directions for this area that seem quite open, and capable of
generating interesting and important results.

Systems for Continuous Distributed Monitoring. While

there has been considerable progress on developing protocols
and techniques for continuous distributed monitoring, these
have yet to translate to practical implementations. There
have been several prototype studies of protocols in the works
introducing them, which have indicated the potential for or-
ders of magnitude savings in the amount of communication
incurred. However, as far as I am aware, these have not
translated to widespread adoption of these ideas, or incorpo-
ration into standard protocols. Moreover, these trials have
tended to be in simulated environments on recorded data
streams, rather than “live” tests. Possibly the lack of uptake
of these methods is due to a lack of urgency for the problems
considered. While orders of magnitude saving may be possi-
ble, if the overhead of centralization, or the delay of polling
is considered acceptable, then there is no need to implement
a more complex monitoring solution. In other words, atten-
tion needs to focus on settings where the naive solutions do
place an intolerable burden on the network. One interesting
example arises in the context on Massively Multi-player On-
line Role Playing Games (MMORPGs). Here, it has been
argued that the number of different quantities that need to
be monitored simultaneously in a distributed setting (such
as the health scores of players and enemies) is so large that
a more efficient solution is needed [23].

In terms of open problems, the basic challenge is to first
develop libraries of code, and then evolve these into general
purpose systems, so that they can be easily adopted by pro-
grammers and data owners. That is, it should be possible for
someone who wants to incorporate continuous distributed
monitoring into their system (say, into their MMORPG)
to just plug in code “off the shelf”, rather than reimple-
menting protocols themselves. Or, there should exist sys-
tems for distributed monitoring which are as accessible and
general purpose as traditional centralized database manage-
ment systems. Both directions require considerable work to
achieve from the current state of the art. In particular, what
classes of functions should such tools support? Should they
be based on a collection of “typical” functions (such as the
countdown and entropy monitoring problems), or adopt the
more generic geometric monitoring approach? Should there
be a general purpose, high level query language for flexibly
specifying monitoring problems?

A Deeper Theory of Continuous Distributed Moni-
toring. In recent years, there have been theoretical results
shown for problems in continuous distributed monitoring.
For the first time, strong upper bounds on the amount of
communication of certain protocols have been shown, when
previously only heuristic results were known. In some cases
these are complemented by lower bounds, sometimes match-
ing or almost matching.

The upper bounds follow by quantifying the worst case
amount of communication that can be forced by any in-
put. Typically, this is in a setting when the total number
of events, n, is “growing” in some sense, and we can bound
the communication in terms of a sublinear function of n
— see the results above for countdown and entropy, which
essentially bound the cost in terms of the logarithm of n.
For more general cases, where events may represent arrivals
and departures, a lot of communication may be forced if the
aggregate number of active items at any time remains low.
Instead, we might hope to follow Yi and Zhang, and prove
a competitive ratio [39].

The lower bounds proved thus far tend to be based on ex-
tensions of existing communication complexity ideas [31]—in
essence, they count the number of possible configurations,
and argue that there must be sufficient communication to
allow the sites or the coordinator to distinguish between dif-
ferent outcomes. While this approach has proved effective
in some settings, it fails to fully capture the constraints of
the model. It seems that a richer notion of continuous com-
munication complexity is called for.

There are several powerful results in the literature which
could potentially be extended. The famed Slepian-Wolf the-
orem [38] captures the case where there are correlated sources.
They can encode their outputs to allow correct decoding,
while using a total amount of communication proportional
to the joint entropy. We can cast this “distributed source
coding” as a special case of continuous distributed monitor-
ing, where the target is the streams. Then, what we seek is a
generalization of Slepian-Wolf, that will capture a function
of multiple inputs, rather than just the identity function.
This could also take advantage of correlations over time as
well as space.
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