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Abstract—Monitoring and analyzing network traffic usage pat- records for each router and transporting it to data warehouses
terns is vital for managing IP Networks. An important problem s unrealistic, because of the storage costs as well as the
is to provide network managers with information about changes  yangportation overhead. A back-of-the-envelope calculation
in traffic, informing them about “what's new”. Specifically, we : , \ )
focus on the challenge of finding significantly large differences in with even 105 of OC485_ such as t_hos.e found in a large ISP
traffic: over ’[ir‘nel between interfaces and between routers. We backbone will illustrate this fact. Unlike in telephone networks
introduce the idea of adeltoid an item that has a large difference, where billing “per record/call” is (has been) the norm and
whether the difference isabsolute relative or variational. is subject to legal requirements, IP network operators have

We present novel algorithms for finding the most significant - jags motivation to collect or archive packet or flow records
deltoids in high speed traffic data, and prove that they use small _. . - . . .
space, very small time per update, and are guaranteed to find since it does _no_t have a direct and immediate |mpact_o!1
significant deltoids with pre-specified accuracy. In experimental évenue, and it is not mandated. Instead, a more realistic
evaluation with real network traffic, our algorithms perform well ~ scenario is to collect some aggregated information or monitor
and recover almost all deltoids. This is the first work to provide specific “queries” of interest on the traffic stream. That entails
solutions capable of working over the data with one pass, at performing computations per packet or per netflow record,
network traffic speeds. . . . .

at the router itself or at collection boxes associated with

the routers. This in turn presents well known performance
|. INTRODUCTION bottlenecks: one needs methods that will (1) use small amount
of memory because memory such as SRAM with access time
. q i K traffi . E6mmensurate with IP traffic is expensive and it is impractical
toring and analyzing network traffic usage pattemns Is €S5S¢0 attach large memory of this caliber to each interface card

tial for managing these systems. For examnﬂmwspnlng .0{1 typical routers in large ISPs and (2) use very few memory
IP networks needs capacity planning and forecasting Wh'gccesses per packet or flow record

needs detailed analysis of traffic usage over time. Running 3Both these constraints are well known in networking com-

33;?:;::;:2{% p(;(r)\gid”'i:g r:/eet;/ivoirrlf ngpv?ggvig\’/;tz_rgz_eqﬁunity, and have been articulated in the classical context of
. g oifing, fying 9 packet switching, more recently in packet classification and IP
ments, periodic reporting of usage per customer, etc. Enforci

IP networks are sophisticated engineering systems. Mo

interacting with an IP network at any level—single user Orfg/hat are specific data analyses of interest to monitoring high

IasrgeeISP—that one have tools to gather and analyze tra ﬁeed traffic data?Typically, the focus is on monitoring a
usage. . L _ _ few simple aggregates that will serve as “signals” for ongoing
Our study here is primarily motivated by analysis of masE’henomenon. For example, one may monitor the number of
t 1

SIVe, h|g_h speed data generated b_y I.P networ_ks, UL Stinct “flows”—distinct source IP addresses, or distinct TCP
perspective of a large ISP. For motivation, consider analy%gnnections etc—ongoing in a link: steep increases in this

of the header |nformat|on on each IP packet, or at a h'g imber may correlate with certain attacks or port scans [17],
level of aggregation, the records of IP flows say from Cisco

: 2]. In a similar spirit, one may wish to calculate the number
netflow, from each of the routing elements of a large ISP. O F “tiny” flows, that is, the ones that involve few packets

foc_us i.S on rapid collection of the necessary summarizing da{ﬁ‘ily [12]. Another example is to monitor “heavy hitters”, i.e.,
which is wa-rranted- by netvv_ork monitoring scenarios. A.nalyslﬁose flows that represent a significantly large proportion of
and extraction of information from the data summaries c3fe ongoing traffic or the capacity of the link [15]

then be done off-line but still in a timely fashion. In this In this paper, we study a somewhat related class of prob-

S&Tt?Xt’ tf:ﬁre ar? two key ques:lonst. for high q tWI ms of finding entities—addresses, flows eg., comprising
at are the pertormance constraints for Nigh speed NEWOLK, ..o /qestination IP addresses and port numbers or combina-

data analysis?Capturing per packet information or nemo"\’tions thereof, etc—thaliffer significantlyin traffic level from
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managers tell us that they look for significant differences in thbe problem of finding heavy hitters. Here, we expand previous
traffic levels while operating a network; monitoring significantvork substantially, in particular, by designing novel tests that
differences is an intuitively powerful way to summarize thevork for different deltoids. This not only gives us the first
changes in the network, and therefore, draw human attentiamwn theoretical results we derive in this paper, but also
to these across the network over time. What is needed iserves to position the combinatorial group testing as a general
way to highlight the things that are different, that is, to findramework for detecting significant entities, be they volumes
“what’s new” between different traffic streams. or differences.

Our main results are extremely efficient methods that Wof\hap. In Section Il, we present a discussion of what various

Yifferences of interest are, and formally define the problem
n&. finding significant deltoids. We also show why standard
methods such as sampling do not work. We discuss related
« We formalize intuitive notions of “differences”deltoids work in Section Ill. In Section IV and V we present our group-
as we call them, including absolute, relative or variationésting framework, and present specific results for different
deltoids—and initiate the study of methods for findingleltoids. Sketch based methods are explained and analyzed in
significantly large deltoids between high speed IP netection VI. In Section VII, we present our experimental results
work data streams. with real network data. Some extensions are described in
« We design efficient algorithms for finding significantSection VIl and concluding remarks are made in Section IX.
deltoids on high speed data. We analyticgiiypve that
they (a) use small space, (b) take small time per packet Il. PRELIMINARIES
or flow record update, and (c) find significant deltoids ) . . .
within pre-specified accuracy quickly. The algorithms ugd. Difference Detection Problems: Informal Discussion
group tests in a combinatorial group testing framework We focus on finding items which exhibit large difference.
that underlies all the algorithms, and work without anyVe call such items “deltoids”, to denote items whose differ-
assumption on the input data source and give the filstice, or delta, is noteworthy. There could be many possible
solution to these problems. ways to measure how individual items have changed. We
« We implement and test our algorithms on various real lifdustrate these by considering the number packets sent by a
network data—netflow and SNMP data from IP networkgarticular IP address through a given interface aggregated by
as well as telephone records—and show that deltoitisur.

are interesting. Even without engineering our algorithm 1) Absolute Difference:A large difference between the
using standard techniques of parallelization, hardware  number of packets sent in one hour and the next.
implementation or exploiting the special structure of IP 2) Relative Difference:A large ratio of the number of
data, our algorithms can process millions of records per  packets sent in one hour and the next.

second on a cheap desktop computer. Thus our solutiong) Variational Difference:A large variance of the number
appear well suited for high speed network monitoring of packets taken over multiple time periods.

applications. . We must be precise about what is meant by “large”, since
. We c?'mpare our results to recenFIy proposeq sketeh iy depend on the volume of traffic, and whether we
basgd method; [25] to f'nq _deItmd;, extending the e counting packets, bytes or flows. More than this, it also
o find the reIaUvg and variational differences as we epends on the distribution of traffic itself: if we look for
the absolu_te deIt0|ds: we shqw hOW the group testingjioids between traffic going into and coming out of a link,
approach IS able to f|nd_delt0|ds In-one pass over daﬁ?en a difference of a few packets would be significant,
that are missed when using sketches. whereas between the traffic going onto the link in one hour
Our work lies in the intersection of research in mangnd the next, the difference would have to be much larger to be
communities. The networking community has recently starteteworthy. It is therefore vital that the notion of a significant
studying what traffic data analysis problems can be solvdifference istraffic dependent
at line speed: finding heavy hitters [11], [15], [24], counting Our solution is to look for differences which are a user-
distinct flows [17], etc. Our work here extends this list bgpecified fraction of the¢otal difference That is, items whose
providing methods to do quite nontrivial analyses such aéfference is some fraction, say 1% or 5% of the sum of
what are the significant differences in traffic levels acroshifferences of all items. Given a fractiop, there can be at
network elements and time. The precise problem of lookingost1/¢ deltoids for any notion of difference, although this
for deltoids is implicit in the exploratory approach inherenibound is unlikely to be reached by realistic traffic, since we
in network management. The problem of detecting relati@xpect much of the difference to be from non-deltoids.
deltoids for example has been posed as an open problentach of our notions of difference captures a different situ-
in [6], [22], and has been often stated in informal discussiomagion. A busy web server such as CNN.com will experience a
with researchers and network operators. Finally, our work motable absolute difference in its traffic while an exciting news
grounded in Algorithms research. The combinatorial growugiory is unfolding. Flash crowds, or “the slashdot effect” will
testing approach for stream computations has been developegllt in a large relative difference for a server that normally
in [10], [20], [21]. Most similar to our approach is [10] forexperiences lower traffic (another relative difference would be

differences in traffic levels across time and network eleme
Our contributions are:
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B. Standard Approaches
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Items displaying different kinds of difference: (b) has the highest

absolute difference between 10am and 1lam, (e) has the highest relative
difference, and (d) has the highest variance.

if the server crashes under the increased load and its outbound

traffic falls from high to zero). Meanwhile, high variance
detects items whose traffic is variable over time, such as office
networks, whose traffic will be high during working hours, and
low overnight. These notions can be distinct: Figure 1 depicts
a situation with five different items (a)—(e) and their values
over equal time periods between 10am and 1lam. The item$
with highest relative and absolute difference between the first
and last reading, and with the highest variance are all distinct
(and distinct from the item with highest overall count).

Because of the potentially high volume of network traffic
and high link speeds, any method devised for finding deltoids
needs to provide truly high performance in order to be con-
sidered for deployment in real network monitoring situations.
See [16] for a nice discussion of the rationale. We summarize
the requirements:

1)

2)

3)

Fast Update Speed.Solutions have to be capable of
operating at network line speed on a per packet or per
flow record basis. Thus per packet or per flow record
processing has to be very fast so that data processing
is carried out in real time. This rate varies greatly,
depending on the capacity of the link and the nature
of the traffic. IP traffic on fast backbone links can be
many millions of packets per second but other situations
generate traffic at much lower rates.

Low Space RequirementAlthough memory and diskis
increasingly cheap and plentiful, storing and processing
traffic data at per packet or per netflow record speed
calls for high speed memory with very small access
times. Such memory (such as SRAMS) can be expensive,
and so it is desirable that solutions use small space
for processing and storing summaries of IP traffic data
streams.

Efficient, Accurate Queries.The operation of recover-
ing the deltoids should not be a costly one. Although
this operation can be done offline, and so does not
necessarily have the same time restrictions as the update
operation, still it should be relatively fast to find the
deltoids. It is very important that the operation should
also giveguaranteesabout the accuracy of its output.

Meeting all these requirements is not straightforward. Many
natural first ideas fail on one or more of these criteria. We
briefly discuss various simple attempts to solve this problem,
and explain their shortcomings.

Store and Sort. One way to solve the problem exactly
is to store all the traffic information, and then sort
and aggregate it to get traffic per address. Then given
sorted traffic data, these can be scanned to pick out the
deltoids exactly. For small amounts of traffic this may be
acceptable, but for serious traffic analysis problems, the
amount of data quickly becomes too large to deal with
in this way: storing the output of a continuotcpdump

is not practical, even with compression.

Sampling. Reducing the storage cost by sampling and
storing, some very small fraction—say 1% or less—has
the disadvantage that we are likely to miss important in-
formation about deltoids. To achieve a reasonable amount
of storage space, the rate of sampling will have to be very
low, thereby missing many packets or netflow records.
In the worst case, deltoids are missed entirely by the
sampling and so cannot be recovered.

Heavy Hitters. Several methods have been published
recently for finding the “heavy hitter” items, which are
those whose traffic is above some threshold of the total
traffic [10], [15], [27]. This is a related notion to deltoids,
since heavy hitters are a special case of deltoids: the
deltoids found between a traffic stream and an empty
stream are precisely the heavy hitters. So this suggests
the following solution: for each stream, find and store the
heavy hitters which account for more tharof the total
traffic. Then given two streams, output as the deltoids all
items which are heavy hitters in one stream but not the
other. Such an approach is unfortunately severely flawed.
For example, the heavy hitters might be identical in both
streams: some items are always popular (such as popular
websites). Because deltoids are defined in relation to the
sum of the differenceimstead of thesum of the traffic
then it is possible that no deltoids are heavy hitters, and
so this method will not find any of the true deltoids, and
will output items that are not deltoids. In our experiments,
we found that this heuristic performed generally poorly.
Sketch-based MethodsSketches are a class of powerful,
small space approximations of distributions [4]. It is
possible to create sketches for each stream so that com-
bining sketches for multiple streams allows the (absolute)
difference for each item to be found [20], [25]. This
method is the most competitive to our approach, and the
one we shall devote most attention to in this work. The
major drawback of the sketch based methods is that in
order to compare two streams, we must somehow know
which items to query in order to find those with large
change. So, either one must query every item (eg all
232 |P addresses), or use a large history of items to test:
for every address that was seen, test whether this has a
large change. We discuss this method in greater detail in
Section VI.



C. Problem Formulation algorithm failing. Our bounds will involve parametefse and

We will consider streams,, Ss,... S, that represent the d, in addition ton. We will assume eacly;[i] can be stored
data of interest collected over fixed time periods, e.g. ealthOn® computer word, as is standard. All the space bounds
stream represents observed traffic flows from a particular hdli# State below are in terms of the number of words.
or day. These can be thought of as defining vectors, where the
ith entry of the vector fo5; represents the quantity associate®. Online and Offline Versions

with item ¢ after processing the whole of theh stream. We e now discuss different settings of this problem, depend-
shall usesS; to refer to both the stream, and also the implicig on how and when the deltoids are required to be found. In
vector that it defines, and s8[i] denotes the total for item the Offline model, streams of data are seen separately (perhaps
i in the jth stream. The dimension o, is n, meaning that eyen in different locations) and are processed to retain only a
i€{0...n—1} small summary of the stream. Then at some point a query is
For example, the streams might represent flow volume fromade of two (or more) streams to find the deltoids between
each source IP address on a given link, one stream per h@hése streams. This is the basic problem that we address in
Thenn = 2% and S, i] represents the total flow volume fromis paper, and in some ways it is the most challenging since
source IP addressin the jth hour. Streams of IP data arethe summaries of the stream must include enough information
modeled by theash registemodel of streams [29]: this meanso efficiently recover the identities of the deltoids—we have
that the same item can be observed multiple times in theyled out solutions that rely on enumerating all possible item
stream, and each contribution adds to the valug,¢f]. This identifiers.
naturally describes a stream of IP packets: each packet has ap the Online model, first one stream is seen and prepro-
address, and a packet sizp so thatS;[i] < S;[i] +p. The cessed. Then others are observed, and it is required to find
challenges here are multiple: first, to process the streamstjgs deltoids between these streams and the previous one. This
they arrive in real time, at network line speeds; and second,dffers from the Offline model, since the stream pairs are
obtain a concise, approximate representation of each streamkswn to us in advance, and so it is possible to make use of
that we use much less fast memory than we would to represgigt sequence of item identifiers to query our data structures as
S; exactly. Second, queries of the foif k), we want to find  the |ater streams are seen. In this scenario we only require that
particular itemsi which behave differently irf; than inSi.  the deltoids be output after all streams have been processed;

We can now formalize the idea of deltoids. thus any solution to the Offline problem can also be used

« Absolute DifferenceThe absolute differencef an item: to solve this Online problem. A more general problem is to
is |.5;[¢] — Sk[d]]. continuously maintain a set of deltoids between the previous

« Relative DifferenceThe relative differenceof an item: stream and the currently observed prefix of the new stream.
is S;[i]/ max{Ski], 1}.2 We do not directly address this problem here, but observe that

« Variational Difference.The variational difference(vari- the methods we describe are capable of being adapted to solve
ance) of an item:¢ over ¢ streams is given by this problem by periodically querying the data structures.
351 (85l = iy Seli)/ 0?2

We shall describe methods to find items whose absolute, I1l. RELATED WORK

relative or variational difference is high. We use the term There has been some recent work on finding various
deltoid to refer to an item whose difference is large relativgeltoids. A significant contribution [25] proposes a set of
to the total differences. methods to find changes in network data, and we discuss this

Definition 1 (Exact Deltoids)For any itemi, let D[i] de- work in greater detail in Section VI. Much of their work

note the difference of that item, for one of absolute, relatiie complementary to ours, since they propose a variety of
or variational difference. A¢-deltoid is an itemi so that “prediction methods” to compare the observed counts against

D[i] > ¢, Dlx]. predictions based on past observations. When there is a signifi-
Our solutions rely on a slight relaxation of the problemcant (absolute) difference between the count and the predicted
where we talk of approximate deltoids. count, the item is output. Throughout this work we assume

Definition 2 (Approximate Deltoids)Given ¢ < ¢, the e- the simplest prediction model: comparing the value of each
approximateg-deltoid problem is to find all item$ whose item to its value in another time period or in another location.
differenceD[i] satisfiesD[i] > (¢+¢) > D[z], and to report But the prediction methods proposed in [25] are based on
no items whereD[i] < (¢ —¢) >, D[z]. Items between theselinear transformations of previous readings (average, weighted
thresholds may or may not be output. We consider the setaverage, etc.) and so can be applied here by performing the
deltoids, denotedDeltoids, defined as same transformation on the values stored in the test data

. ) ) structures. However, a different method is proposed for finding
;;ggxﬁj:g&} i ((:fj:)) %jg[[j]] the items that are changed, based on building sketches of the

All our algorithms are probabilistic with user-defined padat@ as it is observed. The methods describe here not only

rameters which is the upper bound on the probability of theolve the absolute difference problem considered in [25], but
also apply to the relative and variational cases.

1The 1 term makes sure there is 1ioin the denominator. Similarly, in [6], the authors considered the problem of
2This captures the statistical variane€[i] of the itemsi finding absolute deltoids, but their method took two passes



over the data. In contrast, our result here finds absolute deltoid®©ur Non-Adaptive Group Testing Procedure is divided into

in one pass, making them applicable to live network data. Theo parts:identification to find a set of “candidates” which

authors in [6] explicitly left finding relative deltoids on datashould include all deltoids, anderification which removes

streams as an open question; this problem is also explicitgms from the set of candidate items which are not deltoids.

stated in the context of web search traffic as an open probl&wor each part we keep a data structure, which consists of sets

in [22] where it is called the problem of top gainers and losersf “Test” data structures: as items arrive, they are included in

In this paper, we give the first solution to the problem odppropriate test data structures, as described below. All our

finding relative deltoids. procedures will use essentially the same structure of groups;
The problem of finding absolute deltoids was also studiedhat will vary is the tests that are used. We will first describe

in a recent paper [14] where the authors consider reportitigs structure and how it is used. In the next section, we will

“compressed deltas” which may be thought of as “hierarchicdéscribe how to make tests for deltoids.

absolute deltoids” from Section VIIE The authors propose

algorithms based on finding heavy hitters in each stream aad Identification

using that to prune the search space for finding absolute

deltoids. The pruning is done either in multiple passes, &foup Structure. The groups are subsets of the items, defined

by using the candidates from one stream to search the ott¥r.pairwise independent hash functions [28]. Given approxi-

These approaches do not give a provable guarantee on fifion factore and failure probability, chooset;s = log §

quality of absolute deltoids that are reported, as we are ableseh hash functions, 1,1 : {0...n =1} — {1...g}.

do. However, [14] highlights the challenges of network traffiflere g is the number of groups, to be specified later. Set

data analyses we address, and a good discussion of the iséties = {i[la(i) = b}.

and difficulties. Tests. Within each group keep+logn data structureg, ;..

A number of results are known which are somewhat relatqhjs allows us to pose tests on the items in the group. The data
to ours. For example, various norm aggregates of differencggcture will depend on the nature of the difference we are
have been studied in the data stream context including trying to detect and will be specified later; for now, assume that
norm [18], Hamming norm [7], etc. These methods providgach test reports whether there is a deltoid in the group. Let
estimates of the norm, say sum total of the differences, but @0 denote the set of integers whose binary representation has
not explicitly determine the items that have large differenceg.1 in thecth bit position forc = 1...log n; for convenience

Combinatorial group testing (CGT) has a long history [13)f notation, letBy = {0...n — 1}. ThenT, , . applies to all
because it has myriad applications. CGT is inherent in smahms in Gap N B.. We will assume that the tests here are
space algorithms from learning theory [26] as well as dafgear: that is, the tests are a linear functioof the data. Let
stream algorithms for finding histograms and wavelets [20}r ». denote the complement @, ;, .: T, reports whether
The problem of finding heavy hitters was addressed in [1Here is a deltoid inG,, N Be, and T” , . reports whether
where an item was a heavy hitter if it exceeds a fixed thresholdere is a deltoid irGy 4\ Be. By Iinearit)/ of the test function,
More recently, we used CGT for finding heavy hitters in datp; o =Tup.0— T Finally, for some test’, let|T'| denote
streams [10] for database scenarios where items are inseﬁﬂ’a’outcome of the tes{7’| = 1 means that the test returned
and deleted. Our work here extends this approach substantigisitive, and/ 7’| = 0 otherwise.

by introducing different group tests to find different deltoids , e i )
thereby deriving powerful new results as well as making iteroup Testing for Identification. In order to find the deltoids

general framework with many applications. betweensS; and S;, we will need to combine the test data

The area of data streams—designing algorithms that u%téuctu.res for ee;]c_:h Str:?aﬂ(’j“vbncll(j ) a?d Top.c(k) to .gfet
small space, handle updates rapidly, and estimating diffdra-t-c(J: k)- HOVY”t IS ac rl]eve wi vark))/l rimbtest tg.test, rohmh
ent quantities of interest—has become popular in datab on, we wi trea.t the test_s as black box 0 jects whic
research, networking and algorithms. There have been tutdfPort whether there is a deltoid within thg subset that the test
als [19], [31], workshops [2] and surveys [5], [29]. Our result’s OPerating on. We then apply the following procedure:

add to the growing set of techniques in this area. « For each groug, s, if [Tu5.0(j, k)| = 0, conclude that
there is no deltoid in the group, and go to the next group.

« Otherwise, use the results of the other tests for that
group to identify the deltoid. For each value of if
Our solutions are based on Group Testing. The underlying |7, ;.| = [T}, | then either both are negative, and there

principle is to make use déstswhich, given a subset, @roup is no deltoid in the group after all, or both are positive,

of items, tell us whether there is a deltoid within the group.  and there are two or more deltoids in the same group. In

In general, the test may err with some probability, and so we both these cases, reject the gratip,.

will need to bound the chance of false positives (including an. Otherwise, if| T, ; .| = 1 then the deltoid € B. so it has

item which is not a deltoid in the output) and false negatives a 1 in thecth bit position; elsg7” , .| = 1 and soi has

(failing to include a deltoid in the output). 0 in the ¢ bit position. So the full binary representation

of ¢ can be recovered.

IV. ALGORITHMIC FRAMEWORK

3In the same papers, the authors talk about “relative changes”, however,
this is distinct from our notion of relative deltoids, and corresponds to our #£ is a linear function if it satisfieg (z +vy) = f(z) + f(y) and f(az) =
scaling by a factor of, as described in Section VI af(z) for all z andy in the domain of the function, and for all scalars



« If the group is not rejected, then some itenis found The running time is therefore(¢,.. + t;qlog(n)) test
and so it is added to the set oéindidate itemswhich updates per item in the stream. For tests which take constant
are believed to be-approximatep-deltoids. time to update (as is the case for all tests we consider here),
then this cost i< (log(n) log 1). This meets our requirement
of being fast to update. For each kind of deltoid, we will

] ) ) additionally show that the overall space requirements are also
In practice, the tests will not be perfect, but will themselveg,,,

have some probability of failure, which can lead to false

positives. Some simple checks can be made to avoid tHihoosing a Threshold.We must choose the threshold for
Having found an itemi € G,;, which is believed to be a an item being a deltoid. Each of the tests that will introduce
deltoid, a first “sanity check” is to check thag (i) = b; if not, will involve comparing a numeric quantity t¢ ) . D[i], a
then clearly the tests erred, and the item should be rejected flaction of the total difference. So in particular we need to
give good guarantees about the items that are found, we Wiflow ). D[i] to be able to make the test. For each test, we
additionally keep a Verification data structure. This closelyill show how to find this quantity exactly, or give a good
resembles the Identification structure, but is constructed wipproximation.

different parameters.

B. Verification

Groups and Tests.Using the same parametersand §, we V. FINDING DELTOIDS

chooset,., = 4log% new hash functiong}....fﬂoglﬂ; © A, Absolute Deltoids

{1...n} — {1...v} from a family of pairwise independent

hash functions This time we keep just a single test dataFor absolute deltoids, each test data structure is simply a
structure for each group/, ;. The tests and number of groupssingle variable, summing the total count of all items covered
are chosen so the probability that each test errs is at é\ostby the test:

Group Testing for Verification. For each candidate item, Tape = icc, ,np. Silil-

compute the groups that it falls into in the verification dat@yis yata structure is clearly linear and straightforward to

structure. For each of these groups, compute the test OUtCOMGintain under updates: when an update to itashy arrives,

and take the majority vote of these tests (positive or negativggt addp to all countersl}, . (; .. We define the combination
as the overall result for the item. If the item is positive, incIudJSf test for streamg and k as

it in the output as am-approximatep-deltoid.
Theorem 1: If the probability that each tet, gives the Tape(G k) = Tape(d) = Tape(k)l

wrong answer is at most, then ) .
g % TapelGF) = 1 = Tuyo(i.K) > 01IS; — Sl

. . 4log +
U € Deltoids = Pr[(zfl f Va.s]) < 2log 3] <6 We set the number of groups in the identification procedure
i & Deltoids = Pr[(3°,27 " [Va ppl) > 2log 5] < 6 to beg = 2 and for the verificationv = £. The following
Proof: low 1 lemma shows that we have constant probability of finding each
i & Deltoids = E((Zla:()]f_gs [Va,sh]) = 3 log 5. So deltoid in each group that it is counted in.
2log L = 41E((Zjﬁflg % |Va.f(s))- By Chernoff bounds [28], ~ Lemma 1:i € Deltoids =
Pr[(Ziff’X \Va.()|) = 2log 1] < 4. The other case is Va:PriVe: (|Tun,).(.k) =1 <> i€ B,)
symmetric. m AN AT w0 R =1 <= i¢B) > 5

Consequently, given this set up we can be sure that each Proof: If i € Deltoids, suppose for somea
item passed by the identification and verification stages h|q§7b70(j, k)| = 0 (a false negative), then (by definition)
probability at most of not being a deltoid. Similarly, every
deltoid has probability of not being passed by the verification| D[i]| > (¢ + €)||S; — Sk|l1 A | Z Diz]| < ¢||S; — Skl
stage. We are free to sétto be arbitrarily small, and the 2€Gq
dependence on is fairly weak.

SO |Tupo( k) =0=| Y. Dlall > €l|S; — Skl

C. Update Procedure a#4,2€CGq,p

The full update procedure for the Combinatorial Groupet the random variabteX; = Z#i,wegu’b |Dz]|. For alle,
Testing is i € Deltoids N X; < €||S; — Sk||1 =

« Read new itemi with traffic p (bytes, packets or flows).

e Fora=1tot;y do

— Fore =0 to logn do
* If i € B., updateTy, (i), With p = Topc(j, k)| =1 < i€ Bg;

e FOra=11ot,. do
— UpdateV, ¢, ;) with p

(1 € Be = Tape(d, k) = Dli] = Xi > 9[|S; = Skl1) A
(ZchiTa,b,((]ak) SXz <¢||SJ75kH1)

5This is random variable depending on the random choice of the hash
function h from the set of pairwise independent hash functions.



the case for ¢ B, is symmetric withT” replacingT. Since We also crucially rely on the linearity properties of the tests
1> veq, , Dlz]l < X derived from these sketches For each hash funchign:

' {0...n—1} — {1... 4} which divides items into groups
Prl| > Dla]| <ellS; — Skll1] = Pr[X; < €l|S; — Skll1].  (with d to be specmed later), we additionally keep a second

2€Gqp hash functionz, which is drawn from a family of 4-wise
By the pairwise independence of the hash function§idependent hash functions mapping the iteffis..n — 1}
E(X;) = §[|S; — Sk||1, and by the Markov inequality, uniformly onto{+1, —1}. For each group, compute
1 Tape = S;[i)za(i).
Pr{X; < ellS; — Silh] = PrIX; < 26(X)] > 3. iGG%:mBC ;i

B Again, this is easy to maintain this whefy is presented as
This means that for each Identification group that eaeth unaggregated stream of values (ie, the cash register model
deltoid falls in, there is a constant probability that all testgescribed in Section 1I-C), since for each update we just have
give the correct output, and so consequently we can identity add the update multiplied by, (i) onto T, ;. for all
it. Since each deltoid falls itog 5 groups, then the probab|I|ty values ofa andec.

that it is not detected in any of them is less than= 4, so Lemma 3: For each group that itemfalls in, T b is a

the probability that itis found is at least — 4. good estimate fos;[i]*: with probability at least;2%, then
Lemma 2:i € Deltoids = Pr[|Va fu) =0 < iNi ¢ T2, . — S;[i]%] < €]l S;] 1.
Deltoids = Pr[|Va,g,) = 1] <3 _ Proof: The analysis proceeds in a similar way to that
Proof: The proof is S|m|lar to the previous lemma: given in [4]. Let; , be an indicator variable so thdt, =
i € Deltoids = Pr||V 5 (j. k) = 0] 1 <= (ha(x) = ha(i)), and O otherwise. By the indepen-

< PYsisca, o Dlz]| > €||S; — Skl|1] Qence properties of,, the expectatiorE(za(i)za(:n.)) =0 fpr
e i # x, and is always 1 otherwise. The expectatiorl, . is

< % by the same argument as above.
i & Deltoids = |D[i]| < (¢ — €)[|S; — Skllx E(T3).) = (Sj[i;za(i) + 2 liwSj[7]2a(2))
= Pr|Voto(G k)| =1] = Sili] + Xp E(2Sli)za (i) ]i 255 (7] 2a (7)) +
a, fa () Js
S Pr[Zx#i,xeGa,fam (D] > €[S — Skll1] 2oy B(2a(2)2a(y) i1y Sjl2]S51y])
<1 - < Sl +0.+ 11513
So the probability of each test erring is at m(§t and = Sl + T HS IE

applying Theorem 1 gives the result that each deltoid is pas??nilarly
by the Verification stage with probability — ¢ while non- '
deltoids are rejected with probability— ¢.

the variance Var(T2 be) IS at most 22 115[4.
Consider the probability thaf’ bc is not a good estlmate of
S;[i]?: then the difference between the two quantities is more
Setting a Threshold. To set the threshold for searching fothane||.S;||3. By applying the Chebyshev inequality, and the
absolute difference deltoids, we need to compifie — Si||;. fact thate < 1:

This can be accomplished by keeping an additional “sketch” er Si[i]2] > €)1S;112]

structure for each stream and combining them to make a good < 5 b ) 2 s §.112
i - : < PrlT3, . — Silil* = SIS;115] > e(1 — §)I1S5113]]
quality approximation of thd.; difference of the two streams. (d 1)5
Such techniques are well documented in the literature for < d!\/gf(%z )( abc)| > [155113]
. ,b,0 _ 2d
example in [18], [23]. < iRl iE T @
Theorem 2: Eache-approximate absolute deltoid is found ]
by the above algorithm with probability at leadt — 6. The condition for Variational Deltoids can be re-written in

The space required for finding absolute difference deferms of sums of squares. The contribution to the variance of
toids is O(% log( ) log 5) The time to update the tests istem i from the ¢ streams is given by
O(log(n )log 5) per item in the stream, and the expected time ’

0 .
to find deltoids isO (1 1 201 _ : n2 e N Skl
(¢ log(n) log ). o [Z]—;(Si[ll—uh]% Wil =3 =
B. Variational Deltoids By the linearity of the test function we can compute a single

To find items with the highest variational difference, we firststimate for thejth term in this sumg?2(5)[i] as(Tup.c(j) —
describe how to build a test for finding items which are Iarggk ! Top,c(k )/3)2_ Denote the total variance of all items,
in their squares, and then show how to adapt this to finding, o 2[i] asa?(¢).

high variance items. The test construction for variations is For the test for variational deltoids, sgt= S =, U= 2, and

more complex, and is based on the “sketch” described by , 5
Ta,b,c(k)

full sketch for each test, but this would blow up the space Tapelt < abeld) = Z 1 >

and time to process each item. Here, we show that keeping =1 h=1

Alon, Matias and Szegedy [4]. Naively, we could keep a
a single counter for each test is sufficient to find deltoids. Tupel) =1 <= Tup.c(l) > dpo?(£).

MN



Lemma 4:i € Deltoids = this method does not work in the general cash register model,
Ya,c: Pr| (|Ta he(h k) =1 < i€ B.) but rgquires that one of the streams be aggregated. This gtill
A (T (k)| =1 < i¢ B.)] > 1 permits the tests for one of the streams to be computed on live

aha(i).c ) 2 data as it arrives, and deltoids found between this stream and

Proof: Fori € Deltoids and anya ande, letb = h,(4). X
Assume that € B, (the other case is symmetric). Hence, by ©ne for which the tests have been prg—computedS{.@t
e the (aggregated) stream whatieentry isS, /;[i] =

Lemma 3 withd = 6 and using linearity of expectation with J

the fact the variance of the estimator is bounded by the siiiding items with large relative difference means finding an
of the variances, then itemi so thatD[i] = S;[i]+S, /4[1] is large, relative td _; Di].

We shall refer to thls “mverted” stream by, ;. or just1/k.

Prl|Tup.c(f) — o?[i]]| > ea?(0)] < o < % We choosey = 2 andv = 2 as for absolute differences and
' set
Sincei € Deltoids = o2[i] > (¢ + €)a?(¢), then ‘ ‘
| ) Tavel) = D Silils Tape(/k) = > Silil
1€ B, = PrHTa,b c( | = 1] = Pr[ a,b, (( ) > ¢o (Z) 1€Gq pNB. 1€Gq pNB.

)
< Pr{|Tup.ec > ¢g? 1
< PrliTapel) = (9 + )0 (O)] 2 o*(O)] < 5 Tests are combined bWl . (j,1/k) = Tap.c(5)*Tap,c(1/E)
using the above. For the other direction, assurdeB.. Since

i is not in this group, then effectively?[i] = 0 for this group. Tpe(j 1) =1 <= Tape(j,1/k) > ¢Z ;]
Then by Lemma 3 again, and using the fact that ¢, it v '7 — Ski]
follows that T o . .
u.b,c(7) is the same as in the absolute deltoid case, and so
i ¢ Be= Pr|Tope(f)| = 1] = Pr[Tup.c(0) > ¢o?(0)] is easy to compute and maintain as new values are seen in the
< Pr|Tope(6) = 0] > ea®(0)] < 5 stream. Here, our notion of deltoids is slightly weaker: we set

m ¢ to be ane-approximatep-deltoid by the rules:

Hence, amplifying the probability biyg + repetitions, there D[i] > ¢(32, DIi]) + €l|S;]1]1S1/x|l = i € Deltoids
is probability at least — § that each deltoid will be found. D[i] < ¢(X, D[i]) — €[[S;|1[|S1/x|l = i & Deltoids

The probability of failure of the Verification tests is less than

1, by again observing that the expectation of each verification Lemma 57 € Deltoids =
test is a function of the variance of the iteims?[i], and by Ya,c : Pr| (|Tah (),e(J,1/k) =1 <= i€ B.)]
substitutingd = 18 into Lemma 3, giving the probability of a AN T oy, (0 1/k) =1 <= i€ B.)] = i
good estimate to be!$ < 1. So deltoids pasall Verification Proof: For anya,c andi € Deltoids, let b = h,(i).
tests with probability at least — ¢, while non-deltoids are Again, assume < B., since the other case is symmetric.
passed with probability at most With absolute certainty,

Computing a Threshold. In order to set the threshold basedi € B. = T,(j) * Tap,c(1/k)

on ¢o?, we need to knows? itself. This can be done by = Cican, Silt)(Coca, , s

making an appropriate sketch data structure, but it turns out > S5l _ DJi] > ¢S, Dli] = |Tane(j, 1/k)| = 1
that the data structure that we want to make is precisely that = Sl eme

of the Verification tests: an unbiased estimator £8ris However we also need to show that with constant proba-

y ’ 2 bility |7}, , .(j,1/k)| = 0, which is a little more involved.
mediang ) (Z( ) ) i € BaM(Ta 05, 1/k) = S;1i)/Skli]) < elS; 111181l (1)
b

j=1
= T54..0,1/k) = Csea, /8. 9ilt) XCsea, /8. S1/kle])
Theorem 3: Each e-approximate variational deltoid is < (30 . , Sjlz])(3,cq, , Siyklz]) — Sili]/Skli]
found by the above algorithm with probability at least elS; 1)1 HSI/kHI = |T,,.=0

1 — 0. The space required for finding variational del- . _
toids is O(% 1 1Og( ) log 5) The time to update the tests is So, we show that the probability of (1) is at least a constant.

O(log(n )log 5) per item in the stream, and the expected tm@s before, we define some derived random variables:

=1

to find deltoids isO(% log(n)¢log }). Ly,=1 < ho(i) =ho(2); ;s =0 < ho(i) # he(x)
Yi =Tap0(j,1/k) — S;li]/ Skli]
C. Relative Deltoids Then E(Y;) = E((S;li] + 53, LuSsle)) + (1/Sili] +

Finding relative deltoids gives an extra challenge, since 3t I;,1/Sk[y]) — S;[i]/Sk[i]) < §||Sj||1|\51/k\|1.
entails approximating the ratio of values from large vectors, Then the probability of (1) is given by
which is known to require a large amount of space to do (Y.) 1
accurately [9]. Instead, we use a slightly weaker notion of Pr[Y; < €||S;[|1]S1/x|l1)] > 1851081kl = —-
approximate deltoids to make our guarantees, and in our J
experimental work we will show that this approach is stifinceeg = 2, the result follows. u
highly accurate. In order to find items with large relative AS in previous cases, the fact that each deltoid isoin}
difference, we need to transform one of the streams. Th@&ups, the overall probability of finding it is— 4.




Lemma 6: (i € Deltoids = Vo | = 1)A(i & Deltoids = old stream, and so it should be considered a (relative or
Pr|Vas| =1] < ). absolute) deltoid. However, since no traffic is observed from
Proof: The first part follows immediately from the proofthat client, then no queries are made for its identifier, and
of the previous lemma. For the second part, we use the saseeit is not included in the output. One could attempt to
variableY; from the above proof. Then “define the problem away”—choose a definition of deltoids
i & Deltoids = Pr(|Viy| = 1] so that these mstapces are .not included in the count. For
_ ' , , . example, the situation described above constitutes a large
= PrlY; + S;[i]/Sk[i] > ¢, DIi] : : - -
11 relative decrease in the traffic of the client. If we only sought
< PrYi > ellS;lhlISylh] € & = Ve ! e .
. relative increases, then by definition the identity of any item
using the Markov argument above. B with a large relative increase would appear in the live stream,

Computing a Threshold. The threshold iss 3", DIi], which and so it would be detected. However, in many situations these

can also be approximated using sketch computations [3], [1gﬁcreas¢s are _of significant inte_res_t,_ and canno_t pe ignored.
It'is not immediately clear how significant an omission these

Theorem 4: Eacla-approximate relative deltoid is found byconstitute. As we observe in our experiments on real data sets,
the above algorithm with probability at least- 6. The space 3 significant fraction of deltoids are of this form, thus sketch

required for finding absolute deltoids i©(; log(n)log 5).  based methods face a strong limit on their overall accuracy in
The time to update the tests 3(log(n)log ) per item many realistic situations.

in the stream, and the expected time to find deltoids is

h 1 With these caveats in mind, we give the sketch-based
O(¢ log(n)log 5).

algorithm for finding absolute deltoids:

VI. SKETCH BASED METHODS o Read new item from first stream with traffigp

Recent work in [25] addresses the question of finding * Fora =110ty do

significant differences between streams by usesk#tches — UpdateV, y, ;) with +p

This is essentially the problem _of finding (Qbsplute) delto_iq% process the first stream and then

between a new stream and a linear combination of previous o _ .
streams based on a variety of prediction models. The use Read new item from second stream with traffig
of sketch data structures is functionally equivalent to our ® FOra =110, do

Verification tests: the sketch summarizes the streams that have _ updateV, fu (i) With —p
?ZegeT; ?Q@SO far, and answers the question given an,tam to process the second stream. Finally, to extract the deltoids,

As discussed in [25] an issue arises of how to extra\(l:vte read items from the continuation of the streams:

the identies of the deltoids. The method requires a streams Read new item from the live stream

of item identifiers—"keys” in the terminology of [25]—to « UseV, ;. ;) to testif D[i] > ¢ X", DIi], if so, keepi in
probe the data structure. But all streams must have been seen a heap of potential deltoids.

already to build the data structure before it is possible toe. After sufficient items have been seen, output eadh

get accurate answers from it. In particular, computing the the heap

threshold accurately requires that all the streams have beeRlote that the above approach economizes on space b
seen. We reject the approach of exhaustively listing every itq(m : inale v rificatigr? data structure for both streamsy
identifier as too time consuming even for query time. SimiIarIY,eepIng a singie ve

storing all observed item identifiers and querying just these stead of one for each. In [25], the authors con.5|dered Iarge
too costly in space terms. A solution suggested in [25] is solute differences between observed and predicted behavior.

use subsequent items in the stream, after the data struc pre, we extend this (through the use of the verification data

has been built, to query it and test whether those items §éuctures defined in the previous section) to relative and

deltoids. This approach can therefore only work in our onlin\%riational changes: replace the data structure for verifying

model—that is, deltoids can only be found between a ‘livé® solute deltoids with one for variational or relative deltoids
stream and préviously seen ones—since we rely on having ﬁ.ﬁarequired, and update the data structure in accordance with

live stream to generate item identifiers to query. its definition in the previous section.

It is not possible to give any guarantees about the perfor-Theorem 5:The sketch based approach us@s; log )
mance of this algorithm, unlike the group testing approachPace for absolute and relative deltoids, &rd; log ;) space
This is because there are some cases where the a|gori{ﬁﬁ1variational deltoids in the offline case. Updates take time
simply will not be able to find certain deltoids, even with?(log 5) in all cases.
the correct threshold. Consider a very active client that goesThe guarantees we can give are the same as those for the
offline between readings. Then no traffic will be seen froverification data structures, using Lemmas 2, 4 andf @Gn
that client in the new stream, compared to many from tH@pproximate) deltoid is querigchen we will include it in

the output with probability at least — ¢, if a non-deltoid is
Siger']’i}icfgﬁtc'eitogi‘{ﬁz gelstt(;%”?;”a:gz“'cté ;B‘:e c";‘p?rrﬁé"}‘safg@a; So tg";‘épt::t’y ueried, then with the same probability we will not include it.
’ herefore, the effectiveness of this method depends crucially

both approaches, but one we do not focus on in this work on identifyin A :
the deltoids. on whether the deltoids are queried.



10

VII. PRACTICAL IMPLEMENTATION AND STUDY duration of calls between pairs of exchanges.

snmp consists of two streams of SNMP data recording all
traffic over two related links in an eight day period. We
compared the absolute and relative differences between

We implemented our methods in C and conducted a set
of experiments on a number of data sets, varying the param-
eters.e and 5. We CPmpared tp_ th? sketch. based. approach the traffic sent on the links, and the variational differences
described above, using our verification functions to mplemen} within each link over the same time periods on each of
the sketches. We computed the space used by the group testing the eight days. Even though the rate of generation of
methods, and allocated the same space for the sketches. In SNMP data is much smaller than packet or flow records,

order to_test the accuracy of the methods in as fair a way nevertheless, it is useful to see the deltoids in this data
as possible, we computed the exact threshold, and queried

the sketch methods by “replaying” the second stream to
generate a sequence of identifiers with which to probe the
data structure. The idea is that this simulates the continuatfon
of a traffic pattern with the same distribution from which keys When we tested the quality of sampling and then computing
are drawn to query the sketches. This seemed as optimistit the sampled data, we found that if the sampling rate was
a set of conditions as possible for the sketch methods. lafge, say sampling and storing each update with probability
the experiments in [25], the authors took two passes over allto -5, then sampling gave a good approximation of the
input data streams, the first to build the data structure ap@rrect answer. However, the group testing method stores an
compute the threshold, and the second to query it using th@ount of space that is essentially constant—it depends only
item identifiers. This seems too generous in our scenario whe/h the parameters and d, and not on the size of the stream.
we expect the later streams to have different distributions lo order to make a fair comparison between our method and
the earlier streams. sampling, we computed the space used by our method, and set
We also implemented two of the alternate “naive” solutiori§e sampling frequency to be such that the space used by the
described in Section II-A, the sampling solution, and theample was the same as our method. So we have plotted the
heuristic of storing the heavy hitters (most frequent itemgyecision and recall of our method for varyimgand plotted
from each stream, and computing deltoids based on tH results for sampling with the same space at corresponding
difference between the heavy hitters for each stream. Fovalues. In each step, we multiptyby a constant factor. By
our experiments we also exhaustively computed the “exaét®ing this, we see that sampling is generally inferior to group
deltoids for each data set, so that the output of our approxim#@&ting given equivalent space.
methods could be compared to this and evaluated. To make an
evaluation of the results, we computed the standard measuBesAbsolute Deltoids Experiments

of precisionand recall of exact ¢-deltoids: precision is the  \ye conducted several experiments to determine the right
fraction of the items returned that were correct, giving &ettings of parametersand é to balance accuracy with time
measure of the number of false positives, and recall is thay space consumption. We discovered that our group testing

fraction of the exact deltoids that were found, givingameasu'rﬁethod significantly outperformed the priori worst case
of the number of false negatives. These measures range fr Mrantees given in Section V. In particular, we found that

0 to 1, and ideally they should both be 1. The experimenjs, system output very few false positives even with the

were conducted on a lightly loaded Wintel 2.4GHz machingyification stage bypassed. We also found that we could set

with 512Mb of RAM. e andd to quite high values and still achieve near perfect
The data sets we analyzed were drawn from a variety Bfecision and recall.
network scenarios: Figures 2 (a) and (b) show the precision and recall on

« Ibl-conn7 is a data set obtained from the Internet Traffitbl-conn7. In our experiments on all data sources we found
Archive [1], [30]. It consists of a record of wide-areahat there were almost no items whose difference consumed
connections taken over a thirty day period, totaling three- very large fraction of the total difference (say, 10%). The
quarters of a million records. To study absolute anidrgest few deltoids have difference around 5%, and there are
relative differences, we split the trace into two piecetypically around twenty in the range 1% to 0.5%. For our
covering the first and second halves of the time periodxperiments, we set the threshaldo be0.1%, meaning there
For variations, we split it into seven equal sized periodsiere between 100 and 200 deltoids. Interestingly, many of the
We looked at differences in the number of bytes going tbsolute difference deltoids, the largest few included, were
destination IP addresses. items whose difference was between a moderately large item

« phoneis a stream of 2.2 million phone calls which werén the first stream and a larger value in the second, meaning
captured during a single afternoon. We also split thihat they were distinct from the relative difference deltoids.
stream in the middle to examine the difference in callings in most of our experiments, group testing achieved near
patterns in the first half compared to the second. In ordperfect precision throughout, with little variation.
to partially anonymize the data, only the area code andOur experiments with sketches also achieved high precision
local exchange of the caller and destination (eg 212-558hroughout, we set,., for the sketches to be 5, equivalent
were retained. This has the effect of aggregating over § = 0.03). However, recall does not improve beyond 0.8.
local areas. We looked at differences in the number afidhis is because nearly 20% of the deltoids do not appear in

source over time.

Experiments with Standard Approaches
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Precision of Absolute Deltoids

Recall of Absolute Deltoids Recall of Absolute Deltoids on phone data,
- = 0 =| . i= i
on Ibl-conn7 data, phi=0.1% delta=0.5 on Ibl-conn7 data, phi=0.1%, delta=0.5 phi=0.1%, varying delta
1 e =
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Epsilon Epsilon Epsilon
(@) (b) (©)
Fig. 2. Experiments on finding Absolute Deltoids
Precision of Relative Deltoids on phone data, Recall of Relative Deltoids on phone data, Recall of Relative Deltoids from SNMP data,
phi=0.1%, delta=0.25 phi=0.1%, delta=0.25 phi=0.05%, varying delta
1 O 1 ——— ===
. 0.9 JECTRIUIPEL N 0.9 .. 3 ;
. 08 .- 08 -l /A '
- 0.7 ko o o 07 o ; Delta
s 0 = 06 —- “=———"Group Testing = 06 N ) ! 0.063
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03 — — — — Sampling 03 Sketch Decreasing 03 S 0.500
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@) (b) (€)

Fig. 3. Experiments on finding Relative Deltoids

the second stream which is used to query the data structute.not occur at all in the second stream, meaning that again
No amount of extra space allocated to the sketch will allothe sketch method does not query these items, and so fails to
these deltoids to be found, since there is no information thdentify them as deltoids. This is precisely the case discussed

allows their identifiers to be recalled. in Section VI, and shows that on realistic data sets such bad
Meanwhile, for the group testing approach, recall improvesses can occur very frequently.
as e is shrunk, and reaches the optimal value arodne: Figure 3 (c) shows the importance of choosing the right

1%. Figure 2 (c) shows the effect of varyingon recall for parameters for group testing on certain data sets: on SNMP
phone data (precision was 1 throughout). We see that althowdgtta, if ¢ is not set low enough, then the recall is highly
decreasing) always improves recall, beyondl = 0.25 the variable, meaning that many deltoids are missed. A lodver
effect is very small, meaning that it suffices to et 0.25, helps somewhat, and the phenomenon disappears whegi
corresponding to two copies of the identification test. meaning that it is vital to know approximate upper bounds on
¢ for the traffic source of interest in order to choose a suitable
value ofe. In all our experiments, we found that= 0.1% or

0.05% covered the top two hundred deltoids; more than this

Finding relative difference deltoids turned out to be the mogt jikely to be informative, and already this is stretching the
challenging problem. Setting the right valuedis important  3mount of information a network manager will want to see.
here: set¢ too low and everything is a deltoid, set it too

high and there are no deltoids. It is therefore an important
feature of our method that can be specified at query time:D- Variational Deltoids Experiments
only e needs to be chosen in advance. The relative differenceThe results for variational deltoids are shown in Figure 4.
deltoids were items which were moderately large in the firsfere, group testing performed very well: good results were
stream, but whose count had dropped to zero or single digihieved even when settirg> ¢. We conjecture that this is
figures in the second stream. This makes them small signpigtly due to the way in which variational deltoids are defined:
to find. In Figure 3 (a) and (b) we see that Group Testingecause they are based on the square of the deviation from
outperforms sampling over most settings ©f Acceptable the mean, this means that deltoids have a significantly larger
results are obtained when= %, and perfect results by thedifference than non-deltoids (as contrasted with the relational
time e = 1%. case, where we found that the difference of deltoids was not
Again, we see failings of the sketch based approach. Whewnich different to the difference of non-deltoids, contributing
searching for relative increases (meaning that the item iddn-the difficulty of getting perfect precision). Meanwhile, the
tifiers of the deltoids must be present in the second streasketch based approach had near perfect precision throughout,
then almost all of these deltoids are recalled correctly. Bhtit lost out on recall once more because of items not present
in the relative decreases case, then a majority of the deltoidsthe later streams with which to query the data structure.

C. Relative Deltoids Experiments
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Precision of Variance Deltoids on Ibl-conn7 Recall of Variance Deltoids on Ibl-conn7 data, Recall of Variance deltoids on SNMP data,

data, phi=0.1%, delta=0.25 phi=0.1%, delta=0.25 phi = 0.05%, varying delta
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Fig. 4. Experiments on finding Variational Deltoids

Timing Comparison for Detecting Different Space Usage for Varying Epsilon and Delta
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Fig. 5. Processing Rate of different methodsiasries Fig. 6. Space Usage asVaries for Different Values ob

Optimal results were achieved on the Ibl-conn7 data set even . S .
when settinge = ¢. Figure 4 (c) shows that for variationalProcessing around 2 million items per second. This means

: L . that it is easily capable of processing traffic rates on multiple
deltoids too, recall is improved by decreasiidout that even . : .
for 6 = 0.25 then optimal recall is achieved for a modest valu%OOM.bs. links, and with some work then' 1Gbps and higher
of ¢ relative to¢. are within reach. According to our analysis, the sketch based

methods should be faster; in fact, in our experiments we found

that they ran at almost identical speeds. This is because the
E. Space and Time Costs group testing method computes a hash function to determine

We ran speed trials to determine whether our methoWdlich group an item belongs to, and then updat&$og n)
were Capab'e Of Operating at network |ine Speeds‘ The res@wnters based on th|S HOWeVer, these counters are C|UStered
were very encouraging_ Our code was not fu”y opt|m|zed{,\ memory around the location of the firSt, so these can be
and included several routines for checking and supporti§'y quick to update once the first entry is bought into cache.
output for the experiments, so we believe that an optimiz&#eanwhile, the sketches compute a similar number of hash
implementation running on dedicated hardware could improfénctions, and so pay the same price per hash function to
the throughput further. For each method, we computed h&yaluate it and access memory locations; the fact that only
many items per second the method could process (here, #hsingle location per hash function is accessed instead of
items were taken to be 32 bit IP addresses and packet size§6pg ) seems not to affect the running time significantly.
traffic from each address). The results are shown in Figure 5The space usage was also reasonable. Figure 6 shows how
We study the effect of varying on the item processing cost:the space needed varies as a functioneadénd §. In our
note that does not factor in the update time, only in the spag&revious experiments, we determined that the very highest
and query costs. difference deltoids occur around = 5%, and so can be
As expected, absolute and relative differences take about fband with very small space—say, around 10KB. For the

same time, since the update algorithms are almost identidap ten or twenty deltoids, then setting = 0.5% sufficed,
For variational deltoids, we need to compute an additionaleaning we need around 100KB to find them. To find the top
4-wise independent hash function; however, this additionahe hundred to two hundred deltoids, this corresponds to a
computation does not seem to have a disastrous impactspace requirement of between 500KB and at most 2 or 3MB
the processing speed, and reduces the packet procespieigstream (depending on the data distribution). In practice,
throughput by an average of about a third. Since in oar network manager will only want to see the very highest
earlier experiments, we saw that settifig= 0.5 gives high deltoids, or those which consume more than a small fraction
output quality, then we benchmark our system as capabledffthe total bandwidth. The sketch based methods require less



space given the same valueseodnd d, by a factor oflogn,

and so can give a more compact solution at the expense of

omitting some of the deltoids.

VIII.

We consider a humber of ways in which our work can be

E XTENSIONS

extended.

o Comparing Different Time Windows, Speeds, Gran-
ularity and Prediction Models. Throughout this work,
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multidimensional (so consider source and destination
address, instead of source or destination)—in fact, we
have already done this with the phone call data set in our
experiments when we combined source and destination
dimensions. Buhierarchical data such as the IP universe
presents a new challenge: here, the aim is to firefix
deltoids which consumé of the total difference after the
contribution of any deltoids that share this prefix have
been discounted. This problem is described in greater
detail in [14]. We outline a solution to this problem, based

we have assumed that pairs of streams represent the same on the ideas inherent in [8]. We maintain a group testing

traffic volume, so that values for each item are compa-
rable. But we would also like to be able to compare,
say, the traffic in the last hour to the traffic in the last
week, or the traffic on a fast link to the traffic on a much
slower link. The solution is tescale all traffic linearly

so that the two streams have the same scaled traffic.
An important consequence of the linearity of the tests
in our algorithms is that such scaling laycan be done

by scaling all values stored in the tests by Similarly,

one can take our data structure for the interfaces and add

them to consider the total traffic per router or take that
for each hour and add them up to consider total traffic
per day, etc. because of this linearity; hence, our methods
work for different granularities. This also allows a wide
variety of predictive models to be tested. Comparing

data structure for each of thie levels in the hierarchy.
When an item is inserted, its contribution is included in
the leaf level of the hierarchy, as before, but additionally
at every ancestor of it is inserted to the data structure
for that level. The search procedure then proceeds level
by level: first find all deltoids from the leaf level. These
should not be counted towards their ancestors, so using
the estimated count of the item from the Verification
data structure, we remove their contribution from the
structures of all ancestors, and iterate on the next level.
Full experimental evaluation of this approach is yet to
be carried out, and extended to hierarchies on multiple
dimensions.

IX. CONCLUDING REMARKS

the last hour to the current hour can be thought of a We initiated the study of finding significant differences in
prediction that subsequent hours should look similar. Theetwork data streams in one pass, so that network managers
deltoids are the items which are behaving differently toan be kept up to date with “what’s new”. Our methods
how they are predicted. Other prediction models—say, aaquire small amounts of memory and operate very quickly,
average of the last 24 hours, or an exponentially weightathle to process millions of records per second on a stan-
average—can be made by making the appropriate linedard desktop computer. Our solutions are all based on a
combination of tests for the past data. structure of Combinatorial Group Testing, which gives a
Faster Implementation. Our current implementation is flexible framework for detecting any kind of difference, given
fairly fast, but there are some improvements that may suitable test definition. The structure can be used to find
speed up the stream processing for very high speed linkgsolute, relative and variational differences, between traffic
First, we observed in the course of our experimenis different time periods, interfaces or routers. Different link
that sampling at a sufficiently high rate (say, 10—20%gpeeds can be compensated for, different prediction models
preserves most of the deltoids. (The same is not true whesed, multidimensional data can be analyzed and there are
we sampled td % or lower.) This suggests that if we firstprospects for pushing the data rate to hundreds of millions of
sample the stream as it arrives, and pass only the sampbeatkets per second. The result is a scalable, effective method
items to the group testing, then this should still find mosor monitoring and analyzing traffic usage patterns as part of
deltoids, while increasing the capacity of the system kgn ongoing network management task.
a factor of 5-10. Another direction is to try to speed up
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