
Permutation Editing and Matching
via Embeddings

Graham Cormode1, S. Muthukrishnan2, and Süleyman Cenk S. ahinalp3

1 University of Warwick, Coventry, UK; grahamc@dcs.warwick.ac.uk
2 AT&T Research, Florham Park, NJ, USA; muthu@research.att.com

3 EECS, Case Western Reserve University, Cleveland, OH; cenk@cwru.edu

Abstract. If the genetic maps of two species are modelled as permuta-
tions of (homologous) genes, the number of chromosomal rearrangements
in the form of deletions, block moves, inversions etc. to transform one
such permutation to another can be used as a measure of their evo-
lutionary distance. Motivated by such scenarios, we study problems of
computing distances between permutations as well as matching permuta-
tions in sequences, and finding most similar permutation from a collection
(“nearest neighbor”).
We adopt a general approach: embed permutation distances of relevance
into well-known vector spaces in an approximately distance-preserving
manner, and solve the resulting problems on the well-known spaces. Our
results are as follows:

– We present the first known approximately distance preserving em-
beddings of these permutation distances into well-known spaces.

– Using these embeddings, we obtain several results, including the first
known efficient solution for approximately solving nearest neighbor
problems with permutations and the first known algorithms for find-
ing permutation distances in the “data stream” model.

– We consider a novel class of problems called permutation match-
ing problems which are similar to string matching problems, except
that the pattern is a permutation (rather than a string) and present
linear or near-linear time algorithms for approximately solving per-
mutation matching problems; in contrast, the corresponding string
problems take significantly longer.

1 Introduction

As the first phase of the Human Genome Project approaches completion, the at-
tention is shifting from raw sequence data to genetic maps. Comparative studies
of gene loci among closely related species provide clues towards understanding
the complex phylogenetic relationships between species and their evolutionary
order. Genetic maps of two species can be thought of as permutations of ho-
mologous genes and the number of chromosomal rearrangements in the form of
deletions, copies, inversions, transpositions to transform one such permutation
to another can be used as a measure of their evolutionary distance. Computa-
tional methods for measuring genetic distance between species is an active area

of research in computational genomics, especially in the context of comparative
mapping [13], eg., using reversal distance [1, 4, 11], transposition distance [2, 8]
or other measures. In a more general setting it is of interest to not only compute
the distances between two permutations but also to find the closest gene permu-
tation to a given one in a database or to approximately find a given permutation
of genes in a larger sequence, etc. Given the representation as permutations,
these can all be abstracted as permutation editing and matching problems.1

Permutations are ordered sequences over some alphabet with no repetitions
allowed.2 Thus, any permutation is a string, although strings are not generally
permutations since they are allowed to repeat symbols. Suitable edit operations
on permutations include reversals; transpositions; alphabet edits such as inserts
and deletes; and symbol moves (formal definition of these operations follows).
We study problems of computing pairwise edit distances, similarity searching,
matching and so on, motivated by Computational Biology and other scenarios.
We adopt a general approach to solving all such problems on permutations: de-
velop an embedding of permutations into vector spaces such that the distance
between the resulting vectors approximates the distance between any two per-
mutations. Thus permutation editing and matching problems reduce to natural
problems on vector spaces.

Even though we have motivated permutation editing, matching and similarity
searching problems from Computational Biology applications, there are other
reasons for their study. Permutations form an interesting class of combinatorial
objects by themselves, and therefore it is quite natural to study the complexity of
computing edit distances between permutations, and to do similarity searching.
In addition, they arise in many applications. Since permutations are special
cases of strings, permutation editing and matching problems give insight into the
complexity of string editing and matching problems many of which are classical
and still open. This will be clarified later using our results. In what follows, we
will first describe the edit distance problems with permutations before describing
our results.

1.1 Notation

A permutation is a sequence of symbols such that within a permutation each
symbol is unique. We shall often represent these symbols as integers drawn from
some range, so 1 3 2 4 is a valid permutation, but 1 2 3 2 is not. Signed permu-
tations are permutations where each symbol can take two forms: positive and
negative, eg 1+ 3+ 2− 4+. Operations can also change the signs of symbols, and
two signed permutations are considered identical only if every symbol and every
sign agree. In what follows, P,Q will represent permutations, and i, j, k . . . will
1 More complex notions of genetic distance which take into account that (1) the genome

is composed of multiple chromosomes [6, 14], or (2) exact order of the genes within
a genome is not necessarily known [7] have recently been proposed.

2 Sometimes it matters in which orientation a gene occurs, and so use is made of signed
permutations

be integers. The i’th symbol of a permutation P will be denoted as P [i], and the
inverse of the permutation P−1 is defined so that if P [i] = j then P−1[j] = i.
We can also compose one permutation with another, so (P ◦ Q)[i] = P [Q[i]].
The “identity permutation” is the permutation of for which P [i] = i for all i.
For uniformity, we shall extend all permutations P by adding P [0] = 0 and
P [n + 1] = n + 1, where n is the length of P . This allows the first and last
symbols of P to be treated identically to the other symbols. All logarithms will
be taken to base 2, and rounded up, so log n should be interpreted as dlog2 ne.

1.2 Permutation Editing and Matching Problems

First we focus on defining distances between permutations. Consider any two
permutations P and Q over some alphabet set. The following distances are of
interest:
Reversal Distance: Denoted r(P,Q), reversal distance is defined as the min-
imum number of reversals of contiguous subsequences necessary to transform
permutation P into Q. So if P is a permutation P [1] . . . P [n], then a Reversal
operation with parameters i, j (i < j) results in the permutation P [1] . . . P [i −
1], P [j], P [j − 1] . . . P [i + 1], P [i], P [j + 1] . . . P [n]. If P is a signed permutation
then additionally the sign of each symbol P [j] . . . P [i] is switched (from plus to
minus and vice-versa). This distance has been well-studied, and is shown to be
NP-hard to find exactly [3]. The best approximation algorithm for this distance
is a 3/2 factor algorithm due to Christie [4].
Transposition Distance: Denoted t(P,Q), transposition distance is defined as
the minimum number of moves of contiguous subsequences to arbitrary new lo-
cations necessary to transform permutation P into Q. Bafna and Pevzner [2] give
a 3/2 approximation algorithm for transposition distance. Given P [1] . . . P [n], a
transposition with parameters i, j, k (i < j < k) gives
P [1] . . . P [i− 1], P [j], P [j + 1] . . . P [k], P [i], P [i+ 1] . . . P [j − 1], P [k+ 1] . . . P [n].
Permutation Edit Distance: The permutation edit distance between two per-
mutations, d(P,Q) is the minimum number of moves required to transform P
into Q. A move can take a single symbol and place it at an arbitrary new position
in the permutation. Hence a move with parameters i, j (i < j) turns P [1] . . . P [n]
into P [1] . . . P [i−1], P [i+1] . . . P [j], P [i], P [j+1] . . . P [n]. This distance is anal-
ogous to the Levenshtein edit distance on strings, since in both cases an optimal
set of edit operations will isolate a longest common subsequence and leave this
unaltered, while performing edit operations on every other symbol.
Symbol Indels: Each of the above distances can be augmented by additionally
allowing insertions and deletions of a single symbol at a time. This takes care of
the fact that the alphabet set in two permutations need not be identical.

It will be of interest to (1) combine all operations (transposition, reversal,
symbol moves) and define the cumulative distance between any two permutations
involving minimum number of operations, and (2) generalize the definitions so
that at most one of P or Q is a string (as opposed to a permutation). If both P
and Q are strings, we are in the familiar territory of string matching.

1.3 Our Results

Our main results are threefold. We give them in outline; the precise bounds are
given in later sections.

In Section 2 we present embeddings of permutation distances into well-
understood spaces such as Hamming or Set Intersection. The embeddings pre-
serve the original distances within a small constant or logarithmic factor, and
are small polynomial in size. These are the first such approximately distance-
preserving embeddings in the literature for permutation distances. The embed-
dings use a technique we develop in this paper of capturing the relative lay-
out of pairs of symbols in the permutations by two dimensional matrices. Our
embeddings capture the relevant pairs that help approximate the permutation
distances accurately and the resulting matrices are often sparse. We believe that
this approach to embedding distances will be of independent interest.

The embeddings above immediately give approximation algorithms for com-
puting the distance between two permutations in (near) linear time. In addition,
we use the embeddings above to solve several other algorithmic problems of
which we list the following two as important examples: (1) Computing permuta-
tion distances in a distributed or Communication Complexity setting wherein the
number of bits exchanged is the prime criterion for efficiency, and also in a “data
streaming” model wherein data is scanned in order as it streams by and only
small amount of space is allotted for storage. Streaming algorithms are known for
vector distance computations; nothing was known beforehand for permutations
— moreover, no streaming algorithms were known for any string distances. (2)
Providing efficient approximate nearest neighbor searches for permutation dis-
tances. We provide the first known approximate algorithms for these problems
that avoid the dimensionality bottleneck. These are all described in Section 3.

The problem of Approximate Permutation Matching is, given a long text
string and a pattern permutation, to find all occurrences of the pattern in the
text with at most a given threshold of distance. This is the generalization of the
standard k-mismatches problem with strings (find all text locations wherein the
pattern occurs with at most k mismatches) to other edit distances, and a restric-
tion since the pattern is required to be a permutation. In Section 4 we present
highly efficient, linear or near-linear time approximations for the permutation
matching problems. This is intriguing since approximately solving string match-
ing problems with corresponding distances seems to be harder, with best known
algorithms taking much longer. For example, approximating string matching
with edits takes time Ω(nm) for n-long text and m-long pattern where edits
are transpositions, character indels and substitutions, and at least Ω(n log3m)
even if only substitutions are allowed [10]! In contrast, our algorithms take only
O(n+m) or O(n logm) time for permutations.

Our embeddings give other results such as efficient clustering algorithms for
permutations, and other similarity problems. We do not discuss them further
here since they follow in a straightforward way by combining our embeddings
with results known for the target spaces such as Hamming, L1, and Set Inter-
section. This is a welcome side-effect of our use of embeddings.

2 Embeddings of Permutation Distances

2.1 Reversal Distance

For signed permutations, we replace every positive element i+ with the pair
i′ i′′ and every i− with i′′ i′. The reversal distance of two unsigned versions is
the same as the reversal distance of the original permutations. We define a two
dimensional matrix, R(P), as a binary matrix of size (n + 2) × (n + 2). For all
0 ≤ j < i ≤ n + 1, set R(P)[i, j] to 1 if i > j and i is adjacent to j in P , that
is, if either P−1[i] = 1 + P−1[j] or P−1[j] = 1 + P−1[i]. Otherwise, R[i, j] = 0.
We set R[i, i] = 0 for all i, and the matrix is only populated above this main
diagonal. Recall that the reversal distance between two permutations is denoted
as r(P,Q). The Hamming distance between two bit vectors X and Y is denoted
H(X,Y). The Hamming distance between two matrices is the Hamming distance
between two vectors obtained by linearizing the two matrices in any manner.

Theorem 1. r(P,Q) ≤ 1
2H(R(P), R(Q)) ≤ 2r(P,Q)

Proof. We extend the notion of Reversal Breakpoints given in Section 2 of [11]
which is defined on a single permutation. Define a Reversal Breakpoint of P
relative to Q as a location, i, where the symbol following P [i] in P is not adjacent
to P [i] where it occurs in Q. Formally, this is when |Q−1[P [i]]−Q−1[P [i+1]]| 6= 1.
We denote the total number of such breakpoints as φ(P,Q). Clearly, if P =
Q, then φ(P,Q) = 0, and this is the only way in which the count is zero. In
transforming P into Q using reversals, our goal is to reduce φ to zero. A reversal
affects two locations, so we can reduce φ by at most two per move, which gives
a lower bound. It is also the case that we can always convert P into Q using
at most φ(P,Q) reversals. This follows from considering relabelling Q as the
identity permutation, and applying this same relabelling to P generatingQ−1◦P .
The reversal breakpoints of P relative to Q then become precisely the reversal
breakpoints of Q−1 ◦ P relative to the identity permutation, and consequently,
the permutation can be edited using at most this number of reversals, following
from Theorem 1 in [11]. Hence r(P,Q) ≤ φ(P,Q) ≤ 2r(P,Q).

It remains to show thatH(R(P), R(Q)) = 2φ(P,Q). Suppose thatR(P)[i, j] =
1 and R(Q)[i, j] = 0. This means that i and j are adjacent in P but not inQ. If we
sum the number of distinct pairs i, j which are adjacent in P but not in Q, then
this finds φ(P,Q). This is because every breakpoint will generate such a pair, and
such pairs can only arise from breakpoints. An identical argument follows when
R(P)[i, j] = 0 and R(Q)[i, j] = 1, yielding φ(Q,P). Since φ(Q,P) = φ(P,Q), it
follows that H(R(P), R(Q)) counts each breakpoint exactly two times.

2.2 Transposition Distance

We define T (P), a binary matrix for a permutation P such that T (P)[i, j] = 1
if j immediately follows i in P , ie if P−1[i] + 1 = P−1[j].

Theorem 2. t(P,Q) ≤ 1
2H(T (P), T (Q)) ≤ 3t(P,Q)

Proof. Define a Transposition Breakpoint in a permutation P relative to another
permutationQ as a location, i, such that P [i+1] does not immediately follow P [i]
when it occurs Q, 3 that is Q−1[P [i]]+1 6= Q−1[P [i+1]]. Let the total number of
such transposition breakpoints between P and Q be denoted as tb(P,Q). Observe
that to convert P to Q we must remove all breakpoints, since tb(Q,Q) = 0.
A single transposition affects three locations and so could ‘fix’ at most three
breakpoints — this gives the lower bound. Also, we can always fix at least one
breakpoint per transposition using the trivial greedy algorithm, which gives the
upper bound. Hence t(P,Q) ≤ tb(P,Q) ≤ 3t(P,Q).

We now need to show that H(T (P), T (Q)) = 2tb(P,Q): clearly, tb(P,Q) =
tb(Q,P). T (P)[i, j] = 1 and T (Q)[i, j] = 0 if and only if there is a transposition
breakpoint in Q at the location of i, so summing these contributions generates
tb(P,Q). A symmetrical argument holds when T (P)[i, j] = 0 and T (Q)[i, j] = 1,
and these two cases summed generate exactly H(T (P), T (Q)) = 2tb(P,Q).

2.3 Permutation Edit Distance

We show how to embed Permutation Edit Distance into Set Intersection Size
up to a factor of log n. We shall define A(P) as an n× n binary matrix derived
from a permutation of length n, P . Ak(P)[i, j] is set to one if symbol i occurs a
distance of exactly 2k before j in P . Otherwise, Ak(P)[i, j] = 0. A(P) is formed
by taking the union of the matrices A0 . . . Alogn−1. That is, A(P)[i, j] = 1 ⇐⇒
∃k. (P−1[i]+2k = P−1[j]). Note that A(P) is a binary matrix, and n log n+Θ(n)
entries are 1.

Also, let B(Q) be an n× n binary matrix defined on a permutation Q such
that B(Q)[i, j] is zero if i occurs before j in Q. Otherwise B(Q)[i, j] = 1. Thus,
B(Q)[i, j] = 0 ⇐⇒ (Q−1[i] < Q−1[j]) In this matrix, n2/2+Θ(n) entries are 1.
Finally, define D(P,Q) as the size of the intersection between A(P) and B(Q).
Put another way, this intersection can be calculated using multiplication of the
elements of the matrices, pairwise: D(P,Q) =

∑
i,j(A(P)[i, j]×B(Q)[i, j]).

Theorem 3. d(P,Q) ≤ D(P,Q) ≤ log n · d(P,Q).

Proof. i) D(P,Q) ≤ log n · d(P,Q)
Consider the pairs (i, j) such that A(P)[i, j] = B(Q)[i, j] = 1. The number of
such pairs is exactly D(P,Q). Each of these pairs has i occurring before j in P ,
but the other way round in Q, and so one of either i or j must be moved to
turn P into Q. So in effect, these pairs represent a “to-do” list of changes that
must be made. By construction of A, any symbol i appears at most log n times
amongst these pairs. Hence whenever a move is made, at most log n pairs can
be removed from this to-do list. It therefore follows that in each move, D can
change by at most logn. If at every step we change D by at most log n, then
this bounds the minimum number of operations possible to transform P into Q
as D(P,Q)/ log n ≤ d(P,Q)
3 As usual, we extend all permutations so that the first symbol is 0 and their last is
n+ 1.

ii) d(P,Q) ≤ D(P,Q)
We shall show the bound by concentrating on the fact that an optimal edit se-
quence preserves a Longest Common Subsequence of the two sequences. Note
that an optimal edit sequence will have length n − LCS(P,Q): every symbol
that is not moved must form part of a common subsequence of P and Q and so
an optimal edit scheme will ensure that this common subsequence is as long as
possible. Consider the relabelling of Q so that for all i, Q[i] is relabelled with i.
We analyze the effect of applying this relabelling to P and examine its longest
increasing subsequence. Call this relabelled sequence P ′. Clearly, the longest
common subsequence of P and Q is not altered, since we have just relabelled
distinct symbols. Because Q is replaced by a strictly increasing sequence, it fol-
lows that each Longest Common Subsequence of P and Q corresponds exactly to
one Longest Increasing Subsequence of P ′, whose length is denoted by LIS(P ′).
Qualitatively, what D told us was that we count 1 if symbol is 2k to the right of
the i’th location in P but is anywhere to the left in Q. When we relabel accord-
ing to Q, this translates so we count 1 if symbol i is greater than an symbol 2k

to its right.
We shall split P ′ into two subsequences, one which consists only of the sym-

bols at odd locations in P ′, and the other of the symbols which occur at even
locations. Symbols of P ′ will now be referred to as ‘odd symbols’ or ‘even sym-
bols’: this refers only to their location, not whether the value of an symbol is
odd or even. Suppose sodd is the length of a longest increasing subsequence of
symbols at odd locations in P ′, and seven is similarly defined for the even sym-
bols. Define b(P ′) as the number of locations (‘sequence breakpoints’) where
P ′[i] > P ′[i+ 1]

Lemma 1. LIS(P ′) ≥ sodd + seven − b(P ′).

Proof. Let Seven represent an increasing sequence of even symbols whose length
is seven, and define Sodd similarly. We shall see how we can build a longer increas-
ing subsequence starting from each of the subsequences of even and odd symbols.
Consider an symbol of Seven, P ′[i] and the subsequent symbol of Seven, P ′[j].
There is at least one odd symbol separating these two symbols when they occur
in P ′. Now, either all odd symbols that occur at locations between i and j have
values between P ′[i] and P ′[j], in which case we could extend the increasing
sequence Seven by including these symbols; or else they are all less than P ′[i] or
greater than P ′[j]. In either case, then there is a contribution of at least one to
b(P ′) from these intervening symbols. This allows us to conclude that from the
increasing sequence Seven, then we can form an increasing sequence of length
at least 2seven − b(P ′), as there are seven − 1 consecutive pairs of symbols from
Seven, and in addition we can also consider the sequence before the first sym-
bol. Similarly, from Sodd, we can find an increasing sequence of length at least
2sodd−1−b(P ′). Further, depending on whether |P ′| is odd or even, we can always
increase one of these bounds by 1, by considering the effect of the last member of
Sodd and the subsequent even symbols if |P ′| is even, or the effect with the last
of Seven and subsequent odd symbols if |P ′| is odd. We know that each of these

generated increasing sequences of P ′ is of length at most LIS(P ′) by definition
of LIS(P ′). Summing these, we find that 2sodd + 2seven − 2b(P ′) ≤ 2LIS(P ′).

If we consider what b(P ′) represents, we compare every P ′[i] to P ′[i + 1]
and count one for every disordered pair. This is telling us that the considered
pair of symbols occur in P in the opposite order to which they occur in Q, by
construction of P ′. So b(P ′) is exactly equivalent to the contribution to D(P,Q)
from A0 ∩B. If we now split and consider P ′odd (and P ′even), the subsequences of
P ′ formed by taking all the symbols at odd (even) locations, we note that these
have exactly the same structure, and have only the self-contained comparisons
of A1 ∩ B, A2 ∩ B to Alogn−1 ∩ B. We can carry on splitting each sequence
recursively into odd and even sequences, until we can split no further. At the
last level, all that remains are |P ′| = |P | single symbols, which each constitute a
trivial increasing subsequence of length one. Telescoping the inequality, we find
that LIS(P ′) ≥ |P |−b(P ′)−b(P ′even)−b(P ′odd)−b(P ′oddodd)−b(P ′oddeven) . . . If we
sum all these b’s, we get exactly D(P,Q). Hence we conclude that LCS(P,Q) =
LIS(P ′) ≥ |P | − D(P,Q). Rearranging and substituting, we find D(P,Q) ≥
n− LCS(P,Q) = d(P,Q), as required.

2.4 Combining All Operations

We consider the compound distance allowing the combination of reversals, trans-
positions and permutation editing (moving a single symbol). Denote this distance
as τ(P,Q). We make use of the transformation R from Section 2.1, and omit the
simple proof.

Theorem 4. τ(P,Q) ≤ 1
2H(R(P), R(Q)) ≤ 3τ(P,Q).

These embedding techniques can also be adapted for a large range of permu-
tation distances. Embeddings can be obtained for variations where inserts and
deletes are permitted for any of the distances already described; when one of the
sequences is allowed to be a string rather than a permutation; and in the case of
signed permutations. Exact details of these embeddings are omitted for brevity.

3 Implications of the Embeddings

We can immediately find algorithmic applications of our embeddings. On the
whole, these rely on known results for the Hamming space.

Approximating Pairwise Distances. The embeddings allow distance approx-
imations to be made efficiently in a communication setting. We have the following
scenario: there are two communicants, A and B, who each hold a permutation
P and Q respectively, and they wish to communicate in such a way to calculate
the approximate distance between their permutations.

Theorem 5. There is a single round communication protocol to allow reversal
(transposition) distance approximation up to a factor of 2 + ε (respectively 3 + ε)
with a message of size O(log n log(1/δ)/ε2). The protocol succeeds with probability
1− δ.

This follows from known communication results on Hamming distance such as
Corollary B of [5]. Now suppose that we have a number of permutations, and we
wish to be able to rapidly find the distance between any pair of them. Traditional
methods would suggest that for each pair, we should take one and relabel it as
the identity permutation, and then solve the sorting by reversals or sorting by
transpositions problem for the correspondingly relabelled permutation. We claim
that, given a near linear amount of preprocessing, this problem can be solved
exponentially faster.

Corollary 1. With a linear amount of preprocessing, the Reversal distance (re-
spectively, Transposition distance) between any pair of permutations of length n
can be approximated in time O(log n log(1/δ)/ε2) up to a factor of 2 + ε (resp.
3 + ε).

This follows from the above statement, since whenever we have a one round
communication protocol, we can precompute and store the message that would
be sent for each permutation. Pairwise approximation can then be carried out
by comparing the two corresponding precomputed messages, which requires time
linear in the size of the message.

Approximate Nearest Neighbors. The problem is to preprocess a collection
of permutations so that given a new query permutation, the closest permutation
from the collection can be found. This problem is analogous to vector nearest
neighbors under Hamming metric [9, 12]. The crux here is to avoid the dimen-
sionality curse: that is, design a polynomial space data structure that answers
queries in time polynomial in the query and sublinear in the collection size.

Theorem 6. We can find approximate nearest neighbors under Reversal dis-
tance (respectively Transposition distance and compound distances thereof) up
to a factor of 2 + ε (respectively 3 + ε) with query time O(` · n1/(1+ε)), where n
is the number of sequences in the database, and ` the size of the universe from
which sequence symbols are drawn.

Proof. This follows immediately from the results for Approximate Nearest Neigh-
bors in [9] and [12]. Some care is needed, since for efficiency we need to ensure
that the sampling at the root of the Locality-Sensitive Hash functions used
therein does not attempt to sample directly from the quadratic (O(`2)) space of
the matrices of the embeddings. Instead, we consider in turn each adjacent pair
in a permutation, and use hash functions to determine whether this pair would
have been picked by the sampling scheme.

Distance Estimation in the Streaming Model An additional feature of the
embeddings is that they lead themselves to solving problems in the streaming
model.

Theorem 7. If the sequences arrive as arbitrarily interleaved streams, approx-
imations for the Transposition distance or Reversal distance can be computed
using storage of size O(log ` log(1/δ)/ε2) such that the Reversal distance (respec-
tively Transposition distance) can be approximated to a factor of 2 + ε (resp.
3 + ε) with probability 1− δ.

Proof. Since each non-zero entry in the transformation matrices comes from
information about adjacent pairs in the permutation, we can parse the permu-
tation as a stream of tuples, so . . . i, j, k . . . is viewed as . . . (i, j), (j, k) The
streaming algorithm of [5] can then be used on the induced bitstring (only non-
zero bits need to be handled). Although the matrix space is O(`2), the space
needed will still be O(log `) in size, and can be computed with a linear pass over
each permutation.

4 Approximate Permutation Matching

The counting version of Approximate Permutation Matching is stated as follows:
Given a text string T of length n, and a pattern permutation P of length m, find
the approximate cost of aligning the pattern against each location in the text.
That is, for each i find the appropriate distance d[i] between T [i : i+m−1] and
P [1 : m]. Naively using the transformations of our distances would be expensive;
we take advantage of the fact that because the embeddings are based on pairwise
comparisons, the approximate cost can be calculated incrementally with only a
small amount of work.

Theorem 8. i) Approximate permutation matching for reversal distance can be
solved in time O(n+m); each d[i] is approximated to a factor of 2.

ii) Approximate permutation matching for transposition distance can be solved
in time O(n+m); each d[i] is approximated to a factor of 3.

Proof. We must allow insertions and deletions to our sequences since in this
scenario we cannot insist that we will always find exact permutations at each
alignment location. We shall make use of extended embeddings which allow these
approximations to be made. It is important to note that although these embed-
dings are described in terms of quadratic sized matrices, we do not construct
these matrices, but instead concentrate only on the linear number of non-zero
entries in these figurative matrices. We shall prove both claims together, since
we take advantage of common properties of the embeddings.

Suppose we know the cost of aligning T [i . . . i + m − 1] against P , and we
now want to find the cost for T [i + 1 . . . i + m]. This is equivalent to adding a
character to the end of T [i . . . i + m − 1] and removing one from the front. So
only two adjacencies are affected — at the start and end of the subsequence.
This affects only a constant number of symbols in our matrices. Consequently,
we need only perform a constant amount of work to update our count of the
number of transposition or reversal breakpoints, provided we have precomputed
the inverse of the pattern P in time O(m). To begin the process, we imagine

aligning P with a location to the left of T so that there is no overlap of pattern
and text. Initially, the distance between P and T [−m. . . 0] is defined as m.
From this position, we can advance the pattern by one location at a time and
do a constant amount of work to update the count. The total time required is
O(n+m).

Theorem 9. Approximate Permutation Matching can be solved for Permuta-
tion Edit Distance in time O(n logm).

Proof. We make use of the transformation for permutation edit distance, and
so our result will be accurate up to a factor of logm. We can use the trick of
relabelling P as 1 2 . . .m, and relabelling T accordingly as we go along. Suppose
we have found the cost of matching T [i . . . i+m− 1] against P . We can advance
this match by one location to the right by comparing T [i + m] with the logm
locations T [i + m − 1], T [i + m − 2], T [i + m − 4] Each pair of the form
T [i+m− 2k] > T [i+m] that we find adds one to our total. At the same time,
we maintain a record of the L1 difference between the number of symbols in P
missing from T [i . . . i+m−1] (since each of these must participate in an insertion
operation to transform T [i . . . i+m−1] into P). This can be updated in constant
time using O(P) space. We can step the left end of a match by one symbol in
constant time if we also keep a record for each T [i] how many comparisons it
caused to fail from symbols to the right — we reduce the count by this much
to find the cost of T [i+ 1 . . . i+m] from T [i . . . i+m]. In total we do O(logm)
work per step, giving a total running time of O(n logm).

5 Discussion

We present the first known results embedding various permutation distances
into Hamming and Set Intersection spaces in an approximately distance pre-
serving manner. These embeddings are approximate, since finding the distances
exactly is provably hard. From these embeddings, a wide variety of problems
can be solved, the full extent of which is beyond the scope of this paper. In
particular, we have described how the embeddings enable the solution of tra-
ditional problems such as pair-wise distance estimation and nearest neighbors;
and novel problems, such as approximate permutation matching and measure-
ments in the streaming model. These results are of interest in Computational
Biology as well as for foundational reasons since analogous problems are open
for strings. In solving approximate permutation matching problems, we obtained
linear or near-linear time approximation algorithms while their string counter-
parts take significantly longer. We hope that our study of permutation distances
gives insights that may help solve the corresponding open problems on string
distances. A candidate problem to think about seems to be approximating the
longest common subsequence, a dual of our permutation edit distances.

Acknowledgements

The first author wishes to thank Mike Paterson for some fruitful discussions
about this work; in particular, for suggesting the form of Lemma 1 that enabled
the proof of Theorem 3. We also thank the anonymous reviewers for their com-
ments. This work was partially supported by the IST Programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

References

1. V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals. In
Proceedings of the 34th Annual Symposium on Foundations of Comptuer Science,
pages 148–157, Palo Alto, CA, 1993. IEEE Computer Society Press.

2. Vineet Bafna and Pavel A. Pevzner. Sorting by transpositions. SIAM Journal on
Discrete Mathematics, 11(2):224–240, May 1998.

3. A. Caprara. Sorting by reversals is difficult. In Proceedings of the First Interna-
tional Conference on Computational Molecular Biology, pages 75–83, 1997.

4. David A. Christie. A 3/2-approximation algorithm for sorting by reversals. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 244–252, San Francisco, California, 25–27 January 1998.

5. J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-
difference algorithm for massive data streams. In IEEE Symposium on Foundations
of Computer Science (FOCS), pages 501–511, 1999.

6. Vincent Ferretti, Joseph H. Nadeau, and David Sankoff. Original synteny. In
Combinatorial Pattern Matching, 7th Annual Symposium, volume 1075 of Lecture
Notes in Computer Science, pages 159–167. Springer, 1996.

7. Leslie Ann Goldberg, Paul W. Goldberg, Mike Paterson, Pavel Pevzner,
Süleyman Cenk S. ahinalp, and Elizabeth Sweedyk. The complexity of gene place-
ment. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 386–395, N.Y., January 17–19 1999. ACM-SIAM.

8. Qian-Ping Gu, Shietung Peng, and Hal Sudborough. A 2-approximation algorithm
for genome rearrangements by reversals and transpositions. Theoretical Computer
Science, 210(2):327–339, 17 January 1999.

9. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing (STOC-98), pages 604–613, 1998.

10. Howard Karloff. Fast algorithms for approximately counting mismatches. Infor-
mation Processing Letters, 48(2):53–60, November 1993.

11. J. Kececioglu and D. Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica, 13(1/2):180–
210, January 1995.

12. E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC-98), pages 614–623, 1998.

13. J. H. Nadeau and B. A. Taylor. Lengths of chromosome segments conserved since
divergence of man and mouse. Proc. Nat’l Acad. Sci. USA, 81:814–818, 1984.

14. D. Sankoff and J. Nadeau. Conserved synteny as a measure of genomic distance.
DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research
and Computer Science, 71, 1996.

