
Approximating Data with the Count-Min Data Structure

Graham Cormode S. Muthukrishnan

August 12, 2011

1 Introduction

Algorithmic problems such as tracking the contents of a set arise frequently in the course of building
systems. Given the variety of possible solutions, the choice of appropriate data structures for
such tasks is at the heart of building efficient and effective software. Modern languages are now
augmented with large libraries of algorithms and data structures to help the programmer without
forcing her to reinvent the wheel. These offer familiar data structures and methods that address a
host of problems using heaps, hash tables, tree structures, stacks, and so on.

For a precise example, consider the following membership problems, which is fundamental in
Computer Science. Starting from an empty set S, there is a series of update operations drawn from
Insert(S, i) (performs S ← S ∪ {i});), or Delete(S, i) (performs S ← S − {i})), and interleaved
therein are queries Check(S, i) (which returns yes if i ∈ S and no otherwise). The membership
problem is to maintain the set S under the update operations and respond to queries, using small
space and making each operation as fast as possible. There is extensive research on solving the
membership problem using data structures from hash tables to balanced trees and B-tree indices,
and these form the backbone of systems from OSs, compilers, databases and beyond. Many of
these data structures have been in widespread use for forty or more years.

Modern applications now face the need to handle massive data. For these applications, many
of the existing data structures that are suitable for main memory or disk resident data no longer
suffice; they motivate new problems and have required an entirely new set of data structures. It is
desirable that these data structures be relatively small, and in many cases we require them to be
sub-linear in the size of the input. Also, in many cases, it suffices to provide approximate responses
to various queries, and applications work without precise answers. In what follows, we present a
fundamental problem at the heart of such applications. The data structures they inspire are called
“sketches” and these approximate massive data sets. We present one such data structure called
the Count-Min Sketch [6] that has been invented recently and has found wide applications from IP
networking to machine learning, distributed computing and even signal processing and beyond.

We begin by introducing the problem of Count Tracking, which generalizes membership, and
is at the heart of modern data processing scenarios. In this problem, there are a large number of
items, and an associated frequency for each item which changes over time. The query specifies an
item and the response to the query is the frequency of the item. Here is an example use-case in
the context of tracking search queries:

1



Consider a popular website which wants to keep track of statistics on the queries used
to search the site. One could keep track of the full log of queries, and answer exactly the
frequency of any search query at the site. However, the log can quickly become very large..
This problem is an instance of the count tracking problem. Even known sophisticated solutions
for fast querying such as a tree-structure or hash table to count up the multiple occurrences of
the same query, can prove to be slow and wasteful of resources. Notice that in this scenario, we
can tolerate a little imprecision. In general, we are interested only in the queries that are asked
frequently. So it is acceptable if there is some fuzziness in the counts. Thus, we can tradeoff
some precision in the answers for a more efficient and lightweight solution. This tradeoff is at
the heart of sketches.

Other use-case examples of count tracking abound. In an online retailer scenario, the items
might represent goods for sale, and the associated frequency is the number of purchases of each
item; in a stock trading setting, the items might be stocks, and the associated frequency would
be the total number of shares traded of that stock within a given day; and so on. Further, count
tracking can be applied on derived data such as the difference of data between distributed sites
or between different time periods and so on. Even more generally, many tasks on massive data
distributions such as summarizing, mining, classification, anomaly detection, and others, can be
solved using count tracking.

Formally, any data structure for Count Tracking must provide two methods: Update(i,c),
which updates the frequency of item i by c; and Estimate(i), which provides an estimate of the
current frequency of i.

This problem can be solved exactly using traditional data structures: a hash table, for example,
can be used to keep the set of items and associated frequencies [4]. Update and Estimate can
both be implemented directly via standard hash table methods. However, there are disadvantages
to such solutions: the amount of memory used by the data structure can become very large over
time as more items are added. Because its size is large, accessing such a data structure can be quite
slow, since it resides in slow memory or in virtual memory. Further, since its size grows over time,
periodically the data structure has to be resized, which can affect real-time processing. Finally, in
distributed applications, if the entire frequency distribution has to be communicated, this can be
a prohibitive overhead.

Sketch data structures overcome this problem by observing that in many cases it is reasonable
to replace the exact answer with a high-quality approximation. For instance, in presenting statistics
on customer buying patterns, an uncertainty of 0.1% (or less) is not considered significant. Such
sketch data structures can accurately summarize arbitrary data distributions with a compact, fixed
memory footprint that is often small enough to fit within cache, ensuring fast processing of updates,
or quick communication across sites.

2 The Count-Min Sketch

Sketch overview. The Count-Min sketch provides a different kind of solution to count tracking.
It allocates a fixed amount of space to store count information, which does not vary over time even
as more and more counts are updated. Nevertheless, it is able to provide useful estimated counts,
because the accuracy scales with the total sum of all the counts stored. If N represents the current

2



+c

+c

+c

hd

+c1

i

h

Figure 1: Schematic of Count-Min sketch data structure

sum of all the counts (i.e. the sum of all the c values in Update operations), then it promises a
distortion which is a very small fraction of N . This fraction is controlled by a parameter of the
data structure: the smaller the possible uncertainty, the larger the sketch.

Sketch Internals. With all data structures, it is important to understand the data organization
and algorithms for updating the structure, to make clear the relative merits of different choices of
structure for a given task. The Count-Min Sketch data structure primarily consists of a fixed array
of counters, of width w and depth d. The counters are initialized to all zeros. Each row of counters
is associated with a different hash function. The hash function maps items uniformly onto the
range {1, 2, . . . w}. The hash functions do not need to be particularly strong (i.e. they are not as
complex as cryptographic hash functions). For items represented as integers i, the hash functions
can be of the form (a ∗ i+ b mod p mod w), where p is a prime number larger than the maximum
i value (say, p = 231 − 1 or p = 261 − 1), and a, b are values chosen randomly in the range 1 to
p − 1. It is important that each hash function is different, otherwise there is no benefit from the
repetition.

Update(i,c) operations update the data structure in a straightforward way. In each row, the
corresponding hash function is applied to i to determine a corresponding counter. Then the update
c is added on to that counter. Figure 1 shows an example of an update operation on a sketch with
w = 9 and d = 4. The update of item i is mapped by the first hash function to an entry in the first
row, where the update of c is added on to the current counter there. Similarly, the item is mapped
to different locations in each of the other three rows. So in this example, we evaluate four different
hash functions on i, and update four counters accordingly.

For Estimate(i) operations, the process is quite similar. For each row, the corresponding hash
function is applied to i to look up one of the counters. Across all rows, the estimate is found as
the minimum of all the probed counters. In the example above, we examine each place where i
was mapped by the hash functions: in Figure 1, this is the fourth entry in the first row, the fourth
entry in the second row, the seventh entry in the third row, and so on. Each of these entries has a
counter which has added up all the updates that were mapped there, and the estimate returned is
the smallest of these.

Why it works. At first, it may be unclear why this process should give any usable estimate
of counts. It seems that since each counter is counting the updates to many different items, the
estimates will inevitably be inaccurate. However, the hash functions work to spread out the different
items, so on average the inaccuracy cannot be too high. Then the use of different hash functions

3



ensures that actually the chance of getting an estimate that is much more inaccurate than average
is actually quite small. The sidebar on Sketch Accuracy makes this mathematically precise. As a
result, for a sketch of size w× d with total count N , it follows that any estimate has error at most
2N/w, with probability at least 1− 1

2

d. So setting the parameters w and d large enough allows us
to achieve very high accuracy while using relatively little space.

Sketch Accuracy. The quality of the estimates given by this sketch can be guaranteed using
some statistical analysis. Observe that in a given row, the counter probed by the Estimate
operation includes the current frequency of item i. However, because w is typically smaller than
the total number of items summarized, there will be hash collisions: the count found will be
the sum of frequencies of all items mapped by the hash function to that location. In traditional
hash tables, such hash collisions are problematic, but in this case, they can be tolerated, since
overall an accurate estimate is still found.

Because the hash function spreads items uniformly around the row, we expect that a uniform
fraction of items will collide with i. This translates into a uniform fraction of the sum of
frequencies: if the total sum of all counts is N , then the expected fraction of weight colliding with
i is at most N/w. In some cases, we might be lucky, and the colliding weight will be less than
this; in other cases, we might be unlucky, and the colliding weight will be more. However, the
colliding weight is unlikely to be much larger than expected amount: the probability of seeing
more than twice the expected amount is at most 1

2 (this follows from the Markov inequality
in statistics). So, the value of this counter is at most 2N/w more than the true frequency of i
with probability at least 1

2 .
The same process is repeated in each row, with different hash functions. Because the hash

functions are different each time, they give a different mapping of items to counters, and so
a different collection of items collide with i in each row. Each time, there is (at most) a 50%
chance of getting an error of more than 2N/w, and (at least) a 50% chance of having less error
than this. Because we take the minimum of counters for x over all rows, the only way the final
result has error of more than 2N/w is if all d rows give a “large” error, which happens with
probability at most 1

2

d.
From this analysis, we know how to set the parameters for the size of the sketch. Suppose

we want an error of at most 0.1% (of the sum of all frequencies), with 99.9% certainty. Then
we want 2/w = 1/1000, we set w = 2000, and 1

2

d = 0.001, i.e. d = log 0.001/ log 0.5 ≤ 10.
Using 32 bit counters, the space required by the array of counters is w × d× 4 = 80KB.

3 Implementations of the Sketch

We now discuss implementations of the Count-Min Sketch in different settings: a traditional single-
threaded case, parallel and distributed implementation, and implementation using other hardware.

3.1 Single Threaded Implementation

As indicated above, it is straightforward to implement the sketch in a traditional single CPU
environment. Indeed, several libraries are available for the data structure, in common languages

4



Algorithm 1: CountMinInit(w, d, p)

1 C[1, 1] . . . C[d, w]← 0;
2 for j ← 1 to d do
3 Pick aj , bj uniformly from [1. . . p];

4 N = 0;

Algorithm 2: CountMinUpdate(i, c)

1 N ← N + c;
2 for j ← 1 to d do
3 hj(i) = (aj × i + bj mod p) mod w ;
4 C[j, hj(i)]← C[j, hj(i)] + c;

Algorithm 3: CountMinEstimate(i)

1 e←∞;
2 for j ← 1 to d do
3 hj(i) = (aj × i + bj mod p) mod w ;
4 e← min(e, C[j, hj(i)]) ;

5 return e

Figure 2: Pseudocode for Count-Min Sketch

such as C, C++, Java and Python (see pointers in Section 5). Some skeletal pseudocode to initialize
and update the sketch is shown in Figure 2. The code in Algorithm 1 initializes the array C of w×d
counters to 0, and picks values for the hash functions based on the prime p. For each Update(i, c)
shown in Algorithm 2, the total count N is updated with c, and the loop in Lines 2 to 4 hashes i
to its counter in each row, and updates the counter there. The procedure for Estimate(i) shown
in Algorithm 3 is almost identical to this loop: given i, we perform the hashing in line 3, and keep
track of the smallest value of C[j, hj(i)] over the d values of j.

Several tricks can be used to make the code as fast as possible. In particular, the hash function
used in line 3 has two “modulus” operations, which are perceived as being slow. Both can be
removed: the mod p operation can be replaced with a shift and an add for certain choices of p
(see [13] for a concise guide), and the mod w can be replaced with a bitmask operation when w is
chosen to be a power of 2. Under these settings, the sketch can be updated at the rate of millions
of operations per second, approaching the IO limit.

3.2 Parallel and Distributed Implementation

A key feature of the operations which manipulate the sketch is that they are largely oblivious to
the current state of the data structure. That is, the updates to the sketch do not require inspection
of the current state. This means that data structure is highly suitable for parallelization and
distributed computation.

Firstly, each row of the sketch is updated independently of others, so the sketch can be parti-
tioned row-wise among threads on a single machine. But more than this, one can build sketches of
different subsets of the data (after agreeing on the same parameters w, d and set of hash functions

5



to use), and these sketches can be combined to give the sketch of the union of the data. Sketch
combination is straightforward: given sketch arrays of size w × d, they are combined by summing
them up, entry-wise.

This implies that sketches can be a useful tool in large scale data analysis, within a distributed
model such as MapReduce. Each machine can build and “emit” a sketch of its local data, and
these can then be combined at a single machine (i.e. a single reducer simply sums up all the
sketches, entry-wise) to generate the sketch of a potentially huge collection of data. This approach
can be dramatically more efficient in terms of network communication (and hence time and other
resources) than the solution of computing exact counts for each item, and filtering out the low
counts.

3.3 Hardware Implementation

There have been several efforts to implement sketch data structures in hardware, to further accel-
erate their performance. The simplicity and parallelism of the sketching algorithms makes such
implementations convenient. Here, we outline some of the approaches taken:

— Lai and Byrd report on an implementation of Count-Min sketches on a low-power stream
processor [9], capable of processing 40 byte packets at a throughput rate of up to 13Gbps. This is
equivalent to about 44 million updates per second.

— Thomas et al. [12] describe their experience using IBM’s cell processor. They observe near
perfect parallel speed-up, i.e. using 8 processing units, there is a nearly 8-fold speed up.

— Lai et al. present an implementation of sketching techniques using an FPGA-based platform,
for the purpose of anomaly detection [10]. Their implementation scales easily to network data
stream rates of 4Gbps.

4 Applications using Count Tracking

There are dozens of applications of count tracking and in particular, the Count-Min sketch data
structure that goes beyond the task of approximating data distributions. We give three examples.

1. A more general query is to identify the Heavy-Hitters, that is, the query HH(k) returns the
set of items which have large frequency (say 1/k of the overall frequency). Count tracking
can be used to directly answer this query, by considering the frequency of each item. When
there are very many possible items, answering the query in this way can be quite slow. The
process can be sped up immensely by keeping additional information about the frequencies
of groups of items [6], at the expense of storing additional sketches. As well as being of
interest in mining applications, finding heavy-hitters is also of interest in the context of signal
processing. Here, viewing the signal as defining a data distribution, recovering the heavy-
hitters is key to building the best approximation of the signal. As a result, the Count-Min
sketch can be used in compressed sensing, a signal acquisition paradigm that has recently
revolutionized signal processing [7].

2. One application where very large data sets arise is in Natural Language Processing (NLP).
Here, it is important to keep statistics on the frequency of word combinations, such as pairs
or triplets of words that occur in sequence. In one experiment, researchers compacted a large

6



90GB corpus down to a (memory friendly) 8GB Count-Min sketch [8]. This proved to be just
as effective for their word similarity tasks as using the exact data.

3. A third example is in designing a mechanism to help users pick a safe password. To make
password guessing difficult, we can track the frequency of passwords online and disallow
currently popular ones. This is precisely the count tracking problem. Recently, this was
put into practice using the Count-Min data structure to do count tracking (see http://
www.youtube.com/watch?v=qo1cOJFEF0U). A nice feature of this solution is that the impact
of a false positive—erroneously declaring a rare password choice to be too popular and so
disallowing it—is only a mild inconvenience to the user.

5 Further Reading

Example Implementations. Several example implementations of the Count-Min sketch are
available. C code is given by the MassDal code bank: http://www.cs.rutgers.edu/∼muthu/
massdal-code-index.html. C++ code due to Marios Hadjieleftheriou is available from http:
//research.att.com/∼marioh/sketches/index.html. OCAML code due to Edward Yang is at
https://github.com/ezyang/ocaml-cminsketch. There is a SQL implementation for distributed,
high performance settings, due to Berkeley and Greenplum researchers http://doc.madlib.net/
sketches 8sql in source.html.

More Reading on Count-Min Data Structure. For more on the Count-Min sketch, see
the web-page collecting information on the data structure, at https://sites.google.com/site/
countminsketch/. There is more technical coverage in the original paper describing the structure
[6], in textbooks on randomized algorithms [11], and in a survey of techniques for the count tracking
problem and its variations [5].

More Reading on Other Sketches. There are several other useful and compact sketch data
structures which solve different problems. These include:

• The Bloom Filter is a popular sketch data structure that solves the slightly simpler member-
ship problem. Bloom filters have size linear in the number of items, but use smaller memory
than standard hashing approach to the membership problem. The Bloom Filter is highly pop-
ular in networking applications, for tracking which flows have been seen, and which objects
are stored in caches. For more information, see the survey of Mitzenmacher and Broder [3].

• The AMS Sketch can be used to represent very high dimensional vectors in a small amount
of space. Such vectors often occur in machine learning applications, where each entry of the
vector encodes the presence or absence of some feature. The sketch allows the inner product
(aka the cosine distance) of two vectors to be estimated accurately [1].

• Various Distinct Sketches have been introduced to track other functions of sets of items. The
most basic question they answer is to estimate the number of different elements within the
set. For example, they can track the number of unique visitors to a website. Unlike the
Bloom Filter, they do not accurately track exactly which items are in the set. By removing
this requirement, they can be much smaller than the number of items in the set [2].

7



While several sketch data structures have been proposed in the literature differing in how they
summarize data, their approximation guarantees, and how they apply to specific problems, we have
found the Count-Min sketch data structure to be uniformly good in performance, and versatile in
broad applicability to many problems.

About the Authors

Graham Cormode is a principal member of technical staff at AT&T Labs–Research. His
research interests include all aspects of managing and working with massive data, including
summarization, sharing, and privacy. Cormode has a PhD in Computer Science from the
University of Warwick. Contact him at graham@research.att.com.

S. Muthukrishnan is a professor of computer science at Rutgers University, and a Fellow
of the ACM. His research interests include algorithms and game theory. Muthukrishnan has a
PhD in Computer Science from New York University. Contact him at muthu@cs.rutgers.edu.

References

[1] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and self-join sizes in limited
storage. In ACM Principles of Database Systems, pages 10–20, 1999.

[2] K. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sismanis. Distinct-value synopses for
multiset operations. Communications of the ACM, 52(10):87–95, 2009.

[3] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2005.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[5] G. Cormode and M. Hadjieleftheriou. Finding the frequent items in streams of data. Commu-
nications of the ACM, 52(10):97–105, 2009.

[6] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[7] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings of the IEEE,
98(6):937–947, June 2010.

[8] A. Goyal, J. Jagarlamudi, H. D. III, and S. Venkatasubramanian. Sketch techniques for scaling
distributional similarity to the web. In Workshop on GEometrical Models of Natural Language
Semantics, 2010.

[9] Y.-K. Lai and G. T. Byrd. High-throughput sketch update on a low-power stream processor. In
Proceedings of the ACM/IEEE symposium on Architecture for networking and communications
systems, 2006.

8



[10] Y.-K. Lai, N.-C. Wang, T.-Y. Chou, C.-C. Lee, T. Wellem, and H. T. Nugroho. Implementing
on-line sketch-based change detection on a netfpga platform. In 1st Asia NetFPGA Developers
Workshop, 2010.

[11] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[12] D. Thomas, R. Bordawekar, C. C. Aggarwal, and P. S. Yu. On efficient query processing of
stream counts on the cell processor. In IEEE International Conference on Data Engineering,
2009.

[13] M. Thorup. Even strongly universal hashing is pretty fast. In ACM-SIAM Symposium on
Discrete Algorithms, 2000.

9


