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Abstract

In the computer game ‘Lemmings’, the player must guide a tribe of green-haired lemming creatures
to safety, and save them from an untimely demise. We formulate the decision problem which is, given a
level of the game, to decide whether it is possible to complete the level (and hence to find a solution to
that level). Under certain limitations, this can be decided in polynomial time, but in general the problem
is shown to be NP-Hard. This can hold even if there is only a single lemming to save, thus showing that it
is hard to approximate the number of saved lemmings to any factor.

1 Introduction

Lemmings is a popular computer game, originally released by Psygnosis1 in the early 1990s. Since then,
there have been many different versions, sequels and imitations. It has been converted to a large number
of different formats, and has inspired many websites devoted to the game2. There is a USENET news-
group for the game, alt.lemmings, and an associated FAQ, http://www.utahdesign.com/lemmings/
downloads/Lemmings-FAQ-v20.txt . The cleverly constructed levels in the original Lemmings games
have caused many players to ask themselves whether completing a particular level is even possible. Here
we will show that deciding whether a particular level is possible is an NP-Complete problem. However,
under some restrictions then the question is decidable in polynomial time.

This line of research fits into interest in the study of games, more specifically computer games (such
as Tetris [DHLN03], Minesweeper [Kay00] and so on). Understanding the complexity of Lemmings adds
to our knowledge of the computational complexity of such popular games. Lemmings has been proposed
as a model challenge to Artificial Intelligence and motion planning systems [McC94]. As with other such
challenges [HLH03], it turns out to be an example of the well-studied class of NP-Complete problems,
which are not known to have efficient solutions. Hence the challenge is unlikely to be answered with
methods that can guarantee fast (polynomial time) results. It is tempting to conclude that the ability to
encode NP-Complete problems is correlated with the structure that makes certain puzzles appeal to us. This
claim is somewhat extravagant, especially since the constructions which allow us to encode such problems
are typically large, unwieldy and repetitive (consisting of a few gadgets, repeated over and over). Still it is
of interest that a growing number of the most popular computer puzzle games (Tetris, Minesweeper and
Lemmings) admit proofs of hardness. It remains of interest to find examples of popular games which are
more tractable.

Layout. In Section 2, the Lemmings game is described, and in Section 3, this is formalized into the lan-
guage LEMMINGS, which is shown to be in NP. The language is shown to be NP-Hard in Section 4, and this
holds even when we are restricted to a single Lemming (Section 5). But, under different restrictions, the
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1The company has since been absorbed into Playstation Europe. Some information is at http://www.psygnosis.org/
2See, for example, http://www.utahdesign.com/lemmings/ , http://www.deinonych.com/lemmings/ . Recently, a

Javascript implementation of the game was created, but this was subsequently withdrawn for copyright reasons.
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game can decided (and solved) efficiently in polynomial time, as shown in in Section 6. Related work is
discussed in Section 7, and extensions are explored in Section 8.

2 The Game

What follows is a concise description of the game ‘Lemmings’. Some aspects are omitted or abbreviated in
order to give as simple a presentation as possible3.

Lemmings are simple creatures, who must be guided to safety by the player. They live in a two di-
mensional space and are affected by gravity. Lemmings begin walking in a certain direction, and if they
encounter an obstacle which they cannot surmount, such as a vertical blockage greater than their own
height, then they will turn around and walk back in the direction they came. If they encounter a hole, then
they will simply fall down it. If a Lemming falls beyond a certain distance, then it will die. In the full
game, there are many ways in which Lemmings can die, including drowning, stepping in fiery lava, being
crushed by a trap, being blown up and so on; however, here we will focus on death by falling. The world
is made up of various types of material in addition to air: Permeable, which can be dug into in a variety of
ways, and Solid, which it is not possible to tunnel through in any way. Time in the world of Lemmings is
discretized into time units such that every event happens at a time which is an integer multiple of the unit
of time. Space is similarly discretized.

Skills The player plays the game by giving “skills” to the Lemmings to affect their course and the course
of their peers. There are eight skill types, which come in three classes, permanent, semi-permanent, and
temporary. The permanent skills are:

• (1) Climber: a Lemming given the skill of Climber can scale tall vertical obstructions
• (2) Floater, meaning that a floater Lemming can fall unlimited distances without coming to harm on

impact with the ground.

These skills remain with the Lemming for the duration of its life. Two skills are deemed semi-permanent:

• (3) Exploder, which causes the Lemming to explode after a short delay causing some collateral dam-
age to any surrounding permeable material4. The Lemming is then dead, and is removed from play.

• (4) Blocker, where the Lemming halts and causes all Lemmings which walk into it to turn around5.

Temporary skills affect the Lemming for a limited duration, after which the Lemming returns to its
normal pattern. The temporary skills include:

• (5) Builder. The Lemming that is made into a builder builds a bridge consisting of 12 steps,6 upwards
and in the direction that it is currently facing. Bridges are made of a permeable material, which can
later be dug through.

• (6) Basher. The Lemming proceeds to “bash” horizontally in the direction that it is facing. If the
material is permeable, then the Lemming will clear a path through the material which it and other
Lemmings can walk though. The basher will stop bashing when it breaks through the permeable
material to air, or when it encounters solid material.

• (7) Digger. The Lemming starts to dig vertically downwards, stopping when it breaks through into
air or hits solid material.

3See also the original game manual, available from http://www.kallex.de/lemmings/misc/instructions.txt . There
are also public domain demonstrations of the game which include a small number of levels for the player to experiment with, available
from the websites listed previously.

4Those of a philosophical bent might enjoy arguing whether this has a permanent or temporary effect on the Lemming.
5This might appear to be a permanent skill, but experienced players of Lemmings know ways to turn blockers back into regular

lemmings.
6Not to be confused with any other 12 Step programme that the reader may be familiar with.
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• (8) Miner. Like digger and basher, the Lemming digs through permeable material. Miners dig in
a diagonal direction, down and in the direction the Lemming was facing when it was made into a
miner. Mining stops when the miner breaks through to air or solid material.

The game consists of a number of levels. Each level consists of some arrangement of material around
to make a two dimensional world, including a number of entrances from which Lemmings emerge, and an
Exit, into which they must be guided. When a Lemming reaches the Exit, it is removed from the level. Each
level has a number of parameters:

• The number of Lemmings which emerge from each entrance and the rate at which they emerge.
• The number of Lemmings which must be safely guided to the exit for the level to be successfully

completed.
• A time limit within which the requisite number of lemmings must be saved.
• For each skill type, the number of times each skill can be given to the Lemmings.

3 The Decision Problem

We shall formalize the description of a level to be a tuple:

L = (limit, save, lems, start, width, height, grid, exit, skills)

The contents of the tuple are:

• limit, the time limit, in discrete time units. For technical reasons, we will insist that the time limit is
bounded by a polynomial in the size of the level. We conjecture that this restriction is unnecessary, by
claiming that if it is not possible to complete the level in time polynomial in the level size, then it is
not possible to complete the level at all.

• save, the number of Lemmings which must be saved.
• lems is the number of Lemmings to be released into the level.
• start is a vector of length lems. It consists of pairs start[i] = (pos, t), meaning that the ith Lemming

arrives in the level at position pos at time t.
• width and height describe the size of a bounding box located at the origin which contains all the

objects in the level, so that every object occurs within this area.
• grid is a rectangular array of dimension width by height, which records the configuration of the level

at time zero. For each location, it indicates whether that location is air, permeable, or impermeable.
• exit gives the location of the Exit.
• skills is a vector of length 8 which records for each of the eight skills listed above, how many are

available to give to Lemmings.

A player of Lemmings has control over which skills to give to Lemmings at any given time. We can
formalize this by defining a move, m to be a tuple m = (t, x, y, l, s) where

• t is the time at which the move is made
• x, y give the location of the Lemming to which the skill is to be given.
• l is the identifier of the Lemming to which the skill is being given (so 1 ≤ l ≤ lems).
• s is the identifier of the skill (in the range 1 to 8) which is to be given.

A strategy, S for a particular level, L, is a sequence of moves, ordered by time. Each Lemming can be
given at most one skill in each time step (it would not be of advantage to the player to give multiple skills
in each step, since adding skills often overrides previous ones, eg. making a basher into a digger stops the
lemming bashing and starts it digging). A valid move is a move from a strategy, such that, when the move is
made, the named Lemming is at the location specified, the skill being given is available and the Lemming
is capable of receiving the skill7. A valid strategy is one in which every move is valid. Note that multiple

7For example, a Lemming which has been made a floater already cannot receive the same skill again.
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moves (on different Lemmings) may be made at the same time instant, in which case they are considered in
their order in the strategy (the order should not matter). A winning strategy for a level L is a valid strategy
which results in the target number of lemmings being saved in the time limit.

Given a level of Lemmings, L, the decision problem is, is there a winning strategy, S. Denote as LEM-
MINGS the set of all levels for which the answer to the decision problem is “yes”. We will also consider a
particular subset of this set, restricted to levels where there is a single Lemming (lems = 1), and refer to this
version as 1-LEMMINGS.

3.1 LEMMINGS ∈ NP

In order to show that LEMMINGS ∈ NP , it suffices to show that it is possible to check whether a given
strategy S for a level L is a winning strategy, in polynomial time.

Lemma 1. LEMMINGS ∈ NP .

Proof. The existence of a computer game of Lemmings essentially demonstrates that the strategy is a certifi-
cate for membership of the level in the language LEMMINGS. The computer game allows the user to specify
the strategy as a clock marks out time and the Lemmings move around the level. At the end of the time
limit, the game gives a positive response if the strategy was a winning one, and a negative response if the
strategy was not winning.

This approach can be taken here: for each time step, a checker can apply any moves specified for that
time step, ensuring that each one is valid, and advance the position of the Lemmings in accordance with
their current position and direction. After the number of steps specified by the time limit, the checker halts
and reports whether the strategy was a winning one or not.

The fact that this verification process can be completed in polynomial time relies on the following facts:
(1) Each timestep can be evaluated in time polynomial in the input size. This follows since the starting
position of each Lemming is explicitly encoded, and it takes polynomial time to compute the new position
of each lemming from its old location and direction. (2) Each move can be verified in polynomial time,
provided that the current configuration for the time of the move is available. (3) The total number of
timesteps simulated by the checker is polynomial in the input size. This relies on the time limit being
bounded by a polynomial in the size of the level (poly in width and height). Since the grid description
is linear in these parameters, then the number of timesteps is polynomial in the grid, and hence the input
size. (4) The total number of moves is polynomial in the input size. This uses the observation that a strategy
can be winning only if every move is valid, and there can be at most one valid move on each Lemming in
each time step. The vector start is linear in the number of Lemmings, and as noted above, the time limit
is polynomial in the input size, and so combining these shows that the total number of valid moves, and
hence the total number of moves in a winning strategy, is linear in the input size.

4 LEMMINGS is NP-Hard

In order to demonstrate that LEMMINGS is NP-Hard, we shall give a poly-time reduction from 3SAT to
LEMMINGS. The generated level of Lemmings will be solvable if and only if the corresponding instance of
3SAT is satisfiable.

4.1 Construction of the level

Given an instance of 3SAT, we shall construct a level of Lemmings. The level will be constructed by taking
various pieces defined here (gadgets), and connecting them in a deterministic way so as to encode the
structure of the 3SAT instance. The instance of 3SAT consists of: n boolean variables, v1 . . . vn; and m
clauses c1 . . . cm, where each clause consists of a triple of literals, ci1, ci2, ci3.

The transformation into LEMMINGS will use one Lemming to represent each clause, and one Lemming
to represent each variable, so there will be a total of m+n lemmings in the level. All (m+n) Lemmings must
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(a) (b) (c) (d) (e)

Figure 1: Object types used here: (a) A Lemming (b) Entrance (gives initial location of a Lemming) (c) A
square of Solid material (d) A square of Permeable material (e) The exit

Figure 2: Clause Gadget

be saved for the level to be completed successfully. The path taken by a clause Lemming will correspond to
one of the literals in the clause which is satisfied, and the path taken by a variable Lemming will indicate
whether the atom or its negation is satisfied. For this level, we will allocate n bashers, n builders and m
diggers. No other skills will be available. The time limit will be set sufficiently long to allow a Lemming to
walk the course necessary to get to the exit, which is linear in the level size. The level size will be polynomial
in the size of the input instance of 3SAT.

Clause Gadget. Figure 2 shows the Clause gadget. At the start of the level, there is a Lemming placed
inside the gadget as indicated by the Entrance.

Proposition 1. One digger skill must be used per clause gadget if all Lemmings are to be saved.

This follows by observing that the lemming inside each clause gadget must be freed if it is to reach the
exit. Of the three skills available, digger, basher and builder, the only one which can allow a Lemming to
get out of the clause gadget is the digger skill. Using the digger skill will cause the Lemming to exit by
one of the three available permeable areas. More strongly, the only way out is for the trapped Lemming to
be given the digger skill. Since there are m digger skills and m clauses, it follows that the only way for all
Lemmings to reach the exit is if one digger skill is used for each clause. Hence there will be no digger skills
remaining to be used elsewhere.

Variable Gadget. The variable gadget is shown in Figure 3. At the start of each level, there is a Lemming
inside each variable gadget.

Proposition 2. One basher and one builder must be used for each variable gadget if all Lemmings are to be saved.

The only way to free the Lemming inside the variable gadget is to use a basher skill to break through
the permeable material either to the left or to the right of the gadget. Once this has been done, then the
Lemming will walk out in that direction. It will then fall to its death from the large drop unless a builder
is used to build a bridge over the gap. Once a Lemming crosses the gap on a bridge, it will walk on and
end safely at the bottom of the variable gadget. It will then exit on the right hand side of the gadget. Since
there are n variable gadgets, and n builder and basher skills, all these skills will be consumed, one of each
for each variable gadget, if all Lemmings are to be freed.
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(a) (b)

Figure 3: (a) Variable gadget (b) Possible paths through the gadget

(a) (b) (c) (d)

Figure 4: (a) Junction Gadget (b) Wire gadget (c) Corner gadget (d) Accept gadget

Semantics. Each variable clause is associated with one of the variables from the 3SAT instance. We shall
use the location of the necessary bridge to infer a truth value of that variable. If the bridge is on the left side
of the entrance, over V , then we infer that the variable is set to true; else, if the bridge is on the right side to
cross over V̄ , then the variable is set to false.

Wiring. In Figure 4, three connecting gadgets are demonstrated, the Junction, Wire, and Corner gadgets.
These are designed to allow lemmings to traverse them only in permitted ways.

The following statements assume that no skills are deployed at any location within the gadgets.

Proposition 3.
(a) Any Lemming which enters a junction gadget at point A will exit at point B; any Lemming which enters at point
C will exit at point B.
(b) Any Lemming which enters a wire gadget at point D will exit at point E; any lemming which enters at point F
will exit at point G.
(c) Any Lemming which enters a corner gadget at point H will exit at point J.
(d) Any Lemming which enters the accept gadget will reach the Exit, and successfully leave the level.

Conceptually, we will wire clause gadgets to variable gadgets, so that a literal in a clause is “wired” to
the corresponding value of the variable in its clause. This means that a Lemming which exits a variable
corresponding to some literal, say x̄, will be guided by the wiring gadgets, to an entry point in the variable
gadget, corresponding to x̄.
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This is achieved by the use of a “wiring block”, which is an arrangement of junction, wire, and corner
gadgets, which are arranged in a grid which is 3m + 3n gadgets wide and 2n gadgets tall. Each row of
the wiring gadget conceptually corresponds to a value of a variable, either positive or negated. The first
3m columns correspond to the 3m literals in the clauses, and the last 3n columns complete the routing by
forcing a lemming “assigned” to a particular literal to enter the corresponding variable gadget.

Definition 1 (Wiring Block). All locations in the wiring block are filled with wire gadgets, unless one of the
following cases applies:
If clause cij = vk, then location [3i + j, 2k − 1] is made to be a junction.
If clause cij = v̄k, then location [3i + j, 2k] is made to be a junction.
For k = 1 to n, location [3m + 3k − 2, 2k − 1] is made to be a corner.
For k = 1 to n, location [3m + 3k − 1, 2k] is made to be a corner.

Proposition 4. Any Lemming which enters the Wiring block at the top of column [3i+ j] will leave the Wiring block
in column [3m + 3k + 1] if cij = vk, and will leave in column [3m + 3k + 2] if cij = v̄k, providing no moves are
made on Lemmings in the wiring block.

Immediately above the wiring block are placed m clause gadgets in columns 1 . . . 3m. Below the wiring
block are placed n variable gadgets in columns 3m + 1 . . . 3m + 3n. The clause gadget columns 3i− 2 . . . 3i
corresponds to clause ci, and the variable gadget in columns 3m + 3i − 2 . . . 3m + 3i. The accept gadget is
placed at location [3m + 3n + 1, 2n + 1]. An example layout is shown in Figure 4.1.

4.2 Proof

To show the NP-Hardness, we first show that (1) any satisfying assignment of 3SAT corresponds to a win-
ning strategy for the corresponding level of LEMMINGS; then show that (2) any winning strategy for a
derived level of LEMMINGS must correspond to a satisfying assignment for the 3SAT formula.

Proof of (1). For each variable, we consider its value in the satisfying assignment. If it is true, then we
include in our strategy a move which makes the variable Lemming for that variable bash through the
permeable material to its left, and then build a bridge over the gap at V , before walking to the exit, following
the route indicated in Figure 3 (b). Else, it bashes through the permeable material to the right, and builds a
bridge over V̄ , and follows the alternate route to the exit. This ensures that all variable Lemmings are saved.
For each clause Lemming, we consider the clause that it corresponds to, and pick one of the literals in the
clause which is satisfied—by the fact that this is a satisfying assignment, then there must be at least one.
Then we make a move that makes the clause Lemming dig through the permeable material corresponding
to the chosen literal: if ci1 is chosen, then the left material is cleared; if ci2 then the central material; and
the right material if ci3 is chosen. Then, by the properties of the wiring block, that Lemming will walk to
the variable gadget corresponding to that variable, and enter in the column corresponding to the value of
the literal in the clause (location W if the variable is true, X if it is false). Since this literal is true, then
the variable Lemming for that variable will have already built the bridge, allowing the clause Lemming to
land safely on the bridge, and then walk out of the variable gadget at Z. It will then pass through all other
variable gadgets, entering at Y and leaving at Z, until it reaches the accept gadget, where it can exit safely.
Thus all Lemmings are saved, and all skills are used up.

Proof of (2). This proof argues that the above type of winning strategy is the only type which can be used.
In order to release all the Lemmings from their initial locations in gadgets, all the skills allocated for the
level must be used. Hence, no skills can be used in the wiring block. Since every variable Lemming must
climb across a bridge to exit safely, then there must be exactly one bridge covering a gap (V or V̄ ) in each
variable gadget, which can be interpreted as an assignment of the corresponding variable. Similarly, since
each clause must be exited by the clause Lemming in exactly one location, this can be interpreted as picking
a literal from each clause which is true. Since there are no spare skills, the clause Lemmings have no choice
but to proceed to entries into variable gadgets, corresponding to one of the literals in their starting clause.
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(a) (b) (c)

Figure 6: Gadgets for 1-LEMMINGS: (a) One Way (b) Wire (c) 3-split

If that literal is set to true, then the Lemming will survive, as shown above. But if that literal is false, then
there can be no bridge over the corresponding gap, and so the Lemming cannot survive. Hence for all
Lemmings to survive to the Exit, then every clause must have a literal in it which is satisfied, and so every
winning strategy can be interpreted as a satisfying assignment to the original 3SAT instance.

Combining this result with Lemma 1 shows that deciding membership of LEMMINGS is NP-Complete.

5 Hardness of Lemmings levels with a single Lemming

The above reduction is mildly unsatisfying, since it relies on placing many Lemmings in specific places at
the start of the level, which is unusual in the computer game. This inspires us to consider the problem
of 1-LEMMINGS, the subset of LEMMINGS where there is only a single Lemming. That is, levels where
lems = save = 1. We will show that deciding the solvability of these levels is also NP-Hard by a reduc-
tion from 3SAT. This effectively replaces the above proof, but the construction is more complicated, and
builds on structures and ideas introduced above. A greater amount of “wiring” is needed to complete the
construction, as well as some new gadgets.

5.1 Gadgets for 1-LEMMINGS

The main gadgets used are shown in Figure 6. The most important new piece is the one-way. We also show
small icons to represent the gadgets, these will be used to illustrate the level construction later. We assume
that only digger skills are available to be used, since this will be enforced in the reduction.

Proposition 5. If a Lemming passes through the one way gadget from M, then it will leave the gadget at O, and it
cannot enter the gadget again without dying.

Proof. The drop, illustrated by a double headed arrow, is just too far for the lemming to fall and survive.
Suppose the Lemming enters at M. Then it will reach N. If it does not dig, then it will fall down and die.
So to survive, the Lemming must become a digger at N, and so safely reach the ground. It will then exit at
O. If the lemming subsequently re-enters the one way gadget at K (or M or L), then it cannot avoid falling
down the hole that has been created at N, and so it will die. But if the Lemming never entered at M, then on
entering at K, it can safely walk across and exit at L (the Lemming could also exit at O, but this will not help
the Lemming escape). In this, we use the assumption that the only skill available to Lemmings is digging.
The construction using this gadget will ensure this.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 7: (a) Entry (b) Exit (c) Two way split (d) Stairs (e) Down Junction (f) Right Junction (g) Flipper

The second gadget is a new wire. It is basically the same as the previous wire gadget, except that it
has been increased in height to match the height of the one-way gadget. We use it to allow the Lemming
to travel downwards or horizontally, but when the Lemming is traveling horizontally it cannot exit down-
wards; similarly, when it is traveling down it cannot exit horizontally. The third gadget (Figure 6 (c)) is the
three way split. This is very similar to the clause gadget from before: once the Lemming has entered from
the right, it can only exit by choosing one of the three positions to dig through. Some further gadgets are
required: these are straightforward. The Entry (Figure 7 (a)) occurs once in any layout, and marks the initial
position of the Lemming, which must exit downwards. Similarly, the Exit (Figure 7 (b)) can also only occur
once, and must be entered from the left. Lastly, the 2-Way Split (Figure 7 (c)) is very similar to the 3-Way
split, except that it is entered from the top instead of the side.

The extra wiring pieces are also mostly straightforward. The same gadget may be used for different
purposes and so may be represented by multiple icons. The stairs (Figure 7 (d)) allow the Lemming to
ascend or descend half the height of the gadget. Additionally, if the Lemming enters from the top then it
exits to the right. A down junction (Figure 7 (e)) ensures that whether the Lemming enters from the top
or from the left, it exits from the bottom. Similarly, the right junction (Figure 7 (f)) ensures that whether
the Lemming enters from the top or the left, it exits from the right. Versions of the same gadgets exist in
“mirrored” form: a (left-right) mirror image of one of the above icons corresponds to the (left-right) mirror
image of the gadget. Lastly, the flipper requires a little extra explanation, since it requires an additional
property of the Lemmings game. The gadget includes a thin bridge (Figure 7 (g)). When the Lemming
walks towards this from the left, it can step across it, but when it turns and comes back from the right then
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it walks up the bridge. Hence, the Lemming entering from the left at the bottom leaves from the left at the
top. (Note that the same effect can be achieved by allocating just enough bridge building skills so that the
Lemming can make the bridge itself after turning around; this requires a little extra argument, so for this
presentation we give the version where the bridge is already in place).

5.2 Reduction from 3SAT

A similar approach is used as before: the main part of the reduction comes from building a wiring block
consisting of two kinds of gadgets (wires and one-ways), with gadgets allowing the Lemming to choose
a path corresponding to a satisfying assignment of the original problem (using 2-way and 3-way splitters
to make the choices), and wiring to link everything together. In this extended abstract we give a brief,
informal description of the construction.

Construction. Given a 3SAT instance with n variables and m clauses, the reduction constructs a level
of Lemmings containing a central wiring block with 4m rows, each of which containing 2n gadgets. The
Lemming traverses this grid multiple times. Initially, the Lemming passes through the grid vertically n
times. Each vertical pass gives the Lemming a choice of two routes: in the ith pass, it can choose between
column 2i+1 and 2i+2 using a 2-way split. Choosing column 2i+1 corresponds to setting the ith variable
in the instance to true, and choosing 2i + 2 sets it to false. At the bottom of each pair of columns, the two
paths are merged again using junction gadgets, and then the path is looped around the block to the top,
in order to set the i + 1st variable. After the nth variable has been set, the Lemming begins horizontal
traversals of the grid. There are 4m rows, arranged into groups of 4 consecutive rows for each clause. The
first row in each group is used to move the Lemming from the right side of the grid to the left, where it
enters a 3-way split. Each exit from the split corresponds to choosing one of the literals in the clause that
is satisfied. For the jth clause, this results in the Lemming walking across row 4j + 2 if the first literal is
chosen; 4j + 3 for the second literal; and 4j + 4 for the third. These paths are all merged on the right hand
side of the wiring block, and the Lemming is directed to row 4j + 5 for its journey to the left side again,
where it will deal with the j + 1st clause. At the end of the mth row is the exit.

To save the Lemming, and hence complete the level, the Lemming must safely get through the wiring
grid. The wiring grid is set according to the instance of 3SAT. Remember, this grid is an array of 2n by 4m
gadgets. If clause cij = vk, then location [2k + 2, 4i + j + 1] is made to be a one-way gadget else it is a wire.
If clause cij = v̄k, then location [2k + 1, 4i + j + 1] is made to be a one-way gadget else it is a wire. For
1 ≤ k ≤ 2n and for 1 ≤ i ≤ m, location [k, 4i + 1] is made to be the mirror image of a wire. To complete the
level of LEMMINGS, we allocate 3m digging skills and no other skills, and a sufficient time limit to allow
the Lemming to walk around the grid in the intended manner, and get to the exit (this is linear in the size
of the level). Observe that the size of the level is again linear in mn, and hence is polynomial in the input
size. The same example 3SAT instance as before is illustrated under this transformation in Figure 8.

Theorem 1. The constructed level of 1-LEMMINGS can be completed if and only if the corresponding instance of
3SAT is satisfiable.

Proof sketch. The proof proceeds as before, in showing that a satisfying assignment to the variables corre-
sponds to a way to save the Lemming, and that if the Lemming is saved then this corresponds to a satisfying
assignment to the 3SAT instance. The crucial part is the use of the one-way gadgets. If we set variable vk

to be true, then we pass vertically through all the one-way gadgets corresponding to literals in clauses con-
taining v̄k. This means that in the pass through any of those clauses, we cannot select v̄k as the satisfied
variable, since this path is now closed to us. A symmetric argument applies for setting vk to false. We as-
sume that any clauses containing both a variable and its complement are removed: such a clause is trivially
satisfiable in any assignment, and so does not affect the satisfiability of the original instance. So we can only
pass through rows where the one-way in that row has not been used already (observe that each row in the
wiring block contains exactly one one-way gadget). This gives a one-to-one correspondence between paths
through the block and assignments to the variables (in the full proof, we must argue that there is no way to
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avoid or circumvent the intended path). It therefore follows that the Lemming can be saved, and the level
is completable, if and only if the instance is satisfiable.

Since this reduction can be computed in time polynomial in the size of the 3SAT instance, we can con-
clude that 1-LEMMINGSis also NP-Complete.

Corollary 1. It is NP-Hard to approximate the number of Lemmings that can be saved in levels of LEMMINGS.

Suppose we could approximate the number of Lemmings saved to any factor. Then, given a level of
1-LEMMINGS, we could use this approximation to tell us whether the Lemming could be saved or not: if
the answer is non-zero, then it can be saved, while if it was zero, then it cannot be save. Hence, the answer
cannot be approximated without solving the original problem, and so it is NP-Hard to approximate.

6 Efficiently Decidable Versions of Lemmings

Given that the general game of Lemmings is NP-Hard, it is natural to ask under what restrictions is the
game more easily decidable? Under restrictions on the skills available, then the question is efficiently de-
cidable (that is, in P ).

Theorem 2. LEMMINGS with only permanent skills available is in P .

Proof. The theorem follows because a Lemming given a permanent skill cannot affect the path of any
other Lemming (unless they deploy some temporary or semi-permanent skill). Further, they cannot af-
fect the level around them. So, the level can be modeled by a directed graph where each node is a tuple
(loc, dir, climb, float). The four components represent the current location of a Lemming (loc), the direc-
tion that it is facing (dir), whether or not it is a climber (climb), and whether or not it is a floater (float).
Additionally, there is a distinguished node representing a dead Lemming, which has no outgoing edges.
The edges in the graph represent the next move made by a Lemming of that type: if a Lemming is walking
to the right, then an edge links (loc, right, climb, float) to (loc′, right, climb, float), where loc′ is the loca-
tion reached by walking to the right from loc. If there is a wall to the right, then the edge instead links to
(loc, left, climb, float) if climb is false; if climb is true, then it will link to (loc′, right, true, float) where loc′

is the location reached by climbing one unit up the wall. If a Lemming will fall too far and die (since it has
just walked off a high ledge), then an edge links that node to the “dead” node. Additionally, at each node
there are edges corresponding to giving the Lemming a new skill: for every node (loc, dir, false, float)
there is an edge to (loc, dir, true, float), representing giving a Lemming the climbing skill; and for every
node (loc, dir, climb, false), there is an edge to (loc, dir, climb, true), representing giving the climbing skill.
Note that each node in the graph has degree at most three: if no action is taken, then the next move of
the Lemming is determined; else, the Lemming can be given at most two skills, which take it to a new
node. Also observe that once a skill is given, it is never lost: the graph is partitioned into four parts, con-
sisting of nodes with the pair of values (climb, float) taking on the four different combinations of true and
false. There are edges between (false, false) and (true, false) and (false, true), and between these two
and (true, true), and all other edges (apart from those to “dead”) are internal. Lastly, note that the graph is
linear in the size of the board, since there are at most eight nodes for each location (eight nodes representing
all combinations of dir, climb and float).

To decide whether the level is solvable, we perform the following operations on the graph. First, for
each starting position, determine if there is a path to the exit which stays within the (false, false) cluster.
This is straightforward, since there is only one outgoing edge for each node in this cluster. Then remove the
Lemmings which reach the exit unaided from consideration. If the number of such Lemmings, x, surpasses
the number of Lemmings that must be saved on that level, save, then it is trivially solvable. Else, consider
the remaining Lemmings, and the two subgraphs induced by removing nodes with climb set to true, and
by removing nodes with float set to true. The two subgraphs model strategies where Lemmings are given
at most one of the climbing and floating skills. In each subgraph, for each starting position of the remaining
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Lemmings, compute which Lemmings have a path to the exit; this is straightforward to do in time poly-
nomial in the size of the graph. Let the number of Lemmings which have a path in both graphs be d, let
the number of Lemmings which have a path to the exit only in the subgraph with float set false be c, and
the number of Lemmings in the subgraph with climb false be f . Denote by C the number of climber skills
available, and by F the number of floater skills available. This leaves a set of Lemmings that cannot be
saved by being given only one skill. From this set, compute the number of Lemmings, e, which can get to
the exit if they are given both floater and climber skills. The following table defines some derived variables:

Variable Value Meaning
C ′ C −min(c, C) Climber skills remaining after saving up to c climbers
F ′ F −min(f, F ) Floater skills remaining after saving up to f floaters
d′ max(d− |C ′ − F ′|, 0) Number of Climber and Floater skills remaining after bal-

ancing the number of remaining skills.
D′ min(C ′, F ′)− dd′

2 e Number of both Climber and Floater skills remaining af-
ter saving up to d Lemmings with climber and floater
skills.

Having computed all these quantities, the level is solvable if and only if

x + min(c, C) + min(f, F ) + min(d, C ′ + F ′) + min(e,D′) ≥ save

Each term represents the number of Lemmings saved by, respectively, no intervention, giving climber skills,
giving floater skills, giving either climber or floater skills, and giving both climber and floater skills. All of
these quantities can be computed in time polynomial in the size of the input, hence this restricted version
of Lemmings is decidable in polynomial time.

It is worth noting that although levels of Lemmings with only floaters and climbers do exist, they tend
to be early, “training levels” in the games. 8 It remains open to consider other restrictions based on the
available skills.

7 Prior Work

There has been some academic study of the game of Lemmings in the past. One notable example is an un-
published report by John McCarthy [McC94]. There, he proposes that the game should be studied as a new
“drosophila for Artificial Intelligence”. That is, solving levels of Lemmings should be used as a challenge
for Artificial Intelligence systems. This comes from the complexity in the game, combined with the pre-
dictability (for most purposes, the response of the game is completely deterministic and hence completely
predictable). The results in this paper put this in an interesting context: the fact that deciding whether a
level is completable is NP-Complete suggests that it will be a big challenge for any system to guarantee to
solve any level. Any system claiming to be able to solve arbitrary Lemmings levels must be able to solve
arbitrary NP-Complete problems, and consequently is likely to take worst case time exponential in the size
of its input.

Other games have received more attention. Most related to this paper is the study of the game Tetris [DHLN03],
which showed that the game was NP-Complete by transformation from 3-Partition. Other computer games
that have been studied include Minesweeper [Kay00], Reflections [Kem], Sokoban [DZ99, Cul98, DH01],
and Lunar Lockout [HLH03]9. Mostly, these show that the games considered are NP-Hard or NP-Complete;
in some cases they are also shown to be PSPACE Complete. For more details of this area, see the survey by
Demaine [Dem01].

8One exception is the level of Lemtris, which occurs late in the game of Lemmings Revolution. Here Lemmings emerge from one
of four locations, and face a perilous drop if they are not given the floater skills. It is interesting to note that although the game of
Tetris is known to be NP-Complete [DHLN03], this particular level is trivially possible.

9 Play online at http://www.johnrausch.com/PuzzleWorld/app/lunar_lockout/lunar_lockout.htm
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In addition to generalizing the games to allow for arbitrarily large game boards, certain other general-
izations are necessary to prove hardness of some of the above—Tetris requires all pieces to be specified in
advance, MineSweeper is for a decision problem that does not occur naturally in the game, Lunar Lock-
out requires a new type of game piece which is not permitted to move. In this paper, only constructions
permitted in the regular game of Lemmings have been used, with no additions or restrictions, to answer a
question that many players ask themselves when confronted with a new level.

Although in the spirit of puzzle games like Sokoban and Lunar Lockout, Lemmings has a somewhat
different flavor, since there are (multiple) independently moving objects to be concerned with. In some
ways, this made the first reduction a little simpler, since it is easier to set up a correspondence between
n objects in the game and n objects in the problem to be reduced from. But there was extra challenge in
ensuring that Lemmings stick to their assigned roles, and do not interact with each other in unintended
ways, and in showing that the game was still hard with only one Lemming.

8 Conclusions

A natural extension of this work is to consider other popular computer games and to characterize their
computational complexity. But remaining with Lemmings, there are several extensions and variations that
remain to be studied completely:

There have been several sequels to Lemmings, most of which have sought to improve on the relative
simplicity of the original by adding many and varied different traps, skills, and objects in the levels. Still, so
long as the key skills and types of material are available, then we can still construct transformed instances
of 3SAT, and show that the game is NP-Complete.

One can imagine variations in the rules which would require a new proof. For example, consider Lem-
mings played under strong gravity: here, Lemmings cannot increase their vertical position, but can only
walk along horizontally or fall downwards (then builders would build horizontally, say). In this scenario,
the game can still be shown to be NP-Complete in the general case, by some small modifications of the
gadgets used. Such a transformation could serve as the template for hardness proofs for other games, such
as those based on directing inanimate objects which move under gravity and momentum only (typically
marbles) towards a collection point. It is not clear if the same holds for a single object (1-LEMMINGS un-
der heavy gravity). Another restriction would be to consider a one-dimensional version of the game. It
seems intuitive that such a restriction would be tractable, but this depends on how the rules are applied
in one-dimension, since there is no immediate natural version. The complexity of the game under other
restrictions as to the nature of skills available or the number of Lemmings remains open. It also remains a
possibility that LEMMINGS could be shown to be P-Space complete, encoding stored bits using the presence
or absence of bridges in the level. In this version it may be necessary to allow an unbounded quantity of
certain skills, such as builders and bashers.

Acknowledgments

I owe thanks to Mike Paterson for a discussion during which we formulated the construction for showing
that 1-LEMMINGS NP-Hard. Martin Demaine suggested looking for efficiently decidable versions of the
problem. I would especially like to thank my family, for the many times when as a teenager my dinner got
cold as I struggled to complete a level of Lemmings. I can now claim that this was done in the name of
research and scientific discovery.

References

[Cul98] J. Culberson. Sokoban is PSPACE-complete. In Proceedings of the International Conference on Fun
with Algorithms (FUN-98), pages 65–76, 1998.

15



[Dem01] E. D. Demaine. Playing games with algorithms: algorithmic combinatorial game theory. In
Mathematical Foundations of Computer Science (MFCS), volume 2136 of LNCS, pages 18–32, 2001.

[DH01] E. D. Demaine and M. Hoffmann. Pushing blocks is np-complete for noncrossing solution
paths. In Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG), pages
65–68, 2001.

[DHLN03] E. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to approximate. In
COCOON: Annual International Conference on Computing and Combinatorics, 2003.

[DZ99] D. Dor and U. Zwick. SOKOBAN and other motion planning problems. CGTA: Computational
Geometry: Theory and Applications, 13, 1999.

[HLH03] J. R. Hartline and R. Libeskind-Hadas. The computational complexity of motion planning.
SIAM Review, 45(3):543–557, 2003.

[Kay00] R. W. Kaye. Minesweeper is NP-complete. Mathematical Intelligencer, 2000.

[Kem] D. Kempe. On the complexity of the reflections game. http://www.cs.washington.edu/
homes/kempe/publications/reflections.pdf .

[McC94] J. McCarthy. Partial formalizations and the lemmings game, 1994.

16

http://www.cs.washington.edu/homes/kempe/publications/reflections.pdf
http://www.cs.washington.edu/homes/kempe/publications/reflections.pdf

	Introduction
	The Game
	The Decision Problem
	Lemmings NP

	Lemmings is NP-Hard
	Construction of the level
	Proof

	Hardness of Lemmings levels with a single Lemming
	Gadgets for 1-Lemmings
	Reduction from 3Sat

	Efficiently Decidable Versions of Lemmings
	Prior Work
	Conclusions

