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Wei-Ning Chen Ayfer Özgür Graham Cormode Akash Bharadwaj
Stanford University Stanford University Meta AI Meta AI

Abstract

We consider the federated frequency estimation
problem, where each user holds a private item Xi

from a size-d domain and a server aims to esti-
mate the empirical frequency (i.e., histogram) of
n items with n ≪ d. Without any security and
privacy considerations, each user can communi-
cate their item to the server by using log d bits.
A naive application of secure aggregation proto-
cols would, however, require d log n bits per user.
Can we reduce the communication needed for se-
cure aggregation, and does security come with a
fundamental cost in communication?

In this paper, we develop an information-
theoretic model for secure aggregation that al-
lows us to characterize the fundamental cost of
security and privacy in terms of communica-
tion. We show that with security (and with-
out privacy) Ω (n log d) bits per user are neces-
sary and sufficient to allow the server to compute
the frequency distribution. This is significantly
smaller than the d log n bits per user needed by
the naive scheme, but significantly higher than
the log d bits per user needed without security. To
achieve differential privacy, we construct a lin-
ear scheme based on a noisy sketch that locally
perturbs the data and does not require a trusted
server (a.k.a. distributed differential privacy).
We analyze this scheme under ℓ2 and ℓ∞ loss.
By using our information-theoretic framework,
we show that the scheme achieves the optimal
accuracy-privacy trade-off with optimal commu-
nication cost, while matching the performance in
the centralized case where data is stored in the
central server.
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1 INTRODUCTION

Modern data is increasingly born at the edge and can carry
sensitive user information. To make efficient use of this
data while protecting individual information from being re-
vealed to the public or service providers, in recent years
there has been a strong desire for data science methods that
allow servers to collect population-level information from
a set of users without knowing each individual value. Con-
sider, for instance, frequency estimation which serves as a
fundamental building block for many analytics tasks. Each
user holds an item Xi from a size-d domain X , and the
server aims to learn the empirical frequency (i.e., the his-
togram) of all items. Can the server learn the empirical
frequency distribution of the items without learning each
individual’s item?

Recently, distributed protocols based on multi-party
computation (MPC) such as secure aggregation
(SecAgg) (Bonawitz et al., 2016) have emerged as a
powerful tool to securely aggregate population-level infor-
mation from a set of users. In particular, SecAgg allows
a single server to compute the population sum (and hence
also the average) of local variables (often vectors), while
also ensuring no additional information, other than the
sum, is released to the server or other participating entities.
This can be achieved, for example, by having users apply
additive masks on their local vectors which cancel out
upon addition at the server. SecAgg is widely used within
protocols for secure federated learning and secure statistics
gathering, which both rely on vector summation.

A straightforward way to use SecAgg for the empirical fre-
quency estimation problem above is to have each user rep-
resent their item Xi as a d-dimensional one-hot vector (i.e.,
a vector with a single 1 in the Xi-th coordinate and zero
otherwise), so that the sum of all one-hot vectors (which
is revealed to the server by SecAgg) gives the desired his-
togram. However, this requires d log n bits of communica-
tion per user since each user has to communicate a masked
vector of dimension d (with each entry taking values in a
finite field of size n). This is a drastic increase from the
log d bits per user needed to communicate each item in the
absence of any security considerations.
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Can we reduce the communication cost of secure aggrega-
tion, and does security come with a fundamental cost in
communication? This is the main question we investigate
in this paper. We show:

• The communication cost for secure frequency estima-
tion can be reduced from O(d log n) to O(n log d)
when n ≪ d. This is the relevant regime in
many real-world applications (e.g., location track-
ing (Bagdasaryan et al., 2021), language modeling,
web-browsing, etc.) where d can be very large com-
pared to the number of participating users n (even in
cross-device FL/FA settings) and computational con-
straints limit the number of users that can participate
in each SecAgg round.

• Complementarily, any aggregation protocol that is
information-theoretically secure needs Ω(n log d) bits
per user to perfectly recover the histogram. To show
this we develop an information-theoretic model for se-
cure aggregation and prove a lower bound on the com-
munication cost of any secure aggregation protocol.

This reveals that while the communication cost of secure
frequency estimation can be reduced with more carefully
designed schemes (e.g., we show that one can formulate it
as an ℓ1 constrained integer linear inverse problem), there is
a fundamental price to computing the histogram securely:
in the absence of any security considerations, each user
needs log d bits, and hence the total communication cost for
all users is n log d; with security, each user individually in-
curs the n log d bits communication cost (i.e., Θ(n2 log d)
in total).

Secure aggregation alone does not provide any provable
differential privacy (DP) guarantees (Dwork et al., 2006b).
Sensitive information may still be revealed from the aggre-
gated population statistics, causing potential privacy leak-
age. To address this issue, a common approach is to perturb
the aggregated information by adding noise before passing
it to downstream analytic tasks. With a privacy require-
ment, the empirical frequency can be estimated only ap-
proximately, with an amount of distortion that depends on
the privacy level, number of participating users, and the
loss function. This distortion due to DP also allows for
some ‘slack’ in the secure aggregation framework – as long
as secure aggregation returns an approximate sum with a
distortion small enough compared to the distortion due to
DP, we can achieve order-wise the same performance as
with only the DP constraint. This observation leads us
to study the communication cost of secure aggregation for
computing an approximate sum rather than an exact sum of
the user values. We show that computing an approximate
sum requires less communication, and the optimal commu-
nication cost can be characterized by a rate-distortion func-
tion that depends on the error and the loss function. While
security drastically increases the communication cost, we
show that privacy helps us reduce it.

Our end goal is to arrive at secure and private frequency
estimation protocols that provide differential privacy guar-
antees without putting trust in the service provider, while
at the same time achieving the optimal privacy-accuracy-
communication trade-off. To this end, we develop a user-
level DP protocol for frequency estimation, where users
compute a summary of their local data, perturb these
slightly, and employ SecAgg to simulate some of the ben-
efits of a trusted central party. The untrusted server has ac-
cess only to the aggregated reports with the aggregated per-
turbations. We show that the end-to-end privacy-accuracy
trade-off achieved by this scheme is optimal and matches
the trade-off achievable with a trusted server, i.e., in a cen-
tralized setting where the server receives the data as it is
and perturbs it after aggregation. Furthermore, by using
our aforementioned information-theoretic framework for
securely computing an approximate sum, we show that the
communication cost of this scheme is also optimal.

Our contributions. The main contributions of our paper
can be summarized as follows:

• We provide an information-theoretic view on secure ag-
gregation and analyze the amount of communication
needed for securely computing the sum either exactly
or approximately. In the case of exact recovery, we
show that the per-user communication cost is lower
bounded by the entropy of the sum; for approximate
recovery under a general loss function ℓ(·), we specify
the communication-distortion trade-offs.

• We specialize these information-theoretic lower bounds
to frequency estimation with and without differential
privacy constraints. We show that without privacy
Ω(n log d) bits per user are needed to allow the server
to learn the exact histogram. We also characterize the
minimal communication cost when differential privacy
is required.

• We introduce schemes that match the above
information-theoretic communication lower bounds.
In particular, we show that to perfectly recover the
exact histogram (without privacy), one can achieve
the optimal O(n log d) bits per-user communication
by applying SecAgg and solving a linear inverse
problem. To achieve differential privacy, we construct
a linear scheme based on noisy sketch (with proper
modifications tailored to the specific loss function)
which locally perturbs the data and does not require a
trusted server (a.k.a. user-level DP). We show that this
scheme achieves the (nearly) optimal accuracy-privacy
trade-off with optimal communication cost, while
matching the performance in the centralized case
where data is stored in the central server.

Organization. The rest of the paper is organized as fol-
lows. We discuss the related works in Section 2. In
Section 3, we introduce a general framework for SecAgg
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and the corresponding information-theoretic security it pro-
vides and proves general communication lower bounds
on computing the exact or approximate sum. In Sec-
tion 4, we apply SecAgg to the frequency estimation prob-
lem and specify the optimal communication cost. Fi-
nally, in Section 5, we incorporate the differential pri-
vacy constraint and characterize the optimal privacy-
communication-accuracy trade-offs.

Notation. Throughout this paper, we use [m] to denote the
set of {1, ...,m} for any m ∈ N. Random variables (vec-
tors) (X1, ..., Xm) are denoted as X[m] or Xm. We also
make use of Bachmann-Landau asymptotic notation, i.e.,
O, o,Ω, ω, and Θ. We use H(X) (or H(PX)) to denote
the Shannon entropy of X with base 2. Finally, for random
variables X,Y , I(X;Y ) denotes the mutual information,
i.e., I(X;Y ) ≜ EX

[
DKL

(
PY |X∥PY

)]
.

2 RELATED WORK

Secure aggregation. Single-server SecAgg is a crypto-
graphic secure multi-party computation (MPC) that enables
users to submit vector inputs, such that the server learns just
the sum of the users’ vectors. This is usually achieved via
additive masking over a finite group (Bonawitz et al., 2016;
Bell et al., 2020). The single-server setup makes SecAgg
particularly suitable for federated learning (Kairouz et al.,
2021; Agarwal et al., 2021) or federated analytics (Choi
et al., 2020b), and a recent line of works (Jahani-Nezhad
et al., 2022; So et al., 2021; Choi et al., 2020a; Kadhe et al.,
2020; Yang et al., 2021) aim to scale it up by improving
the communication or computation overhead. However,
all of the above works focus on a general setting where
the local vectors can be arbitrary; meanwhile, in the fre-
quency estimation problem with a large domain size, local
vectors are one-hot and the histogram is typically sparse.
Without secure aggregation such sparsity can be leveraged
to reduce the communication cost (Acharya et al., 2019b;
Han et al., 2018; Barnes et al., 2019; Acharya et al., 2019a,
2020, 2021b; Chen et al., 2021a,b). However, with secure
aggregation, it is not clear if and how sparsity can be lever-
aged to reduce communication, which is the main focus of
our work.

Differential Privacy. To achieve provable differential pri-
vacy guarantees SecAgg is insufficient1 as even the sum
of local model updates may still leak sensitive informa-
tion (Melis et al., 2019; Song and Shmatikov, 2019; Car-
lini et al., 2019; Shokri et al., 2017) and so differential
privacy (DP) (Dwork et al., 2006a) can be adopted. By
having the noise added locally and letting the server aggre-
gate local information via SecAgg, the DP guarantees do

1Arguably, SecAgg may be private under different notions of
privacy (e.g., Elkordy et al. (2022)). However, we only focus on
DP in this work as it is typically considered the gold standard in
both theory and practice.

not rely on users’ trust in the server. This user-level DP
(also referred to as distributed DP in the literature) frame-
work has recently been adopted in private federated learn-
ing (Agarwal et al., 2018; Kairouz et al., 2021; Agarwal
et al., 2021; Chen et al., 2022a). In this work, we use the
Poisson-binomial mechanism as a primitive (Chen et al.,
2022b) to achieve user-level DP.

We also distinguish our setup from the local DP setting
(Kasiviswanathan et al., 2011; Evfimievski et al., 2004;
Warner, 1965), where the data is perturbed on the user-
side before it is collected by the server. Local DP, which
allows for a possibly malicious server, is stronger than dis-
tributed DP, which assumes an honest-but-curious server.
Consequently, local DP suffers from worse privacy-utility
trade-offs (Duchi et al., 2013; Ye and Barg, 2017; Barnes
et al., 2020; Acharya et al., 2021a).

SecAgg can be viewed as a privacy amplification technique
that amplifies weak local DP to much stronger central DP
guarantees. Other amplification techniques are based on
different cryptographic techniques such as secure shuffling
(Erlingsson et al., 2019; Balle et al., 2019, 2020; Balcer
and Cheu, 2019) or distributed point functions (Gilboa and
Ishai, 2014). While the fundamental communication cost
for SecAgg that we show in our paper can be potentially
circumvented by these methods, these techniques either re-
quire the existence of a trusted shuffler or assume multiple
servers that do not collude.

Private frequency estimation and heavy hitters. Pri-
vate frequency estimation, a.k.a. histogram estimation, is
a canonical task that has been heavily studied in the DP lit-
erature (Dwork et al., 2006b). When subject to ℓ∞ loss,
it is the same as the heavy hitter problem. Under the cen-
tralized setting, typical techniques for releasing a private
histogram include the addition of noise (and thresholding
the counts) (Dwork et al., 2006b; Ghosh et al., 2012; Ko-
rolova et al., 2009; Bun and Steinke, 2016; Balcer and Vad-
han, 2017) or sampling-and-thresholding (Zhu et al., 2020;
Cormode and Bharadwaj, 2022). The private heavy hit-
ter problem has also been heavily studied under the local
or multiparty DP model (Bassily and Smith, 2015; Bass-
ily et al., 2017; Bun et al., 2018, 2019; Huang et al., 2022)
(which can also be used to obtain a central DP guarantee
when combined with a secure shuffling (Erlingsson et al.,
2019; Cheu et al., 2019; Ghazi et al., 2021; Niu et al., 2011;
Girgis et al., 2021; Luo et al., 2022)). Our work, however,
is under the user-level DP model, under which most previ-
ous techniques cannot be directly applied. Our privatiza-
tion technique makes use of noisy count-sketch, which is
close to the work of Choi et al. (2020b), in which a gen-
eral distributed noisy sketch framework is analyzed. In this
work, we use a similar technique to characterize the ex-
act communication cost and show that a noisy sketch can
achieve the communication lower bound.
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Figure 1: A framework for SecAgg (illustrated for the case
without dropouts).

The private frequency estimation task can also be related to
private set union (Frikken, 2007) or set operations (Kissner
and Song, 2005), where the goal is to discover the union of
the supports of the users’ vectors. Though one can try to
first estimate the support of the frequency vector and then
its distribution over the support via a two-step approach, we
note that the resulting accuracy will be highly sub-optimal.

3 SECURE AGGREGATION

In this section, we formulate a general framework for se-
cure aggregation with a single server and n users. As-
sume each user i ∈ [n] holds local information (as a vec-
tor) Xi ∈ X , and the server aims to compute the sum
µ(X1, X2, ..., Xn) ≜

∑
i∈[n] Xi. During the aggregation,

up to D clients may drop out, and the secure aggregation
protocol should still be able to recover the sum of the re-
maining clients. In general, an aggregation protocol con-
sists of encoding functions gi, i ∈ [n] at the users and an
aggregation function f at the server such that:

1. Each user encodes their local information Xi as Yi =
gi(Xi; θi), where θi is randomness available at the i’th
user which is independent of Xi but may depend on
other θi′ for i′ ∈ [n] \ i.

2. The server observes Yi for i ∈ [n] \ D, i.e., the mes-
sages of the available users. If D = ∅, i.e. there are no
dropouts, it estimates the sum µ(Xn) by a (determinis-
tic) function f (Y n).

3. If D ≠ ∅, the server invokes a second round of commu-
nication with the surviving clients to recover the masks
of the dropout users. In this round, the server collects
h
(
θ[n],D

)
, where h(·) is a general function of local se-

crets θ[n]. Using the information it collects over the two
rounds, Y[n]\D and h

(
θ[n],D

)
, the server estimates the

sum of the surving clients µ
(
X[n]\D

)
.

Security constraints: We call the aggregation protocol
that can tolerate D drop-outs secure, if it satisfies the fol-
lowing two conditions on mutual information for any dis-
tribution PXn imposed on the user data:

∀D ⊆ [n], I
(
Y[n]\D, h

(
θ[n],D

)
;X[n]\D

∣∣µ (X[n]\D
))

= 0,
(S1)

∀|D| > D, I
(
Y[n]\D, h

(
θ[n],D

)
;X[n]\D

)
= 0. (S2)

(S1) implies that X[n]\D − µ
(
X[n]\D

)
− (Y[n], h) forms a

Markov chain, and hence given µ
(
X[n]\D

)
the server can-

not deduce any further information about X[n]\D from the
information it gathers over the two stages of the scheme,
Y[n]\D and h

(
θ[n],D

)
; (S2) states that without a sufficient

number of users participating (e.g., when |D| ≥ D), the
server cannot learn any information about the user data.

Note that the same framework can be used to include col-
luding users by allowing h(·) to contain information about
both the masks θD and the information XD of the users in
D, i.e. h

(
θ[n], XD,D

)
. Security for the remaining users is

ensured with the same constraints (S1) and (S2).

The two security requirements above are satisfied by most
practical secure aggregation protocols such as Bonawitz
et al. (2016) and Bell et al. (2020). In the next section,
we show that these security requirements come at a funda-
mental and significant communication cost.

Correctness constraints: In the absence of any privacy
considerations, we impose the following correctness re-
quirement on the protocol, which ensures that it always
outputs the correct sum:

∀|D| ≤ D, P
{
f
(
Y[n]\D, h

(
θ[n],D

))
= µ

(
X[n]\D

)}
= 1.

(C1)
We are also interested in the case where the server recov-
ers the sum approximately under a certain loss function
(this is the relevant setting under differential privacy con-
straints). Let ℓ(·, ·) be a loss function defined on the domain
of µ (Xn) =

∑n
i=1 Xi. We refer to the following approxi-

mate recovery criterion as the β-distortion criterion:

∀|D| ≤ D, E
[
ℓ
(
f
(
Y[n]\D, h

(
θ[n],D

))
, µ
(
X[n]\D

))]
≤ β.

(C1′)
Note that under this criterion the server recovers the sum
with distortion β under the loss function ℓ.

Communication cost: The communication cost of an ag-
gregation protocol for user i is given by maxPXn H(Yi)
(i.e., the worst-case entropy for any possible joint distribu-
tions over the local data). This is the (maximum over the
choice of Xn) number of bits node i needs on average to
communicate Yi using an optimal compression scheme.

3.1 Communication Lower Bounds

Next, we present general communication lower bounds on
estimating the sum of n random variables X[n] (where we
do not make any assumptions on the domain of Xi) under
the security constraints (S1) and (S2).

Lemma 3.1 (Lower bound for perfect recovery) Let
D ⊂ [n] be the set of dropout clients, such that |D| ≤ D
for some D ≤ n

2 . Under the correctness constraint (C1)
and security constraints (S1) and (S2) on the protocol, it
holds that for all i ∈ [n]\D, H(Yi) ≥ H

(∑
i∈[n]\D Xi

)
,
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where H(·) is the Shannon entropy.

Note that H
(∑

i∈[n]\D Xi

)
quantifies the information the

server is able to learn about the user data. The lemma states
that in a secure protocol, the entropy of each individual
message should be at least as large the total information
communicated to the server. In the following lemma, we
characterize how this lower bound is modified when the
server needs to recover the sum only approximately.

Lemma 3.2 Let n′ ≜ n−|D|. Let ℓ(·, ·) be a loss function

defined on the domain of µ
(
Xn′

)
=
∑

i∈[n]\D Xi. Under

the β-approximate recovery criterion (C1′) and the security
constraints (S1) and (S2), it holds that

H(Yi) ≥ R(β), for all i ∈ [n],

where R(β) is the solution of the following rate-distortion
problem:

R (β) ≜

min I
(
Y n′

;µ
(
Xn′

))
s.t. minµ̂ E

[
ℓ
(
µ̂
(
Y n′

)
, µ

(
Xn′

))]
≤ β


(1)

where the first minimization is taken over all conditional
probability PY n′ |µ(Xn′).

Lemma 3.2 suggests that under the β-approximate recovery
criterion, the communication load of a secure aggregation
protocol is lower-bounded by R(β) per user. In Section 5,
we explicitly characterize R(β) for the frequency estima-
tion problem.

4 SECURE FREQUENCY ESTIMATION

In this section, we formally define the frequency estima-
tion problem with security constraints (S1) and (S2) and
study the optimal communication cost. Assume each user
i holds an item Xi in a size d domain X and the server
aims to estimate the histogram of the n items. Let Xi ∈
X ≜ {e1, ..., ed} ∈ {0, 1}d, i.e., each item is expressed as
a one-hot vector. Note that this is without loss of generality
since the encoding functions gi at the users can be arbi-
trary. Then, the histogram of the n items can be expressed
as µ (Xn) ≜

∑
i∈[n] Xi ∈ [n]d. We mainly focus on the

high-dimensional regime where d ≫ n, and our goal is to
characterize the communication needed to securely com-
pute µ(Xn).

To this end, we first apply the (general) lower bound de-
rived in Section 3.1 with Xi ∈ {e1, e2, ..., ed}. For simplic-
ity, we present our results without dropouts (i.e., D = ∅),
but extending to the |D| > 0 case is immediate. Our lower
bound is obtained by imposing a worst-case prior distribu-
tion on Xn we arrive at the following corollary:

Corollary 4.1 Let Xi ∈ {e1, ..., ed} for i ∈ [n]. Under
the same set of constraints as in Lemma 3.1, there exists a
worst-case prior distribution πXn such that

H(Yi) ≥ H (
∑n

i=1 Xi) = Ω (n log d) , (2)

where the entropy H (
∑n

i=1 Xi) is computed with respect
to Xn ∼ πXn .

In the rest of this section, we outline a communication-
efficient secure frequency estimation scheme based on
solving a linear inverse problem, and the resulting per-user
communication cost matches the lower bound in the corol-
lary. We state this result, together with the lower bound in
Corollary 4.1, as our main theorem:

Theorem 4.1 To securely (i.e., under (S1) and (S2)) and
correctly (i.e., under (C1)) compute the histogram from n
users, it is both sufficient and necessary for each user to
send Θ(n log d) bits to the server.

4.1 Reducing Communication via Sparse Recovery

In this section, we propose a scheme that shows that the
communication cost can be reduced to the information-
theoretic Ω (n log d) bits lower bound. Our scheme de-
pends on two main ingredients: (1) a specific construction
of a secure aggregation protocol, often called SecAgg, due
to Bonawitz et al. (2016), and (2) a linear binary compres-
sion scheme based on random coding. For simplicity, we
describe our schemes for the case of no dropouts, but our
schemes can be readily extended to handle dropouts or col-
luding users since they are based on SecAgg (which is de-
signed to tolerate dropouts/colluding users).

In a nutshell, the encoding steps of SecAgg (Bonawitz
et al., 2016) consist of (i) mapping Xi into an element of a
finite group (where, without loss of generality, we assume
the group is Zm

M for some m,M ∈ N), and then (ii) adding
a random mask θi ∈ Zm

M so that Yi = Aenc(Xi) + θi.
The mask θi has uniform marginal density, is indepen-
dent of Xn, and satisfies

∑
i∈[n] θi = 0. Upon receipt

of Y n, the server computes the sum of Y n and decodes it
via Adec (

∑
i Aenc(Xi)). The goal is to design mappings

(Aenc,Adec), so that

• the outcome correctly recovers µ (Xn), i.e.,
Adec (

∑
i Aenc(Xi)) =

∑n
i=1 Xi;

• the per-user communication cost m logM is mini-
mized.

Due to the linearity of SecAgg (i.e., the server obtains the
sum of Aenc), Aenc is usually constructed via a linear map-
ping, so that Aenc(Xi) ≜ S ·Xi for some S ∈ (ZM )

m×d.
In this case, the sum of the encodings is the same as the
encoding of the sum, i.e.,∑

i Aenc (Xi) = Aenc (
∑

i Xi) = Sµ (Xn) . (3)
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To recover µ from Sµ, the server solves a linear inverse
problem, which has a unique solution only if S is “invert-
ible” for all possible µ’s. For example, a naive choice of S
can be the identity mapping Id, which encodes each Xi as a
one-hot vector. In this case, the size of the finite group Zm

M

is (M,m) = (n, d), and the communication complexity is
d log n bits. This is far from the lower bound Ω (n log d)
when n ≪ d.

Can we design a better embedding matrix S with smaller
range (i.e., with smaller (M,m)) than the naive choice Id
so that y = Sµ is solvable? Specifically, define Hn to
be the collection of all possible n-histogram, i.e., Hn ≜{
µ ∈ Zd

+

∣∣∥µ∥1 = n
}
. Our goal is to show that there ex-

ists an S ∈ {0, 1}m×d with m = O (n log d/ log n), such
that y = Sµ is solvable for all µ ∈ Hn. Using such S as
our local embedding, the resulting communication cost be-
comes O(n log d) and hence matches the lower bound. We
summarize this in the following theorem

Theorem 4.2 Let Hn be the collection of all valid n-
histograms formally defined as above. Then there exists an
embedding matrix S ∈ {0, 1}m×d with m = O

(
n log d
logn

)
,

such that

∀µ1, µ2 ∈ Hn, µ1 ̸= µ2 =⇒ Sµ1 ̸= Sµ2. (4)

Theorem 4.2 can be viewed as a generalization of classical
(non-adaptive) Quantative Group Testing (QGT) (Bshouty,
2009; Wang et al., 2016; Scarlett and Cevher, 2017; Geb-
hard et al., 2019), in which the linear inverse problem
is defined over the ℓ1 constrained binary vectors Gn ≜{
ν ∈ {0, 1}d

∣∣ ∥ν∥0 = n
}

. To prove the existence of such
S, we follow the idea of Wang et al. (2016) by constructing
S in a probabilistic way, i.e., generating each element of
S as an independent Bern(1/2) random variable. We then
show that as long as m = Ω(n log d/ log n), (4) holds with
high probability, hence concluding the existence of S. One
key step that generalizes the result from classical QGT is
an application of Sperner’s theorem (Sperner, 1928; Lubell,
1966), which may be of independent interest. The proof of
Theorem 5.1 can be found in Appendix D.1.

Comparison to compressed sensing. Note that as the
set of n-histograms is a subset of n-sparse vectors in
Rd, it may be tempting to use standard sparse recovery
techniques such as compressed sensing (Donoho, 2006a,b)
(e.g., with the classical Rademacher ensemble, see (Wain-
wright, 2019, Chapter 7)). This can allow us to reduce
the dimensionality from d to m = O(n log d). However,
each coordinate of the embedded vector can range from
−n to n (using the Rademacher ensemble), and requires
O(log n) bits to represent it and the total communication
cost is O(n log d · log n) leading to an extra log n factor.
Theorem 4.2 is necessary in order to obtain a information-
theoretically optimal solution.

On the other hand, the scheme proposed in the proof of
Theorem 4.2, though optimal in terms of communication
efficiency, is computationally infeasible. It requires ex-
haustively scanning over Hn to find the unique consistent
histogram µ∗, and hence the computation cost is Ω (dn).
It remains open if one can design computationally efficient
schemes (e.g., a scheme with computational cost poly(n, d)
or ideally poly(n, log d)) that achieves the best O(n log d)
communication cost.

5 SECURE AND PRIVATE FREQUENCY
ESTIMATION

Secure aggregation alone does not provide any differential
privacy guarantees. In this section, we study the private
frequency estimation problem, in which, apart from secu-
rity constraints (S1) and (S2), we also impose a privacy
constraint on our protocol. Our goal is to characterize the
communication required for the optimal accuracy-privacy
tradeoff. We first state the definition of differential pri-
vacy (Dwork et al., 2006b).

Definition 5.1 (Differential Privacy (DP)) For ε, δ ≥ 0,
a randomized mechanism M satisfies (ε, δ)-DP if for all
neighboring datasets D,D′ and all S in the range of M ,
we have that

P (M(D) ∈ S) ≤ eεP (M(D′) ∈ S) + δ,

where D = (X1, ..., Xn) and D′ = (X1, ..., X
′
i, ..., Xn)

are neighboring pairs that can be obtained from each other
by adding or removing all the records that belong to a par-
ticular user.

In our frequency estimation setting (see Figure 1), DP can
be achieved in two different ways:

• Central-level DP criterion: f(Y n) is (ε, δ)-DP.

• User-level DP criterion: (Y1, . . . , Yn) is (ε, δ)-DP.

The central DP criterion requires the server to apply a DP
mechanism to its computation to obtain a privatized esti-
mate f(Y n), and hence puts trust in the service provider.
The user-level DP criterion removes the need for a trusted
server as noise is added to each message before it is sent to
the server. By the data processing property of DP, the latter
is a stronger notion and implies the former.

In this section, we provide a secure and private frequency
estimation scheme that satisfies the user-level DP criterion
above in addition to (S1) and (S2). The scheme consists of
local perturbations, where local data is privatized by local
randomizers, and secure aggregation, where the server ag-
gregates the noisy sum via SecAgg. The next lemma states
that we can achieve user-level DP if the (locally privatized)
noisy sum is DP and the aggregation protocol satisfies the
security condition (S1). This fact has been implicitly used
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in previous distributed DP works, dating all the way back
to Dwork et al. (2006a). We provide an explicit statement
in the following lemma.

Lemma 5.1 Let Mi be the local randomizer at user i ∈
[n] such that µ̂ =

∑
i Mi(Xi) is (ε, δ)-DP. Let Yi be the

message sent by client i in the secure aggregation pro-
tocol with input Mi(Xi) (i.e., Yi = gi (Mi; θi) in Fig-
ure 1). Then as long as the security constraint (S1) holds,
(Y1, ..., Yn) satisfies (ε, δ)-DP.

Lemma 5.1 implies that with secure aggregation, we only
need to ensure that the sum of locally randomized messages
Mi’s are DP (as opposed to requiring (M1, ...,Mn) to
be jointly DP). This not only simplifies the construction of
Mi’s, but also significantly reduces the amount of pertur-
bation needed.

In the rest of this section, we characterize the accuracy-
privacy trade-off achieved by this scheme as well as its
per-user communication cost in Theorem 5.1. Since this
scheme satisfies (ε, δ)-user-level DP, it also satisfies the
weaker (ε, δ)-central DP criterion. Moreover, the accuracy-
privacy trade-off achieved by this scheme is (nearly) opti-
mal in the sense that it (nearly) matches the best trade-off
achievable by any scheme satisfying the central DP crite-
rion (Balcer and Vadhan, 2017). Since our scheme is de-
signed to satisfy the stronger user-level DP criterion, this
means that we can achieve the optimal privacy-accuracy
trade-off while removing the need for a trusted server.
We show that the communication cost is also optimal by
proving a lower bound on the communication cost of any
scheme that achieves the optimal privacy-accuracy trade-
off while satisfying (S1) and (S2). In other words, any
secure frequency estimation scheme requires at least as
many bits to achieve the optimal privacy-accuracy trade-
off. This establishes the optimality of our scheme in
terms of communication cost. Finally, we remark that al-
though we present bounds in terms of standard DP (Defi-
nition 5.1), our scheme also satisfies Rényi differential pri-
vacy (Mironov, 2017) (RDP), which allows for tighter pri-
vacy accounting when applying a private mechanism itera-
tively. We defer the details to Appendix A.

We next state the main results of this section starting with
our achievability result.

Theorem 5.1 (Private frequency estimation) The
scheme presented in Section 5.1 (see also Algorithm 1)
satisfies (S1), (S2) and an (ε, δ)-user-level DP criterion
(and also

((
α, ε/ log

(
1
δ

)))
-RDP), while achieving

• ℓ∞ error E [∥µ̂− µ (Xn)∥∞] = O

(√
log d log(1/δ)

ε

)
;

• ℓ1 error O
(

n
√

log(d) log(1/δ)

ε

)
;

• ℓ2 error E
[
∥µ̂− µ (Xn)∥22

]
= O

(
n log d log(1/δ)

ε2

)
;

and uses Õ
(
nmin

(
ε
√
log d/ log(1/δ), log d

))
bits

(where in Õ we hide dependency on log n and log log d
terms).

The formal statement of Theorem 5.1 and the proof are
provided in Appendix A (see Theorem A.3). Note that
the (ε, δ)-user-level DP guarantee in the theorem implies
a (ε, δ)-central DP guarantee. We contrast this with the op-
timal accuracy-privacy tradeoff achievable in the central-
ized case, i.e., when the only requirement imposed on the
scheme is an (ε, δ)-central DP criterion. For the ℓ2 and ℓ∞
loss (i.e., setting the loss function in (C1′) to be ∥·∥2 or
∥·∥∞ respectively), the minimax error is well-known (see,
for instance, (Hardt and Talwar, 2010; Balcer and Vadhan,
2017)) as we state in the following lemma:

Lemma 5.2 (Minimax error under central DP) Under a
(ε, δ)-central DP, the minimax error for frequency estima-
tion, defined as

min
M(·) satisfies (ε, δ)-central DP

max
Xn

E [ℓ (M (Xn) , µ (Xn))] ,

is equal to

• Θ
(

min(log d,log(1/δ))
ε

)
under the ℓ∞ loss;

• O
(

n log d log(1/δ)
ε2

)
under the ℓ22 loss;

We note that the the ℓ∞ accuracy results in The-
orem 5.1 matches that in Lemma 5.2 up to a

max

(√
log d

log(1/δ) ,
√

log(1/δ)
log d

)
factor, while the scheme in

Theorem 5.1 satisfies the additional (S1), (S2) and the
stronger user-level-DP constraints. This establishes the op-
timality of our scheme from an accuracy-privacy trade-off
perspective. We also observe that the communication cost
in Theorem 5.1 decreases with ε when ε ≤ log d, meaning
that we can compress more aggressively with more strin-
gent privacy constraint. This behavior aligns with the con-
clusions of Chen et al. (2022a) (under a federated learning
setting) and Chen et al. (2020) (under a local DP model).
We next show that the communication cost in Theorem 5.1
is optimal under the ℓ∞ loss (up to a poly (log n, log log d)
factor).

Corollary 5.1 Any (ε, δ)-central DP scheme that satisfies
(S1) and (S2) such that:

• E [∥µ̂− µ (Xn)∥∞] = O

(√
log d log(1/δ)

ε

)
requires

Ω
(
nmin

(
ε
√

log d/ log(1/δ), log d
))

per-user com-
munication;

• E
[
∥µ̂− µ (Xn)∥22

]
= O

(
n log d log(1/δ)

ε2

)
requires

Ω
(
nmin

(
ε

log(1/δ) , log d
))

per-user communication.
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Recall from the previous section that we need n log d bits to
securely compute the exact histogram. Corollary 5.1 char-
acterizes the reduction in communication cost when the
histogram is computed approximately due to the privacy
constraint and ε = O (log d).

We establish this result as a corollary of the following
lemma which specifies the (worst-case) asymptotic behav-
ior of R(β) (defined in (1)) under ℓ2 and ℓ∞ loss for secure
frequency estimation. Corollary 5.1 is obtained by plug-
ging in the corresponding errors for β in the lemma.

Lemma 5.3 Let R (β) be defined as in (1). When Xi ∈
{e1, ..., ed} for i ∈ [n], there is a worst-case prior distri-
bution πXn (possibly correlated for Xi’s), s.t.

• under the ℓ∞ loss , R (β) = O (n log d/β);

• under the ℓ2 loss, R (β) = O
(
n2 log d/β

)
.

Lemma 5.3 is a special case of Lemma 3.2. However, to
obtain the asymptotic scaling, we make use of Fano’s in-
equality, with carefully constructed prior distributions via
ℓ∞ and ℓ2 packing over the space of all histograms. The
proof can be found in Appendix D.5

5.1 Frequency Estimation via Noisy Sketch

Next, we present a (nearly) optimal secure and private fre-
quency estimation scheme in Algorithm 1 that uses the op-
timal communication in Corollary 5.1. We use the fol-
lowing ingredients in our scheme: (1) the specific SecAgg
implementation of Bonawitz et al. (2016) (see Section 4.1
for a brief introduction), (2) count-sketch (Charikar et al.,
2002) together with Hadamard transform, and (3) the
Poisson-binomial mechanism (Chen et al., 2022b). Fol-
lowing the idea in Section 4.1, we use the SecAgg pro-
tocol introduced by Bonawitz et al. (2016) as a primitive
and focus on designing (Aenc,Adec). Since (ε, δ)-DP in-
evitably incurs O

(
log d
ε

)
error on the estimated frequency,

it suffices to have SecAgg output an approximate sum (i.e.,
histogram) with distortion less than the DP error. This
slack allows us to reduce the communication below the
Ω (n log d) lower bound per user for computing the exact
histogram.

Count-sketch. We use count-sketch to achieve this goal.
Count-sketch is a linear compression scheme (and hence
can be represented in a matrix form S = [S⊺

1 , S
⊺
2 , ..., S

⊺
t ] ∈

{−1, 0, 1}wt×d for some w, t ∈ N, where each Sj ∈
{−1, 0, 1}w×d is generated according to an independent
hash function) that allows for trading off the estimation
error for communication cost. A count-sketch is deter-
mined by two parameters w, t ∈ N; w is the bucket size
that controls the magnitude of ℓ∞ error, and t, the num-
ber of hash functions, determines the failure probability.
To apply count-sketch in the frequency estimation problem,

Algorithm 1: Secure and private frequency estimation
Input: users’ data (one-hot) X1, ..., Xn, sketch

parameters w, t, failure probability γ, PBM
parameters L, θ.

Output: frequency estimate µ̂
Server broadcasts t i.i.d. generated sketch matrices
S1, ..., St ∈ {−1, 0, 1}w×d;

for user i ∈ [n] do
Compute t sketches S1Xi, ..., StXi;
Perform Hadamard transform on each sketch;
Apply PBM on each transformed sketch;

end
Server aggregates local noisy sketches via SecAgg,
decodes PBM, and applies inverse Hadmard
transform to obtain a noisy estimate Ŝµ;

Server unsketches Ŝµ and obtains µ̂;
return µ̂

each user computes a local sketch of its data, i.e., SXi, and
sends it to the server. Upon receiving local sketches, the
server can unsketch and obtain an estimate on µ(Xn). By
setting t = Θ(log (d/γ)), count-sketch estimates µ with
O (∥µ∥1/w) error with failure probability at most γ2.

Hadmard transform. After computing the local sketch,
each user performs the Hadamard transform to flatten each
SjXi for j ∈ [t] and i ∈ [n], i.e., computes HwSjXi,
where Hw is the (normalized) Walsh-Hadamard matrix (as-
suming w is a power of 2) satisfying the following relation:

H2n =
1√
2

[
H2n−1 , H2n−1

H2n−1 , −H2n−1

]
, and H0 =

[
1
]
.

The flattening step reduces the dynamic range of SiXj in
the sense that ∥HwSiXj∥∞ = 1√

w
∥SiXj∥∞. This con-

trols the ℓ∞-sensitivity, which facilitates the following pri-
vatization steps.

Poisson-binomial mechanism. Last, to introduce DP,
we make use of the Poisson-binomial mechanism (PBM)
(Chen et al., 2022b). In PBM, users encode their locally
flattened sketches HwSXi into parameters of binomial ran-
dom variables (and hence the sum of n users’ noisy reports
follow a Poisson-binomial distribution). The main advan-
tages of using PBM include: (1) the binomial distribution
is closed under addition, and hence it is compatible with
SecAgg; (2) it asymptotically converges to a Gaussian dis-
tribution and gives Rényi DP guarantees (which supports
tight privacy accounting); (3) it does not require modular
clipping and hence results in an unbiased estimate of µ (as
opposed to other user-level discrete DP mechanisms, such
as those of Kairouz et al. (2021); Agarwal et al. (2021)).

2Here we apply an ℓ1 point-query bound due to the ℓ1 geome-
try of µ (Xn).



Wei-Ning Chen, Ayfer Özgür, Graham Cormode, Akash Bharadwaj

Figure 2: ℓ2 loss with ε = 1. The error is computed with a
normalization (the goal is to estimate µ(Xn)

n ).

By putting these pieces together, we arrive at Algorithm 1
with privacy guarantees, estimation error, and communica-
tion cost as stated in Theorem 5.1. A more detailed version
is given in Algorithm 2 in Appendix A. In addition, in Ap-
pendix C, we show that we can improve the accuracy when
additional knowledge on the sparsity of µ(Xn) is available.

Comparing the communication cost in Theorem 5.1 and the
lower bounds in Corollary 5.1, we see that under ℓ∞ loss,
Algorithm 1 matches the lower bound up to a log n and√
log d factor, where the small sub-optimality gap is due to

the modular arithmetic used by SecAgg. Closing this gap
is left to future work.

6 EXPERIMENTS

In this section, we provide empirical results for Algo-
rithm 1, which we label as ‘Sketched PBM’ .

We compare sketched PBM with other decentralized (lo-
cal) DP mechanisms, including randomized response (RR)
(Warner, 1965; Kairouz et al., 2016) and the Hadamard re-
sponse (HR) (Acharya et al., 2019b) (which is order-wise
optimal for all ε = O (log d))

We set d = 105 and n ∈ [10K, 50K], i.e., in a regime
where d ≫ n. Under this regime, it is well-known that
local DP suffers from poor-utility (Duchi et al., 2013). We
demonstrate that our proposed sketched PBM achieves a
much better convergence rate (though admittedly at the cost
of higher communication as predicted by our theoretical
results). We also remark that the communication cost per
user of the sketched PBM is fixed in this set of experiments,
and thus the (normalized) estimation error does not strictly
decrease with n (recall that our theory suggests in order to
achieve the best performance, the communication cost has
to be increasing with n). More detailed empirical results
can be found in Appendix B.
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Jinhyun So, Başak Güler, and A Salman Avestimehr.
Turbo-aggregate: Breaking the quadratic aggregation
barrier in secure federated learning. IEEE Journal on Se-
lected Areas in Information Theory, 2(1):479–489, 2021.

Congzheng Song and Vitaly Shmatikov. Auditing data
provenance in text-generation models. In ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 196–206, 2019.

Emanuel Sperner. Ein satz über untermengen einer
endlichen menge. Mathematische Zeitschrift, 27(1):
544–548, 1928.

Martin J Wainwright. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

I-Hsiang Wang, Shao-Lun Huang, and Kuan-Yun Lee. Ex-
tracting sparse data via histogram queries. In 2016
54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 39–45. IEEE,
2016.

Stanley L Warner. Randomized response: A survey tech-
nique for eliminating evasive answer bias. Journal of the
American Statistical Association, 60(309):63–69, 1965.

Chien-Sheng Yang, Jinhyun So, Chaoyang He, Songze Li,
Qian Yu, and Salman Avestimehr. Lightsecagg: Re-
thinking secure aggregation in federated learning. arXiv
preprint arXiv:2109.14236, 2021.

M. Ye and A. Barg. Optimal schemes for discrete distribu-
tion estimation under local differential privacy. In IEEE
International Symposium on Information Theory (ISIT),
pages 759–763, 2017. doi: 10.1109/ISIT.2017.8006630.

Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng
Sun, and Wei Li. Federated heavy hitters discovery
with differential privacy. In International Conference on
Artificial Intelligence and Statistics, pages 3837–3847.
PMLR, 2020.
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A Additional Details of Section 5

In this section, we provide additional details and empirical results of our noisy sketch scheme Algorithm 1 in Section 5
and give formal proofs on its privacy and utility guarantees. As mentioned in Section 5 our goal is to design a scheme
that satisfies a stronger version of (distributed) DP, i.e., Rényi differential privacy, as it allows for tight privacy accounting.
Therefore, in this section we first provide an RDP guarantee for our scheme, and then convert the RDP guarantee to (ε, δ)-
DP using well-known conversion results such as Mironov (2017). To this end, we start by giving a brief introduction to
Rényi DP.

A.1 Rényi Differential Privacy (RDP)

A useful variant of DP is the Rényi differential privacy (RDP), which allows for tight privacy accounting when a mechanism
M is applied iteratively.

Definition A.1 (Rényi Differential Privacy (RDP)) A randomized mechanism M satisfies (α, ε)-RDP if for any two
neighboring datasets D,D′, we have that Dα

(
PM(D), PM(D′)

)
≤ ε where Dα (P,Q) is the Rényi divergence between P

and Q and is given by

Dα (P,Q) ≜
1

α
log

(
EQ

[(
P (X)

Q(X)

)α])
.

Note that one can convert an RDP guarantee to an (approximate) DP guarantee (for instance, see Mironov (2017)) but not
the other way around in general. Although we presented our bounds in Section 5 in terms of approximate DP, our proposed
schemes satisfy the RDP definition as we show next.

A.2 Details of Algorithm 1

We start by briefly recalling the details of count-sketch Charikar et al. (2002), which serves as our main compression tool
for reducing communication costs. Count-sketch can be constructed via two sets of (pairwise independent) hash functions
hi : [d] → [w] and σi : [d] → {−1,+1} for i ∈ [t]. The functions can be organized in matrix form S ∈ {−1, 0, 1}wt×d,
which can be viewed as a vertical stack of S1, ..., St ∈ {−1, 0, 1}w×d, where for i ∈ [t], (Si)j,k = σi(j) ·1{hi(j)=k}. Note
that m ≜ w · t is the embedded dimension.

In Algorithm 2, we give a more detailed description of Algorithm 1, our private frequency estimation scheme from Sec-
tion 5. We analyze the performance of Algorithm 2 in the next section.

A.3 Performance Analysis for Algorithm 2

We start by proving that Algorithm 2 satisfies the following RDP guarantee.

Theorem A.1 (RDP guarantee) As long as θ ≤ 1
4 , Algorithm 2 satisfies (α, τ(α))-RDP for all α > 1 and τ(α) such that

τ(α) ≥ C0
θ2Lα

n
· wt,

for some C0 > 0

Proof. The proof follows from (Chen et al., 2022b, Corollary 3.2). ■

Once we obtain an RDP guarantee, we cast it into an (ε, δ)-DP guarantee by using results due to Canonne et al. (2020).

Theorem A.2 ((ε, δ)-DP guarantee) Assume δ ≤ exp
(
−mθ2wt

n

)
. Then Algorithm 2 satisfies an (ε, δ) distributed DP

guarantee for all ε and δ satisfying

ε = Ω

√Lθ2wt log
(
1
δ

)
n

 .

Proof. We apply (Canonne et al., 2020) to convert the RDP guarantee in Theorem A.1.
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Algorithm 2: Secure and private frequency estimation with noisy sketch (detailed)
Input: users’ data X1, ..., Xn ⊆ {e1, ..., ed}, failure probability γ, sketch parameter w, t, PBM parameter L, θ
Output: frequency estimate µ̂

Server generates (S1, ..., St) (with t = Θ
(
log
(

d
γ

))
and w being a power of two and satisfying

w = Θ
(
min

(
n, nε

t

))
);

The server broadcasts S1, ..., St to all users;
for i ∈ [n] do

Set θ = and L =;
for j ∈ [t] do

user i computes pij = θ (Hw · Sj ·Xi) + 1/2, where Hw ∈ {−1/
√
w, 1/

√
w}w×w is the Hadamard matrix;

user i generates Yij ≜ Binom (L, pij) coordinate-wisely (so Yij ∈ [L]w);
end

end
The server aggregates (via SecAgg Bonawitz et al. (2016)) noisy reports {Yij} and computes the median

(
ˆS1µ, ..., ˆStµ

)
≜

(
1

θ
√
w

n∑
i=1

Hw ·
(
Yi1

L
− 1

2

)
, ...,

1

θ
√
w

n∑
i=1

Hw ·
(
Yit

L
− 1

2

))
.

Server unsketches by computing the median:

µ̂ = median
(
S⊺
1

ˆS1µ, ..., S
⊺
t

ˆStµ
)
.

return µ̂

Lemma A.1 (Renyi DP to approximate DP) For any α ∈ (1,∞), if

Dα (M (x)∥M (x′)) ≤ τ,

then M(·) satisfies (ε, δ)-DP for

ε ≥ ε∗ ≜ τ +
log
(
1
δ

)
+ (α− 1) log

(
1− 1

α

)
− log (α)

α− 1
.

Applying Theorem A.1 and Lemma A.1 above and plugging in τ = C0
θ2Lα
n · wt, we see that µ̂ is (ε, δ)-DP for

ε∗ = C0
θ2Lα

n
· wt+

log
(
1
δ

)
+ (α− 1) log

(
1− 1

α

)
− log (α)

α− 1

≤ C0
θ2L

n
· wt+ C0

θ2L(α− 1)

n
· wt+

log
(
1
δ

)
α− 1

(a)
= C0

θ2L

n
· wt+ 2

√
C0

Lθ2wt log
(
1
δ

)
n

(b)
= O

√Lθ2wt log
(
1
δ

)
n

 ,

where (a) holds if we pick α− 1 =
√

n log(1/δ)
θ2Lwt (i.e., such that AM-GM inequality holds with equality), and (b) holds if

log

(
1

δ

)
≥ Lθ2wt

n
⇐⇒ δ ≤ exp

(
−Lθ2wt

n

)
.

■

Finally, in the following theorem, we compute the communication cost and control the ℓ∞ and ℓ2 estimation error of our
algorithm.
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Theorem A.3 (Privacy and Utility of Algorithm 2) Let

t = log

(
d

γ

)
,

w = min

n,

 nε√
log
(

d
γ

)
log
(
1
δ

)

 ,

L =

⌈
nε2

wt log(1/δ)

⌉
+ 1,

θ = O

(
min

(
1

4
,

√
nε2

wt log(1/δ)

))
.

Let µ̂ be the output of the Algorithm 2. Then:

• µ̂ satisfies (O(ε), δ)-DP and
(
α,O

(
ε2α

log(1/δ)

))
-Rényi DP.

• The communication complexity is Õ(min
(
nε log

(
1
γ

)
, n
)
) bits per user.

• With probability at least 1− γ,

∥µ̂− µ∥∞ = max
j∈[d]

|µj − µ̂j | ≤
4n

w
+O


√
log
(

d
γ

)
log
(
1
δ

)
ε

 = O


√

log
(

d
γ

)
log
(
1
δ

)
ε

 .

• By setting µ̂j = 0 for all j ∈ [d] such that µ̂j = O

(
log( d

γ ) log
1
δ

ε

)
, the ℓ22 estimation error is bounded by

O

n log
(

d
γ

)
log
(
1
δ

)
ε2

 ,

and the ℓ1 error is bounded by

O

n

√
log
(

d
γ

)
log
(
1
δ

)
ε

 .

Proof.

Privacy guarantee. By plugging L =
⌈

nε2

wt log(1/δ)

⌉
+ 1 and θ = O

(
min

(
1
4 ,
√

nε2

wt log(1/δ)

))
into Theorem A.1 and

Theorem A.2, we immediately obtain the desired privacy guarantee.

Analysis of the communication cost. Let Zm
M be the finite group that SecAgg operates on. In Algorithm 2, client i needs

to communicate {Yij |i = 1, ..., t} to the server. Notice that each Yij ∈ [L]w, but for all j ∈ [t], each coordinate of
∑

i Yij

can be as large as nL. Therefore, we will set M = nL. Now, if w =

(
nε√

log( d
γ ) log(

1
δ )

)
≤ n, then the communication

cost for each client becomes

m log(M + 1) = m log(nL+ 1) = wt log(nL+ 1)

=
nε
√
log(d/γ)√

log (1/δ)
log

(
n

(⌈
nε2

wt log(1/δ)

⌉
+ 1

)
+ 1

)
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=
nε
√
log(d/γ)√

log (1/δ)
log

(
n

(⌈
ε√

log(d/γ) log(1/δ)

⌉
+ 1

)
+ 1

)

= Õ

(
nε
√
log(d/γ)√
log(1/δ)

)
,

where in the last equation we hide the log(n⌈ε⌉) term into Õ(·) for simplicity. On the other hand, if w = n, then

m log(M + 1) = wt log(nL+ 1)

= n log

(
d

γ

)
log

(
n

(⌈
nε2

wt log(1/δ)

⌉
+ 1

)
+ 1

)

= n log

(
d

γ

)
log

n

 ε2

log
(

d
γ

)
log(1/δ)

+ 1

+ 1


= Õ (n log(d/γ)) .

Bounding the ℓ∞ error. We apply a similar analysis of error bounds using the count-sketch. Let

µ̂(j) = S⊺
j

ˆSjµ = S⊺
j

(
1

θ
√
w

n∑
i=1

Hw ·
(
Yij

L
− 1

2

))
,

for j ∈ [t]. Define N (j) ∈ Rw be the estimation error of the j-th sketch, i.e.,

N (j) ≜ Sjµ− 1

θ
√
w

n∑
i=1

Hw ·
(
Yij

m
− 1

2

)
.

Then, for any i ∈ [d], we can write the absolute error of the j-th sketch as

µ̂
(k)
i − µi =

∑
j ̸=i

σk(j)σk(i)1{h(j)=h(i)}µj +N
(j)
hk(i)

.

Therefore, we must have

E
[∣∣∣µ̂(k)

i − µi

∣∣∣] ≤ E

∣∣∣∣∣∣
∑
j ̸=i

σk(j)σk(i)1{hk(j)=hk(i)}µj

∣∣∣∣∣∣+
∣∣∣N (j)

hk(i)

∣∣∣


(a)
≤ E

∑
j ̸=i

1{hk(j)=hk(i)}µj

+

√
E
[(

N
(j)
hk(i)

)2]
(b)
≤ n

w
+

√
E
[(

N
(j)
hk(i)

)2]
,

where (a) follows due to Jensen’s inequality and the fact that σk(·) ∈ {−1,+1}, (b) holds since hk(i) and hk(j) are
pairwise independent.

Next, we upper bound E
[(

N
(j)
hk(i)

)2]
. For notational simplicity, assume hk(i) = h ∈ [w]. Observe that

N (j) = Sjµ− 1

θ
√
w

n∑
i=1

Hw ·
(
Yij

L
− 1

2

)

= Hw

(
HwSjµ− 1

θ
√
w

n∑
i=1

(
Yij

L
− 1

2

))
,
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where the second equality is due to the fact that Hw ·Hw = Iw.

Denote

∆j ≜ HwSjµ− 1

θ
√
w

n∑
i=1

(
Yij

L
− 1

2

)
∈ Rw.

Note that HwSjµ is the input to the PBM and 1
θ
√
w

∑n
i=1

(
Yij

L − 1
2

)
is the estimate of PBM, so ∆j satisfies the following

properties (see (Chen et al., 2022b) for more details):

• ∆j(h) is independent of ∆j(h
′) for all h ̸= h′ (where ∆j(h) is the h-th coordinate of ∆j).

• E [∆j ] = 0.

• For any h ∈ [w], E
[
∆2

j (h)
]
= 1

wLθ2

∑n
i=1 Var (Yij) ≤ n

4wLθ2 .

Let Hw(h) be the h-th row of Hw. Then

E
[(

N
(j)
h

)2]
= E

[
⟨Hw(h),∆j⟩2

]
(a)
= E

[
1

w
∥∆j∥2

]
(b)
≤ n

4wLθ2
(c)
=

n

4w
O

(
wt log(1/δ)

nε2

)
= O

(
t log(1/δ)

ε

)
,

where (a) holds since each coordinate of ∆j is independent and each coordinate of Hw(h) is either 1√
w

or − 1√
w

, (b) holds
since E

[
∆2

j (h)
]
≤ n

4wLθ2 for all h ∈ [w], and (c) is because of our choice of L and θ.

Therefore, by Markov’s inequality, we have

P

∣∣∣µ̂(k)
i − µi

∣∣∣ ≥ 4n

w
+O


√
t log

(
1
δ

)
ε

 ≤ 1

4
.

Taking the median for
(
µ̂
(1)
i , ..., µ̂

(t)
i

)
to apply the Chernoff bound, we obtain

P

|µ̂i − µi| ≥
4n

w
+O


√

t log
(
1
δ

)
ε

 ≤ P


t∑

k=1

1∣∣∣µ̂(k)
i −µi

∣∣∣≥ 4n
w +O

√
t log( 1

δ )
ε


≥ t

2


≤ P

{
Binom

(
t,
1

4

)
≥ t

2

}
≤ γ

d
,

if we take t = O
(
log
(

d
γ

))
, where the last inequality is due to the Chernoff bound.

Taking the union bound over i ∈ [d], we conclude that

P

max
i∈[d]

|µ̂i − µi| ≥
4n

w
+O


√
t log

(
1
δ

)
ε

 ≤ γ.

Setting w = O

(
nε√

t log( 1
δ )

)
= O

(
nε√

log( d
γ ) log(

1
δ )

)
, we arrive at the desired result.

Bounding the ℓ2 and ℓ1 error. Since

P

max
j∈[d]

|µ̂i − µi| = O


√

t log
(
1
δ

)
ε

 ≤ γ,
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we condition on the event

E ≜

max
j∈[d]

|µ̂i − µi| = O


√
t log

(
1
δ

)
ε

 .

Under E , when thresholding out every coordinate i such that µ̂i ≤ O

(√
t log( 1

δ )
ε

)
(denoted as µ̌i), we must have

|µ̌i − µi| ≤ O

(√
t log( 1

δ )
ε

)
, if µi ̸= 0

|µ̌i − µi| = 0, if µi = 0.

Since there can be at most n coordinates such that µi ̸= 0, the ℓ22 error can be at most

d∑
i=1

(µ̌i − µi)
2 ≤ n ·

t log
(
1
δ

)
ε2

+ (d− n) · 0 = O

n log
(

d
γ

)
log
(
1
δ

)
ε2

 .

Similarly, for the ℓ1 error, we have

d∑
i=1

|µ̌i − µi| ≤ n ·

√
t log

(
1
δ

)
ε

= O

n

√
log
(

d
γ

)
log
(
1
δ

)
ε

 .

This completes the proof of Theorem A.3.

Finally, setting γ = 1
poly(n,d) , we can cast the high-probability bound in Theorem A.3 into expected bounds shown in

Theorem 5.1.

B Additional Experiments

In this section, we provide additional empirical results for Algorithm 1, which we label as ‘sketched PBM’. As in Section 6,
in the first set of experiments, we compare sketched PBM with other decentralized (local) DP mechanisms, including
randomized response (RR) (Warner, 1965; Kairouz et al., 2016) and the Hadamard response (HR) (Acharya et al., 2019b)
(which is order-wise optimal for all ε = O (log d))3. The data is generated under a (truncated) Geometric distribution (with
θ = 0.8) in Figure 3 and under a (truncated) Zipf distribution (with θ = 1.0) in Figure 4. For the (centralized) Gaussian
and the (distributed) sketched PBM mechanisms, δ is set to be 10−5. For sketched PBM, we set the parameter L = 10.

We set d = 105 and n ∈ [10k, 50k], i.e., in a regime where d ≫ n and compare the above schemes for ε ∈ {1, 5, 10}.
Under this regime, it is well-known that local DP suffers from poor utility (Duchi et al., 2013). We demonstrate that our
proposed sketched PBM mechanism achieves a much better convergence rate (though admittedly at the cost of higher
communication) both for the Gemoetric and Zipf distributions. We also remark that the per user communication cost of the
sketched PBM mechanism is fixed in this set of experiments, and thus the (normalized) estimation error does not strictly
decrease with n (recall that our theory suggests in order to achieve the best performance, the per user communication cost
has to be increasing with n). We note that in the low privacy regimes (e.g., when ε = 10), the communication budget has a
greater impact on the accuracy of sketched PBM. This suggests that in this regime the performance of the scheme is limited
by the compression error. Equivalently, the number of bits used by the scheme are below the threshold characterized by
our theory to achieve the central DP performance.

3For the local DP mechanisms, we partly use the implementation from https://github.com/zitengsun/hadamard_
response.

https://github.com/zitengsun/hadamard_response
https://github.com/zitengsun/hadamard_response
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Figure 3: ℓ∞ and ℓ2 loss with ε = {1, 5, 10}. The error is computed with a normalization (the histogram is normalized
by a factor of n, i.e., µ(Xn)

n ). The y-axis is under a log-scale. In addition, when computing the ℓ2 error, we project all
the estimated histograms into the probability simplex to further reduce the estimation error (also been adopted by Acharya
et al. (2019b)).
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Figure 4: ℓ∞ and ℓ2 loss with ε = {1, 5, 10}.
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Figure 5: ℓ∞ and ℓ2 loss with ε = [1, 15].

In the next set of experiments (Figure 5), we fix d = 105 and n = 2 · 104 and vary ε ∈ [1, 15]. We compare the ℓ2 and
ℓ∞ error from different mechanisms under the Geometric distribution and Zipf distribution. We see that the sketched PBM
mechanism significantly outperforms local DP mechanisms in high-privacy regime.
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C Sparse Private Frequency Estimation

Finally, we briefly discuss the sparse frequency estimation setting, where the true histogram is assumed to be s-sparse
∥µ (Xn)∥0 ≤ s for some s ≪ n ≪ d (i.e., Xi belongs to a size-s subset of [d]). When s is known ahead of time, the server
can generate a sketch matrix S according to s instead of n, and all the analysis carries through with n replaced by s. This
improves both the communication cost and the ℓ2 estimation error.

On the other hand, if s is unknown but we are allowed to run a protocol with multiple rounds (this may or may not be
possible in federated analytic settings where users may frequently drop out), we can first estimate s (subject to privacy and
security constraints) via a private F0 sketch (using, for example, (Choi et al., 2020b)). In the second round, we can set the
size of the count-sketch in Algorithm 1 according to ŝ. The communication cost of estimating s is negligible compared to
that of estimating µ̂, and hence we can still replace the dependency on n with s in our results.

Finally, we note that if interaction (multiple-rounds) is not allowed and s is unknown, we cannot reduce the communication
from linear in n to s. However, the thresholding trick used in the proof of Theorem 5.1 can still be applied (which does not
require knowledge of s) and hence the ℓ2 error can be reduced to O

(
s log2 d

ε2

)
.

D Omitted Proofs

D.1 Proof of Theorem 4.2

Recall that Hn ≜
{
µ ∈ Zd

+

∣∣∥µ∥1 = n
}

is the collection of all n-histograms. Then (4) is the same as

∀∆µ ∈ ∆Hn, S ·∆µ ̸= 0, (5)

where ∆Hn = Hn−Hn ≜ {µ1 − µ2|µ1, µ2 ∈ Hn, µ1 ̸= µ2}. Note that for any ∆µ ∈ ∆Hn, we must have (1) ∆µj ∈ Zd;
(2)
∑

j ∆µj = 0; and (3) ∥∆µj∥1 ≤ 2n.

To show that (5) holds when m is large enough, we construct S in the following probabilistic way:

∀i ∈ [m], j ∈ [d], Sij
i.i.d.∼ Bern(1/2).

We denote the resulting probability distribution over all possible S as Q. In addition, let si ∈ Rd be the i-th row of S, i.e.,
S = [s1, s2, ..., sm]⊺. Then, to prove (5) holds for some S, it suffices to show

PQ {∀∆µ ∈ ∆Hn, S ·∆µ = 0} < 1,

as long as m = O (n log d/ log n), where the probability is taken with respect to the randomization over S.

To this end, observe that

PQ {∀∆µ ∈ ∆Hn, S ·∆µ = 0}
(a)
≤

∑
∆µ∈∆Hn

PQ {S ·∆µ = 0} (b)
=

∑
∆µ∈∆Hn

(PQ {s1 ·∆µ = 0})m , (6)

where (a) is due to the union bound, and (b) holds since each row of S is generated i.i.d.

Additional notation. Before we proceed to upper bound PQ {s1 ·∆µ = 0}, we introduce some necessary notations. Let
∆µ+ be the positive part of ∆µ, i.e., ∆µ+

j ≜ min(∆µj , 0) for j ∈ [d]. Similarly, ∆µ−
j ≜ min(−∆µj , 0) (so we must

have ∆µ = ∆µ+ −∆µ−).

For a vector ν ∈ Zd, let ι (ν) be the multi-set containing all the non-zero values of ν. Let |ι (ν)| be the (multi-set)
cardinality of ι (ν). For instance, if ν = [0, 1, 3, 3, 2], then ι (ν) = {1, 2, 3, 3} and |ι (ν) | = | {1, 2, 3, 3} | = 4.

Finally, let sum(∆µ+) be the set of all possible partial sums of ι(∆µ+), i.e., sum(∆µ+) =
{
v ·∆µ+

∣∣v ∈ {0, 1}d
}

.
Similarly, sum(∆µ−) =

{
v ·∆µ−

∣∣v ∈ {0, 1}d
}

.

Claim D.1 For any ∆µ ∈ ∆Hn, PQ {s1 ·∆µ = 0} ≤
√

π
2

⌈
|ι(∆µ)|

2

⌉−1

.
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Proof of claim. Observe that

PQ {s1 ·∆µ = 0} (a)
= PQ

{
s1 ·∆µ+ = s1 ·∆µ−} (7)

=
∑

ℓ∈sum(∆µ−)∪sum(∆µ+)

PQ

{
s1 ·∆µ+ = ℓ ∩ s1 ·∆µ− = ℓ

}
(b)
=

∑
ℓ∈sum(∆µ−)∧sum(∆µ+)

PQ

{
s1 ·∆µ+ = ℓ

}
· PQ

{
s1 ·∆µ− = ℓ

}
≤ max

ℓ∈sum(∆µ+)
PQ

{
s1 ·∆µ+ = ℓ

}
, (8)

where (a) holds since ∆µ = ∆µ+−∆µ−, (b) holds since ∆µ+ and ∆µ− have disjoint supports and that each coordinate of
s1 is generated independently. Similarly, by symmetry, we have PQ {s1 ·∆µ = 0} ≤ maxℓ∈sum(∆µ−) PQ {s1 ·∆µ− = ℓ},
so

PQ {s1 ·∆µ = 0} ≤ min

(
max

ℓ∈sum(∆µ+)
PQ

{
s1 ·∆µ+ = ℓ

}
, max
ℓ∈sum(∆µ−)

PQ

{
s1 ·∆µ− = ℓ

})
. (9)

Therefore, it remains to upper bound maxℓ∈sum(∆µ+) PQ {s1 ·∆µ+ = ℓ}. To this end, observe that since each coordinate
of s1 is i.i.d. Bern(1/2),

PQ

{
s1 ·∆µ+ = ℓ

}
=
∣∣{v∣∣v ∈ {0, 1}d, v ·∆µ+ = ℓ

}∣∣ · 2−d =

∣∣∣∣∣
{
A

∣∣∣∣∣A ∈ 2ι(∆µ+),
∑
a∈A

a = ℓ

}∣∣∣∣∣ · 2−|ι(∆µ+)|,

where 2ι(∆µ+) denotes the power set of the multi-set ι(∆µ+). Notice that for the multi-set ι(∆µ+), we treat each element
as a different one even some of them may possess the same value, so the cardinality of 2ι(∆µ+) is 2|ι(∆µ+)|.

Now, observe that Fℓ ≜
{
A
∣∣∣A ∈ 2ι(∆µ+),

∑
a∈A a = ℓ

}
must form a Sperner family (Sperner, 1928; Lubell, 1966), that

is, for any A1, A2 ∈ Fℓ, neither A1 ⊂ A2 nor A2 ⊂ A1 holds. This is because otherwise, if A1 ⊂ A2, we must have∑
A2

a >
∑

A1
a, and thus at least one of them must be not equal to ℓ. Therefore, applying Sperner’s theorem (Sperner,

1928; Lubell, 1966), we must have ∣∣∣∣∣
{
A

∣∣∣∣∣A ∈ 2ι(∆µ+),
∑
a∈A

a = ℓ

}∣∣∣∣∣ ≤
( |ι(∆µ+)|⌈

|ι(∆µ+)|
2

⌉),
which implies

PQ

{
s1 ·∆µ+ = ℓ

}
≤
( |ι(∆µ+)|⌈

|ι(∆µ+)|
2

⌉) · 2−|ι(∆µ+)| ≤
√

π

2
|ι(∆µ+)|

−1

,

where the last inequality is due to basic combinatorial fact (Cover, 1999, Chapter 17). Similarly, by symmetry, we also
have

PQ

{
s1 ·∆µ− = ℓ

}
≤
√

π

2
|ι(∆µ−)|

−1

,

and hence plugging in (9) we obtain

PQ {s1 ·∆µ = 0} ≤ min

(√
π

2
|ι(∆µ+)|

−1

,

√
π

2
|ι(∆µ−)|

−1
)

≤

√
π

2

⌈
|ι(∆µ)|

2

⌉−1

,

where the last inequality holds since

max
(∣∣ι(∆µ−)

∣∣ , ∣∣ι(∆µ+)
∣∣) ≥ ⌈ |ι(∆µ−)|+ |ι(∆µ+)|

2

⌉
=

⌈
|ι(∆µ)|

2

⌉
.

□
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Now, with Claim D.1, we proceed to bound (6) as follows:

PQ {∀∆µ ∈ ∆Hn, S ·∆µ = 0} ≤
∑

∆µ∈∆Hn

(PQ {s1 ·∆µ = 0})m

≤
∑

∆µ∈∆Hn

√
π

2

⌈
|ι(∆µ)|

2

⌉−m

=

2n∑
ℓ=1

∑
∆µ:|ι(∆µ)|=ℓ

√
π

2

⌈
ℓ

2

⌉−m

≤
2n∑
ℓ=1

(
d

ℓ

)
(2n+ 1)

ℓ

√
π

2

⌈
ℓ

2

⌉−m

=

n∗∑
ℓ=1

(
d

ℓ

)
(2n+ 1)

ℓ

(
π

2

⌈
ℓ

2

⌉)−m/2

+

2n∑
ℓ=n∗

(
d

ℓ

)
(2n+ 1)

ℓ

(
π

2

⌈
ℓ

2

⌉)−m/2

, (10)

where n∗ ∈ [n] is a tuning parameter that will be specified later. Now, we bound the last two terms separately. For the first
term, we have

n∗∑
ℓ=1

(
d

ℓ

)
(n+ 1)

ℓ

(
π

2

⌈
ℓ

2

⌉)−m/2

≤ (2n+ 1)
n∗ (π

2

)−m/2 n∗∑
ℓ=1

(
d

ℓ

)
≤ (2n+ 1)

n∗ (π
2

)−m/2

(d+ 1)n
∗+1

≤ exp
(
(n∗ + 1) log(d+ 1) + n∗ log(2n+ 1)− m

2
log (π/2)

)
→ 0,

as long as m = Ω(n∗ log(d+ 1) + n∗ log(2n+ 1)) = Ω (n∗ log d) (since n ≪ d). For the second term, observe that

2n∑
ℓ=n∗

(
d

ℓ

)
(n+ 1)

ℓ

(
π

2

⌈
ℓ

2

⌉)−m/2

≤ (2n+ 1)2n
(
πn∗

4

)−m/2
(

2n∑
ℓ=n∗

(
d

ℓ

))

≤ (2n+ 1)2n
(
πn∗

4

)−m/2
(

2n∑
ℓ=0

(
d

ℓ

))
= exp

(
2n log(2n+ 1) + 2n log(d+ 1)− m

2
(log n∗ + log (π/4))

)
.

Therefore, as long as m = Ω
(

2n log(2n+1)+n log(d+1)
logn∗+log(π/4)

)
= Ω

(
2n log d

logn∗+log(π/4)

)
.

Putting both upper bounds on m together, and select n∗ = ⌈n/ log n+ 3⌉, we conclude that as long as

m = Ω

(
max

(
n log d

log n
+ 3 log d,

n log d

log n− log log n+ 3− log (π/4)

))
= Ω(n log d/ log n) ,

then PQ {∀∆µ ∈ ∆Hn, S ·∆µ = 0} → 0, which implies that there must exists a feasible S that distinguish all elements
in ∆Hn.

■

D.2 Proof of Lemma 3.1

First of all, observe that for any D ⊂ [n] such that D ≤ d

I
(
X[n];Y[n]\D, h

(
θ[n],D

))
= I

 ∑
i∈[n]\D

Xi;Y[n]\D, h
(
θ[n],D

)+ I

Y[n]\D, h
(
θ[n],D

)
;X[n]

∣∣∣∣∣∣
∑

i∈[n]\D

Xi


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= I

 ∑
i∈[n]\D

Xi;Y[n]\D, h
(
θ[n],D

)
= H

 ∑
i∈[n]\D

Xi

−H

 ∑
i∈[n]\D

Xi

∣∣∣∣∣∣Y[n]\D, h
(
θ[n],D

)
= H

 ∑
i∈[n]\D

Xi

 ,

where the second equality holds due to (S1) and the third equality holds since (C1) implies

H

 ∑
i∈[n]\D

Xi

∣∣∣∣∣∣Y[n]\D, h
(
θ[n],D

) = 0.

On the other hand, let D′ ⊂ [n] be such that |D′| = d and let j ∈ D \ j we also have

I
(
X[n];Y[n]\D′ , θD′

)
= I

(
Y[n]\{{j}∨D′}, θD′∨{j};X[n]

)
+ I

(
Yj ;X[n]

∣∣Y[n]\{{j}∨D′}, θD′∨{j}
)

= I
(
Yj ;X[n]

∣∣Y[n]\{{j}∨D′}, θD′∨{j}
)

= H
(
Yj

∣∣Y[n]\{{j}∨D′}, θD′∨{j}
)
−H

(
Yj

∣∣Y[n]\{{j}∨D′}, θD′∨{j}, X[n]

)
≤ H

(
Yj

∣∣Y[n]\{{j}∨D′}, θD′∨{j}
)

≤ H (Yj) , (11)

where the second equality is due to (S2). ■

D.3 Proof of Lemma 3.2

Notice that by (11), we have H(Yi) ≥ I
(
X[n];Y[n]\D, h

(
θ[n],D

))
. Therefore, it suffices to lower bound

I
(
X[n];Y[n]\D, h

(
θ[n],D

))
subject to (C1′), (S1), and (S2). Using (S1), we have

I
(
X[n];Y[n]\D, h

(
θ[n],D

))
= I

 ∑
i∈[n]\D

Xi;Y[n]\D, h
(
θ[n],D

) ≥ I

 ∑
i∈[n]\D

Xi;Y[n]\D

 .

Constrained on (C1′), this quantity is lower bounded by R(β). ■

D.4 Proof of Corollary 4.1

Let Hn ≜
{
(n1, n2, ..., nd)

∣∣∣∑d
j=1 nj = n, nj ∈ Z+

}
be the collection of all n-histograms (over a size-d domain). To

construct a worst-case prior πXn over Xn such that H (
∑n

i=1 Xi) = H (µ (Xn)) is maximized, it suffices to find a πµ

over Hn that has large entropy. This is because one can generate πXn according to the following compound procedure
such that

∑
i Xi has marginal distribution πµ: first select µ ∼ πµ and then draw Xi from histogram µ without replacement.

To this end, we simply set πµ = uniform (Hn). The entropy is thus given by

H (µ (Xn)) = log |Hn| = log

((
d+ n− 1

n− 1

))
= Ω

(
n log

(
d+ n− 1

n− 1

))
= Ω(n log d) ,

where the last equality holds when d ≫ n.

D.5 Proof of Lemma 5.3

Note that characterizing the rate function R(β) (i.e., solving (1)) is equivalent to solving the following dual form:

err(b) ≜

(
minPY n|µ(Xn)

minµ̂ E [ℓ (µ̂ (Y n) , µ (Xn))]
subject to I (Y n;µ (Xn)) ≤ b.

)
(12)
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The dual form can be interpreted as the minimum distortion (under loss function ℓ (·)) subject to a b-bit communication
constraint. Moreover, since µ̂ (·) can be any arbitrary (measurable) function of Y n, we suppress its dependency on Y n and
simplify (12) to

err(b) ≜

(
minPµ̂|µ(Xn)

minµ̂ E [ℓ (µ̂, µ (Xn))]
subject to I (µ̂;µ (Xn)) ≤ b.

)
(13)

To obtain the lower bound on err(b), our strategy is to construct a hard prior distribution πXn . Following the same argument
as in Corollary 4.1, it suffices to construct a prior πµ over Hn, such that when µ1, µ2

i.i.d.∼ πµ, with high-probability
ℓ (µ1, µ2) will be large. Once obtaining a hard πµ, we make use of the following Fano’s inequality to obtain a lower bound
on the smallest distortion Eµ∼πµ

[ℓ (µ̂, µ)] one can possibly hope for.

Lemma D.1 (Fano’s inequality) Let V ∼ uniform (V) for some finite set V and V − U − V̂ form a Markov chain. Then

P
{
V̂ (U) ̸= V

}
≥ 1− I (U ;V ) + 1

log |V|
.

Bounding the ℓ∞ distortion. Recall that our goal is to find a prior πµ over Hn, such that when µ1, µ2
i.i.d.∼ πµ,

∥µ1 − µ2∥∞ is large. We proceed by finding a (large) subset of ΠR ⊆ Hn, such that

• |ΠR| ≥ 22b (where R is a tuning parameter);

• for any µ1, µ2 ∈ ΠR such that µ1 ̸= µ2, ∥µ1 − µ2∥∞ ≥ Θ
(

n log d
b

)
.

If we can find such ΠR, then by setting πµ = uniform (ΠR) and together with Fano’s inequality (Lemma D.1), we obtain

min
µ̂

Eµ [∥µ̂− µ∥∞] ≥ min
µ̂

Eµ∼πµ
Eµ [∥µ̂− π∥∞] (14)

≥ min
µ̂

Pµ∼πµ
{µ̂ ̸= µ} · min

µ1 ̸=µ2,µ1,µ2∈ΠR

∥µ1 − µ2∥∞ (15)

≥ Θ

(
n log d

b

)
min
µ̂

Pµ∼πµ
{µ̂ ̸= µ} (16)

(a)
≥ Θ

(
n log d

b

)(
1− I (µ̂;µ) + 1

log |ΠR|

)
(17)

≥ Θ

(
n log d

b

)(
1− b+ 1

2b

)
(18)

= Θ

(
n log d

b

)
, (19)

where (a) follows from Lemma D.1.

Therefore, it suffices to find a ΠR that satisfies the above two criteria. To this end, consider the following construction of
ΠR:

ΠR ≜

{( n
R
n1,

n

R
n2, ...,

n

R
nd

)∣∣∣∣∣∑
i

ni = R,nj ∈ Z+

}
.

For a given b, we will pick R = Θ
(

b
log d

)
. It is then straightforward to see that

|ΠR| =
(
d+R− 1

R− 1

)
≥
(
d+R− 1

R− 1

)R−1

≥ 22b.

In addition, for any distinct µ1, µ2 ∈ ΠR, ∥µ1 − µ2∥∞ ≥ n
R = Θ

(
n log d

b

)
.
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Bounding the ℓ2 distortion. We follow the same steps of analysis as in the ℓ∞ case (with ∥·∥∞ being replaced by ∥·∥22),
except for requiring the set ΠR to satisfy

• |ΠR| ≥ 2θ(b);

• for any µ1, µ2 ∈ ΠR such that µ1 ̸= µ2, ∥µ1 − µ2∥22 ≥ Θ
(

n2 log d
b

)
.

The construction of ΠR under ℓ2 loss is slightly more involved than that in the ℓ∞ case, but the central idea is to obtain a
set ΠR that matches a packing lower bound, similar to the proof of the GV bound.

We begin with a few notations: Let HR be the Hamming surface with radius R (over a d-dimensional cube), i.e., HR ≜{
(n1, ..., nd)

∣∣∣∑d
i=1 ni = R,ni ∈ {0, 1}

}
. Now, we construct a Π̃R ⊂ HR, such that for any distinct π1, π2 ∈ Π̃R,

dH (π1, π2) ≥ R
8 (where dH(·, ·) is the Hamming distance between π1 and π2, i.e.

∑d
j=1 1{π1(i)̸=π2(i)}).

We claim that there exists such Π̃R with
∣∣∣Π̃R

∣∣∣ = 2θ(R log d), when R = o(d). To see this, let Π̃R be the largest subset that

satisfies the requirement. Then this would imply that for any π ∈ HR there exists a π̃ ∈ Π̃R, such that dH (π, π̃) ≤ R/4
(otherwise, one can add π into Π̃R while still satisfying the requirement). This would imply the following covering bound:

|HR| ≤
∣∣∣Π̃R

∣∣∣ · |{π ∈ HR : dH (π, π̃) ≤ R/4}| . (20)

Now, notice that |HR| =
(
d
R

)
, and the volume of the Hamming ball can be upper bounded by

|{π ∈ HR : dH (π, π̃) ≤ R/4}| =
R/8∑
i=1

(
d−R

i

)(
R

i

)

≤
(
d−R

R/8

) R/8∑
i=0

(
R

i

)
≤ dR/8 · 2Rhb(1/8),

where in the last inequality we use upper bound on binomial partial sum:
∑k

i=1

(
R
k

)
≤ 2Rhb( k

R ) where hb(·) is the binary
entropy function.

Plugging the upper bound into (20), we obtain∣∣∣Π̃R

∣∣∣ ≥ (
d
R

)
dR/8 · 2Rhb(1/8)

= 2(R log( d
R )−R( 1

8+hb( 1
8 ))) = 2Θ(R log d) = 2Θ(b),

when d ≫ R and R = Θ
(

b
log d

)
.

Finally, we rescale Π̃R to obtain ΠR: ΠR ≜
{

n
Rπ : π ∈ Π̃R

}
. Obviously, we have |ΠR| =

∣∣∣Π̃R

∣∣∣ ≥ 2Θ(b). Moreover,

for any distinct µ1, µ2 ∈ ΠR, ∥µ1 − µ2∥22 ≥ dH (µ1, µ2) · n2

R2 = Θ
(

n2 log d
b

)
. This completes the lower bound on err(b)

under the ℓ2 loss.

D.6 Proof of Lemma 5.1

Let M′
j ≜ Mj(X

′
j). By security constraint (S1), we know that I (M1, ...,Mn;Y1, ..., Yn|

∑
i Mi) = 0. Therefore, we

must have

P {(Y1, ..., Yn)} = P

{
(Y1, ..., Yn)

∣∣∣∣∣∑
i

Mi

}
· P

{∑
i

Mi

}

≤ P

{
(Y1, ..., Yn)

∣∣∣∣∣∑
i

Mi

}
·

eεP

∑
i̸=j

Mi +M′
j

+ δ


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= P

(Y1, ..., Yn)

∣∣∣∣∣∣
∑
i ̸=j

Mi +M′
j

 ·

eεP

∑
i ̸=j

Mi +M′
j

+ δ


≤ eεP

∑
i ̸=j

Mi +M′
j

P

(Y1, ..., Yn)

∣∣∣∣∣∣
∑
i ̸=j

Mi +M′
j

+ δ

= P
{(

Y1, ..., Y
′
j , ..., Yn

)}
,

where the second inequality is due to the DP assumption of
∑

i Mi, the third equality is due to the fact of
I (M1, ...,Mn;Y1, ..., Yn|

∑
i Mi) = 0.
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