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Abstract

Experiment design has a rich history and has
found many critical applications across vari-
ous fields since then. The use and collection
of users’ data in experiments often involve
sensitive personal information, so additional
measures to protect individual privacy are re-
quired. In this work, we focus on the rigorous
protection of users’ privacy (under the notion
of differential privacy (DP)) while minimizing
the trust toward service providers. Specifi-
cally, we consider the estimation of the aver-
age treatment effect (ATE) under DP, while
only allowing the analyst to collect population-
level statistics via secure aggregation, a dis-
tributed protocol enabling a service provider
to aggregate information without accessing
individual data. Although a vital component
in modern A/B testing workflows, private dis-
tributed experimentation has not previously
been studied. To achieve DP, we design local
privatization mechanisms that are compatible
with secure aggregation and analyze the utility
in terms of the width of confidence intervals,
both asymptotically and non-asymptotically.
We show how these mechanisms can be scaled
up to handle the very large number of par-
ticipants commonly found in practice. In
addition, when introducing DP noise, it is
imperative to cleverly split privacy budgets
to estimate both the mean and variance of
the outcomes and carefully calibrate the con-
fidence intervals according to the DP noise.
Last, we present comprehensive experimental
evaluations of our proposed schemes and show
the privacy-utility trade-offs in experiment de-
sign.
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1 INTRODUCTION

Experimental design has a long history, tracing back
to the early 1920s in the agricultural domain (Fisher,
1921, 1922, 1936), where statisticians used mathemat-
ical tools to design and analyze experiments. Since
then, experimental design has found many applications,
e.g., in chemistry, manufacturing, pharmaceuticals, and
technology, etc. It not only enables the comparison
of specific design alternatives, but also facilitates the
production of generalizable knowledge to inform strate-
gic decision-making. When designing experiments to
estimate or test the effect of a treatment (for example,
a tech company launching a new feature in an existing
product), a standard procedure is to divide participants
into test and control groups, introduce changes (“the
treatment”) to the test group, and collect feedback or
outcomes from both groups to conduct further statis-
tical analysis. When the test assignment is properly
randomized and the estimators or tests for the out-
comes are designed adequately, the analyst can infer
the treatment effect and make decisions accordingly.

However, in many modern applications, such as pharma-
ceutical and online experimental designs, experimenta-
tion usually involves participants’ private data, raising
additional concerns about privacy and security. Thus,
when designing and conducting experiments involving
sensitive personal information, additional safeguards
are desirable to protect it.

One way to enforce rigorous privacy for experiments is
by restricting the final tests or estimators used to be dif-
ferentially private (DP) (Dwork et al., 2006b). In brief,
DP defines a formal notion of privacy that quantifies
the amount of information leakage of an algorithm. It
ensures that the output of a (randomized) algorithm A
does not depend strongly on the contribution of any one
individual. To achieve DP, a standard approach is to
add carefully calibrated noise to the test statistics (e.g.,
the Laplace or Gaussian mechanisms (Dwork et al.,
2006b, 2014)) and only using the perturbed results in
downstream tasks. This approach is usually referred
to as “Central DP”, since an analyst collects all the
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experimental data centrally before sanitizing the test
statistics. While Central DP schemes control the view
of downstream tasks and are relatively straightforward
to design, the analyst stores and processes all the raw
users’ data in the clear. This not only requires the
experiment participants to trust the analyst, but could
make it challenging to comply with regulations on the
storage of certain forms of personal data.

To address the above issues, an alternative approach is
to aggregate test data in a “secure” way so that only
necessary population-level statistics are collected and
that analysts can never see individual data. Secure
aggregation can be achieved by secure hardware or
cryptographic multiparty computation (MPC) (Ben-
Or et al.; Damgård et al., 2012) and is the focus of
“federated learning and analytics” (Kairouz et al., 2019).
Secure aggregation alone does not provide any formal
differential privacy guarantees. To ensure DP, partic-
ipants can locally randomize their data so that the
securely aggregated outcome satisfies the standard DP
requirement (Dwork et al., 2006a). This is referred
to as Distributed DP (in contrast to Central DP) and
is growing in prominence thanks to recent progress in
practical aggregation protocols (Bonawitz et al., 2016;
Bell et al., 2020). With secure aggregation and Dis-
tributed DP, one can minimize the level of trust in the
data analysts and service providers.

In this work, we focus on experimental design with
Distributed DP. Specifically, we consider estimating
and testing the average treatment effect (ATE), sub-
ject to DP and secure aggregation constraints. In our
framework, to construct private protocols, we make use
of a secure aggregation primitive that we refer to as
SecAgg, which can be instantiated by Bonawitz et al.
(2016); Bell et al. (2020).

Our contributions are as follows:

• We present a decentralized framework that
achieves a (1− α)-confidence interval (CI) and a
level-α test while ensuring distributed DP (defined
in Section 2). We analyze the width of private
confidence intervals and provide asymptotic and
non-asymptotic guarantees. Our non-asymptotic
bounds are based on a version of empirical Bern-
stein inequality, which guides how to allocate pri-
vacy budgets in estimating mean and variance.

• We incorporate the Poisson-binomial mechanism
(PBM) (Chen et al., 2022) in our framework as the
local randomizer, which offers several advantages,
including unbiased estimation, efficient memory
(or communication) usage, and bounded sensitivi-
ties, letting downstream parties develop privatiza-
tion mechanisms.

• To use PBM for experimental design, we develop
an improved privacy accounting tool based on
a novel bound on the Rényi divergence. This
enhancement greatly enhances efficiency in large
sample scenarios. When the objective is to obtain
CIs instead of point estimators, we must collect
second-moment information such as sample vari-
ance. We show, via SecAgg and DP, that this can
be done by judiciously allocating privacy budgets
for estimating sample mean and variance.

• Last, our experimental study quantifies the trade-
offs between privacy and utility.

1.1 Related Works

Private causal inference and testing. The design
of experiments to identify causal relations and average
treatment effects is crucial in various domains (Imbens
and Rubin, 2015); when experiments involve sensitive
data, additional privacy protection is needed such as
differential privacy (DP). D’Orazio et al. (2015) pro-
poses DP mechanisms for summary statistics in causal
inference, and Lee et al. (2019); Niu et al. (2022);
Ohnishi and Awan (2023) consider estimating condi-
tional average treatment effects (CATE) and propose
private estimation of inverse propensity scores. These
works default to a Central DP setting where a cen-
tral data curator collects and privatizes test statistics,
while Ohnishi and Awan (2023) explore Local DP with-
out a trusted curator. In contrast, we address the
experimental design problem using Distributed DP via
secure aggregation as a better compromise between
privacy and security. Our experiment design problem
is related to private hypothesis testing, which performs
two-sample tests under DP when potential outcomes
come from an unknown distribution. Previous work
on two-sample tests has primarily focused on either
Central DP (Rogers and Kifer, 2017; Cai et al., 2017;
Raj et al., 2020) or Local DP (Raj et al., 2020). This
work is the first to consider experimentation under Dis-
tributed DP with secure aggregation. We also analyze
the distribution-free setting, where no distributional
assumptions are imposed on potential outcomes.

Private mean estimation. The mechanisms in this
paper are based on the difference-in-mean estimator,
which relies on private mean estimation as a sub-routine.
Differentially private mean estimation has been ex-
tensively studied under Central DP (Dwork et al.,
2006b, 2014; Balle and Wang, 2018; Agarwal et al.,
2018; Biswas et al., 2020) or Local DP (Duchi et al.,
2013; Bhowmick et al., 2018; Chen et al., 2020; Feld-
man and Talwar, 2021). In addition to obtaining a
point estimator for the mean, it is also desirable to
obtain a (1− α)-confidence interval (CI) for a level-α
test. Existing methods either privately estimate both
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sample means and variances separately (Du et al., 2020;
Karwa and Vadhan, 2017; D’Orazio et al., 2015) or use
a private bootstrap (Brawner and Honaker, 2018). Our
approach resembles the former but is compatible with
secure aggregation and does not require a central data
curator. In addition, all of the previous methods, to
our knowledge, study the asymptotic CIs, while in this
work, we also characterize the non-asymptotic coverage
guarantees with finite n. The only exception that also
considers non-asymptotic bounds is the recent work
Waudby-Smith et al. (2023). However, Waudby-Smith
et al. (2023) considers a Local DP setting, so the ana-
lyst can directly estimate the mean and variance based
on the locally private samples.

Secure aggregation and distributed DP. Our
methods aggregate test data using secure aggrega-
tion protocols (specifically, single-server aggregation)
to achieve distributed DP without introducing bias.
Single-server secure aggregation is performed via addi-
tive masking over a finite group (Bonawitz et al., 2016;
Bell et al., 2020). However, to achieve provable privacy
guarantees, secure aggregation is insufficient as the sum
of local model updates may still leak sensitive infor-
mation (Melis et al., 2019; Song and Shmatikov, 2019;
Carlini et al., 2019; Shokri et al., 2017). For DP, partic-
ipants have to privatize their raw data with local noise
before secure aggregation (Dwork et al., 2006a). This
local noise has to be compatible with the secure aggre-
gation protocol; candidate solutions include (Agarwal
et al., 2018; Kairouz et al., 2021; Agarwal et al., 2021;
Chen et al., 2022). Here, we aim to provide privacy
guarantees in the form of Rényi DP (Mironov, 2017) be-
cause it allows for tracking the end-to-end privacy loss
tightly. We distinguish our Distributed DP model from
Local DP (Kasiviswanathan et al., 2011; Evfimievski
et al., 2004; Warner, 1965), where data is perturbed on
the client-side before the server collects it in the clear.
Although simpler to implement, Local DP naturally
suffers from poor privacy-utility trade-offs, as much
more noise is introduced in total (Kasiviswanathan
et al., 2011; Duchi et al., 2013).

2 PROBLEM SETUP AND
PRELIMINARIES

We formulate the experiment design problem via the
Neyman-Roubin causal model. When a service provider
considers introducing a new feature to the public, it
initiates a test phase by selecting a small group of users.
This group is randomly divided into two: a test group
where users are exposed to the new feature (referred
to as the treatment), and a control group where users
do not have access to the feature. The service provider
collects responses from both groups, assesses the effects

of the treatment, and, based on the evaluation, makes
a decision regarding the launch of the new feature.

Formally, we define the experiment design problem as
follows: for each test unit (“user”) i ∈ [n], we intro-
duce the randomized treatment assignment variable
Ti ∈ {c, t} (for the control and test group, respectively),
which indicates whether user i receives the treatment or
not. Additionally, we consider the potential outcomes
yi(t), yi(c) ∈ Y for user i when receiving or not receiv-
ing the treatment, respectively. For a test unit i, the
service provider can only observe one of its potential
outcomes: Xi ≜ yi(Ti). The quantity of interest is the
sample average treatment effect (SATE):

∆s(y) ≜
1

n

n∑
i=1

yi(t)− yi(c).

Notice that under Neymann’s original framework, the
potential outcomes

y ≜ {(yi(t), yi(c))|i = 1, ..., n}

are deterministic; only the treatment variable Ti’s are
randomized. However, we can also impose distribu-
tional assumptions on the potential outcomes, i.e.,
yi(c)

i.i.d.∼ Pc and yi(t)
i.i.d.∼ Pt, and the quantity of inter-

est is the population average treatment effect (PATE):

∆p(Pc, Pt) ≜ EY (t)∼Pt, Y (c)∼Pc
[Y (t)− Y (c)] .

Our goal is to test if ∆s > 0 (or ∆p > 0) at a given
confidence level α, which is equivalent to construct
(1− α) confidence intervals of ∆s (or ∆p).

2.1 Secure aggregation and DP

When the service provider has access to all the ob-
servable data, it can estimate ∆s via standard causal
inference in statistics, social, and biomedical sciences
(see, for instance, Imbens and Rubin (2015)), compute
sample variances of yi(c)’s and yi(t)’s, and construct
confidence intervals accordingly. However, when the
samples Xi are treated as sensitive, they should be
aggregated securely so that only necessary information
is revealed to the service providers.

Secure aggregation. Recently, distributed proto-
cols based on multi-party computation (MPC), such as
secure aggregation (SecAgg, Bonawitz et al. (2016)),
have emerged as powerful tools for securely aggregat-
ing population-level information from a group of users.
Specifically, SecAgg enables a single server to compute
the population sum and, consequently, the average of
local variables while ensuring that no additional infor-
mation, apart from the sum, is disclosed to the server
or other participating entities. These properties make



Federated Experiment Design under Distributed Differential Privacy

SecAgg well-suited for aggregating experiment results
from users to estimate or test Average Treatment Ef-
fects (ATE). This is because test statistics used for ATE
estimation can often be expressed as a function of the
average of users’ potential outcomes. However, when
applying SecAgg in experiment design, it is important
to note that SecAgg typically operates on a finite field,
like most cryptographic MPC protocols. Thus, each
outcome Xi needs to be appropriately pre-processed
(e.g., discretized) and mapped into a finite field.

Differential privacy. Secure aggregation alone does
not provide any provable privacy guarantees. Sensitive
information may still be revealed from the aggregated
population statistics, causing potential privacy leak-
age. To address this issue, differential privacy (DP,
Dwork et al. (2006b)) has been adopted as the gold
standard that ensures individual information is not
leaked. Specifically, it requires the ATE estimator (or
a CI of ATE) released by the service provider to meet
the following guarantee:

Definition 2.1 (Differential privacy) We say an
ATE estimator ∆̂ (Xn) is (ε, δ)-DP, if for any two
possible outcome sets y ≜ {(yi(c), yi(t))|i = 1, ..., n}
and y′ ≜ {(yi(c), yi(t))|i = 2, ..., n} ∪ {(y′1(0), y′1(1))}
differing in one user, we have

Pr
{
∆̂ (Xn|y) ∈ S

}
≤ eε Pr

{
∆̂ (Xn|y′) ∈ S

}
+ δ,

for any measurable set S.

A common approach to achieve DP is adding properly
calibrated noise (such as Gaussian noise with appropri-
ate variance) to standard (non-private) ATE estimators.
However, this requires users to trust the service provider
as the server can see the unprivatized aggregated infor-
mation. To address this issue, one can instead locally
perturb individual outcome Xi before secure aggrega-
tion via a local randomizer M(Xi). When the local
noise mechanismM is designed in a way that the sum∑

iM(Xi) satisfies DP, i.e.,

Pr

{∑
i

M(Xi) ∈ S

∣∣∣∣∣y
}

≤ eε Pr

{∑
i

M(Xi) ∈ S

∣∣∣∣∣y′

}
+ δ, (1)

and when M(Xi)’s are aggregated securely, one can
ensure DP even if the service provider is not trusted.
The idea of combining secure MPC with local noise
dates back to Dwork et al. (2006a) and has been used
extensively in private federated learning and analytics
(Kairouz et al., 2021; Agarwal et al., 2018, 2021). The

main challenge is that the local noise has to be dis-
cretized and compatible with secure aggregation; i.e.,
M has to map Xi into a space Z (a finite field, e.g.,
the integers modulo a prime p) for SecAgg to work in.

In addition to the above (ε, δ)-DP, we also use the
following Rényi DP definition, which allows simpler
and tighter privacy composition.

Definition 2.2 (Rényi differential privacy) We
say an ATE estimator ∆̂ (Xn) is (α, ε(α))-DP, if for
any two neighboring sets of possible outcomes y and y′

that differ in one user, it holds that

Dα

(
∆̂ (Xn|y)

∥∥∥∆̂ (Xn|y′)
)

≜
1

α− 1
logEX∼∆̂(Xn|y)

[(
f∆̂(Xn|y)(X)

f∆̂(Xn|y′)(X)

)α]
≤ ε(α).

Similarly, for a local randomizerM : X → Z, we can
define the following distributed Rényi DP.

Definition 2.3 (Distributed Renyi DP) A local
randomizer M is (α, ε(α))-DP, if, for any two neigh-
boring outcome sets y and y′ differing in one user:

Dα

(∑
i

M(Xi|y)

∥∥∥∥∥∑
i

M(Xi|y′)

)
≤ ε(α).

Remark 2.4 In the above framework, the treatment
variables Ti’s are randomly assigned by the server, and
hence typically do not carry users’ individual informa-
tion. So by default, the server inherently knows all the
treatment variables, and we do not view them as pri-
vate information. Nevertheless, we can accommodate
the case of private treatments in our work by having
each client also send a “dummy” outcome on top of
the actual one (i.e., setting Yi(t) = 0 for clients in the
control group). By introducing proper noise, we can
still achieve the same level of DP.

3 A DISTRIBUTED DP
FRAMEWORK

Our objective is to construct a (1− α)-confidence in-
terval for SATE and PATE (which can then be used
to design a level-α test) while adhering to the dis-
tributed differential privacy (DP) constraint mentioned
in equation (1). In Algorithm 1, we presented a general
framework for causal inference using secure aggregation
and distributed DP.

In this framework, the server securely aggregates nec-
essary information from the control and test groups
separately, along with local randomizers M1 and M2.
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Algorithm 1 ATE Estimation with Distributed DP

Input: treatment variables T1, ..., Tn ∈ {c, t}, out-
comes (y1(T1), ..., yn(Tn)), randomizersM1,M2, pri-
vacy budgets ε1 and ε2, obj ∈ {‘SATE’, ‘PATE’}.
Output: an (1− α)-CI for ATE.

▷ Local Randomization
for each user i do

Obtains the observable outcome Xi ≜ yi(Ti).
Computes M(Xi), and M(X2

i ).
▷ Aggregation
Server securely aggregates{∑

i∈St
M1(Xi, nt),

∑
i∈St
M2(X

2
i , nt);∑

i∈Sc
M1(Xi, nc),

∑
i∈Sc
M2(X

2
i , nc),

where Sc ≜ {i : Ti = c} and St ≜ {i : Ti = t}.

▷ Estimation
Estimates sample means and variances:

µ̂c

(∑
i∈Sc

M1(Xi, nc)

)
and µ̂t

(∑
i∈St

M1(Xi, nt)

)
;

ŝ2c

(∑
i∈Sc

M2(X
2
i , nc), µ̂c

)
and ŝ2t

(∑
i∈St

M2(X
2
i , nt), µ̂t

)
.

Computes the diff-in-mean estimator ∆̂ ≜ µ̂t − µ̂c.
Computes the variance calibration term σ2

pr (ε, nc, nt)
according to (2) and let z1−α/2 be the (1 − α/2)-
quantile of the standard normal.
if objective is ‘SATE’ then

Set σ̂2
s ≜ ncnt

n

(√
ŝ2t

nt
+

√
ŝ2c

nc

)2

.

Return: ∆̂s ± z1−α/2 · (σ̂s + σpr).
if objective is ‘PATE’ then

Set σ̂2
p ≜ ŝ2t

nt
+

ŝ2c
nc
.

Return: ∆̂p ± z1−α/2 · (σ̂p + σpr) .

These randomizers satisfy the distributed DP condi-
tions defined in Definition 2.3 and map individual ob-
servable outcomes Xi and their second moments X2

i

to the finite field on which secure aggregation operates.
Specifically, we have:{

M1 : X × [n]→ Z;
M2 : X2 × [n]→ Z,

where we use X2 ≜ {x2|x ∈ X} to denote the collec-
tion of all possible second moments of the samples. In
the above notation, we allow the local randomizers to
take the size of the control (or test) group, denoted as

nc ≜
∑n

i=1

(
1− 1{Ti=c}

)
(or nt ≜ n−nc), as an input.

This enables the local randomizers to calibrate the noise
level based on the group size. As in Neyman-Robin’s
potential outcome framework, the test assignment vari-
ables (T1, ..., Tn) follow a uniform distribution across
all sequences containing ‘c’ nc times. We consider
bounded observations and without loss of generality,
we assume the outcome domain X is centered at 0:

Assumption 3.1 Let X = [−R,R] (so we must have
X2 = [0, R2]).

After receiving the aggregated information, the server
constructs unbiased estimators for the sample means
and variances of each group. The difference-in-means
estimator is then used to estimate the ATEs. The
second-moment information is used for variance esti-
mation, which is needed for confidence intervals.

3.1 Privacy of Algorithm 1

The following theorem establishes privacy guarantees
for the framework:

Theorem 3.2 Let M1 and M2 be local randomizers
for the first and second moments of Xi. Assume for
all n∗ ∈ [n], Mj(·, n∗) satisfies (α, εj(α))-distributed
Rényi DP for j ∈ {1, 2}. Then, Algorithm 1 is
(α, ε1(α) + ε2(α))-Rényi DP.

Proof. Since both ∆̂s and σ̂s are functions of µ̂c, µ̂t, ŝ
2
c ,

and ŝ2t , we only need to ensure their Rényi DP due to
the post-processing properties of DP. The Rényi DP
follows from a simple application of the composition
theorem for Rényi DP (Mironov, 2017). □

Note that althoughM1 andM2 are invoked twice in
Algorithm 1, we only pay the privacy penalty once since
one of the test or control groups remains the same for
two neighboring datasets y and y′.

3.2 Asymptotic Coverage Guarantees

Next, we claim that Algorithm 1 gives a (1 − α)-CI
asymptotically.

Assumption 3.3 Assume the estimator µ̂j, j ∈
{c, t}, are of an additive structure. That is, µ̂t =∑

i∈St
µ̂(M1(Xi)) and µ̂c =

∑
i∈Sc

µ̂(M1(Xi)), where
µ̂ (M1(xi, n

∗)) gives an unbiased estimator, indepen-
dent of Ti, on xi with variance bounded by σ2

1(n
∗, ε)1;

Assumption 3.4 Assume ŝ2c and ŝ2t defined in Al-
gorithm 1 yield consistent estimation on the sam-
ple variances s2c ≜ 1

n−1

∑
i∈[n] (yi(c)− ȳ(c))

2 and

1Indeed, we can relax the unbiasedness assumption and
only require E [µ̂ (M1(xi, n

∗))] = o( 1
n
).
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s2t ≜ 1
n−1

∑
i∈[n] (yi(t)− ȳ(t))

2, respectively. That is,

ŝ2c
(∑

i∈Sc
M2(X

2
i )
) p→ sc as n→∞ (and so does ŝt).

Theorem 3.5 Let the calibration term (which depends
on M1) be

σ2
pr(nc, nt, ε) ≜

n

nc
σ2
1(nc, ε) +

n

nt
σ2
1(nt, ε). (2)

Then, under assumptions 3.3 and 3.4, Algorithm 1 gives
a (1− α)-confidence interval of SATE or PATE.

Proof. We follow the standard analysis of the
difference-in-mean estimator and incorporate the DP
noise. To begin with, we analyze the unprivatized es-
timator. Let ν̂t ≜ 1

nt

∑
i Tiyi(0) and ν̂c ≜ 1

nc

∑
i(1 −

Ti)yi(1) be the unprivatized means of the test and con-
trol groups. In addition, let s2c ≜ 1

n−1

∑
i(yi(0)− ȳ(0))2

and s2t ≜ 1
n−1

∑
i(yi(1)−ȳ(1))2 be the sample variances;

let stc ≜ 1
n−1

∑
i(yi(0)− ȳ(0))(yi(1)− ȳ(1)) be the sam-

ple covariance. Then, the variance of the (unprivatized)
difference-in-mean estimator can be computed as

Var (ν̂t − ν̂c|y) =
σ2
s

n
≜

1

n

(
nc

nt
s2t +

nt

nc
s2c + stc

)
.

The finite-sample central limit theorem (Hájek, 1961)
(see also Li and Ding (2017); Li et al. (2018)) suggests
that √

n ((ν̂t − ν̂c)−∆s)
d→ N(0, σ2

s).

When there exists DP noise, we have, conditioned on
y and Ti,

√
n ((µ̂c − µ̂t)− (ν̂t − ν̂c))

d→ N
(
0, σ2

pr(nc, nt, ε)
)
,

where σ2
pr(nc, nt, ε) ≜ n

nc
σ2
1(nc, ε) +

n
nt
σ2
1(nt, ε) and

the convergence is due to the (classical) central limit
theorem and Assumption 3.3. Since the DP noise is
independent with Ti, we conclude

√
n ((µ̂c − µ̂t)−∆s)

d→ N
(
0, σ2

pr(nc, nt, ε) + σ2
s)
)
,

Finally, since σ̂2
s defined in Algorithm 1 is a high prob-

ability upper bound on σ2
s from our assumptions, i.e.,

lim
n→∞

Pr
{
σ̂2
s ≥ σ2

s

}
= 1,

by Slutsky’s theorem ∆̂s ± z1−α/2 · (σ̂s + σpr) gives an
(1− α)-CI asymptotically.

Next, we prove the coverage guarantee for estimat-
ing PATE. Observe that the conditional variance of
the (unprivatized) difference-in-mean estimator, given

the samples yi(0)
i.i.d.∼ P0 and yi(1)

i.i.d.∼ P1, can be
computed as

Var (ν̂t − ν̂c|y) =
1

n

(
nc

nt
s2t +

nt

nc
s2c + stc

)
.

Therefore, the unconditional variance is

E [Var (ν̂t − ν̂c|y)] + Var (E [ν̂t − ν̂c|y])

=
1

n

(
nc

nt
s2t +

nt

nc
s2c + 2stc

)
+

1

n

(
s2t + s2c − 2stc

)
=

s2t
nt

+
s2c
nc

.

As a result, σ̂p in Algorithm 1 is a consistent estimator
of the variance of the unprivatized estimator.

With the presence of DP noise, we follow the same anal-
ysis as SATE and add a calibration term σ2

pr(nc, nt, ε).
By the central limit theorem, the proof is complete. □

We make a few remarks. First, in Algorithm 1, the
CIs of SATE and PATE take slightly different forms.
This is because the variance of SATE σ2

s depends on
the sample covariance stc, which is an unidentifiable
quantity. Thus, we can obtain a conservative upper
bound σ̂s. On the other hand, when the objective is to
estimate PATE, the variance of the estimator does not
depend on the covariance term, and thus σ̂2

p yields an
unbiased estimator on the variance.

Second, in order to determine a suitable treatment
assignment size, denoted as nc and nt, we can observe
that the average length of confidence intervals (CIs) is
influenced by two main factors:

σ̂s + σ2
pr(nc, nt, ε)

n

≈ ncnt

n

(
ŝc
nc

+
ŝt
nt

)2

︸ ︷︷ ︸
(a)

+
σ2
1(nc, ε)

nc
+

σ2
1(nt, ε)

nt︸ ︷︷ ︸
(b)

.

The first term (a) depends on the sample variances.
To minimize this term, we should set nc and nt pro-
portional to the sample variances of the control and
treatment groups. However, since the sample variances
are often unknown, estimating them requires additional
samples and a privacy budget. On the other hand, the
second term (b) represents the impact of DP noise. It
is important to note that for a given value of ε, the
variance of DP noise typically scales as O

(
1

nmin(ε,ε2)

)
(as we will see in the next section). Therefore, if either
nc or nt is set too small, this term may dominate the
total variance.

Apart from determining nc and nt, another crucial
question is how to allocate the privacy budget for esti-
mating the first and second moments (i.e., the privacy
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used in M1 and M2). Allocating a significant por-
tion of the privacy budget to estimate the mean (or
difference-in-means) estimator can result in a relatively
confident estimate of the Average Treatment Effect
(ATE). However, this allocation may lead to inaccura-
cies in estimating the variance, affecting the accuracy
of plug-in estimators for constructing CIs. In such
cases, a more conservative estimate may be required
to compute the CIs. To address this issue, in the next
section, we introduce non-asymptotic bounds that yield
provable and more conservative coverage guarantees
for specific mechanisms.

4 DISCRETE DP MECHANISMS
FOR SECAGG

In this section, we introduce discrete mechanisms that
can be combined with secure aggregation for causal
inference, which fall into two classes.

1. Additive Noise Mechanisms: These mechanisms
involve the addition of discrete noise approximating
continuous Gaussian noise. In this approach, each local
observable sample Xi is first quantized into a discrete
domain and then perturbed by adding appropriate
discrete random noise. Candidate noise distributions
include Binomial (Agarwal et al., 2018), discrete Gaus-
sian (Canonne et al., 2020; Kairouz et al., 2021), and
Skellam (Agarwal et al., 2021).

2. Randomized Response Mechanisms: This
class of mechanisms is based on the concept of ran-
domized response introduced by Warner (1965). In
these mechanisms, each sample Xi is locally quantized
into a binary value, and randomized response is ap-
plied multiple times with an appropriate cross-over
probability determined by ε. The results of the ran-
domized responses are summed together. Equivalently,
this scheme can be viewed as having each client en-
code its message as a parameter of a Binomial random
variable, sending a sample of it to the server. The de-
coded output follows a Poisson-Binomial distribution,
resulting in the Poisson-Binomial mechanism (PBM).
Note that since the output space of PBM is finite, it
is compatible with secure aggregation, and hence no
modular-clipping is required. Therefore, the resulting
estimator is unbiased, while all of the additive noise
mechanisms inevitably have to introduce small biases.

For brevity, we only present the results of randomized
response mechanisms here, and the analysis of additive
noise mechanisms is similar.

4.1 Difference-in-mean estimator with the
Poisson-Binomial mechanism

Algorithm 2 The Poisson Binomial Mechanism

Input: c > 0, xi ∈ [−R,R]
Parameters: θ ∈ [0, 1

4 ], m ∈ N
Re-scaling xi: pi ≜ θ

Rxi +
1
2 .

Privatization: Zi ≜ Binom (m, pi) ∈ Zm.
Return: Zi

Next, we describe and analyze our distributed DP
scheme based on the Poisson-Binomial mechanism
(PBM) (Chen et al., 2022). We make the same assump-
tion that the potential outcome space Y is a bounded
interval and is known ahead of time. Without loss of
generality, we let Y = [−R,R] for some R > 02. Per
Theorem 3.2, our goal here is to specify the Rényi DP
guarantees and the variance of the scheme.

The local randomizer MPBM is described in Algo-
rithm 2, which consists of two main steps: 1) first
mapping xi into

[
1
2 − θ, 1

2 + θ
]

by pi ≜ 1
2 + θ

Rxi,
and then 2) generating a Binomial random variable
Zi ∼ Binom(m, pi).

Upon securely aggregating
∑

i Zi, the server can obtain
an unbiased estimator on µ =

∑
i xi as

µ̂ (
∑

i Zi) ≜ R
nmθ

(∑
i Zi − m

2

)
(3)

(recall that the server can only learn
∑

i Zi but not in-
dividual Zi’s). In the following theorem, we summarize
the privacy and the variance of PBM for a given set of
parameters (m, θ).

Theorem 4.1 (Chen et al. (2022)) Let µ̂ be the es-
timator from (3). Via Assumption 3.1, for any θ∈ [0, 1

4 ]

• µ̂ yields an unbiased estimate on µ with variance
at most R2

4nmθ2 .

• Algorithm 2, together with SecAgg (Bonawitz et al.,
2016), satisfies (α, ε(α))-Rényi DP for any α > 1
and

ε(α) ≥ C
(

θ2

(1−2θ)4

)
αm
n , (4)

where C > 0 is a universal constant.

From this, we can re-write the MSE (i.e., the variance)
as Var (µ̂) ≤ R2

4nmθ2 = O
(

R2α
n2ε(α)

)
.

Since Zi ≤ m and thus
∑

i Zi ≤ nm, we set the modulo
space M = nm + 1 to avoid overflow (recall that M

2Here we assume R > 0 is known beforehand, which
is often the case. When R is unknown, we may need to
estimate it through private range/quantile queries.
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is the size of the finite group SecAgg operates on).
Therefore, the communication cost of Algorithm 2 is
logM ≈ log n+logm bits per client. In addition, unlike
in the additive mechanisms where the noise support is
typically unbounded, there is no need to apply modular
clipping, and thus µ̂ is unbiased.

A limitation of the PBM approach is that the mecha-
nism was designed for federated learning tasks where
local messages are high-dimensional vectors (i.e., model
updates) and the number of per-round users is small
(usually less than 103) (Chen et al., 2022). However,
in the design of the experiments, the number of tests
can easily exceed millions, and the privacy account-
ing algorithm in Chen et al. (2022) becomes infeasible.
In this work, we develop new efficiently computable
bounds on the Rényi DP of PBM that are within 1%
(relatively) greater of the actual privacy loss, described
in Appendix A.

Next, we construct the mechanisms M1(·, n∗) and
M2(·, n∗) used in Algorithm 1. Let (m1,c, θ1,c),
(m1,t, θ1,t) be the parameters of PBM used for estimat-
ing the mean of the control and test groups respectively.
Similarly, let (m2,c, θ2,c), (m2,t, θ2,t) be the parameters
used in estimating the second moments of the two
groups. Then according to Theorem 4.1, the privacy
losses ofM1(·, nc) andM1(·, nt) are O

(
αθ2

1,cm1,c

nc

)
and

O
(

αθ2
1,tm1,t

nt

)
3, and the privacy losses ofM2(·, nc) and

M2(·, nt) are O
(

αθ2
2,cm2,c

nc

)
and O

(
αθ2

2,tm2,t

nt

)
. There-

fore, combining Theorem 4.1 with Theorem 3.2, we
summarize the guarantees of PBM in the following
corollary:

Corollary 4.2 Let M1 and M2 be implemented
with PBM with parameters (m1,c, θ1,c), (m1,t, θ1,t),
(m2,c, θ2,c), and (m2,t, θ2,t) respecitvely. Then

1. Alg. 1 is (α, ε(α))-Rényi DP for all α > 1 and

ε(α) = O

(
α
(

θ2
1,cm1,c

nc
+

θ2
1,tm1,t

nt
+

θ2
2,cm2,c

nc
+

θ2
2,cm2,c

nc

))
.

2. The average width of the (1− α)-CI is

O

(
z1−α

2
·
√

s2c
nc

+
s2t
nt

+ c2

ntm1,tθ2
1,c

+ c2

ntm1,tθ2
1,t

)
for SATE, and for PATE it is

O

(
z1−α

2
·
√

Var(Pc)
nc

+ Var(Pt)
nt

+ c2

ntm1,tθ
2
1,c

+ c2

ntm1,tθ
2
1,t

)
.

3Note that although here we present an asymptotic form
of the privacy losses, in our experiments we can numerically
compute the accurate privacy budgets.

Note that in the above expression, the parameters of
M2 do not impact the (asymptotic) width of the confi-
dence intervals (CIs). This is because as long as we can
derive a consistent estimator for the sample variances,
we can compute CIs accordingly. Therefore, one should
allocate the maximum possible privacy budget toM1.
In practice (Section 5), we set the privacy budget for
M1 to be 0.99 of the total privacy allocation.

Parameter selection. In order to satisfy a (ε, δ)-DP,
guarantee, we select

θ2
1,cm1,c

nc
≈ θ2

1,tm1,t

nt
= Oδ

(
ε2
)
,

which means that the average width of the CIs

is O

(
z1−α

2
·
√

s2c
nc

+
s2t
nt

+ c2

ε2

(
1
n2
t
+ 1

n2
c

))
for SATE, or

O

(
z1−α

2
·
√

Var(Pc)
nc

+ Var(Pt)
nt

+ c2

ε2

(
1
n2
t
+ 1

n2
c

))
for PATE.

4.2 Non-asymptotic coverage guarantees

In addition to the asymptotic CIs based on the central
limit theorem, which are accurate only when nc and nt

are large, we provide non-asymptotic CIs for estimat-
ing SATE and PATE based on variants of empirical
Berstein inequalities. For ease of presentation, in the
rest of this section, we assume nc = nt = n/2, but all
of the results can be easily adapted to general cases.
We first present the non-asymptotic bound for PATE.

Theorem 4.3 (Simplified) Let M1 and M2 be
PBM (Algorithm 2) with parameter (m1, θ1) and
(m2, θ2). Let σ̂2

p be defined as in Algorithm 1. Then
under Assumption 3.1, it holds that

Pr
{
∆p ∈ ∆̂p ±

(√
2σ̂2

p log(2.01/δ) + γ
)}
≥ 1− δ,

where γ = O(1/n) when ε1(α) = C1
αm1θ

2
1

n and ε2(α) =

C2
αm2θ

2
2

n are constants4.

The above theorem is proved via the empirical Berstein
inequality (Maurer and Pontil, 2009) along with in-
corporating the tail bounds of the Poisson Binomial
mechanism. The same analysis can be applied to other
additive mechanisms (such as the Skellam or discrete
Gaussian noise), though these mechanisms may not
yield an unbiased estimator. The detailed proof can be
found in Appendix C.1.

For a given privacy budget ε(α), Theorem 4.3 suggests a
way to allocate privacy budgets (determined by (m1, θ1)
and (m2, θ2)) to minimize the width of CIs (i.e., 2τ).
Specifically, if we split the total privacy budget ε(α)

4We provide the higher-order terms and constants of γ
in Theorem C.1 in Appendix C.1
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Table 1: Average widths and coverages of 90%-confidence intervals for PATE.

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9 ε = ∞

None private Coverage (90% CI) - - - - - - - 0.902
Width (90% CI) - - - - - - - 2.08·10−3

Central Gaussian Coverage (90% CI) 0.899 0.901 0.902 0.899 0.897 0.897 0.899 -
Width (90% CI) 0.771 0.189 0.110 0.078 0.063 0.053 0.044 -

PBM (m = 256) Coverage (90% CI) 0.898 0.897 0.903 0.900 0.902 0.899 0.903 -
Width (90% CI) 0.772 0.200 0.119 0.085 0.067 0.056 0.048 -

PBM (m = 1024) Coverage (90% CI) 0.903 0.899 0.899 0.899 0.902 0.898 0.900 -
Width (90% CI) 0.772 0.199 0.118 0.085 0.066 0.055 0.047 -

into ε1(α) and ε2(α) such that M1 and M2 satisfy
ε1(α) and ε2(α) Rényi DP respectively, then we have
the following proposition:

Proposition 4.4 Make the same assumptions as The-
orem 4.3. Assume M1 and M2 satisfies (α, ε1(α))
and (α, ε2(α)) Rényi DP. Let the sample variance ŝ2c
and ŝ2t be constant and do not scale with n. Then the
non-asymptotic CIs in Theorem 4.3 has width

Θδ

(√
ŝ2t+ŝ2c

n
+ R

n

(
1 +

√
α

ε1(α)

)
+

R2
√

α/ε2(α)+R
√

α/ε1(α)

n1.5
√

ŝ2t+ŝ2c

)
.

We provide some insights regarding Proposition 4.4.
First, it is important to note that the DP noise only
impacts the smaller terms (i.e., O(1/n)). The first-
order term

√
(ŝ2t + ŝ2c)/n remains consistent with the

asymptotic confidence intervals. Additionally, when
considering the allocation of privacy budget ε2(α) for
estimating sample variance, it exerts a comparatively
lesser influence on the confidence intervals in contrast
to ε1(α) since ε2(α) only plays a role in the O(1/n1.5)
term. This observation supports our intuition that
allocating more privacy budget to M1 is advisable
when dealing with sufficiently large values of n.

It is also essential to emphasize that we do not advo-
cate the use of non-asymptotic confidence bounds (as
presented in Theorem 4.3) over the asymptotic ones
(Theorem 3.5). This is because non-asymptotic bounds
may still be overly conservative. Instead, Theorem 4.3
should be utilized as a guideline for allocating privacy
budgets when dealing with finite sample sizes.

Finally, the same non-asymptotic CIs hold for SATE.

Theorem 4.5 Theorem 4.3 holds for SATE by replac-
ing σ̂2

p , ∆p, and ∆̂p with σ̂2
s , ∆s, and ∆̂s.

The proof is more involved as it requires a sample-
without-replacement version of Bernstein inequality.
We leave the details in Appendix C.3.

5 EXPERIMENTS

In this section, we provide empirical evaluations for
our proposed framework.

Experiment Setup. We generate the potential
outcomes according to truncated Gaussian distribu-
tions. Specifically, we set the (population) ATE
to be 0.2 and generate Yi(c)

i.i.d.∼ N(−0.1, σ2
p) and

Yi(t)
i.i.d.∼ N(0.1, σ2

p), with σp = 0.05. We truncate
both Yi(c) and Yi(t) to [−1, 1]. We divide the sample
size n = 104 equally into test and control groups (i.e.,
nc = nt = 5 · 103). We set the confidence level to be
90%, simulate for N = 10000 rounds, and compute the
empirical coverage ratio, i.e., the number of times that
the true PATE lies in the estimated CIs.

Baselines. We compare the proposed distributed DP
method, based on PBM (labeled as “PBM”) with (1) the
non-private difference-in-mean CIs and (2) the Central
DP baseline (where we collect all observable samples
and add Gaussian noise to the difference-in-mean esti-
mator). For PBM, we compare different output sizes m
(recall that m determines the per-user communication
cost). We report the average widths of the 90%-CIs,
as well as the empirical coverage rates.

From Table 1, we see that the widths of CIs are largely
determined by the DP noise and the corresponding
privacy levels. However, the CI widths of PBM are very
close to the Central Gaussian mechanism, indicating
that the price of adopting secure aggregation is small.
Due to space limitations, we provide more detailed
experimental results in the appendix, including the CIs
for SATE and under different data distributions.
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A Practical privacy accounting for PBM

In this section, we improve the efficiency of the privacy accounting mechanism Chen et al. (2022), which are
originally designed for small sample and finite field sizes (usually when n,m ≤ 103) due to the batch-SGD and
the natural computation and communication constraints of using secure aggregation.

Following from the proof of Theorem 3.3 in Chen et al. (2022), for any set of parameters (m,n, θ, α), ε(α) can be
expressed as

max
t1,t2∈[m·n], |t1−t2|≤m

Dα

(
PBinom(t1, 12−θ)+Binom(mn−t1,

1
2+θ)

∥∥PBinom(t2, 12−θ)+Binom(mn−t2,
1
2+θ)

)
. (5)

In Chen et al. (2022), it is shown that the maximum of (5) occurs at (t1, t2) = (0,m), which suggests the following
(exact) privacy accounting mechanism in Algorithm 3.

Algorithm 3 Exact privacy accounting.
Input: n,m, θ, α
Return: ε(α)
P1 ← Binom(mn, 1

2 − θ) ▷ P1 is a mn+ 1-dim vector.
P2 ← Binom(m(n− 1), 1

2 − θ)
P ′
2 ← Binom(m, 1

2 + θ)
P2 ← P2 ∗ P ′

2 ▷ ∗ denotes the convolution operator.
ε(α)← 1

α−1 log
(
sum

(
Pα

1

Pα−1
2

))
▷ sum and (·)α are performed coordinate-wisely.

Note that the accounting involves binomial coefficients with large n, so in practice, all computations should be
done in the log space to ensure computation stability, as described in Algorithm 4. The computation bottlenecks of
Algorithm 3 and Algorithm 4 are at the convolution operation, which, when computed via fast Fourier transform,
takes Õ(mn) time.

Algorithm 4 Exact privacy accounting over the log space.
Input: n,m, θ, α
Return: ε(α)
logP1 ← log

(
Binom(mn, 1

2 − θ)
)

logP2 ← log
(
Binom(m(n− 1), 1

2 − θ)
)

logP′
2 ← Binom(m, 1

2 + θ)
logP2 ← logP2 ∗̃ logP′

2 ▷ ∗̃ denotes the convolution operator over the log space.
ε(α)← 1

α−1 logexpsum (α · logP1 + (1− α) · logP2)

A.1 Approximation for large n and m

Unfortunately, in most private analytic or causal inference tasks, the number of samples n can be up to millions
(and m may be up to thousands), making the Õ(mn) time complexity of the above algorithms infeasible. To
address this issue, we propose to account for the privacy loss via the following upper bound based on a data
processing inequality:

(5) ≤ max
k∈[n−1]

m ·Dα

(
PBinom(1+k, 12−θ)+Binom(n−k−1, 12+θ)

∥∥PBinom(k, 12−θ)+Binom(n−k, 12+θ)

)
. (6)

Although (6) is always strictly greater than the exact privacy loss (5), when either m or n is large, the approximation
error in ε(α) is negligible. For instance, when n = 100 and α = 2, the approximation error is less than 0.1%.
By leveraging (6), we arrive at the following approximate privacy accounting algorithm, which reduces the
computational complexity to O(n):
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Algorithm 5 Efficient approximate privacy.
Input: n,m, θ, α
logP1 ← log

(
Binom(n, 1

2 − θ)
)

logP2 ← log
(
Binom(n− 1, 1

2 − θ)
)

logP′
2 ← Ber( 12 + θ)

logP2 ← logP2 ∗̃ logP′
2 ▷ ∗̃ denotes the convolution operator over the log space.

ε(α)← 1
α−1 logexpsum (α · logP1 + (1− α) · logP2).

Return: mε(α)

In our experiments, we account the Rényi DP according to Algorithm 5 and convert the (α, ε(α))-Rényi DP to
(ε, δ)-DP via the conversion lemma given by Canonne et al. (2020).

B Additional experiments

In this section, we provide more complete experimental results to demonstrate the utility of our proposed
framework.

B.1 Gaussian potential outcomes

In the first set of examples, we consider random treatment effects, where the potential outcomes before and after
the treatment are normally distributed: Yi(0)

i.i.d.∼ N(µ0, σ) and Yi(1)
i.i.d.∼ N(µ1, σ). Under this distributional

assumption, the PATE is defined as ∆p ≜ µ1 − µ0, while the SATE is ∆s ≜ 1
nt

∑
i Yi(1)− 1

nt

∑
i Yi(0), where nc

and nt represent the numbers of the control and test groups.

In the experiments, we set nc = nt = 103, ∆p = 0.2, and the noise level σ = 0.01. For each set of parameters of
the privatization mechanisms, we set the confidence level to be 90%, simulate for N = 10000 rounds, and report
the average widths of CIs and the empirical coverage ratios (i.e., the number of times that the true PATE lies
within the estimated CIs).

In Table 2, we observe that without privacy constraints, we obtain tight CIs with a significantly higher coverage
ratio than required. Specifically, we achieve a coverage ratio of 0.98 compared to the requested 0.9 coverage ratio
under a 90% confidence constraint5. The issue of being overly conservative, however, vanishes under DP, since
the DP noise dominates the total uncertainty and is much larger than the sampling variance.

Comparing the non-private setting, we found that the width of the private CIs is significantly larger than the
non-private one, indicating that the DP noise is much larger than the sampling noise. Unfortunately, this is the
price we need to pay. However, the CI widths of the centralized Gaussian mechanism are roughly the same as
the width of PBM. The difference to the Gaussian mechanism is negligible when n and m are large enough. In
Table 2, we can see that when n = 1000, setting m = 256 is sufficient to achieve the same performance as the
centralized Gaussian mechanism. This implies that although the price for achieving DP is indispensable, the
price for adopting secure aggregation to remove the trust toward the server can be made arbitrary small, as long
as we are willing to slightly increase the communication costs (which are dictated by the finite field size m).

We can observe a similar trend when estimating the population level treatment effect (i.e., PATE). We see that
when setting m = 256, the width of CIs is almost the same as the the centralized Gaussian. A major difference
compared to estimating SATE, however, is that the average converge ratio of the non-private setting becomes
aligned with our target confidence level (i.e., 90% in our setting). This is because the variance estimator of PATE
given in Algorithm 1 becomes unbiased since the unidentifiable term (i.e., the covariance) is cancelled out (see
the proof given in Section ?? for more details).

5Note that when estimating the confidence intervals of the difference-in-mean estimator for SATE, the true variance is
unidentifiable. Therefore, we can only use an upper bound to obtain a conservative interval, as discussed in the proof of
Theorem 3.2.
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Table 2: Average width and coverage of 90%-confidence intervals for SATE. Gaussian potential outcomes with
n = 103.

Non-private 0.980
0.002 ± 3.25e-05

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.899 0.897 0.899 0.900 0.901 0.897 0.899
0.771 ± 1.26e-07 0.199 ± 4.87e-07 0.118 ± 8.40e-07 0.084 ± 1.15e-06 0.066 ± 1.45e-06 0.055 ± 1.78e-06 0.047 ± 2.08e-06

PBM (m=256) 0.899 0.903 0.904 0.905 0.898 0.896 0.896
0.772 ± 1.26e-07 0.200 ± 4.85e-07 0.119 ± 8.34e-07 0.085 ± 1.13e-06 0.067 ± 1.42e-06 0.056 ± 1.73e-06 0.048 ± 2.00e-06

PBM (m=1024) 0.904 0.892 0.896 0.901 0.901 0.904 0.898
0.772 ± 1.26e-07 0.199 ± 4.83e-07 0.118 ± 8.23e-07 0.085 ± 1.15e-06 0.066 ± 1.47e-06 0.055 ± 1.76e-06 0.047 ± 2.07e-06

PBM (m=2048) 0.896 0.902 0.899 0.903 0.897 0.904 0.896
0.772 ± 1.27e-07 0.199 ± 4.81e-07 0.118 ± 8.16e-07 0.084 ± 1.15e-06 0.066 ± 1.45e-06 0.055 ± 1.77e-06 0.047 ± 2.08e-06

Table 3: Average width and coverage of 90%-confidence intervals for PATE. Gaussian potential outcomes with
n = 103.

Non-private 0.901
0.002 ± 3.24e-05

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.905 0.895 0.899 0.902 0.904 0.899 0.899
0.771 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.20e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.78e-06 0.047 ± 2.07e-06

PBM (m=256) 0.902 0.900 0.900 0.903 0.906 0.900 0.903
0.772 ± 1.25e-07 0.200 ± 4.84e-07 0.119 ± 8.15e-07 0.085 ± 1.15e-06 0.067 ± 1.43e-06 0.056 ± 1.72e-06 0.048 ± 2.02e-06

PBM (m=1024) 0.900 0.897 0.902 0.900 0.904 0.898 0.896
0.772 ± 1.26e-07 0.199 ± 4.85e-07 0.118 ± 8.28e-07 0.085 ± 1.17e-06 0.066 ± 1.46e-06 0.055 ± 1.77e-06 0.047 ± 2.05e-06

PBM (m=2048) 0.897 0.902 0.901 0.901 0.899 0.902 0.898
0.772 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.19e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.77e-06 0.047 ± 2.06e-06

B.2 Constant treatment effects

In the second set of examples, we consider constant treatment effects. Specifically, we assume Yi(0)
i.i.d.∼ uniform(a, b)

and Yi(1) = Yi(0) + ∆s, where ∆s is a deterministic but unknown quantity that we want to estimate.

In the experiments, we set nc = nt = 103, ∆s = 0.2, and (a, b) = (−1,−0.8). For each set of parameters of the
privatization mechanisms, we again set the confidence level to be 90%, simulate for N = 10000 rounds, and report
the average widths of CIs and the empirical coverage ratios.

As shown in Table 4 and Table 5, under the assumption of a constant ATE, estimating SATE and PATE is
essentially the same, both theoretically and empirically. The coverage ratios for both PATE and SATE are
accurate, in contrast to SATE with random ATE. Furthermore, we observe a similar trend as in the Gaussian
outcomes, where PBM achieves a negligible error compared to the central Gaussian.

Table 4: Average width and coverage of 90%-confidence intervals for SATE. Constant treatment effect with
n = 103.

Non-private 0.897
0.108 ± 1.53e-03

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.904 0.902 0.901 0.899 0.895 0.899 0.896
0.779 ± 2.11e-04 0.227 ± 7.30e-04 0.160 ± 1.03e-03 0.137 ± 1.21e-03 0.127 ± 1.30e-03 0.121 ± 1.40e-03 0.118 ± 1.41e-03

PBM (m=256) 0.893 0.904 0.904 0.900 0.897 0.898 0.897
0.779 ± 2.12e-04 0.227 ± 7.40e-04 0.160 ± 1.03e-03 0.138 ± 1.20e-03 0.127 ± 1.31e-03 0.122 ± 1.36e-03 0.118 ± 1.40e-03

PBM (m=1024) 0.896 0.900 0.905 0.901 0.900 0.904 0.895
0.779 ± 2.13e-04 0.227 ± 7.36e-04 0.160 ± 1.03e-03 0.137 ± 1.19e-03 0.127 ± 1.29e-03 0.121 ± 1.36e-03 0.118 ± 1.40e-03

PBM (m=2048) 0.898 0.897 0.902 0.901 0.903 0.900 0.899
0.779 ± 2.11e-04 0.227 ± 7.30e-04 0.160 ± 1.03e-03 0.137 ± 1.20e-03 0.127 ± 1.30e-03 0.121 ± 1.40e-03 0.118 ± 1.41e-03



Chen, Cormode, Bharadwak, Romov, Özgür

Table 5: Average width and coverage of 90%-confidence intervals for PATE. Constant treatment effect with
n = 103.

Non-private 0.901
0.002 ± 3.24e-05

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.905 0.895 0.899 0.902 0.904 0.899 0.899
0.771 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.20e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.78e-06 0.047 ± 2.07e-06

PBM (m=256) 0.902 0.900 0.900 0.903 0.906 0.900 0.903
0.772 ± 1.25e-07 0.200 ± 4.84e-07 0.119 ± 8.15e-07 0.085 ± 1.15e-06 0.067 ± 1.43e-06 0.056 ± 1.72e-06 0.048 ± 2.02e-06

PBM (m=1024) 0.900 0.897 0.902 0.900 0.904 0.898 0.896
0.772 ± 1.26e-07 0.199 ± 4.85e-07 0.118 ± 8.28e-07 0.085 ± 1.17e-06 0.066 ± 1.46e-06 0.055 ± 1.77e-06 0.047 ± 2.05e-06

PBM (m=2048) 0.897 0.902 0.901 0.901 0.899 0.902 0.898
0.772 ± 1.24e-07 0.199 ± 4.85e-07 0.118 ± 8.19e-07 0.084 ± 1.16e-06 0.066 ± 1.47e-06 0.055 ± 1.77e-06 0.047 ± 2.06e-06

B.3 Constant treatment effect with larger n

Finally, in the last set of experiments, we consider a larger sample size with Gaussian outcomes. We use the same
set of parameters as in Section B.1, except that nt = nc = 104. From Table 4 and Table 5, we observe that when
the privacy budget is large enough ε > 1, the CIs for both PBM and central Gaussian are very closed to the
non-private one, indicating that the error is dominated by the sampling noise instead of the DP noise. Therefore,
when n is large enough (depending on the sample variance), we can achieve DP with negligible effect on the
utility.

Table 6: Average width and coverage of 90%-confidence intervals for SATE. Constant treatment effect with
n = 104.

Non-private 0.896
0.034 ± 1.51e-04

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.905 0.903 0.896 0.903 0.899 0.899 0.903
0.084 ± 6.25e-05 0.040 ± 1.32e-04 0.036 ± 1.45e-04 0.035 ± 1.49e-04 0.035 ± 1.49e-04 0.035 ± 1.52e-04 0.035 ± 1.50e-04

PBM (m=256) 0.905 0.906 0.897 0.902 0.897 0.896 0.905
0.084 ± 6.15e-05 0.040 ± 1.32e-04 0.036 ± 1.42e-04 0.036 ± 1.48e-04 0.036 ± 1.47e-04 0.036 ± 1.46e-04 0.036 ± 1.47e-04

PBM (m=1024) 0.899 0.897 0.902 0.902 0.898 0.903 0.900
0.085 ± 6.16e-05 0.040 ± 1.32e-04 0.036 ± 1.45e-04 0.035 ± 1.48e-04 0.035 ± 1.49e-04 0.035 ± 1.51e-04 0.035 ± 1.52e-04

PBM (m=2048) 0.903 0.903 0.899 0.898 0.906 0.898 0.901
0.085 ± 6.22e-05 0.040 ± 1.31e-04 0.036 ± 1.45e-04 0.035 ± 1.49e-04 0.035 ± 1.49e-04 0.035 ± 1.51e-04 0.035 ± 1.50e-04

Table 7: Average width and coverage of 90%-confidence intervals for PATE. Constant treatment effect with
n = 104.

Non-private 0.904
0.034 ± 1.53e-04

ε = 0.1 ε = 0.4 ε = 0.7 ε = 1.0 ε = 1.3 ε = 1.6 ε = 1.9

Central Gaussian 0.904 0.899 0.903 0.907 0.900 0.900 0.900
0.084 ± 6.23e-05 0.040 ± 1.33e-04 0.036 ± 1.42e-04 0.035 ± 1.50e-04 0.035 ± 1.51e-04 0.035 ± 1.51e-04 0.035 ± 1.51e-04

PBM (m=256) 0.903 0.897 0.907 0.911 0.901 0.900 0.899
0.084 ± 6.17e-05 0.040 ± 1.30e-04 0.036 ± 1.43e-04 0.036 ± 1.49e-04 0.036 ± 1.46e-04 0.036 ± 1.45e-04 0.036 ± 1.47e-04

PBM (m=1024) 0.899 0.898 0.905 0.903 0.904 0.901 0.896
0.085 ± 6.15e-05 0.040 ± 1.33e-04 0.036 ± 1.46e-04 0.035 ± 1.48e-04 0.035 ± 1.50e-04 0.035 ± 1.52e-04 0.035 ± 1.50e-04

PBM (m=2048) 0.905 0.900 0.901 0.903 0.903 0.896 0.901
0.085 ± 6.21e-05 0.040 ± 1.32e-04 0.036 ± 1.42e-04 0.035 ± 1.50e-04 0.035 ± 1.51e-04 0.035 ± 1.50e-04 0.035 ± 1.51e-04

C Omitted Proofs

C.1 Proof of Theorem 4.3

We first present the full version of the theorem with higher-order terms and constants.
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Theorem C.1 (Detailed version of Theorem 4.3) Let M1 and M2 be PBM (Algorithm 2) with parameter
(m1, θ1) and (m2, θ2). Let σ̂p be defined as in Algorithm 1. Then under Assumption 3.1, it holds that

Pr
{
∆p ∈

[
∆̂p −

(√
2σ̂2

p log(2.01/δ) + γ
)
, ∆̂p +

(√
2σ̂2

p log(2.01/δ) + γ
)]}

≥ 1− δ,

where

γ =
56R log(1200/δ)

3(n− 1)
+

√
R2

2m1nθ21
log

(
1200

δ

)
+

√
4 log(2.01/δ1)

n

·min

 4

√
log

(
1200

δ

)
R4

4m2nθ22
+ 4

√
log

(
1200

δ

)
R2

2m1nθ21
,

√
log
(
1200
δ

)
R4

4m2nθ2
2
+
√
log
(
1200
δ

)
R2

2m1nθ2
1√

ŝ2t + ŝ2c

 .

Note that when ε1(α) = C1
αm1θ

2
1

n and ε2(α) = C2
αm2θ

2
2

n are constants, γ = O(1/n).

Proof. Before entering the main proof, we will make use of the following (slightly adapted) empirical Berstein
inequality:

Lemma C.2 (Theorem 11, Maurer and Pontil (2009)) Let X = (X1, ..., Xn) be a vector of independent
random variables with values in [−R,R]. Let δ > 0. Then for any δ1, δ2 > 0 and δ1 + δ2 = δ, it implies

Pr


∣∣∣∣∣ 1n∑

i

Xi −
1

n

∑
i

E[Xi]

∣∣∣∣∣ ≤
√√√√2s2 (X) log

(
2
δ1

)
n

+
14R log

(
2
δ2

)
3(n− 1)

 ≥ 1− δ, (7)

where s2(X) ≜ 1
n(n−1)

∑
i ̸=j (Xi −Xj)

2 denotes the sample variance.

Now, we apply the above lemma in our PATE estimation task. Under the PATE setting with nc = nt = n/2, it
holds that X1, ..., Xn/2

i.i.d.∼ Pt and Xn/2+1, ..., Xn
i.i.d.∼ Pc. As a result, Lemma C.2 yields that, with probability

1− δ, ∣∣∣∣∣∣∣
2

n

∑
i∈[n/2]

(
Xi −Xi+n/2

)︸ ︷︷ ︸
≜Wi

−∆p

∣∣∣∣∣∣∣ ≤
√

4s2 (W ) log(1/δ1)

n
+

56R log(2/δ2)

3(n− 1)

=

√
4 (s2t + s2c) log(1/δ1)

n
+

56R log(2/δ2)

3(n− 1)
, (8)

where the first inequality holds since Wi ∈ [−2R, 2R] and the second equality holds since

s2(W ) = s2
(
X1, ..., Xn/2

)
+ s2

(
Xn/2+1, ..., Xn

)
= s2t + s2c

by definition.

Next, it suffices to combine with the concentration bounds on ∆̂p ≜ µ̂t − µ̂c and ŝ2t and ŝ2c (recall that these are
the private estimates of sample means and variance from PBM).

Concentration of private sample mean. To this end, observe that

µ̂t − µ̂c =
2R

nm1θ

n∑
i=1

(
Zi −

m1

2

)
,

where Zi ∼ Binom
(
m1,

1
2 −

θ1Xi+n/2

R

)
for i ∈ [n/2] and Zi ∼ Binom

(
m1,

1
2 +

θ1Xi+n/2

R

)
for i ∈ [n/2 + 1 : n].

Conditioning on Xi’s and applying Hoeffding’s inequality yield

Pr


∣∣∣∣∣∣(µ̂t − µ̂c)−

2

n

n/2∑
i=1

(
Xi −Xi+n/2

)∣∣∣∣∣∣ ≥
√

log

(
2

δµ

)
R2

2m1nθ21


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= Pr



∣∣∣∣∣∣∣∣∣∣
n∑

i=1

Zi −
n/2∑
i=1

(
m1θ1
R

(
Xi −Xi+n/2

)
− m1

2

)
︸ ︷︷ ︸

sum of m1n/2 independent zero-mean bounded variables.

∣∣∣∣∣∣∣∣∣∣
≥

√
log

(
2

δµ

)
m1n

2


≤ δµ. (9)

Concentration of private sample variance. Next, we construct the estimator of the sample variance from
PBM:

ŝ2t =
1

n− 1

n/2∑
i=1

(
R2

2m2θ2
Z ′
i −

R2

4θ2
+

R2

2

)
− n

n− 1
µ̂2
t ,

where Z ′
i ∼ Binom

(
m2, 2θ

(
X2

i

R2 − 1
2

)
+ 1

2

)
. We construct ŝc in the same way. Notice that the above ŝ2t is

constructed such that E
[
ŝ2t
∣∣X] = s2t .

Since the sample variance estimator ŝ2t and ŝ2c are privatized by PBM, it is possible to obtain negative values, so we
will replace them by its positive part, i.e., ŝ2+t ≜ max

(
ŝ2t , 0

)
and ŝ2+c ≜ max

(
ŝ2c , 0

)
. For notational convenience,

we abuse notation and let ŝ2t and ŝ2c be the positive parts so that ŝ2t , ŝ
2
c ≥ 0 always holds.

Since ŝ2t is obtained by first estimating the second moment of samples
∑

i X
2
i and then subtract the sample mean

nµ̂2
t , it holds that, conditioning on Xi’s and the event∆̂p −

2

n
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(
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)
<

√
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2
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)
R2
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 ,

we have
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This implies that with probability at least 1− δs, both of the following events hold:

•

√
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Therefore, we arrive at the following bound on the private sample variance:

Pr
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√
log
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δs
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R4
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√
log
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δµ

)
R2

2m1nθ2
1√
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Putting things together. Finally, by plugging (9) and (11) into (8), we obtain that, with probability at least
1− δ1 − δ2 − δµ − δs, ∣∣∣∆̂p −∆p

∣∣∣ ≤√4 (ŝ2t + ŝ2c) log(2/δ1)

n
+ γ =
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p log(2/δ1) + γ, (12)

where γ = o(1/
√
n) and takes the following explicit expression:

γ =
56R log(2/δ2)

3(n− 1)
+

√
R2

2m1nθ21
log

(
2

δµ

)
+

√
4 log(2/δ1)

n
·

min

 4

√
log

(
2

δs

)
R4

4m2nθ22
+ 4

√
log

(
2

δµ

)
R2

2m1nθ21
,

√
log
(

2
δs

)
R4

4m2nθ2
2
+

√
log
(

2
δµ

)
R2

2m1nθ2
1√

ŝ2t + ŝ2c

 .

Finally, we can pick δ1 = 0.995δ and δ2 = δµ = δs =
δ

600 , which yields

∣∣∣∆̂p −∆p

∣∣∣ ≤√4 (ŝ2t + ŝ2c) log(2.01/δ)

n
+ γ =

√
2σ̂2

p log(2.01/δ) + γ, (13)

and

γ =
56R log(1200/δ)

3(n− 1)
+

√
R2

2m1nθ21
log

(
1200

δ

)
+

√
4 log(2.01/δ1)

n

·min

 4

√
log

(
1200

δ

)
R4

4m2nθ22
+ 4

√
log

(
1200

δ

)
R2

2m1nθ21
,

√
log
(
1200
δ

)
R4

4m2nθ2
2
+
√
log
(
1200
δ

)
R2

2m1nθ2
1√

ŝ2t + ŝ2c

 .

□

C.2 Proof of Proposition 4.4

SinceM1 andM2 satisfy (α, ε1(α)) and (α, ε2(α)) Rényi DP, it holds that m1θ
2
1 ≤

Cnε1(α)
α and m2θ

2
2 ≤

Cnε2(α)
α

for some universal constant C. Plugging these into Theorem C.1 yields the desired result. □

C.3 Proof of Theorem 4.5

The proof follows from the same step as in the proof of Theorem 4.3, except for replacing the empirical Berstein
inequality with the following finite sample (i.e., without-replacement) Berstein inequality:

Lemma C.3 (Proposition 1.4 of Bardenet and Maillard (2015)) Let X = {x1, x2, ..., xn} be a finite set
of N points. Let

a ≜ min
i∈[n]

xi, and b ≜ max
i∈[n]

xi;

µ ≜
1

n

∑
i∈[n]

xi and σ2 ≜
1

n

∑
i∈[n]

(xi − µ)2.

Let X1, X2, ..., Xn/2 denote a random sample drawn without replacement from X . Then, for all ε > 0,

Pr

∣∣∣∣∣∣ 1n
∑
i∈[n]

Xi − µ

∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp

(
− nε2

2σ2 + (2/3)(b− a)ε

)
. (14)
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Notice that Lemma C.3 implies Lemma C.2 with E[Xi] being replaced by µ and s2 (X) replaced by σ (x1, ..., xn).
As a result, we only need to apply concentration inequalities on the private estimate of µ̂pr and σ̂2

s , which follows
from the proof of Theorem 4.3.

□
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