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ABSTRACT

We study the fundamental problem of frequency estimation under
both privacy and communication constraints, where the data is
distributed among k parties. We consider two application scenarios:
(1) one-shot, where the data is static and the aggregator conducts a
one-time computation; and (2) streaming, where each party receives
a stream of items over time and the aggregator continuously moni-
tors the frequencies. We adopt the model of multiparty differential
privacy (MDP), which is more general than local differential privacy
(LDP) and (centralized) differential privacy. Our protocols achieve
optimality (up to logarithmic factors) permissible by the more strin-
gent of the two constraints. In particular, when specialized to the
&-LDP model, our protocol achieves an error of Vk/ (e®(€) —1) us-
ing O(k max{e, log %}) bits of communication and O(k log u) bits
of public randomness, where u is the size of the domain.
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1 INTRODUCTION

Providing formal (differential) privacy guarantees for sensitive data
in different forms has been a major focus for the data management
community in recent years, e.g., [6, 10, 40, 49, 52, 54, 55]. Consider a
distributed database with k parties, where each party has some data.
We study two settings for privacy-preserving data analysis where
an aggregator wants to obtain some aggregated statistics over all
data held by the parties: (1) one-shot, where the data is static and the
parties conduct a one-time computation; and (2) streaming, where
each party receives a stream of items over time and the aggregator
wants to monitor the aggregated statistics continuously. These
settings are motivated by real-world applications. For example,
where each hospital holds some medical records which some third-
party public health organization wishes to analyze, and it is the
responsibility of the hospital to protect the privacy of their patients.
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As another example in the distributed streaming model, from the
browsing activities of many users, a search engine would like to
continually monitor the most popular URLs over the past week
without privacy breach [13]. In addition to the privacy constraint,
the communication cost often becomes a major bottleneck which
limits the scalability of distributed machine learning tasks. For
instance, in federated computing, the data is distributed among
many mobile devices connected by bandwidth-limited wireless links
and the communication is expensive and unreliable [38]. This poses
a dual-challenge to the design of the protocol. Recently, there has
been a lot of interest in designing protocols under both constraints
[1-3, 17, 34, 50]. The most important result obtained in this paper is
that, for the frequency estimation problem, it is possible to achieve
optimality permissible by the more stringent of the two constraints,
or equivalently, the less stringent constraint can be satisfied for

free.

1.1 Problem Formulation

Multiparty Differential Privacy. In the settings above where multiple
parties each possess some data, the standard notion of privacy is
multiparty differential privacy (MDP) [13, 41, 44, 47]. Denote the
parties as Py, ..., Pg, and the aggregator as Py. Suppose each party
P;, i > 1, has a multiset D; of n; > 1 items, drawn from a universe
U of sizeu. Let N = Zle ni. We use [n] to denote {1,...,n}.

DEFINITION 1 (MULTIPARTY DIFFERENTIAL PRIVACY [47]). Let
P be a protocol involving parties (Py, Py, . .., Py), where P; has input
dataset D; € U™ i € [k], while Py has no input. Consider any
partyP;,i=0,1,...,k, and let A be an adversary controlling P_; =
{Po, ..., P} — {Pi}. We use Viewp_,(P-; < (Po,...,Pr)(D)) to
denote the random variable that includes everything that A sees when
participating in the protocol on input dataset D = (Dy, ..., Dy). We
say that P is e-differentially private if for every i € [k] and every
two neighboring datasets D, D’ € (U™, ..., U™ ) that differ on one
item in P;’s input, the following holds for every set T:

Pr[Viewp_,(P-; < (Po,...,Pr)(D)) € T]
<ef- Pr[VieWpii (P-j & (P, .. .,Pk)(.Z)I)) eT].

The MDP definition above allows arbitrary interactions among
the parties. All the protocols designed in this paper, however, only
use one-way communications from the parties to a designated
aggregator, who can be any particular party. On the other hand,
the lower bounds we match under communication or privacy con-
straints hold even for protocols using arbitrary interactions.
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Connections between MDP and DP/LDP. The MDP model is more
general than other popular privacy models such as local differen-
tial privacy (LDP) and (central) differential privacy (DP): Setting
n; = 1forall i € [k] yields the former while setting k = 1 yields
the latter. It also generalizes the two-party (i.e., k = 2) model [41].
Compared with LDP, MDP more generally applies to the situation
where each party holds more than one item, and ensures item-level
privacy (the sanitized messages are insensitive to the change of
a single item on any party). One can run an LDP protocol in the
MDP model, but it would result in Q(VN) error (for constant £) and
Q(N) communication. In the MDP model, we are mostly interested
in the case N > k. As we will see, our protocol can achieve O(\/E)
error with O(N) communication, or O(VN) error with O(VNk)
communication, both of which are much better than the compa-
rable LDP protocols, and the improvement is more significant for
smaller k (with respect to N). Furthermore, the streaming version
of MDP naturally corresponds to the event-level privacy model in
the streaming setting studied in [13, 14, 28]. Section 9 of [47] gives
a more extensive review of MDP.

Frequency Estimation. Denote the frequency of item j € [u] on party
i by x; j, which we call the local count. In the frequency estimation
problem, the aggregator wishes to obtain a synopsis, which can be
used to extract an estimate of the global count y; = Z?:l x;,j for
any j € [u]. As with prior work [7, 22, 50], we aim at an additive
error guarantee that holds for a single query with probability 1 — .
A vectorized view of the problem is to consider the local counts
{xi j}; at party i as a vector x; € N¥, and we want to obtain a
that minimizes ||§ — y||oo, Where y = 3; x;. Setting f = O(1/u) plus
a union bound converts any error guarantee of the former into one
of the latter. Table 1 summarizes the notations used in the paper.

Table 1: Notations used in the paper.

Notation Meaning

£ Differential privacy budget
k Number of parties
u Domain size
s Average message size

Xij Frequency of item j held by party i

nj Number of items held by party i
yj Total frequency of item j
N Total number of items
n ¢ Noises drawn from geometric distribution
g h Hash functions used in count-sketch
R Number of rows in count-sketch
Slhi/S%O Local heavy/light hitters at party i
w Size of the sliding window
m Number of epochs in the stream
b Number of time steps in each epoch
B Failure probability

1.2 Our Results and Prior Work

We describe our results below and compare them with prior work.
We often use the O notation to suppress polylogarithmic factors.
Please also see Figure 1 for an overview of the results.

One-shot Protocols. Our main one-shot result is an MDP protocol
that achieves an error of O(N/(Vks)) + Vk/(e2(®) — 1) with O(ks)
communication, for any given ¢ > 0 and s > 1, which controls the
communication-utility trade-off. Observe that the first error term is
communication-dependent while the second term is privacy-bound.
Setting s = N/k reduces the first term to (5(\/%), and the total
error is dominated by the second term for ¢ = O(1). Note that,
regardless of the communication cost, the error has to be Q(Vk/e)
for ¢ = O(1) [9], even for the special case where each party has
just one item (i.e., the LDP model). For applications where saving
communication is important, such as collecting data from sensor
networks and mobile phones, we may use a smaller s. In this case,
the communication-bound term dominates, which also matches
the lower bound in the non-private, blackboard communication
model under the O(ks) communication constraint [37]. Thus, our
one-shot MDP protocol achieves the optimal error subject to the
both the communication and the privacy constraint for the case
e=0(1).

In the LDP model, which is a degenerate case of MDP, we are
able to refine the analysis of our MDP protocol. The refined analysis
removes the communication-bound term, as well as the logarith-
mic factor in the exponent ©(¢) in the privacy-bound term. More
precisely, we show that our LDP protocol achieves an error of

0 (\/E/(eg/4 - 1)) with O(k max{e, log %}) bits of communication

while using O(k log u) bits of public randomness!. This matches the
recent result of [32]% in terms of error, while further improving on
the communication cost, which is O(k max{log u, ¢, log %}) bits. We

also prove a lower bound of Q(\/E/eg/z) for ¢ = O(logk), regard-
less of communication cost, improving the previous lower bound
Q(k1/3) [33]. Now, combined with the lower bound Q(Vk/e¢) for
the ¢ = O(1) case [9], we have essentially closed the gap for the
problem for all meaningful values of ¢ (note that ¢ > Q(log k) offers
almost no meaningful privacy protection), up to a constant-factor
difference in e.

Frequency estimation under the LDP model has been extensively
studied in the literature. The earliest protocol, RAPPOR [31, 50],
achieves error O(\/I;/(es/4 — 1)) with a communication cost O(ku).
Such a large communication cost, which is proportional to the
universe size, cannot be used for situations such as estimating the
frequencies of popular English words (in this case, u = 26/ where
¢ is the maximum length of keywords). Subsequent works have
aimed at reducing the communication cost to be logarithmic or
even independent of u. The Hadamard Randomized Response (HRR)
algorithm [4, 43] reduces it to O(k) bits while using O(k log u) bits
of public randomness, but the error becomes O (\/E/min{e, 1}),

which is optimal only for the high privacy regime ¢ < 1 [9]. For the
general privacy regime ¢ = Q(1) [2, 39], Chen et al. [17] present an

! These random bits can be communicated if public randomness is not available.

%In fact, we obtained our result concurrently and independently of [32] via a very
different approach. Furthermore, [32] does not work in the MDP model, which is our
main focus.
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Figure 1: Overview of our results, where s can be any positive integer. All bounds suppress polylogarithmic factors.

improved algorithm that achieves error O (\/k / E) using O(ke) bits

of communication. Finally, the optimal error has been achieved by
our protocol and the one in [32] as mentioned above, using O(ke)
bits and O(k(e + logu)) bits of communication, respectively.

Streaming Protocols. The MDP model has a natural streaming ver-
sion. As with prior work [13, 23, 24], we adopt a synchronous timing
model, where time is divided into discrete steps, and one item ar-
rives at each party in every time step. Messages sent within a time
step all arrive before the next time step. In practice, the parties’
clocks might be out-of-sync and messages can be delayed. In this
case, we can include timestamps in the messages to simulate the
execution, which is particularly easy for our protocol as it only uses
one-way messages from the parties to the aggregator. The assump-
tion that one item must arrive at each time step is also without loss
of generality. If nothing arrives at a party in a time step, this can
be treated as a dummy item.

Perhaps the most useful streaming model is the sliding-window
model. Here, the goal is for the aggregator to maintain a synopsis
such that the global count of any item j, counting all items that
have arrived in the last w time steps, can be estimated. However,
all messages sent during the entire streaming period, not just those
sent in the sliding window, must collectively be e-DP as in the one-
shot MDP model. We present an e-MDP protocol for this problem
that, for any integer s > 1, achieves error O(wVk/(s - min{e, 1})) +
Vk/(e2©) — 1) with O(ks - n/w) communication, while using O(s)
space on each party, where n is the total number of time steps.
Note that the one-shot problem is a special case of this problem,
by just setting n := w, N := kw, and asking for the synopsis only
at the end of the stream. Compared with our one-shot result, the
only difference is that the communication-bound error term has
an extra 1/min{e, 1} factor. Thus, the communication-error trade-
off of our sliding window protocol is still optimal for ¢ = O(1).
For ¢ = ©(1), the previous result for this problem [13] gave an
error of O(kw/s) under the same communication budget, which
is a Vk-factor from optimal. More importantly, the largest s that
can be supported by the protocol of [13] is O(+/w), which means
that the minimum error achievable (regardless of communication)

is O(kyw). This is a Vkw-factor from O(Vk), the smallest error
permissible by the privacy constraint, which can be achieved by
our protocol by setting s := w.

For (private or non-private) streaming algorithms, an important
measure of complexity is space. To see that our space-error trade-
off is also optimal, simply consider the degenerate case where
k = 1. This particular case has actually been recently studied by
[46], where an algorithm with error O(W3/ 4/¢) and space O(y/w)
is presented. When degenerated to the k = 1 case, our protocol
achieves é(%) +1/(e®®) = 1) error with O(s) space. To compare
with [46], just set s = y/w, which yields O(Vw) + 1/(°(®) =1) error.
In fact, the protocol in [13] yields the same space-error trade-off as
ours (but with a limited range s < vew) for the k = 1 case, which
was overlooked in [46]. In an analogy to the communication-error
trade-off, the space-error trade-off is also determined by space or
privacy, whichever is more stringent. The space-bound term O( )
is optimal (assuming u > w) by well-known lower bounds in the
(non-private) streaming literature [11], while the optimality of the
privacy-bound term follows from the centralized DP lower bound
f)(%) for ¢ = O(log u), even for the one-shot problem [47]. Thus,
our protocol achieves the optimal space-error trade-off for the full
range 1 < s < w for ¢ = O(log u). On the other hand, [13] achieved
optimality only for a partial range 1 < s < \/ew, while the results
of [46] are not optimal. Finally, our protocol spends O(1) time to
process each item, so it is time-optimal as well.

Further Applications. Similar to [7, 18, 20], by using our frequency
estimation protocol with a dyadic decomposition of the universe,
we can also solve many related problems such as heavy hitters,
quantiles, and orthogonal range counting (in constant dimensions),
at the cost of some extra polylogarithmic factors.

1.3 Other Related Work

We briefly mention results in other models of privacy that are rele-
vant to our study. Most closely related are the notions of continual
observation, and pan privacy, which consider privacy against an
adversary who may observe a snapshot of the algorithm’s internal
state (pan privacy), or when the algorithm continually publishes



updates based on new readings (continual observation). The latter
of these most closely matches our (distributed) streaming results,
and we leverage similar techniques, such as expressing partial ag-
gregations within a tree structure [15, 28]. More specifically, by
setting w := n, the sliding-window model degenerates into the
problem of monitoring the full stream, i.e., continual observation.
Existing solutions for this problem achieves O(1/¢) error with O(u)
space [15]. Our protocol achieves the same error with space O(n),
which can be much smaller than é(u). In addition, we provide a
full-range space-error trade-off.

We have mentioned the model of Local Differential Privacy (LDP),
which corresponds to MDP with n; = 1 for all i in the one-shot
setting. The most impactful work in this model is concerned with
frequency estimation, and finding heavy hitters, based on building
“frequency oracles” from each site’s message to estimate item fre-
quencies, as in our setting [4, 8, 27, 31]. Further work has studied
a wide variety of data analysis and ML tasks, such as multidimen-
sional statistics, language models and classifiers; we refer the reader
to surveys on this topic [19, 51, 53].

Most recently, additional models have been proposed which
aim to achieve improved privacy-accuracy tradeoffs by making
stronger assumptions. The shuffle model assumes that the identity
of the sender can be fully disassociated from the messages sent,
either by a trusted “shuffler” entity, or through a cryptographic mix
network [5, 30].

2 PRELIMINARIES
2.1 Differential Privacy

The standard (centralized) differential privacy model is a special
case of MDP, but we state its definition again for clarity. Let D ~ D’
denote two neighboring datasets, which differ by one item.

DEFINITION 2 (DIFFERENTIAL PRIVACY [29]). Fore > 0, an al-
gorithm M is e-differentially private (DP) if for any neighboring
datasets D ~ D’ and any S C Range(M),

PrIM(D) € S] < ¢ - PrIM(D’) € S].

Note that the MDP model degenerates to this definition by setting
k :=1: Py runs M on 9 and sends M(D;) to Py.

For a numeric query g, one common DP mechanism is to add
noise drawn from a symmetric geometric distribution (also referred
to as “discrete Laplace”) [12, 35] calibrated to GSg := maxp.qy
|q(D) — q(D’)|, which is known as the (global) sensitivity of g.

DEFINITION 3 (SYMMETRIC GEOMETRIC DISTRIBUTION [12, 35]).
Let a > 1. We denote by Geom(a) the symmetric geometric distribu-
tion that takes integer values such that the probability mass function
atlis Z—j a

The following properties of the symmetric geometric distribution
are useful. Let X ~ Geom(a):

(1) E[X] = 0; Var[X] = 2a/(a — 1)? = O(1/log? a).

(2) For every d > 0, Pr[|X| > d] < a .

(3) The mechanism M(D) := q(D) + X is ¢-DP by setting a =

exp(e/GSq). Note that in this case, Var[X] = O((qu/é‘)z).

The LDP model is another special case of MDP by setting n; = 1

foralli € [k]. The Hadamard Randomized Response (HRR) algorithm

[4, 43] can be used to solve the frequency estimation problem under
LDP. Assume, without loss of generality, that u is a power of 2, and
recall that the Hadamard matrix can be defined recursively as

H, H,
H, = u/2 u/2 ],
“ [ Hu/2 _Hu/2

where Hy = [1]. Each party i samples an index r; u.a.r. from [u],
encodes her item v; into a single bit H[r;,v;], and then sends it
to the aggregator via randomized response. Specifically, each user
sends a one-bit message M (v;) to the aggregator (if there is no
shared randomness, the random index r; should also be sent using
log u bits), where

M(vi) = {H[Visvi]’ W.p. 57

—H{[ri,v;], otherwise.
The frequency estimator (at the aggregator side) for any item
v is sfﬂ Z{.‘:l M(v;) - H[ri,v]. The error guarantee of HRR is
O(+/klog(1/p)/min{e, 1}) which holds for a single query with
probability 1 — f.

Note that the MDP/LDP model allows arbitrary interactions
among the parties, and the lower bounds [9] hold under this setting.
However, most of existing protocols (including ours) use one-way
messages, except for broadcasting some public parameters to all
parties before the protocol starts. In this case, it is sufficient for
each party to run a e-DP mechanism M on her dataset D; and send
M(D;) to the aggregator. The resulting protocol then trivially sat-
isfies MDP/LDP against active adversaries. It is worth pointing out
that one can relax the MDP model by only allowing the adversary
to control a smaller number of parties. In this case, one may achieve
errors lower than the LDP lower bound of Q (\/E /¢) with interactive
protocols [45].

2.2 Count Sketch

The count sketch [16] of a vector x of size u is another vector C(x)

of size s,
clil= )

i€lul:h(i)=j

g(xi, j=1,....5,

where h: [u] — [s]andg : [u] — {-1, +1} are two hash functions.
For our analysis, we assume h is pairwise-independent while g is
truly random. In some cases, the latter assumption can also be
relaxed to pairwise-independence.

The count sketch can be used to extract point estimates. For any
i € [u], an estimator for x; is X; = g(i) - C(x) [A(i)]. It is known that
E[%;] = x; and Var[%;] < ||x||§/s. So by the Chebyshev inequality,
the error |%; —x;| is O(||x||2/+/s) with constant probability, which is
an £, error guarantee. Meanwhile, the count-sketch also enjoys an #;
error guarantee that |X; —x;| = O(||x]|1/s) with constant probability
(Chapter 3.5 in [26]). Note that these two error bounds are in general
incomparable. The success probability can be amplified to 1-f viaa
standard median trick: creating O(log(1/f)) independent instances
and returning the median of the estimators. This way, a count sketch
can be viewed as a matrix of O(log(1/f)) rows and s columns.



3 ONE-SHOT FREQUENCY ESTIMATION

In this section, we build up our approach. The starting point is a
relatively simple protocol based on gathering a carefully configured
sketch from each party (Section 3.1). This is sufficient to give an
accurate result for the general MDP case (n; > 1). However, sending
a large sketch can be costly when parties have few items, so we
show how to reduce the sketch size for the LDP (n; = 1) case in
Section 3.2, and to achieve a better communication cost in the case
of variable input sizes with an improved protocol in Section 3.3.

3.1 Our Basic Protocol

In addition to the privacy parameter ¢ and the failure probability f,
our protocol uses a parameter s > 1, which determines the average
message size of each party.

Algorithm on Each Party. On each party i, from the local counts x;
we build a count sketch C; of R rows and s; := [ks - n; /N columns,
where R is the nearest odd number to log % Next, the party per-
turbs each counter C;[r,c], r € [R], c € [s;] in the sketch by adding
noise l]flc) drawn from Geom(e¢/(2R), to preserve privacy. Then
the party sends this noisy count sketch C; to the aggregator. The
communication cost (the total size of all count sketches) is

Z:{‘;1 $iR=0 (Z{-c:l ks - % log %) =0 (ks log %) )

If there is no public randomness, each party i also needs to send
the hash functions used in the count sketch hﬁl), gﬁl), r € [R] to the

aggregator, which takes O(kR) = O(klog %) communication.
Privacy Guarantee. It is clear that a count sketch of R rows has

a sensitivity of 2R, so adding noise drawn from Geom(ef/ (2R)) ig
sufficient to preserve ¢-DP for each party.

Algorithm on Aggregator. After the aggregator has collected the
noisy count sketch C; from each party, for any j € [u], we use
jj = X; median,¢[g) {gﬁi) () - Cilr, hﬁ” ()]} as the estimator for
yj = XiXij.

Accuracy. We use a lemma from [48],

Lemma 1 ([48]). If{Xi}tie[n) are independent random variables,
each of which has a symmetric PDF around zero, and n is an odd
number, then E [medianie[n] {X,-}] =0.

To see that E[7j;] = y;, first we show that the frequency estimator
from each row of C; is unbiased. For any r € [R],

Elor” G- Gilr i (D1 = x| = E |07 () - Cilr b (1)1 = i

co0 15|

=0.
Moreover, since gﬁi) is a truly random hash function which maps j
to =1 with equal probability, each random variable

g () - Gilr b ()] - xi;
has a symmetric PDF around zero. Then, by Lemma 1, we have
E (3 - ;] = ) E [median,crry {91 () - Cilr b (1] = i}

1

Next, we analyze the error |j; — y;|. Due to the ¢ error guarantee
of the count sketch and the Chebyshev inequality for the Geometric
noise, for any i € [k] and r € [R], we have

9 ) - Gilr B ()] - x|

< o () - Cilr P ()] = x5
—ofM,__ 1
_O(si T el aR) 1)

Note that the frequency estimator from C; is the median of the

i) ‘

+ gﬁi) () - ’7: LD ()

with a constant probability, say, 0.95.

estimators from R = log 3k independent rows. We say that each
estimate is good if it satisfies the above error bound, which happens
with probability 0.95. Let Y be the number of estimates that are not
good. The median estimator fails to be good with probability

Pr|Y > 1log%
>3 B

< exp (—81/80 log %) < B/(3k)

by the Chernoff bound. Thus, the success probability of the above
error guarantee is amplified to 1 — f/(3k). Applying a union bound,
this error guarantee holds for every party i € [k] with probabil-
ity 1—f/3 — let E1 denote this event. Conditioned upon the event E1,

and since across k parties the random variables median, ¢ g) {gﬁi) (j)-
Cilr, hﬁi) (j)] = xi,j} are independent and bounded by O(N/(ks) +
1/(ef/ (4B — 1)), applying a Hoeffding bound we conclude that

N, flog %/(\/Es) +4 /klog %/(ee/“R) - 1))

with probability 1 — /3. Finally by the law of total probability,
this error guarantee holds unconditionally with probability at least

1-B.

THEOREM 1. Fors > 1 and € > 0, our e-MDP one-shot frequency
estimation protocol returns an unbiased estimator for the frequency
of any item that with probability at least 1 — 3 has error

O i{.# -+ [lo l
Vks ee/(4log%)_l g/;’ '

Its expected communication cost is O (ks log %)

lgj —yjl=0

Comparison to a simple baseline. The way we combine the sketches
is quite different from the standard way of “merging” sketches in
the MDP/LDP model. Consider a baseline method, which follows
the convention of using linear sketches in the non-private setting:
Each party transmits a noisy count sketch of a fixed size to the
aggregator, then the aggregator merges all noisy count sketches
and takes the median estimator from all rows. The common practice
(e.g., [7]) is to use the mergeability property of linear sketches, i.e.,
the aggregator merges the noisy sketches (so all parties must use
the same hash functions and the same sketch size) and makes the
estimate from the merged sketch. Instead, we make a separate
estimate from each noisy sketch and add up the estimates. Thus the
parties do not use the same hash functions; actually, as shown in
our analysis above, it is critical for the parties to use independent
hash functions, as they allow for a higher degree of concentration.
Technically, our analysis is mainly based on the unbiasedness of



the median from an odd number of symmetric random variables.
Moreover, we use different sketch sizes according to the cardinality
of each party, allowing us to utilize the #; bound of count sketch in
the analysis. We also empirically compare with this basic sketching
approach as a baseline in Section 5.

Comparison to PMG. Chan et al. [13] proposed a one-shot MDP al-
gorithm PMG, which privatizes the MG algorithm [42] by injecting
appropriate noise. For a sketch size s, PMG incurs a bias of O(¥)
on each party, so the resulting protocol has an error proportional
to k, in contrast to the factor-Vk in our error bound. Moreover, MG
has sensitivity of s, so the error of the streaming protocol in [13] is
at least Q(k+/w) (for any s and a constant ¢); while count sketch
has sensitivity O(1), and our protocol can achieve an error O(Vk).
Comparison to FreqOracle. The frequency oracle used in [7] com-
bines the idea of count-sketch with the HRR protocol. It uses a
Hadamard matrix of size s’, where s’ = O(Vk), and two hash func-
tions h : [u] — [s’'],g9 : [u] — {-1,+1}. Each party sends one
bit g(v;) - H[ri, h(v;)] via randomized response to the aggregator,
where r; is uniformly drawn from [s’]. The error of FreqOracle is
the same as HRR asymptotically when restricted to the case ¢ < 1.3;
their use of the count-sketch is to reduce the running time of iden-
tifying the heavy hitters from O(k!9) to O(k). Our protocol differs
from FreqOracle in the following aspects: (1) we do not need a
Hadamard matrix to reduce the communication; (2) the width of
the count-sketch is O(Vk) in [7], while it is proportional to n; on
each party in our protocol; (3) we combine the count sketches on
the aggregator side in a different manner from [7]. On the other
hand, the use of geometric noise instead of randomized response is
not crucial: Both can be used to achieve error 1/(e®(€) -1)).

3.2 A Refined Analysis under LDP

Under LDP, which is a special case of MDP, by a more refined
analysis based on the £ bound of the count sketch, we show that
it is sufficient for each party to construct a count sketch of only
one row and s = [(e/% — 1)2/e¢/2] columns, and only the non-zero
entries of the noisy sketch need to be sent to the aggregator. In
addition, it suffices for h and g to both be pairwise-independent
hash functions.

THEOREM 2. Fore > 0, our e-LDP frequency estimation protocol
returns an unbiased frequency estimator for any item with a variance
ofO(keE/z/(e‘g/2 - 1)2), or an error of

0 (max {1 ,klog %/(ef/4 -1),log %})

with probability 1 — f. It uses O(k - max{e, log %}) bits of communi-
cation in expectation and O(k logu) bits of public randomness.

The proof of the theorem is presented in the full version of
the paper [36]. Recently, Feldman and Talwar [32] present a gen-
eral compression scheme to reduce the communication cost of any
LDP protocol under standard cryptographic assumptions. When

3More precisely, the error is O(\/E (e +1)/(ef 1)) = O(\//?/min{s, 1}) The
reason is that in FreqOracle or HRR each party uniformly selects an entry of the
Hadamard matrix (for reducing communication cost), so even if ¢ — oo the error
is still O(Vk). Chen et al. [17] improve the error to O(Vk /) for ¢ > 1, by using
multiple samples from the Hadamard matrix to reduce the variance.

applied to the frequency estimation problem, that e-LDP protocol
achieves the same error as in Theorem 2. However, it is interesting
to note that our approach is completely different to the compression
scheme. Furthermore, the communication cost using this compres-
sion approach is O(k max{logu, ¢, log %}) which is higher than
ours for the most common privacy regime 1/u=2M < ¢ < log u.

Comparison to OLH. The OLH algorithm [50] improves over HRR
for the case ¢ > 1, although asymptotically it has the same error
bound as HRR, i.e., the error is Q(\/E) for ¢ > 14 The first step of
OLH is similar to ours, where each party hashes the item to [s] for
s = e + 1, but without a sign hash function. However, the crucial
difference is the perturbation step. OLH perturbs the resulting hash
value over [s] using randomized response, i.e., reporting the true
value with probability e®/(e® +s — 1) = 1/2, otherwise a value u.a.r.
over [s]. In our algorithm, we treat the hash value as the location
in the count sketch. We perturb each counter with geometric noise,
and employ the expected sparsity of the noisy sketch to bound the
communication cost.

A Lower Bound. To complement our upper bound, we prove (proof
in the full version of the paper [36]) a lower bound for ¢ = O(log k)
by a reduction to the 1-bit sum problem under LDP, where each
party holds a bit, and the aggregator wishes to estimate the number
of 1’s.

THEOREM 3. Any LDP protocol for the 1-bit sum problem must
have an error on(\/E/ef/z) fork = Q(e%).

Note that the lower bound on the 1-bit sum problem also holds
for the frequency estimation problem (u > 2), since any frequency
estimation protocol can be used to solve the 1-bit sum problem.
For ¢ = O(log k), Ghazi et al. [33] prove a lower bound 0fQ(k1/3)
(Equation (11) in Theorem 3.3) that is independent of ¢. In contrast,
our lower bound characterizes the dependency on ¢ and can be
much better than the one in [33], for example, when ¢ = ‘—11 log k the
new bound is Q(k3/8) > Q(k/?). Combined with the lower bound
of Q(Vk/e) for ¢ = O(1) in [9], this implies our LDP protocol is
optimal for all ¢ < O(logk), up to a constant-factor difference in .

3.3 Further Improvement by Frequency
Separation

In the protocol described in Section 3.1, the sketch size s; is pro-
portional to n; on each party, even if it has only one item with
local count n;. This results in a large number of informationless
noisy counters to be sent to the aggregator. In this subsection, we
describe a method to reduce the communication cost, which works
particularly well on skewed data while providing the same worst
case guarantee as Theorem 1. The idea is to divide the local counts
into “heavy” and “light” groups. We use an importance sampling
based method for the heavy items, while dealing with the rest using
count sketch as before. We also demonstrate its effectiveness in the
experiments.

More precisely, we separate the local counts {x; j}; into local
heavy hitters and local light hitters. To preserve privacy, we do
so probabilistically, as follows: (1) draw a noise vector ¢ € RY,
4Note that Wang et al. [50] focus on Var®, which is only one part of the true variance

(see Equation (3) in their paper). While Var* decreases exponentially fast in ¢, the full
variance does not.



where each coordinate is i.i.d. from Geom(ef/ 4), and perturb x; as
X; := X; + &; (2) extract entries j € [u] such that X; ; > T as the
local heavy hitters, for some threshold T = 8(% log(ku)), while
the others are the local light hitters. We denote the identities of the
local heavy and light hitters at party i as Sl}.‘i and S%O, respectively.
All error analyses below hold for any fixed separation of the local
heavy/light hitters, i.e., conditioned upon Sl}.li and S%O foralli €
[k]; by the law of total probability the error guarantee will hold
unconditionally.

In order to avoid running time proportional to u, the above
procedure for separating [u] into shi and S%° can be equivalently
done as follows [25]:

(1) Add i.i.d. noise drawn from Geom(ef/ 4) to the non-zero
entries of x;, and extract the entries with noisy count above
the given threshold T as shi,

(2) For the zero entries of x;, first draw m; ~ Binomial(u —
ni, pr), where pr = exp((-T + 1)¢/4)/(exp(e/4) + 1) is the
probability that a zero entry has a noisy count above T. Then,
uniformly at random select m; locations from the zero entries
of x; and add them to shi,

It is safe for each party to release S?i and S%O. This is because the
local counts {x; j} ; have a sensitivity of 2, thus adding noise drawn
from Geom(e?/4) is sufficient to preserve £/2-DP. Then by the post-
processing property of DP, the separation results are ¢/2-DP. In
the following, we present DP mechanisms for the local heavy and
light hitters respectively. The input to these mechanisms are the
identities of the local heavy/light hitters and their (original) local
counts. Since the locations of the local heavy and light hitters are
disjoint, by the parallel composition theorem, it suffices for these
two mechanisms to be ¢/2-DP.

3.3.1 Local Heavy Hitters.
Algorithm on Each Party. For each j € Sl.“i at party i, we perturb x; j,

with fresh noise {j j drawn from Geom(ef'/2), as Rijj =xij+ij
where ¢/ = ¢/log /13 Still, sending all such items would consume
a lot of communication so instead we send these perturbed local
counts by importance sampling. More precisely, party i sends each
pair (j, %i,j/p), j € S}.’i to the aggregator with probability p(|%; j|),
where p(x) = min{ks - x/N, 1}. This procedure (perturb and im-
portance sampling) is repeated by 1 5 log ; times.

Privacy Guarantee. Because the frequency vector has a sensitivity
of 2, adding noise drawn from Geom(e¢'/2) provides the guarantee
of ¢’-DP. By the basic composition theorem across all repetitions,
the whole procedure preserves ¢/2-DP.

Communication. The expected communication cost in each repeti-
tion is

k k
E Z Z p(%ij) E Z Z p(%ij)|S
=1 jeghi | =1 jesh
[ k
SE[E[Y D ks [a1/N|s"
|#=1 jesh

Z |s‘“|}

To bound E [Z Shl|] let E denote the event that |& ;| =
oL % log(ku)) simultaneously for every i € [k], j € [u]. Then we
have Pr[E] > 1 — 1/(ku) by the tail property of the Geometric
distribution and applying a union bound. Furthermore, conditioned
upon E, every local heavy hitter has a frequency of Q(% log(ku)).
Then, we have

Z|Shl|

< Pr[E +Pr[E] - ku

Z|Sh1|

<0 L
~\ Llog(ku) |

Thus the expected communication cost is O(ks log %) across all

repetitions.

Algorithm on Aggregator. In each repetition, let g; ; denote the HT
estimator for X; j. More precisely, if the aggregator received % ;,
we use gij = Xij/p(|%ij|), otherwise g;; = 0. The aggregator

phi . . i hi ._

uses yj1 = X,; gi,j as the estimate for yj‘ = Zi:jesﬁ.“ xi,j in each
repetition, and takes the median of these estimates across all % log %
repetitions as the final estimator.

Accuracy. It suffices to show that the estimate in each repetition
satisfies the desired error guarantee with a constant probability,
say, 0.99, then the success probability of the median estimate from
all %log % repetitions can be amplified to 1 — § by the Chernoff
bound. First, we show that gi“ is an unbiased estimator of y;“, let %

denote {%; ; }l.:j eshis

~h1 _E[

Next, we analyze the error |g§“ - y?i|, which is composed of two
parts:

2.9

Jolzefze

irjesh irjesh

(1) X;gi,j approximates ;. jeshi Xij.
(2) Zi:jes?‘ Xi j approximates Zw eshi Xij-

For part (1), let 8’ = 0.01, we first show that the error is O(N/(Vks))
with probability at least 1 — ’/2 for any fixed choice of %, i.e.,
conditioned upon the randomness of %, then by the law of total
probability the same error guarantee holds unconditionally. It suf-
fices to consider the worst case that for all i € [k], p(|%;;]) < 1,
otherwise g; j = %;; which is already correct. Let F denote the

event that | 3; gi j — Zi:jes?i xijl = O(N/(Vks)). Since E[Xigi; |



x] = Zi:jesl.“ %i,j and |g; j| < N/(ks), by a Hoeffding bound we
have Pr[F | ] = 1 — f’/2. Then, by the law of total probability,

Pr[F] = Y4 Pr[F | %] - p(%) = S (1 -5 pd) =1- £

We conclude that the error for part (1) is O(N/ (\/Es)) with proba-
bility at least 1 — /2.

1

For part (2), since each {j ; is drawn from Geom(ef/(210g /5')),

by the Chebyshev inequality, it is easy to see that | }; {j ;| =

1
O(\/E/(eg/(410g ) 1)) with probability at least 1 — /2.
Finally, applying a union bound, the error |§l§“ - y?‘l is O(N/

(Vks) + ‘/E/(eg/(410g P - 1)) with probability at least 1 — 8’ = 0.99.

3.3.2  Local Light Hitters. We apply our count sketch based method
(with privacy parameter ¢/4 and R = ‘—1} log %) over the local light

hitters. Let ni.o denote the total (true) frequency of the local light
hitters. Recall that the sketch size is proportional to ni.o, which in
this case is sensitive information and cannot be directly released. So
we use s; := [ks - fzi.o/N] as the sketch size, where fli.o = min{nll.o +
% log % +Geom(ef/*), n;} is an upper bound of nll.0 for every i with

probability 1 — /2. Conditioned upon ﬁi.o > ni.o, the error bound
in Theorem 1 holds for local light hitters with probability 1 — /2.
Then by a union bound, this error guarantee holds unconditionally.
Moreover, since lel." < n;, the communication bound in Theorem 1

also holds.

Privacy Guarantee. Note that ||x1.°||1 has a sensitivity of 1, then

adding Geom(e® /4 noise to it is sufficient to preserve ¢/4-DP. And
our count sketch based method provides a guarantee of ¢/4-DP.
Then by the basic composition theorem, the protocol applied on
the local light hitters preserves ¢/2-DP.

3.4 Applications

A frequency estimation protocol can be used as a basic building
block to solve the heavy hitter identification problem, i.e., finding
items whose frequency exceeds a threshold ¢ N, for some given
0 < ¢ < 1. The most direct approach is to obtain a frequency
estimate for every item in the universe [u], but this would be too
slow for a large universe, e.g., all keywords up to a certain length.
To make it more efficient, a standard technique [7, 18, 20, 26] is
to impose a d-adic decomposition over the universe [u], which
can also be understood as a complete d-ary tree of log,; u levels.
Specifically, on each level j, the universe [u] is partitioned into
u/d’ intervals of length d/ each: [1,d/], (d/,2d/],..., (u—d/,u]. A
frequency estimation protocol is applied on each level such that the
frequency of any d-adic interval (i.e., the number of items falling
inside this interval) can be estimated. This allows a recursive top-
down search procedure to be applied to find the heavy hitters
efficiently. Note that to ensure privacy, we need to split the privacy
budget ¢ equally across all levels. We state the following theorem,
whose proof follows a rather standard analysis, hence omitted.

THEOREM 4. Given an e-MDP frequency estimation protocol using
communication C such that the frequency of any item can be esti-
mated in time 7 within error E (e, f) with probability 1-f, then if ¢ >
2E(¢e/logyu, NB/log, u)/N, there exists an e-MDP protocol such that

all g-heavy hitters can be found in time O(% loggu - 7°) and their

frequencies can be estimated within error &(¢/log, u, Nf/log, u)
with probability 1 — f. The total communication cost is O(log, u - C).

Similar techniques can also be used to solve the orthogonal range
counting problem based on a given frequency estimation protocol.
In particular, all results in [20] carry over to the MDP model by
replacing their LDP frequency estimation protocol with ours.

4 STREAMING PROTOCOLS

In the streaming MDP model, each of the k parties receives a stream
of items, one at each time step. Let n be the total number of time
steps. For simplicity, we assume that n is known to the protocol
in advance; standard techniques can be used to remove this as-
sumption, while incurring some extra logarithmic factors in the
error and costs [15]. Let v; ; denote the item received by party i at
time step ¢, and f(v; t1, 2) the frequency of a given item v received
across all parties between time step #; and fz (inclusive). In the
following, we present a protocol that maintains a synopsis from
which an estimate of f(v; 1, t) can be extracted for any v at each
time step ¢; and in the full version of the paper [36] we extend it to
the sliding-window model, i.e., we estimate f(v;t —w + 1, t) where
w is the window length.

4.1 Full-stream Protocol

Lets > 1and A := [n/s] - Vk. We divide the stream into m := Vk -
n/A = min{n, s} epochs of b := A/Vk time steps each. We say that
an epoch is complete if items in all time steps in this epoch have been
received, otherwise we say that it is active. Express the current time
ast=q-b+rwhereqre€Zand0 <r <b.To estimate f(v;1,1),
we estimate f(v; 1, gb) (i.e., over all complete epochs) and f(v; gb +
1,t) (i-e., over the current active epoch) separately using different
methods. The intra-epoch protocol, which estimates f(v; gb + 1, t),
operates on a per time step basis, so its error (variance) grows
linearly as time goes on and would be too large beyond one epoch.
The inter-epoch protocol works on the epoch level; it responds
slower to the stream but its error only grows logarithmically.

4.1.1 Intra-epoch protocol. First of all, note that we only need to
run the intra-epoch protocol when b > 1, or s < n.

Algorithm on Each Party. Each party samples each time step ¢ with
probability p = b~! = Vk/A independently. If ¢ is sampled, the
party encodes the item v;; as M(v;;) using HRR (with privacy
parameter ¢/2) and sends it to the aggregator.

Algorithm on Aggregator. The aggregator collects the messages
received during the current active epoch and calculates

f(v;qb +1,t) = % i Lres; fM(v,-,tf)(U)

as the estimation for f(v; gb + 1, t), where S; denotes the time steps
sampled at each party i during this epoch, and fy((y, ) (v) denotes
the frequency estimator for item v used in the HRR protocol.

Communication. Since in each epoch of size b each party samples
an item with probability p = b~1, the expected communication cost
in each epoch is O(k - b - b~!) = O(k), and across all epochs the
total is O(km) = O(ks).



Accuracy. We first show that the estimator is unbiased. Let the
random variable Z; »» € {0, 1} indicate whether the time step ¢’
gets sampled, and let X; » = f:/\/((vi),/) (v) denote the frequency
estimator used in the HRR protocol. Then the estimator can be
written as

f(l};qb+ 1, t) = . Zi qu<t’5t Zi,t’Xi,t"

=

Note that we have E[X; ] = x;, where x;» € {0, 1} indicates
whether v; p/ is identical to v. By the independence of Z;  and
X 1, we conclude that f(v; qb + 1, 1) is an unbiased estimator for
f(v;qb+1,1).

Since our algorithm essentially runs HRR over the sampled time
steps, the error consists of two parts: the error due to sampling and
the error due to HRR:

If (0:gb+1,1) — f(0igb+1,1)]|

1
=52 Xy AwXiw =), ), i
P 5 qb<t' <t i gb<t'<t
1
< —'Z Z Ziy - (Xip — xipr)
p i gb<t’'<t
HONDNETTEDNDWET
i gb<t'<t i gb<t'<t

We first bound the first error term. Denote the number of items

sampled during this epoch as Z(2b:(¢+1)b) .= 37, Dgb<t'<(q+1)b Zit'-

Observe that E[Z(4(4*DD)] = k.p.p = k and Var[Z(20:(a+D)D)] <
k. Hence, by the Bernstein inequality, we have Z (gb:(q+1)b) —
O(max{k,log %}) with probability at least 1 — /3. Conditioned
upon this event and by the accuracy guarantee of HRR, with proba-
bility at least 1 — /3, the first error term is bounded by

@)

%\/max{k, log %} log %/min{g, 1}) =O(Alog %/min{g, 1}).

Then the same error guarantee holds unconditionally with proba-
bility at least 1 — 2/5/3.
For the second error term, we first bound the variance

Var | = Z > Zipxir Z > E

i gb<t' <t i gb<t'<t

_Z Z zz,t'

i gb<t’'<t

Note that each |— i#'Xi ¢ — Xi | is bounded by O ( ) =0 (\/AI?)
By the Bernstem inequality, we conclude that the error for the

second part is O(Alog %) with probability at least 1 — /3.

2
(_ ZiyXip — Xi, t’)

Finally, applying a union bound, with probability at least 1 — f,
the error of the estimator f(v;qb + 1,1) is

0] Alog%/min{e,l}) :O(n\/zlog%/(s‘min{s,l}) .

Privacy Guarantee. Observe that the sampling procedure is data-
independent and the information of each item is released only once.
So the intra-epoch protocol guarantees ¢/2-DP, as provided by the
HRR protocol.

Space/time. Observe that each party does not need store any his-
torical information before time step ¢, so the intra-epoch protocol
needs O(1) space on each party. Sampling and running HRR take
O(1) time per time step.

4.1.2  Inter-epoch protocol. To obtain estimation for f(v; 1, qb), we
make use of a dyadic structure, which naturally corresponds to a
tree representation, imposed over all epochs. Specifically, we build
log m levels, and for each level I the epoch’s time steps are divided
into n/(2! - b) consecutive blocks of size 2! - b each. More precisely,
for0<l<logm1<j<n/(2-b)letB;={t|(j-1)-2"-b<
t < j-2!- b} denote the j-th block at level I. Note that each block
on level 0 corresponds to an epoch. Essentially, the inter-epoch
protocol runs our one-shot algorithm for each block, but using
different parameters.

Algorithm on Each Party. Each party i maintains a count sketch
of R = %log 2klogm .\ ws and sylogm - |B|/n columns for the
items within each block B, where [ denotes the level of this block
and |B| = 2! - b denotes the number of time steps in B. After B
completes, we add i.i.d. noise draw from Geom(e/ (4Rlogm)y o
each counter in the count sketch, then send this noisy count sketch
to the aggregator.

Algorithm on Aggregator. As in our one-shot protocol, from the noisy
count sketches (across all parties) corresponding to each block, the
aggregator can obtain a frequency estimator for any item within
this block. Furthermore, we know that the interval [1, gb] can be
decomposed into at most log m disjoint dyadic blocks, at most one
from each level. Thus, to obtain an estimation for f(v; 1, gb), we
just add up the frequency estimates for v from these blocks.

The analysis for accuracy, communication, privacy and space of
the inter-epoch algorithm is presented in the full version [36].

Combining the intra-epoch and inter-epoch algorithm, we obtain
the following result.

THEOREM 5. Fore > 0 and s > 1, our e-MDP streaming frequency
estimation protocol is able to return, at each time step, an unbiased
estimator for the frequency of any item. With probability at least
1 — f, the error of the estimator is

1 1
nVk log B \/klogslog 7
s - min{e, 1} (& (4logslog kl;’,g“) 1
fors < n, or
n./klog % [klognlog %
N e/(4lognlog klog") _1



fors > n (in this case the intra-epoch algorithm is not needed). Its

expected communication cost is O(ks -log!> s log %), and it takes

O(s - y/log slog %) space and O(log s log %) time to process
each item on each party.

The streaming MDP model degenerates into the continual ob-
servation model with k := 1. In this case, each epoch has b = [n/s]
items, so we may just discard them, and only run the inter-epoch
algorithm. We then obtain a streaming algorithm with the following
space-error trade-off:

CoROLLARY 1. Fors > 1, our e-DP frequency estimation algorithm
runs on a single stream using space O(s - y/log s log 10%). At any
time, an estimate for the frequency of any item can be extracted that,

with probability 1 — B, has error
nflog 1 flog slog L
o S / + logsﬁ)

ee/(4logslog B

-1

We remark that the results in Section 3.4 also hold in the stream-
ing model.

Comparison with Chan et al. There are two major differences be-
tween our protocol with Chan et al. [13]: (1) the choice of frequency
summary technique (the MG algorithm v.s. count sketch); and (2)
the introduction of an intra-epoch protocol. (1) is important as we
explained in Section 3.1. (2) is important to achieve optimal error:
the protocol in [13] doesn’t need such an intra-epoch component,
because that one-shot algorithm already has an error proportional
to k, so it can simply ignore all items inside an epoch. We aim at
the optimal error proportional to Vk, which requires a more careful
handling of the intra-epoch items.

5 EXPERIMENTS

In this section, we perform experiments to evaluate our methods
on frequency estimation and finding heavy hitters.

5.1 Frequency Estimation

We compare our methods with the simple baseline method (denoted
as Noisy-CS) mentioned in Section 3.1, where the aggregator simply
merges all noisy count sketches and extract point estimates. We
also compare with running OLH [50] in MDP, where we apply the
OLH randomizer to each item. This can be equivalently viewed as
an N-party LDP protocol. We use Ours-CS to denote denote our
basic protocol described in Section 3.1 and Ours the method based
on frequency separation described in Section 3.3.

For frequency estimation, we utilize synthetic datasets generated
from Zipf distribution with skewness 1.5 and 2.0, and measure the
error for the frequent items which jointly take over 85% of the
total cardinality. We set the number of parties k to 1000, the total
cardinality N to 1 million, and the privacy parameter ¢ to 1.0. In
Figure 2, we report the communication-error trade-off. Note that
the communication cost of OLH-MDP is fixed to N. We can observe
that OLH-MDP is impractical in the MDP setting, as it has an error
Q(¥N) which can be much larger than Vk. It can be observed
that Ours offers over 3X improvement in communication while
achieving the same error with other methods. We can also observe
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Figure 2: Relative Error vs. communication on Zipf datasets.
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Figure 3: Accuracy vs. ¢ on Zipf datasets with skewness 1.5.
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Figure 4: Accuracy vs. ¢ on Zipf datasets with skewness 2.0.

that, beyond a certain threshold, increasing communication does
not lead to a smaller error, since the privacy constraint dominates
the error in this case. In Figure 3 and 4, we perform the experiments
by varying ¢ and fixing the communication budget. As expected, the
error decreases when ¢ increases. Ours achieves the lowest error,
while, for instance, using 4x less communication than Noisy-CS.

5.2 Identifying Heavy Hitters

We utilize two real-world datasets, the Kosarak dataset® and the
2006 AOL search queries®. The Kosarak dataset consists of 990,002
clicks over 41,270 unique web pages. We assume that these web
pages are known in advance, so the universe size u is 41,270, and we
obtain the frequency estimates of all web pages to find the heavy
hitters. The AOL dataset consists of both the search queries by the
users and the URL of the web pages they clicked. We extracted

Shttp://fimi.ua.ac.be/data/.
®http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/.
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1,890,569 click records over 184,304 unique URLs. We consider
these URLs as unknown, simulating the case of a larger universe.
More precisely, as in [21], we strip the URLs of the leading domain
prefixes such as “www.” and “https://”, and truncate all URLs to a
length of 6 characters. The alphabet size of a single character in the
AOL dataset is 49, so the universe size u is 49°. We use the dyadic
decomposition method as described in Section 3.4 to find heavy
hitters on the AOL dataset, and the branching factor d is set to 49.

We evaluate the results using the following standard metrics
(see e.g., [18]): (1) Recall, i.e., the number of true heavy hitters
reported over the number of all true heavy hitters; (2) precision,
i.e., the number of true heavy hitters reported over the number of
answers reported; and (3) the average relative error of the reported
frequencies, measured separately for the true heavy hitters and the
false positive answers. For some experiments, we report the F-score,
which is the harmonic mean of precision and recall. All experimen-
tal results are averaged over 5 repetitions. We use MurmurHash3
as the hash functions in the Count Sketch.

5.2.1 One-Shot Results. In the one-shot experiments, we use the
following default values of of parameters: the frequency threshold
¢ is 0.001, the (expected) message size s is 5/(¢>\/E) (note that this
leads to an error guarantee of ¢ N /5), the privacy parameter ¢ is 2,
the number of parties k is 100, and the number of rows of the Count
Sketch is 3. For the Kosarak dataset, we uniformly partition the
data across all parties. We partition the AOL dataset non-uniformly,
where the largest party may have 10 times of the data than that of
the smallest party.
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Figure 5: Accuracy vs. Communication on Kosarak.

In Figure 5 and 6, we perform the experiments by varying s and
report the communication-error trade-off. We observe that Ours
outperforms Ours-CS and Noisy-CS, that is, Ours uses less com-
munication while achieving same error guarantee in practice. This
improvement in communication is more pronounced for skewed
dataset, as suggested by our theoretical analysis.
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Figure 6: Accuracy vs. Communication on AOL.
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Figure 7: Accuracy vs. ¢ on Kosarak.
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Figure 7 and 8 show the accuracy results for varying ¢ from 1074
to 1072 and ¢ = 0.5, 2, 8, while other parameters remain fixed. It
is shown that our method usually has high accuracy in practice
for various frequency thresholds. It is also expected that the error
becomes smaller when the privacy parameter ¢ is larger.

Figure 9 is performed by varying k from 100 to 1, 600, while other
parameters like ¢ remain fixed. As we set the average message size
s to 5/(¢N) by default, our theory suggests that the error guarantee
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of our method is O(¢$N), while the communication cost is O(Vk/¢).
We plot the curve of the communication versus k in Figure 9b.
It shows that the communication cost of our method is indeed
grow sublinearly with k, which confirms our theoretical analysis.
Moreover, the accuracy shown in Figure 9a slightly degrades as
k increases, because the error (\/E/ ¢) due to privacy constraint
becomes larger.

5.2.2  Streaming. For the streaming experiments, we use the fol-
lowing default values of parameters: the number of parties k = 100,
the privacy parameter ¢ = 4, the frequency threshold ¢ = 0.005, the
width of count sketch is 5. We set the window size w = n/10 on the
Kosarak dataset and w = n (i.e., it degenerates to the full stream
case) on the AOL dataset, where n is the length of the stream.
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Figure 10: Accuracy over time on Kosarak.

We compare our method with the PDCH protocol [13] using the

same s, which leads to the same asymptotic communication bound.

We report the accuracy measures every w/6 timestamps in Figure
10 and 12, when the time elapsed from 0 to w. We also report the
accuracy measures vs. the actual communication cost in Figure 11
and 13. Observe that increasing s does not always result in better
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Figure 13: Accuracy vs. communication on AOL

accuracy in practice. In our method, this is because increasing s
also leads to more epochs, making the noise magnitude required in
the inter-epoch part larger, which grows polylogarithmically with
s. In PDCH, the accuracy may drop significantly when increasing
s, due to the large sensitivity of the PMG summary used in their
protocol. More precisely, for a MG summary of size s, PMG injects
noises of magnitude O(s/¢) onto it to preserve differential privacy.
In practice, the noises can even be orders of magnitudes larger
than the real frequencies, making PDCH impractical. Specifically,
in our setting, the noise in PDCH is roughly 10 times larger than
the real frequencies, so a 0-frequency item can be easily reported
as a frequent item, making the ARE (false positive) infinite.
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