
On Estimating Frequency Moments of Data Streams

Sumit Ganguly and1 Graham Cormode2

1 Indian Institute of Technology, Kanpur, sganguly@iitk.ac.in
2 AT&T Labs–Research, graham@research.att.com

Abstract. Space-economical estimation of the pth frequency moments, defined as Fp =
Pn

i=1|fi|p,
for p > 0, are of interest in estimating all-pairs distances in a large data matrix [14], machine
learning, and in data stream computation. Random sketches formed by the inner product of the
frequency vector f1, . . . , fn with a suitably chosen random vector were pioneered by Alon, Ma-
tias and Szegedy [1], and have since played a central role in estimating Fp and for data stream
computations in general. The concept of p-stable sketches formed by the inner product of the
frequency vector with a random vector whose components are drawn from a p-stable distribution,
was proposed by Indyk [11] for estimating Fp, for 0 < p < 2, and has been further studied in
Li [13].
In this paper, we consider the problem of estimating Fp, for 0 < p < 2. A disadvantage of the sta-
ble sketches technique and its variants is that they require O(1

ε2
) inner-products of the frequency

vector with dense vectors of stable (or nearly stable [14, 13]) random variables to be maintained.
This means that each stream update can be quite time-consuming. We present algorithms for esti-
mating Fp, for 0 < p < 2, that does not require the use of stable sketches or its approximations.
Our technique is elementary in nature, in that, it uses simple randomization in conjunction with
well-known summary structures for data streams, such as the COUNT-MIN sketch [7] and the
COUNTSKETCH structure [5]. Our algorithms require space Õ(1

ε2+p) 3 to estimate Fp to within
1± ε factors and requires expected time O(log F1 log 1

δ
) to process each update. Thus, our tech-

nique trades an O(1
εp) factor in space for much more efficient processing of stream updates. We

also present a stand-alone iterative estimator for F1.

1 Introduction

Recently, there has been an emergence of monitoring applications in diverse areas including network
traffic monitoring, network topology monitoring, sensor networks, financial market monitoring, and
web-log monitoring. In these applications, data is generated rapidly and continuously, and must be
analyzed efficiently, in real-time and in a single-pass over the data to identify large trends, anomalies,
user-defined exception conditions, and so on. In many of these applications, it is often required to
continuously track the “big picture”, or an aggregate view of the data, as opposed to a detailed view of
the data. In such scenarios, efficient approximate computation is often acceptable. The data streaming
model has gained popularity as a computational model for such applications—where incoming data

3 Following standard convention, we say that f(n) is Õ(g(n)) if f(n) =

O
“`

1
ε

´O(1)
(log m)O(1)(log n)O(1)g(n)

”
.

(or updates) are processed very efficiently and in an online fashion using space, much less than that
needed to store the data in its entirety.

A data stream S is viewed as a sequence of arrivals of the form (i, v), where i is the identity of an
item that is a member of the domain [n] = {1, . . . , n} and v is the update to the frequency of the item.
v > 0 indicates an insertion of multiplicity v, while v < 0 indicates a corresponding deletion. The
frequency of an item i, denoted by fi, is the sum of the updates to i since the inception of the stream,
that is, fi =

∑
(i,v) appears in S v.

In this paper, we consider the problem of estimating the pth frequency moment of a data stream,
defined as Fp =

∑n
i=1|fi|p, for 0 < p < 2. Equivalently, this can be interpreted as the pth power of

the Lp norm of a vector defined by the stream. The techniques used to design algorithms and lower
bounds for the frequency moment problem have been influential in the design of algorithmic and
lower bound techniques for data stream computation. We briefly review the current state of the art in
estimating Fp, with particular emphasis to the range 0 < p < 2.

1.1 Review

Alon, Matias and Szegedy [1] present the seminal technique of AMS sketches for estimating F2. An
(atomic) AMS sketch is a random integer X =

∑n
i=1 fiξi, where {ξi}i=1,2,...,n is a family of four-

wise random variables assuming the values 1 or −1 with equal probability. An AMS sketch is easily
maintained over a stream: for each update (i, v), the sketchX is updated asX :=X+vfiξi. Moreover,
since the family {ξi} is only 4-wise random, for each i, ξi can be obtained from a randomly chosen
cubic polynomial h over a field F that contains the domain of items [n], (ξi = 1 if the last bit of h(i)
is 1 and ξi = −1 otherwise). It then follows that E

[
X2
]

= F2 and Var
[
X2
]
≤ 2F 2

2 [1]. An estimate
of F2 that is accurate to within 1± ε with confidence 7

8 can therefore be obtained as the average of the
squares of O(1

ε2) independent sketch values.
There has also been significant study of the case p = 0, also known as the distinct elements

problem. Alon, Matias and Szegedy [1] gave a constant factor approximation in small space. Gibbons
and Tirthapura [10] showed a (1±ε) factor approximation space Õ(1

ε2); subsequent work has improved
the (hidden) logarithmic factors [2].

p-stable sketches. The use of p-stable sketches was pioneered by Indyk [11] for estimating Fp, with
0 < p < 2. A stable sketch S is defined as Y =

∑n
i=1 fisi, where si is drawn at random from

a p-stable distribution, denoted S(p, 1) (the second parameter of S(·, ·) is the scale factor). By the
defining property of p-stable distribution, Y is distributed as S(p, (

∑n
i=1|fi|p)1/p). In other words, Y

is p-stable distributed, with scale factor F 1/p
p . Indyk gives a technique to estimate Fp by keepingO(1

ε2)
independent p-stable sketches and returning the median of the these observations [11]. Woodruff [18]
presents an Ω(1

ε2) space lower bound for the problem of estimating Fp, for all p ≥ 0, implying that
the stable sketches technique is space optimal up to logarithmic factors.

Li [13] further analyses of stable sketches and suggests the use of the geometric mean estimator,
that is,

F̂p = c · |Y1|1/k|Y2|1/k · · · |Yk|1/k

where Y1, Y2, . . . , Yk are k independent p-stable sketches of the data stream. Li shows the above esti-

mator is unbiased, that is, E
[
F̂p
]

= Fp and Var
[
F̂p
]
≈ π2F 2

p

6kp2 . It follows (by Chebychev’s inequality)
that returning the geometric mean of O(1

ε2p2) sketches returns an estimate for Fp that is accurate to
within factors of (1 ± ε) with probability 7

8 . Li also shows that the geometric means estimator has
lower variance than the median estimator proposed originally by Indyk [11].

Very sparse sketches. The “very sparse sketch” method due to Li et al. aims to maintain the same
space and accuracy bounds, but reduce the time cost to process each update [14, 13]. Note that this
technique applies only when the data satisfies some uniformity properties, whereas the preceeding
techniques need no such assumptions. A very sparse (nearly) p-stable sketch is a linear combination
of the form W =

∑n
i=1 fiwi, where wi is Pp with probability β/2, −Pp with probability β/2, and 0

otherwise. Here, Pp is the p-Pareto distribution with probability tail function Pr{Pp > t} = 1
tp , t ≥ 1.

Pareto distributions are proposed since they are much simpler to sample from as compared to stable
distributions. Further, Li shows that W is asymptotically p-stable provdided F∞

F
1/p
p

→ 0. Thus, very

sparse sketches provide for a principled way of reducing the data stream processing time provided the
data satisfies certain uniformity properties.

Drawbacks of stable-based methods. A drawback of the original technique of stable sketches is that,
in general, for each stream update all of theO(1

ε2) stable sketches must be updated. Each sketch update
requires a pseudo-random generation of a random variable drawn from a p-stable distribution, making
it time-consuming to process each stream update. The very sparse stable sketches somewhat alleviates
this problem by speeding up the processing time by a factor of approximately 1/β, although the data
must now satisfy certain uniformity conditions. In general, it is not possible to a-priori guarantee
or verify whether the data stream satisfies the desired properties. We therefore advocate that in the
absence of knowledge of the data distribution, the geometric means estimator over p-stable sketches
is the most reliable of the known estimators—which is quite expensive.

Contributions. In this paper, we present a technique for estimating Fp, for 0 < p < 2. Our technique
requires space O(1

ε2+p log2 F1 log n) to estimate Fp to within relative error (1 ± ε) with probability
7/8. Further, it requires O(log2 n) expected time (and O(logF1 log2 n) worst-case time) to process
each stream update. Thus, our technique trades a factor of O(1

εp) space for improved processing
time per stream update. From an algorithm design viewpoint, perhaps the most salient feature of the
technique is that it does not recourse to stable distributions. Our technique is elementary in nature
and uses simple randomization in conjunction with well-known summary structures for data streams,
such as the COUNT-MIN sketch [7] and the COUNTSKETCH structure [5]. It is based on making some
crucial and subtle modifications to the HSS technique [3].

Organization. The remainder of the paper is organized as follows. In Section 2, we review the HSS

technique for estimating a class of data stream metrics. Sections 3 and 4 respectively, present a family
of algorithms for estimating Fp and a recursive estimator for F1, respectively. Finally, we conclude in
Section 5.

2 Review of HSS technique

In this section, we briefly review the HSS (for “Hierarchical Sampling from Sketches”) procedure [3]
for estimatingFp, p > 2 over data streams. Appendix A reviews the COUNTSKETCH and the COUNT-MIN

algorithms for finding frequent items in a data stream and algorithms to estimate the residual first and
second moments respectively of a data stream [9].

The HSS method is a general technique for estimating a class of metrics over data streams of the
form:

Ψ(S) =
∑
i:fi>0

ψ(fi). (1)

From the input stream S, sub-streams S0 . . .SL are created by successive sub-sampling, that is, S0 =
S and for 1 ≤ l ≤ L, Sl is obtained from Sl−1 by sub-sampling each distinct item appearing in
Sl−1 independently with probability 1

2 (hence L = O(log n)). Let k be a space parameter. At each
level l, we keep a frequent items data-structure, denoted by Dl(k), that takes as input the sub-stream
Sl, and returns an approximation to the top(k) items of its input stream and their frequencies. Dl(k)
is instantiated by either the COUNT-MIN or COUNTSKETCH data structures. At level l, suppose that
the frequent items structure at this level has an additive error of ∆l(k) (with high probability), that
is, |f̂i − fi| ≤ ∆l(k) with probability 1 − 2−t where t is a parameter. Define F res1 (k, l) to be (the
random variable denoting) the value of F1 of the sub-stream Sl after removing the k largest absolute
frequencies; and Fres2 (k, l) to be the corresponding value of F2. The (non-random value) F res1 (k, 0)
(respectively, Fres2 (k, 0)) is written as F res1 (k) (resp. Fres2 (k)).

Lemma 1 (Lemma 1 from [3]).

1. For l ≥ 1 and k ≥ 48, F res1 (k, l) ≤ F res
1 (k)
2l with probability ≥ 1− 2−

k
24+1.

2. For l ≥ 1 and k ≥ 48, Fres2 (k, l) ≤ Fres
2 (k)
2l with probability ≥ 1− 2−

k
24+1.

By the above lemma, let∆0 = F res
1 (k)
k or∆0 =

(
Fres
2 (k)
k

)1/2

, depending on whether the COUNT-MIN or
the COUNTSKETCH structure is being used as the frequent items structure at each level. Let ε̄ = ε

16 ,
T0 = 2∆0

ε̄ and Tl = T0
2l , l = 0, 1, 2 . . . , log T0. The items are grouped into groups G0, G1, . . . , GL as

follows: G0 = {i ∈ S : fi ≥ T0} and Gl = {i ∈ S : Tl ≤ fi < Tl−1}, 1 ≤ l ≤ L. It follows that,
with high probability, for all items of Gl that are present in the random sub-stream Sl, f̂i ≥ ∆l

ε̄ and
|f̂i − fi| ≤ εfi.

Corresponding to every stream update (i, v), we use a hash-function h : [n] → [n] to map the
item i to a level u = lsb(h(i)), where, lsb(x) is the position of the least significant “1” in binary
representation of x. The stream update (i, v) is then propagated to the frequent items data structures
Dl for 0 ≤ l ≤ u, so in effect, i is included in the sub-streams from level 0 to level u. The hash
function is assumed to be chosen randomly from a fully independent family; later we reduce the
number of random bits required by a standard data streaming argument.

At the time of inference, the algorithm collects samples as follows. From each level l, the set of
items whose estimated frequency crosses the threshold ∆0

ε2l are identified, using the frequent items
structure Dl. It is possible for the estimate f̂i,l of an item i obtained from the sub-stream Sl to exceed

this threshold for multiple levels l. We therefore apply the “disambiguation-rule” of using the estimate
obtained from the lowest level at which it crosses the threshold for that level. The estimated frequency
after disambiguation is denoted as f̂i. Based on their disambiguated frequencies, the sampled items
are sorted into their respective groups, Ḡ0, Ḡ1, . . . , ḠL, as follows:

Ḡ0 = {i|f̂i ≥ T0} and Ḡl = {i|Tl−1 < f̂i ≤ Tl and i ∈ Sl}, 1 ≤ l ≤ L .

We define the estimator Ψ̂ and a second idealized estimator Ψ̄ which is used for analysis only.

Ψ̂ =
L∑
l=0

∑
i∈Ḡl

ψ(f̂i) · 2l Ψ̄ =
L∑
l=0

∑
i∈Ḡl

ψ(fi) · 2l (2)

We now briefly review the salient points in the error analysis. Lemma 2 shows that the expected value
of Ψ̄ is close to Ψ .

Lemma 2 (Lemma 2 from [3]). Suppose that for 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi

with probability ≥ 1− 2−t. Then |E
[
Ψ̄
]
− Ψ | ≤ Ψ · 2−t+logL.

We now present a bound on the variance of the idealized estimator. The frequency group Gl is par-
titioned into three sub-groups, namely, lmargin(Gl) = [Tl, Tl(1 + ε̄/2)], rmargin(Gl) = [Tl−1(1 −
ε̄), Tl−1] and midregion(Gl) = [Tl(1 + ε̄/2), Tl−1(1− ε̄)], that respectively denote the lmargin (left-
margin), rmargin (right-margin) and midregion of the group Gl. An item i is said to belong to one of
these regions if its true frequency lies in that region. For any item iwith non-zero frequency, we denote
by l(i) the group index l such that i ∈ Gl. For any subset T ⊂ [n], denote by ψ(T) the expression∑
i∈T ψ(fi). Let Ψ2 = Ψ2(S) denote

∑n
i=1 ψ

2(fi).

Lemma 3 (Lemma 3 from [3]). Suppose that for all 0 ≤ i ≤ N − 1 and 0 ≤ l ≤ L, |f̂i,l− fi| ≤ εfi

with probability ≥ 1− 2−t. Then,

Var
[
Ψ̄
]
≤ 2−t+L+2 · Ψ2 +

∑
i/∈(G0−lmargin(G0))

ψ2(fi) · 2l(i)+1 .

Corollary 4. If the function ψ(·) is non-decreasing in the interval [0 . . . T0 + ∆0], then, choosing
t = L+ log 1

ε2 + 2, we get

Var
[
Ψ̄
]
≤ ε2Ψ2 +

L∑
l=1

ψ(Tl−1)ψ(Gl)2l+1 + 2ψ(T0 +∆0)ψ(lmargin(G0)) (3)

The error incurred by the estimate Ψ̂ is |Ψ̂−Ψ |, and can be written as the sum of two error components
using the triangle inequality.

|Ψ̂ − Ψ | ≤ |Ψ̄ − Ψ |+ |Ψ̂ − Ψ̄ | = E1 + E2

Here, E1 = |Ψ − Ψ̄ | is the error due to sampling and E2 = |Ψ̂ − Ψ̄ | is the error due to the approx-
imate estimation of the frequencies. By Chebychev’s inequality, E1 = |Ψ − Ψ̄ | ≤ |E[Ψ̄] − Ψ | +

3
√

Var
[
Ψ̄
]

with probability 8
9 . Using Lemma 2 and Corollary 4, and choosing t = L+log 1

ε2 +2, the
expression for E1 can be simplified as follows:

E1 ≤
ε2LΨ

2L
+ 3
(
ε2Ψ2 +

L∑
l=1

ψ(Tl−1)ψ(Gl)2l+1 + 2ψ(T0 +∆0)ψ(lmargin(G0))
)1/2

(4)

with probability 8
9 . We now present an upper bound on E2.

Lemma 5. Suppose that for 1 ≤ i ≤ n and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ εfi with probability ≥ 1− 2−t.
Then E2 ≤ ∆0

∑L
l=0

∑
i∈Gl

|ψ′(ξi)|
2l with probability ≥ 9

10 − 2−t, where for i ∈ Gl, ξi lies between
fi and f̂i, and maximizes ψ′().

The analysis assumes that the hash function mapping items to levels is completely independent. We
adopt a standard technique of reducing the required randomness by using a pseudo-random generator
(PRG) of Nisan [15] along the lines of Indyk in [11] and Indyk and Woodruff in [12]. More details are
provided in Appendix B.

3 Estimating Fp

In this section, we use the HSS technique with some subtle but vital modifications to estimate Fp for
0 < p < 2. We use the COUNTSKETCH structure as the frequent items structure at each level l.

We observe that a direct application of the HSS technique does not present an Õ(1) space proce-
dure, and so we need some novel analysis. To see this, suppose that k is the space parameter of the
COUNTSKETCH procedure at each level. Firstly, observe that

E2 ≤ ∆0

L∑
l=0

∑
i∈Gl

|ψ′(ξi)|
2l

=
L∑
l=0

∑
i∈Gl

∆0

2l
· p · |fi|p−1 ≤ 2ε

L∑
l=0

∑
i∈Gl

|fi|p ≤ 2ε1+p/2Fp ≤ 2εFp

as required, since p < 2 and ∆02−l ≤ ε|fi| for i ∈ Gl. Now, by equation (4) and using t = L +
2 log 1

ε + 2, we have

E1 ≤ ε2F2p + 3

(
ε2F2p +

L∑
l=1

(
Fres2 (k)

2lk

) p
2

Fp(Gl)2l+1 + 2(1 + ε)
(

Fres2 (k)
k

) p
2

Fp(lmargin(G0))

) 1
2

.

Further, if we write frank(r) to denote the rth largest frequency (in absolute value)

Fres2 (k) =
∑
r>k

f2
rank(r) ≤

∑
r>k

f2−p
rank(k+1)f

p
rank(r) ≤

(
Fp
k

)2/p−1

· Fp ≤ k ·
(
Fp
k

)2/p

, for p > 0

and hence the expression for E1 simplifies to

E1 ≤ ε2F2p + 3

(
ε2F2p + Fp

L∑
l=1

2l+1−lp/2Fp(Gl) +
2(1 + ε)Fp

k
· Fp(lmargin(G0))

)1/2

The main problem arises with the the middle term in the above expression, namely,Fp
∑L
l=1 2l+1−lp/2Fp(Gl),

which can be quite large. Our approach relies on altering the group definitions to make them depend
on the (randomized) quantities Fres2 (k, l) so that the resulting expression for E1 becomes bounded by
O(εFp). We also note that the expression for E2 derived above remains bounded by εFp.

Altered group definitions and estimator. We use the COUNTSKETCH data structure as the frequent
items structure at each level l = 0, 1, . . . , L, with k = O(1

ε̄2+p) buckets per hash function and s =
O(logF1) hash functions per sketch. We first observe that Lemma 1 can be slightly strengthened as
follows:

Lemma 6 (A slightly stronger version of Lemma 1). For l ≥ 1 and k ≥ 48

1. F res1 (k, l) ≤ F res1 (2l−1k)
2l

with probability ≥ 1− 2−
k
24+1.

2. Fres2 (k, l) ≤ Fres2 (2l−1k)
2l

with probability ≥ 1− 2−
k
24+1

Proof. The result follows from the proof given for Lemma 1 [3]. ut

At each level l, we use the COUNTSKETCH structure to estimate Fres2 (k, l) to within an accuracy of
(1± 1

4) with probability 1− 1
16L , where, ε̄ = ε

32 . Let F̄ res2 (k, l) denote 5
4 ·F

res
2 (k, l). We redefine the

thresholds T0, T1, . . . , as follows:

∆l =
(
F̄ res2 (k, l)
k · 2l

)1/2

, Tl =
∆l

ε
, l = 0, 1, 2, . . . , L .

The groups G0, G1, G2, . . . , are set in the usual way, using the new thresholds:

G0 = {i | fi ≥ T0} and Gl = {i | Tl ≤ fi ≤ Tl−1}

The estimator is defined by (1) as before.

Lemma 7. Suppose k ≥ 16
ε2+p . Then, E ≤ 8εFp with probability at least 3

4 .

Proof. We use the property of Fres2 (t) derived above, that for any 1 ≤ t ≤ F0.

Fres2 (t) ≤ t

(
Fp
t

)2/p

=
F

2/p
p

t2/p−1
, for p > 0. (5)

We therefore have,

Tl = 2
(
F̄ res2 (k, l)
ε2k · 2l

)1/2

≤ 2
(

5Fres2 (k · 2l−1)
4ε2k · 2l

)1/2

, by Lemma 6

≤ 2

(
5F 2/p

p

4(k · 2l−1)2/p−1ε2k · 2l

)1/2

, by (5)

=
1
ε

√
5
2

(
2Fp
k2l

)1/p

(6)

By equation (4), one component of E1 can be simplified as follows:

E1,1 ≤
L∑
l=1

T pl Fp(Gl) · 2
l+1

≤ ε−p
(

5
2

)p/2 L∑
l=1

2Fp
k · 2l

Fp(Gl)2l+1 substituting (6)

≤ 10
kεp

· Fp
L∑
l=1

Fp(Gl) since p < 2

=
10
kεp

· Fp(Fp − Fp(G0))

≤ 5
8
ε2F 2

p since k ≥ 16
ε2+p

The other component of E1 is

E1,2 = 2T p0 (1 + ε)Fp(lmargin(G0)) ≤ 2ε−p(5/2)p/22
Fp
k

(1 + ε)Fp ≤
10
kεp

(1 + ε)F 2
p ≤ ε2F 2

p ,

also using k ≥ 16
ε2+p and ε < 1

2 . Substituting in (4), we have,

E1 ≤ εFp + 3(ε2F 2
p + E1,1 + E1,2)1/2 < 6εFp . (7)

Adding, the total error is bounded by

E ≤ E1 + E2 ≤ 8εFp ut

We summarize this section in the following theorem.

Theorem 8. There exists an algorithm that returns F̂p satisfying |F̂p − Fp| ≤ εFp with proba-
bility 3

4 using space O(1
ε2+p (log2 n)(logF1)) and processes each stream update in expected time

O(log n logF1) and worst case time O(log2 n logF1) standard arithmetic operations on words of
size logF1 bits. ut

Remarks. 1. We note that for 0 < p < 1, an estimator for Fp with similar properties may be designed
in an exactly analogous fashion by using COUNT-MIN instead of COUNTSKETCH as the frequent
items structure at each level. Such an estimator would require an ε-accurate estimation of F1 (which
would imply estimation of F res1 using standard techniques), which could either be done using Cauchy-
sketches [11, 13] or using the stand-alone technique presented in Section 4. However, using Cauchy-
sketches means that, in general, O(1

ε2) time is required to process each stream update. In order to
maintain poly-logarithmic processing time per stream update, the technique of Section 4 may be used.

2. The space requirement of the stable sketches estimator grows as Õ(1
ε2p2) as a function of

p [13], whereas, the HSS-based technique requires space Õ(1
ε2+p). For small values of p, i.e. p =

O
(

1
log ε−1(1+log log ε−1)

)
, the HSS technique can be asymptotically more space-efficient.

4 An iterative estimator for F1

In this section, we use the HSS technique to present a stand-alone, iterative estimator for F1 =∑n
i=1|fi|. The previous section presents an estimator for Fp that uses, as a sub-routine, an estima-

tor for Fres2 (k) at each level of the structure. In this section, we present a stand-alone estimator that
uses only COUNT-MIN sketch to estimate F1. The technique may be of independent interest.

The estimator uses two separate instantiations of the HSS structure. The first instantiation uses
COUNT-MIN sketch structure with k = 8

ε̄3 buckets per hash function, and s = O(logG) hash func-
tions, where, G = O(F2) and ε̄ = ε

8 . A collection of s2 = O(log 1
δ) independent copies of the

structure are kept for the purpose of boosting the confidence of an estimate by taking the median. The
second instantiation of the HSS structure uses k′ = 128

ε̄3 buckets per hash function (so k′ = 16k) and
s = O(logG) hash functions. For estimating F1, we use a two-step procedure, namely, (1) first, we
obtain an estimate of F1 that is correct to within a factor of 16 using the first HSS instantiation and (2)
then, we use the second instantiation to obtain an ε-accurate estimation of F1.

The first step of the estimation is done using the first instantiation of the HSS structure as follows.
We set the threshold T0 to a parameter t, Tl = T0

2l and the threshold frequency for finding in group
l to be Tl

2 . The group definitions are as defined earlier: G0 = [t, F1], Gl = [t
2l ,

t
2l−1), 1 ≤ l ≤ L.

The disambiguation rule for the estimated frequency is as follows: if f̂i,l > Tl, then, f̂i is set to the
estimate obtained from the lowest of these levels. The sampled groups Ḡl are defined as follows.

Ḡ0 = {i | f̂i ≥ T0}, Ḡl =
{
i | T0

2l
≤ f̂i <

T0

2l−1
and i ∈ Sl

}
, 1 ≤ i ≤ L.

The estimators F̂1 and F̄1 are defined as before—these are now functions of t.

F̂1(t) =
L∑
l=0

∑
i∈Ḡl

|f̂i|2l F̄1(t) =
L∑
l=0

∑
i∈Ḡl

|fi|2l .

Estimator. Let t iterate over values 1, 2, 22, . . . , G and for each value of t let F̂med
1 (t) denote the

median of the estimates F̂1 returned from the s1 = O(log 1
δ) copies of the HSS structure, each using

independent random bits and the same value of t. Let tmax denote the largest value of t satisfying

F̂med
1 (t) ≥ 16t

1.01ε2
.

The final estimate returned is F̂med
1 (tmax) using the second HSS instantiation.

Analysis. We first note that Lemmas 2 and 3 hold for all choices of t. Lemma 5 gets modified as
follows.

Lemma 9. Suppose that for 1 ≤ i ≤ n and 0 ≤ l ≤ L, |f̂i,l − fi| ≤ ∆0
2l with probability ≥ 1− 2−t,

where, ∆0 = F res
1 (k)
k . Then, E2 ≤ 16 ·∆0

∑L
l=0

∑
i∈Gl

|ψ′(ξi)|
2l with probability ≥ 9

10 − 2−t, where
for an i ∈ Gl, ξi lies between fi and f̂i, and maximizes ψ′(). ut

Lemma 10. Let ε̄ = ε
8 , k = 8

ε̄3 and ε ≤ 1
8 . Then, with probability 1− δ each,

1. For 4F1
ε̄k ≤ t ≤ 8F1

ε̄k

|F̂med
1 (t)− F1| ≤

1.01εF1

2
and F̂med

1 (t) ≥ 16t
1.02ε2

2. For any t ≥ 64F1
ε̄k , F̂med

1 (t) < 16t
1.02ε2 with probability 1− δ.

Proof. We consider the two summation terms in error term E1 given by equation (4) separately.

E1,1 =
L∑
l=1

t

2l
F1(Gl)2l+1 ≤ 2t(F1 − F0), and E1,2 = 2tF1(lmargin(G0)).

Adding, E1 ≤ (2(t+∆0)F1)1/2 .

We ignore the term 2−t+L+2F2 in E1, since, by choosing t = O(L), this term can be made arbitrarily
small in comparison with the other two terms. Since, |Gl| ≤ F1·2l

t , our bound on E2 becomes

E2 ≤ 16∆0

L∑
l=0

|Gl|
2l

≤ 16F 2
1

kt
.

Therefore, the expression for total error is E(t) = E1 + E2

E(t) ≤ 2F1

(
t

F1
+

1
k

)1/2

+
16F 2

1

kt
. (8)

Suppose k = 128
ε̄3 and 4F1

ε̄k ≤ t ≤ 8F1
ε̄k . Using ε ≤ 1

8 and ε̄ = ε
8 , we have

E(t) ≤ 2F1

(
t

F1
+

1
k

)1/2

+
16F 2

1

kt
≤ 1.01εF1

2
. (9)

We therefore have,

|F̂med
1 (t)− F1| ≤ E(t) ≤ 1.01εF1

2
, for

4F1

ε̄k
≤ t ≤ 8F1

ε̄k
with probability 1− δ.

Therefore, for 4F1
ε̄k ≤ t ≤ 8F1

ε̄k , with probability 1− δ, we have from (9) that

1.01εF1

2
≥ 2
√
tF1 and so t ≤ (1.01)2ε2F1

16
≤ 1.01ε2F̂med

1

16
(1 + 0.505ε) so F̂med

1 (t) ≥ 16t
1.02ε2

.

(10)

Let t = 2j+2F1
ε̄k for some j ≥ 0, and suppose that (10) is satisfied. Then by (8)

E(t) ≤ 2(j−1)/2−2ε(1.01)F1 + 2−j−2εF1 ≤ 2j/2εF1 with probability 1− δ.

With probability 1− δ, |F̂med
1 (t)− F1| ≤ E and so, using ε ≥ 1

8 ,

2j/2−3F1 ≥ 2j/2εF1 ≥ E(t) ≥ |F̂med
1 (t)− F1| ≥

16t
1.02ε2

− F1 by (10)

≥ 2j−3F1

1.02
− F1 using ε̄ =

ε

8
and k =

8
ε̄3

which is a contradiction for j ≥ 4, proving claim 2. ut

The correctness of the algorithm follows from the above Lemma. The space requirement of the al-
gorithm is O(1

ε3 (log3 n)(log2 F1)) bits and the expected time taken to process each stream update is
O(logF1 log 1

δ) standard arithmetic operations on words of size O(log n).

5 Conclusions

We present a family of algorithms for the randomized estimation of Fp for 0 < p < 2 and another fam-
ily of algorithms for estimating Fp for 0 < p < 1. The first algorithm family estimates Fp by using
the COUNTSKETCH structure and F2 estimation as sub-routines. The second algorithm family esti-
mates Fp by using the COUNT-MIN sketch structure and F1 estimation as a sub-routines. The space
required by these algorithms are O(1

ε2+p (log2 n)(log2 F1)(log 1
δ) and the expected time required to

process each stream update is O(log2 n log 1
δ). Finally, we also present a stand-alone iterative estima-

tor for F1 that only uses the COUNT-MIN sketch structure as a sub-routine.
Prior approaches to the problem of estimating Fp [11, 13] used sketches of the frequency vector

with random variables drawn from a symmetric p-stable distribution. An interesting feature of the
above algorithms is that they do not require the use of stable distributions. The proposed algorithms
trade an extra factor of O(ε−p) factor of space for dramatically improved procesing time (with no
polynomial dependency on ε) per stream update.

References

1. N. Alon, Y. Matias, and M. Szegedy. “The space complexity of approximating frequency moments”. Journal
of Computer and System Sciences, 58(1):137–147, 1998.

2. Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in a data
stream. In RANDOM, 2002.

3. L. Bhuvanagiri and S. Ganguly. “Estimating Entropy over Data Streams”. In Proc. ESA, 2006.
4. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S.

Zdonik. “Monitoring streams – a new class of data management applications”. In Proc. VLDB, 2002.
5. M. Charikar, K. Chen, and M. Farach-Colton. “Finding frequent items in data streams”. In Proc. ICALP,

2002, pages 693–703.
6. G. Cormode and S. Muthukrishnan. “What’s New: Finding Significant Differences in Network Data

Streams”. In IEEE INFOCOM, 2004.
7. G. Cormode and S. Muthukrishnan. “An Improved Data Stream Summary: The Count-Min Sketch and its

Applications”. J. Algorithms, 55(1):58–75, April 2005.
8. P. Flajolet and G.N. Martin. “Probabilistic Counting Algorithms for Database Applications”. Journal of

Computer and System Sciences, 31(2):182–209, 1985.
9. S. Ganguly, D. Kesh, and C. Saha. “Practical Algorithms for Tracking Database Join Sizes”. In Proc.

FSTTCS, 2005.
10. P. Gibbons and S. Tirthapura. Estimating simple functions on the union of data streams. In Proc. SPAA,

2001.
11. P. Indyk. “Stable Distributions, Pseudo Random Generators, Embeddings and Data Stream Computation”.

In Proc. IEEE FOCS, 2000.
12. P. Indyk and D. Woodruff. “Optimal Approximations of the Frequency Moments”. In Proc. ACM STOC,

2005.
13. P. Li. “Very Sparse Stable Random Projections, Estimators and Tail Bounds for Stable Random Projections”.

Manuscript, 2006.

14. P. Li, T. J. Hastie and K. W. Church. “Very Sparse Random Projections”. In Proc. ACM SIGKDD, 2006.

15. N. Nisan. “Pseudo-Random Generators for Space Bounded Computation”. In Proc. ACM STOC, 1990.

16. M. Thorup and Y. Zhang. “Tabulation based 4-universal hashing with applications to second moment esti-
mation”. In Proc. ACM SODA, pages 615–624, January 2004.

17. M.N. Wegman and Carter J. L. “New Hash Functions and their Use in Authentication and Set Equality”.
Journal of Computer and System Sciences, 22:265–279, 1981.

18. D.P. Woodruff. “Optimal approximations of all frequency moments”. In Proc. ACM SODA , pages 167–175,
January 2004.

A COUNT-MIN and COUNTSKETCH summaries

Given a data stream defining a set of item frequencies, rank(r) returns an item with the rth largest
absolute value of the frequency (ties are broken arbitrarily). We say that an item i has rank r if
rank(r) = i. For a given value of k, 1 ≤ k ≤ n, the set top(k) is the set of items with rank ≤ k. The
residual second moment [5] of a data stream, denoted by Fres

2 (k), is defined as the second moment
of the stream after the top-k frequencies have been removed. Then, Fres

2 (k) =
∑
r>k f

2
rank(r). The

residual first moment [7] of a data stream, denoted by F res1 , is analogously defined as the F1 norm of
the data stream after the top-k frequencies have been removed, that is, F res1 =

∑
r>k |frank(r)|.

A sketch [1] is a random integer X =
∑
i fi · xi, where, xi ∈ {−1,+1}, for i ∈ D and the family

of variables {xi}i∈D with certain independence properties. The family of random variables {xi}i∈D
is referred to as the sketch basis. For any d ≥ 2, a d-wise independent sketch basis can be constructed
in a pseudo-random manner from a truly random seed of size O(d log n) bits as follows. Let F be
field of characteristic 2 and of size at least n + 1. Choose a degree d − 1 polynomial g : F → F

with coefficients that are randomly chosen from F [17]. Define xi to be 1 if the first bit (i.e., the least
significant position) of g(i) is 1, and define xi to be −1 otherwise. The d-wise independence of the
xi’s follows from an application of Wegman and Carter’s universal hash functions [17].

Pair-wise independent sketches are used in [5] to design the COUNTSKETCH algorithm for find-
ing the top-k frequent items in an insert-only stream. The data structure consists of a collection of
s = O(log 1

δ) independent hash tables U1, U2, . . . , Us each consisting of 8k buckets. A pair-wise in-
dependent hash function hj : [n] → {1, 2, . . . , 8k} is associated with each hash table that maps items
randomly to one of the 8k buckets, where, k is a space parameter. Additionally, for each table index
j = 1, 2, . . . , s, we keep a pair-wise independent family of random variables {xij}i∈[n], where, each
xij ∈ {−1,+1} with equal probability. Each bucket keeps a sketch of the sub-stream that maps to
it, that is, Uj [r] =

∑
i:hj(i)=r

fixij , 1 ≤ j ≤ s, 1 ≤ r ≤ 8k. An estimate f̂i is returned as follows:

f̂i = mediansj=1 Uj [hj(i)]xij . The accuracy of estimation is stated as a function ∆ of the residual
second moment given parameters k and b is defined as [5]

∆(b, k) = 8
(

Fres2 (k)
b

)1/2

.

The space versus accuracy guarantees of the COUNTSKETCH algorithm is presented in Theorem 11.

Theorem 11 ([5]). Let ∆ = ∆(k, 8k). Then, for any given i ∈ [n], Pr{|f̂i − fi| ≤ ∆} ≥ 1− δ. The
space used is O(k · log 1

δ · (logF1)) bits, and the time taken to process a stream update is O(log 1
δ).

The COUNTSKETCH algorithm can be adapted to return approximate frequent items and their fre-
quencies. The original algorithm [5] uses a heap for maintaining the current top-k items in terms of
their estimated frequencies. After processing each arriving stream record of the form (i, v), where, v
is assumed to be non-negative, an estimate for f̂i is calculated using the scheme outline above. If i is
already in the current estimated top-k heap then its frequency is correspondingly increased. If i is not
in the heap but f̂i is larger than the current smallest frequency in the heap, then it replaces that element
in the heap. This scheme is applicable to insert-only streams. A generalization of this method for strict
update streams is presented in [6] and returns, with probability 1 − δ, (a) all items with frequency
at least (Fres

2 (k)
k)1/2 and, (b) does not return any item with frequency less than (1 − ε)(Fres

2 (k)
k)1/2

using space O
(
kε−2 log n log(kε−1 log(kε−1)) logF1

)
bits. For general update streams, a variation

of this technique can be used for retrieving items satisfying properties (a) and (b) above using space
O(ε−2k log(δ−1n) logF1) bits.

The COUNT-MIN algorithm [7] for finding approximate frequent items keeps a collection of
s = O(log 1

δ) independent hash tables T1, T2, . . . , Ts, where each hash table Tj is of size b = 2k
buckets and uses a pair-wise independent hash function hj : [n] → {1, . . . , 2k}, for j = 1, 2, . . . , s.
The bucket Tj [r] is an integer counter that maintains the following sum Tj [r] =

∑
i:hj(i)=r

fi. The

estimated frequency f̂i is obtained as f̂i = mediansr=1Tj [hj(i)]. The space versus accuracy guarantees
for the COUNT-MIN algorithm is given in terms of the quantity F res1 (k) =

∑
r>k |frank(r)|.

Theorem 12 ([7]).Pr{|f̂i − fi| ≤ F res
1 (k)
k } ≥ 1 − δ with probability using space O(k log 1

δ logF1)
bits and time O(log 1

δ) to process each stream update.

Estimating F res1 and Fres2 . [9] presents an algorithm to estimate Fres2 (k) to within an accuracy of
(1±ε) with confidence 1−δ using spaceO(kε2 log(F1) log(nδ)) bits. The data structure used is identical
to the COUNTSKETCH structure. The algorithm basically removes the top-k estimated frequencies
from the COUNTSKETCH structure and then estimates F2. Let f̂τ1 , . . . , f̂τk

denote the top-k estimated
frequencies from the COUNTSKETCH structure. Next, the contributions of these estimates are removed
from the structure, that is, Uj [r]:=Uj [r]−

∑
t:hj(τt)=r

fτt
xjτt

. Subsequently, the Fast-AMS algorithm

[16], a variant of the original sketch algorithm [1], is used to estimate the second moment as F̂
res

2 =
mediansj=1

∑8k
r=1(Uj [r])

2. Formally, we can state:

Lemma 13 ([9]). For a given integer k ≥ 1 and 0 < ε < 1, there exists an algorithm for update
streams that returns an estimate F̂ res2 (k) satisfying |F̂ res2 (k)−F res2 (k)| ≤ εF res2 (k) with probability
1− δ using space O(kε2 (log F1

δ)(logF1)) bits.

A similar argument can be applied to estimate F res1 (s), where, instead of using the COUNTSKETCH

algorithm, we use the COUNT-MIN algorithm for retrieving the top-k estimated absolute frequencies.
In parallel, a set of s = O(1

ε2) sketches based on a 1-stable distribution [11] (i.e., Yj =
∑
i fizji,

where zji is drawn from a 1-stable distribution). After retrieving the top-k frequencies fτ1 , . . . , fτk

with respect to their absolute values, we reduce the sketches Yj:=Yj −
∑k
r=1 fτrzjτr and estimate

F res1 (k) as mediansj=1|Yj |. We summarize this in Lemma 14.

Lemma 14. For a given integer k ≥ 1 and 0 < ε < 1, there exists an algorithm for update streams
that returns an estimate F̂ res1 (k) satisfying |F̂ res1 (k) − F res1 (k)| ≤ εF res1 (k) with probability 1 − δ

using O(1
ε (k + 1

ε)(log k
δ)(logF1)) bits.

B Reducing random bits by using a PRG

We use a standard technique of reducing the randomness by using a pseudo-random generator (PRG)
of Nisan [15] along the lines of Indyk in [11] and Indyk and Woodruff in [12].

Notation. LetM be a finite state machine that uses S bits and has running timeR. Assume thatM uses
the random bits in k segments, each segment consisting of kb bits. Let Ur be a uniform distribution
over {0, 1}r and for a discrete random variable X , let F [X] denote the probability distribution of X ,
treated as a vector. Let M(x) denote the state of M after using the random bits in x. The generator
G : {0, 1}u → {0, 1}kb expands a “small” number of u bits that are truly random to a sequence of kb
bits that “appear” random to M . G is said to be a pseudo-random generator for a class C of finite state
machines with parameter ε, provided, for every M ∈ C∣∣F [Mx∈Ukb(x)]−F [Mx∈Um(G(x))]

∣∣
1
≤ ε

where, |y|1 denotes the F1 norm of the vector y. Nisan [15] shows the following property (this version
is from [11]).

Theorem 15 ([15]). There exists a PRG G for Space(S) and Time(R) with parameter ε = 2−O(S)

that requires O(S) bits such that G expands O(S logR) bits into O(R) bits.

This is sufficient due to the fact that we can compute the frequency moments by considering each
(aggregate) frequency fi in turn and use only segments of O(logF1) bits to store and process it.

