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Abstract. Recent years have seen growing interest in effective algorithms for
summarizing and querying massive, high-speed data streams. Randomized sketch
synopses provide accurate approximations for general-purpose summaries of the
streaming data distribution (e.g., wavelets). The focus ofexisting work has typi-
cally been on minimizingspace requirementsof the maintained synopsis — how-
ever, to effectively support high-speed data-stream analysis, a crucial practical
requirement is to also optimize: (1) theupdate timefor incorporating a stream-
ing data element in the sketch, and (2) thequery timefor producing an approx-
imate summary (e.g., the top wavelet coefficients) from the sketch. Such time
costs must be small enough to cope with rapid stream-arrivalrates and the real-
time querying requirements of typical streaming applications (e.g., ISP network
monitoring). With cheap and plentiful memory, space is often only a secondary
concern after query/update time costs.
In this paper, we propose the first fast solution to the problem of tracking wavelet
representations of one-dimensional and multi-dimensional data streams, based on
a novel stream synopsis, theGroup-Count Sketch (GCS). By imposing a hierar-
chical structure of groups over the data and applying the GCS, our algorithms
can quickly recover the most important wavelet coefficientswith guaranteed ac-
curacy. A tradeoff between query time and update time is established, by varying
the hierarchical structure of groups, allowing the right balance to be found for
specific data stream. Experimental analysis confirms this tradeoff, and shows that
all our methods significantly outperform previously known methods in terms of
both update time and query time, while maintaining a high level of accuracy.

1 Introduction
Driven by the enormous volumes of data communicated over today’s Internet, several
emerging data-management applications crucially depend on the ability to continu-
ously generate, process, and analyze massive amounts of data in real time. A typical
example domain here comprises the class ofcontinuous event-monitoring systemsde-
ployed in a wide variety of settings, ranging from network-event tracking in large ISPs
to transaction-log monitoring in large web-server farms and satellite-based environ-
mental monitoring. For instance, tracking the operation ofa nationwide ISP network
requires monitoring detailed measurement data from thousands of network elements
across several different layers of the network infrastructure. The volume of such mon-
itoring data can easily become overwhelming (in the order ofTerabytes per day). To
deal effectively with the massive volume and continuous, high-speed nature of data in
such environments, thedata streamingparadigm has proven vital. Unlike conventional



database query-processing engines that require several (expensive) passes over a static,
archived data image, streaming data-analysis algorithms rely on building concise, ap-
proximate (but highly accurate)synopsesof the input stream(s) in real-time (i.e., in one
pass over the streaming data). Such synopses typically require space that is significantly
sublinear in the size of the data and can be used to provideapproximate query answers
with guarantees on the quality of the approximation. In manymonitoring scenarios, it is
neither desirable nor necessary to maintain the data in full; instead, stream synopses can
be used to retain enough information for the reliable reconstruction of the key features
of the data required in analysis.

The collection of the top (i.e., largest) coefficients in thewavelet transform(or, de-
composition) of an input data vector is one example of such a key feature ofthe stream.
Waveletsprovide a mathematical tool for the hierarchical decomposition of functions,
with a long history of successful applications in signal andimage processing [15, 20].
Applying the wavelet transform to a (one- or multi-dimensional) data vector and retain-
ing a select small collection of the largest wavelet coefficient gives a very effective form
of lossy data compression. Suchwavelet summariesprovide concise, general-purpose
summaries of relational data, and can form the foundation for fast and accurate approx-
imate query processing algorithms (such as approximate selectivity estimates, OLAP
range aggregates and approximate join and multi-join queries. Wavelet summaries can
also give accurate (one- or multi-dimensional)histogramsof the underlying data vec-
tor at multiple levels of resolution, thus providing valuable primitives for effective data
visualization.

Most earlier stream-summarization work focuses on minimizing thespace require-
mentsfor a given level of accuracy (in the resulting approximate wavelet representation)
while the data vector is being rendered as a stream of arbitrary point updates. However,
while space is an important consideration, it is certainly not the only parameter of in-
terest. To effectively support high-speed data-stream analyses, two additional key pa-
rameters of a streaming algorithm are: (1) theupdate timefor incorporating a streaming
update in the sketch, and (2) thequery timefor producing the approximate summary
(e.g., the top wavelet coefficients) from the sketch. Minimizing query and update times
is a crucial requirement to cope with rapid stream-arrival rates and the real-time query-
ing needs of modern streaming applications. Furthermore, there are essential tradeoffs
between the above three parameters (i.e., space, query time, and update time), and it can
be argued that space usage is often theleast important of these. For instance, consider
monitoring a stream of active network connections for the users consuming the most
bandwidth (commonly referred to as the “top talkers” or “heavy hitters” [6, 16]). Typical
results for this problem give a stream-synopsis space requirement ofO(1/ǫ), meaning
that an accuracy ofǫ = 0.1% requires only a few thousands of storage locations, i.e.,
a few Kilobytes, which is of little consequence at all in today’s off-the-shelf systems
featuring Gigabytes of main memory4. Now, suppose that the network is processing IP
packets on average a few hundred bytes in length at rates of hundreds of Mbps; essen-
tially, this implies that the average processing time per packet must much less than one
millisecond: an average system throughput of tens to hundreds of thousands of packets

4 One issue surrounding using very small space is whether the data structure fits into the faster
cache memory, which again emphasizes the importance of running time costs.



per second. Thus, while synopsis space is probably a non-issue in this setting, the times
to update and query the synopsis can easily become an insurmountable bottleneck. To
scale to such high data speeds, streaming algorithms must guarantee provably small
time costs for updating the synopsis in real time. Small query times are also important,
requiring near real-time response. (e.g., for detecting and reacting to potential network
attacks). In summary, we need fast item processing, fast analysis, and bounded space
usage — different scenarios place different emphasis on each parameter but, in general,
more attention needs to be paid to the time costs of streamingalgorithms.

Our Contributions. The streaming wavelet algorithms of Gilbert et al. [11] guaranteed
small space usage, only polylogarithmic inN . Unfortunately, the update- and query-
time requirements of their scheme can easily become problematic for real-time moni-
toring applications, since the whole data structure must be“touched” for each update,
and every wavelet coefficient queried to find the best few. Although [11] tries to reduce
this cost by introducing more complex range-summable hash functions to make estimat-
ing individual wavelet coefficients faster, the number of queries does not decrease, and
the additional complexity of the hash functions means that the update time increases
further. Clearly, such high query times are not acceptable for any real-time monitoring
environment, and pose the key obstacle in extending the algorithms in [11] to multi-
dimensional data (where the domain size grows exponentially with dimensionality).

In this paper, we propose the first known streaming algorithms for space- and
time-efficient trackingof approximate wavelet summaries for bothone- and multi-
dimensional data streams. Our approach relies on a novel, sketch-based stream syn-
opsis structure, termed theGroup-Count Sketch (GCS)that allows us to provide sim-
ilar space/accuracy tradeoffs as the simple sketches of [11], while guaranteeing: (1)
small, logarithmic update times (essentially touching only a small fraction of the GCS
for each streaming update) with simple, fast, hash functions; and, (2) polylogarithmic
query times for computing the top wavelet coefficients from the GCS. In brief, our
GCS algorithms rely on two key, novel technical ideas. First, we workentirely in the
wavelet domain, in the sense that we directly sketchwavelet coefficients, rather than
the original data vector, as updates arrive. Second, our GCSs employgroup structures
based on hashing and hierarchical decompositionover the wavelet domain to enable
fast updates and efficient binary-search-like techniques for identifying the top wavelet
coefficients in sublinear time. We also demonstrate that, byvarying the degree of our
search procedure, we can effectively explore the tradeoff between update and query
costs in our GCS synopses. Our GCS algorithms and results also naturally extend to
both the standard and non-standard form of themulti-dimensionalwavelet transform,
essentially providing the only known efficient solution forstreaming wavelets in more
than one dimension. As our experimental results with both synthetic and real-life data
show, they allow very fast update and searching, capable of supporting very high speed
data sources.

2 Preliminaries
2.1 Stream Processing Model and Stream Sketches
Our input comprises a continuous stream of update operations, rendering a data vector
a of N values (i.e., the data-domain size). Without loss of generality, we assume that the



index of our data vector takes values in the integer domain[N ] = {0, . . . , N−1}, where
N is a power of2 (to simplify the notation). Each streaming update is a pair of the form
〈i,±v〉, denoting a net change of±v in thea[i] entry; that is, the effect of the update is to
seta[i]← a[i]±v. Intuitively, “+v” (“−v”) can be seen asv insertions (resp., deletions)
of the ith vector element, but more generally we allow entries to take negative values.
(Our model instantiates the most general and, hence, most demandingturnstile modelof
streaming computations [18].) Our model generalizes to multi-dimensional data: ford
data dimensions,a is ad-dimensional vector (tensor) and each update〈(i1, . . . , id),±v〉
effects a net change of±v on entrya[i1, . . . , id].5

In the data-streaming context, updates are only seenonce in the (fixed) order of
arrival; furthermore, the rapid data-arrival rates and large data-domain sizeN make
it impossible to storea explicitly. Instead, our algorithms can only maintain a concise
synopsisof the stream that requires only sublinear space, and, at thesame time, can
(a) be maintained in small, sublinear processing time per update, and (b) provide query
answers in sublinear time. Sublinear here means polylogarithmic inN , the data-vector
size. (More strongly, our techniques guarantee update times that are sublinear in thesize
of the synopsis.)

Randomized AMS Sketch Synopses for Streams.The randomizedAMS sketch[2] is
a broadly applicable stream synopsis structure based on maintaining randomized linear
projections of the streaming input data vectora. Briefly, anatomic AMS sketchof a is
simply theinner product〈a, ξ〉 =

∑

i a[i]ξ(i), whereξ denotes a random vector of four-
wise independent±1-valued random variates. Such variates can be easily generated
on-line through standard pseudo-random hash functionsξ() using onlyO(log N) space
(for seeding) [2, 11]. To maintain this inner product over the stream of updates toa,
initialize a running counterX to 0 and setX ← X ± vξ(i) whenever the update
(i,±v) is seen in the input stream. AnAMS sketchof a comprises several independent
atomic AMS sketches (i.e., randomized counters), each witha different random hash
functionξ(). The following theorem summarizes the key property of AMS sketches for
stream-query estimation, where||v||2 denotes theL2-norm of a vectorv, so ||v||2 =
√

〈v, v〉 =
√

∑

i v[i]2.

Theorem 1 ([1, 2]).Consider two (possibly streaming) data vectorsa andb, and letZ
denote theO(log(1/δ))-wise median ofO(1/ǫ2)-wise means of independent copies of
the atomic AMS sketch product(

∑

i a[i]ξj(i))(
∑

i b[i]ξj(i)). Then,|Z− < a, b > | ≤
ǫ||a||2||b||2 with probability≥ 1− δ.

Thus, using AMS sketches comprising onlyO( log(1/δ)
ǫ2 ) atomic counters we can ap-

proximate the vector inner product〈a, b〉 to within ±ǫ||a||2||b||2 (hence implying an
ǫ-relative error estimate for||a||22).

2.2 Discrete Wavelet Transform Basics
TheDiscrete Wavelet Transform (DWT)is a useful mathematical tool for hierarchically
decomposing functions in ways that are both efficient and theoretically sound. Broadly

5 Without loss of generality we assume a domain of[N ]d for thed-dimensional case — different
dimension sizes can be handled in a straightforward manner.Further, our methods do not need
to know the domain sizeN beforehand — standard adaptive techniques can be used.
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Fig. 1. Example error-tree structures for (a) a one-dimensional data array (N = 8), and (b) non-
standard two-dimensional Haar coefficients for a4 × 4 data array (coefficient magnitudes are
multiplied by+1 (−1) in the “+” (resp., “-”) labeled ranges, and0 in blank areas).

speaking, the wavelet decomposition of a function consistsof a coarse overall approxi-
mation together with detail coefficients that influence the function at various scales [20].
Haar waveletsrepresent the simplest DWT basis: they are conceptually simple, easy to
implement, and have proven their effectiveness as a data-summarization tool in a variety
of settings [4, 22, 10].

One-Dimensional Haar Wavelets.Consider the one-dimensional data vectora =
[2, 2, 0, 2, 3, 5, 4, 4] (N = 8). The Haar DWT ofa is computed as follows. We first
average the values together pairwise to get a new “lower-resolution” representation of
the data with the pairwise averages[ 2+2

2 , 0+2
2 , 3+5

2 , 4+4
2 ] = [2, 1, 4, 4]. This averaging

loses some of the information ina. To restore the originala values, we needdetail coef-
ficients, that capture the missing information. In the Haar DWT, these detail coefficients
are the differences of the (second of the) averaged values from the computed pairwise
average. Thus, in our simple example, for the first pair of averaged values, the detail
coefficient is0 since2 − 2 = 0, for the second it is−1 since1 − 2 = −1. No infor-
mation is lost in this process – one can reconstruct the eightvalues of the original data
array from the lower-resolution array containing the four averages and the four detail
coefficients. We recursively apply this pairwise averagingand differencing process on
the lower-resolution array of averages until we reach the overall average, to get the full
Haar decomposition. The final Haar DWT ofa is given bywa = [11/4, −5/4, 1/2, 0,
0, −1, −1, 0], that is, the overall average followed by the detail coefficients in order
of increasing resolution. Each entry inwa is called awavelet coefficient. The main ad-
vantage of usingwa instead of the original data vectora is that for vectors containing
similar values most of the detail coefficients tend to have very small values. Thus, elim-
inating such small coefficients from the wavelet transform (i.e., treating them as zeros)
introduces only small errors when reconstructing the original data, resulting in a very
effective form of lossy data compression [20].

A useful conceptual tool for visualizing and understandingthe (hierarchical) Haar
DWT process is theerror treestructure [17] (shown in Fig. 1(a) for our example array
a). Each internal tree nodeci corresponds to a wavelet coefficient (with the root node
c0 being the overall average), and leaf nodesa[i] correspond to the original data-array
entries. This view allows us to see that the reconstruction of any a[i] depends only on
thelog N +1 coefficients in the path between the root anda[i]; symmetrically, it means
a change ina[i] only impacts itslog N + 1 ancestors in an easily computable way. We
define thesupportfor a coefficientci as the contiguous range of data-array thatci is



used to reconstruct (i.e., the range of data/leaf nodes in the subtree rooted atci). Note
that the supports of all coefficients at resolution levell of the Haar DWT are exactly
the 2l (disjoint) dyadic rangesof sizeN/2l = 2log N−l over [N ], defined asRl,k =
[k · 2log N−l, . . . , (k + 1) · 2log N−l− 1] for k = 0, . . . , 2l− 1 (for each resolution level
l = 0, . . . , log N ). The Haar DWT can also be conceptualized in terms of vector inner-
product computations: letφl,k denote the vector withφl,k[i] = 2l−log N for i ∈ Rl,k and
0 otherwise, forl = 0, . . . , log N andk = 0, . . . , 2l − 1; then, each of the coefficients
in the Haar DWT ofa can be expressed as the inner product ofa with one of theN
distinct Haarwavelet basis vectors:
{ 1

2 (φl+1,2k − φl+1,2k+1) : l = 0, . . . , log N − 1; k = 0, . . . , 2l − 1} ∪ {φ0,0}

Intuitively, wavelet coefficients with larger support carry a higher weight in the re-
construction of the original data values. To equalize the importance of all Haar DWT
coefficients, a common normalization scheme is to scale the coefficient values at level
l (or, equivalently, the basis vectorsφl,k) by a factor of

√

N/2l. This normalization
essentially turns the Haar DWT basis vectors into anorthonormal basis— letting c∗i
denote the normalized coefficient values, this fact has two important consequences:
(1) Theenergyof the a vector is preserved in the wavelet domain, that is,||a||22 =
∑

i a[i]2 =
∑

i(c
∗

i )
2 (by Parseval’s theorem); and, (2) Retaining theB largest coeffi-

cients in terms ofabsolute normalized valuegives the (provably) bestB-term approx-
imation in terms of Sum-Squared-Error (SSE) in the data reconstruction (for a given
budget of coefficientsB) [20].

Multi-Dimensional Haar Wavelets.There are two distinct ways to generalize the Haar
DWT to the multi-dimensional case, thestandardandnonstandardHaar decomposi-
tion [20]. Each method results from a natural generalization of the one-dimensional
decomposition process described above, and both have been used in a wide variety of
applications. Consider the case wherea is ad-dimensional data array, comprisingNd

entries. As in the one-dimensional case, the Haar DWT ofa results in ad-dimensional
wavelet-coefficient arraywa with Nd coefficient entries. The non-standard Haar DWT
works in log N phases where, in each phase,one stepof pairwise averaging and dif-
ferencing is performed across each of thed dimensions; the process is then repeated
recursively (for the next phase) on the quadrant containingthe averages across all di-
mensions. The standard Haar DWT works ind phases where, in each phase, acom-
plete1-dimensional DWT is performed for each one-dimensional rowof array cells
along dimensionk, for all k = 1, . . . , d. (full details and efficient decomposition al-
gorithms are in [4, 22].) The supports of non-standardd-dimensional Haar coefficients
ared-dimensional hyper-cubes (over dyadic ranges in[N ]d), since they combine1-
dimensional basis functions from the same resolution levels across all dimensions. The
cross product of a standardd-dimensional coefficient (indexed by, say,(i1, . . . , id))
is, in general ad-dimensional hyper-rectangle, given by the cross-productof the 1-
dimensional basis functions corresponding to coefficient indexesi1, . . . , id.

Error-tree structures can again be used to conceptualize the properties of both forms
of d-dimensional Haar DWTs. In the non-standard case, the errortree is essentially a
quadtree (with a fanout of2d), where all internal non-root nodes contain2d−1 coef-
ficients that have the same support region in the original data array but with differ-
ent quadrant signs (and magnitudes) for their contribution. For standardd-dimensional



Haar DWT, the error-tree structure is essentially a “cross-product” ofd one-dimensional
error trees with the support and signs of coefficient(i1, . . . , id) determined by the prod-
uct of the component one-dimensional basis vectors (fori1, . . . , d). Fig. 1(b) depicts a
simple example error-tree structure for the non-standard Haar DWT of a2-dimensional
4 × 4 data array. It follows that updating a single data entry in the d-dimensional data
arraya impacts the values of(2d − 1) logN + 1 = O(2d log N) coefficients in the
non-standard case, and(log N + 1)d = O(logd N) coefficients in the standard case.
Both multi-dimensional decompositions preserve the orthonormality, thus retaining the
largestB coefficient values gives a provably SSE-optimalB-term approximation ofa.

3 Problem Formulation and Overview of Approach
Our goal is to continuously track a compactB-coefficient wavelet synopsis under our
general, high-speed update-stream model. We require our solution to satisfy all three
key requirements for streaming algorithms outlined earlier in this paper, namely: (1)
sublinear synopsis space, (2) sublinear per-item update time, and (3) sublinear query
time, where sublinear means polylogarithmic in the domain size N . As in [11], our al-
gorithms return only anapproximatesynopsis comprising (at most)B Haar coefficients
that is provably near-optimal (in terms of the captured energy of the underlying vector)
assuming that our vector satisfies the“small-B property” (i.e., most of its energy is con-
centrated in a small number of Haar DWT coefficients) — this assumption is typically
satisfied for most real-life data distributions [11].

The streaming algorithm presented by Gilbert et al. [11] (termed “GKMS” in the
remainder of the paper) focuses primarily on the one-dimensional case. The key idea is
to maintain an AMS sketch for the streaming data vectora (as discussed in Sec. 2.1).
To produce the approximateB-term representation, GKMS employs the constructed
sketch ofa to estimate the inner product ofa with all wavelet basis vectors, essen-
tially performing an exhaustive search over the space of allwavelet coefficients to iden-
tify important ones. Although techniques based on range-summable random variables
constructed using Reed-Muller codes were proposed to reduce or amortize the cost of
this exhaustive search by allowing the sketches of basis vectors to be computed more
quickly, the overall query time for discovering the top coefficients remains superlinear
in N (i.e.,at leastΩ( 1

ǫ2 N log N)), violating our third requirement. For large data do-
mains, sayN = 232 ≈ 4 billion (such as the IP address domain considered in [11]),
a query can take a very long time: over an hour, even if a million coefficient queries
can be answered per second! This essentially renders a direct extension of the GKMS
technique to multiple dimensions infeasible since it implies an exponential explosion
in query cost (requiring at leastO(Nd) time to cycle through all coefficients ind di-
mensions). In addition, the update cost of the GKMS algorithm is linear in the size of
the sketchsince the whole data structure must be “touched” for each update. This is
problematic for high-speed data streams and/or even moderate sized sketch synopses.

Our Approach. Our proposed solution relies on two key novel ideas to avoid the short-
comings of the GKMS technique. First, we workentirely in the wavelet domain: instead
of sketching the original data entries, our algorithms sketch the wavelet-coefficient vec-
tor wa as updates arrive. This avoids any need for complex range-summable hash func-
tions. Second, we employhash-based groupingin conjunction withefficient binary-



search-like techniquesto enable very fast updates as well as identification of important
coefficients in polylogarithmic time.

– Sketching in the Wavelet Domain.Our first technical idea relies on the observation
that we can efficiently produce sketch synopses of the streamdirectly in the wavelet do-
main. That is, we translate the impact of each streaming update onthe relevant wavelet
coefficients. By the linearity properties of the DWT and our earlier description, we
know that an update to the data entries corresponds to only polylogarithmically many
coefficients in the wavelet domain. Thus, on receiving an update toa, our algorithms
directly convert it toO(polylog(N)) updates to the wavelet coefficients, and maintain
an approximate representation of the wavelet coefficient vectorwa.

– Time-Efficient Updates and Large-Coefficient Searches.Sketching in the wavelet do-
main means that, at query time, we have an approximate representation of the wavelet-
coefficient vectorwa and need to be able to identify all those coefficients that are
“large”, relative to the total energy of the data‖wa‖

2
2 = ‖a‖22. While AMS sketches can

give us these estimates (a point query is just a special case of an inner product), querying
remains much too slow taking at leastΩ( 1

ǫ2 N) time to find which of theN coefficients
are theB largest. Note that although a lot of earlier work has given efficient stream-
ing algorithms for identifying high-frequency items [5, 6,16], our requirements here
are quite different. Our techniques must monitor items (i.e., DWT coefficients) whose
values increase and decrease over time, and which may very well be negative(even if
all the data entries ina are positive). Existing work on “heavy-hitter” tracking focuses
solely on non-negative frequency counts [6] often assumed to be non-decreasing [5,
16]. More strongly, we must find items whosesquared valueis a large fraction of the
total vector energy||wa||

2
2: this is a stronger condition since such “L2

2 heavy hitters”
may not be heavy hitters under the conventional sum-of-counts definition.6

At a high level, our algorithms rely on adivide-and-conqueror binary-search-like
approach for finding the large coefficients. To implement this, we need the ability to
efficiently estimate sums-of-squares forgroupsof coefficients, corresponding to dyadic
subranges of the domain[N ]. We then disregard low-energy regions and recurse only
on high-energy groups — note that this guarantees no false negatives, as a group that
contains a high-energy coefficient will also have high energy as a whole. Furthermore,
our algorithms also employrandomized, hash-based groupingof dyadic groups and
coefficients to guarantee that each update only touches a small portion of our synopsis,
thus guaranteeing very fast update times.

4 Our Solution: The GCS Synopsis and Algorithms

We introduce a novel, hash-based probabilistic synopsis data structure, termedGroup-
Count Sketch (GCS), that can estimate the energy (squaredL2 norm) of fixed groups of
elements from a vectorw of sizeN under our streaming model. (To simplify the expo-
sition we initially focus on the one-dimensional case, and present the generalization to
multiple dimensions later in this section.) Our GCS synopsis requires small, sublinear
space and takes sublinear time to process each stream updateitem; more importantly,

6 For example, consider a set of items with counts{4, 1, 1, 1, 1, 1, 1, 1, 1}. The item with count
4 represents2

3
of the sum of the squared counts, but only1

3
of the sum of counts.
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Fig. 2. Our Group-Count Sketch (GCS) data structure:x is hashed (t times) to a bucket and then
to a subbucket within the bucket, where a counter is updated.

we can use a GCS to obtain a high-probability estimate of the energy of a group within
additive errorǫ||w||22 in sublinear time. We then demonstrate how to use GCSs as the
basis of efficient streaming procedures for tracking large wavelet coefficients.

Our approach takes inspiration from the AMS sketching solution for vectorL2-
norm estimation; still, we need a much stronger result, namely the ability to estimate
L2 norms for a (potentially large) number ofgroups of itemsforming a partition of the
data domain[N ]. A simple solution would be to keep an AMS sketch of each group
separately; however, there can bemanygroups, linear inN , and we cannot afford to
devote this much space to the problem. We must also process streaming updates as
quickly as possible. Our solution is to maintain a structurethat first partitions items of
w into their group, and then maps groups to buckets using a hashfunction. Within each
bucket, we apply a second stage of hashing of items to sub-buckets, each containing
an atomic AMS sketch counter, in order to estimate theL2 norm of the bucket. In our
analysis, we show that this approach allows us to provide accurate estimates of the
energy of any group inw with tight±ǫ||w||22 error guarantees.

The GCS Synopsis.Assume a total ofk groups of elements ofw that form a partition
of [N ]. For notational convenience, we use a functionid that identifies the specific
group that an element belongs to,id : [N ] → [k]. (In our setting, groups correspond
to fixed dyadic ranges over[N ] so theid mapping is trivial.) Following common data-
streaming practice, we first define a basic randomized estimator for the energy of a
group, and prove that it returns a good estimate with constant probability> 1

2 ; then,
by taking the median estimate overt independent repetitions, we are able to reduce
the probability of a bad estimate to exponentially small int. Our basic estimator first
hashes groups intob buckets and then, within each bucket, it hashes intoc sub-buckets.
(The values oft, b, andc parameters are determined in our analysis.) Furthermore, as
in AMS sketching, each item has a{±1} random variable associated with it. Thus, our
GCS synopsis requires three sets oft hash functions,hm : [k] → [b], fm : [N ] → [c],
andξm : [N ] → {±1} (m = 1, . . . , t). The randomization requirement is thathm’s
andfm’s are drawn from families of pairwise independent functions, whileξm’s are
four-wise independent (as in basic AMS); such hash functions are easy to implement,
and require onlyO(log N) bits to store.

Our GCS synopsiss consists oft ·b ·c counters (i.e., atomic AMS sketches), labeled
s[1][1][1] throughs[t][b][c], that are maintained and queried as follows:



UPDATE(i, u). Sets[r][hm(id(i))][fm(i)]+ = u · ξm(i), for eachm = 1, . . . , t.

ESTIMATE(GROUP). Return the estimatemedianm=1,...,t

∑c
j=1(s[m][hm(GROUP)][j])2

for the energy of the group of itemsGROUP∈ {1, . . . , k} (denoted by‖GROUP‖22).

Thus, the update and query times for a GCS synopsis are simplyO(t) andO(t · c),
respectively. The following theorem summarizes our key result for GCS synopses.

Theorem 2. Our Group-Count Sketch algorithms estimate the energy of item groups
of the vectorw within additive errorǫ||w||22 with probability≥ 1 − δ using space of
O

(

1
ǫ3 log 1

δ

)

counters, per-item update time ofO
(

log 1
δ

)

, and query time ofO
(

1
ǫ2 log 1

δ

)

.

Proof. Fix a particular groupGROUPand a rowr in the GCS; we drop the row indexm
in the context where it is understood. LetBUCKET be the set of elements that hash into
the same bucket asGROUPdoes:BUCKET = {i | i ∈ [1, n] ∧ h(id(i)) = h(GROUP)}.
Among those, letCOLL be the set of elements other than those ofGROUP: COLL =
{i | i ∈ [1, n] ∧ id(i) 6= GROUP∧ h(id(i)) = h(GROUP)}. In the following, we abuse
notation in that we refer to a refer to both a group and the set of items in the group with
the same name. Also, we write‖S‖22 to denote the sum of squares of the elements (i.e.
L2

2) in setS: ‖S‖22 =
∑

i∈S w[i]2.
Let est be the estimator for the sum of squares of the items ofGROUP. That is,

est =
∑c

j=1 estj whereestj = s2[m][hm(GROUP)][j] is the square of the count in
sub-bucketSUBj . The expectation of this estimator is, by simple calculation, the sum of
squares of items in sub-bucketj, which is a fraction of the sum of squares of the bucket.
Similarly, using linearity of expectation and the four-wise independence of theξ hash
functions, the variance ofest is bounded in terms of the square of the expectation:

E[est] = E[‖BUCKET‖22] Var[est] ≤ 2
cE[‖BUCKET‖42]

To calculateE[‖BUCKET‖22], observe that the bucket contains items ofGROUP as
well as items from other groups denoted by the setCOLL which is determined byh.
Because of the pairwise independence ofh, this expectation is bounded by a fraction of
the total energy. Therefore:

E[‖BUCKET‖22] = ‖GROUP‖22 + E[‖COLL‖22] ≤ ‖GROUP‖22 + 1
b ||w||

2
2

andE[‖BUCKET‖42] = ‖GROUP‖42 + E[‖COLL‖42] + 2‖GROUP‖22E[‖COLL‖22]
≤ ||w||42 + 1

b ||w||
4
2 + 2||w||22 ·

1
b ||w||

2
2 ≤ (1 + 3

b )||w||42 ≤ 2||w||22

since‖GROUP‖22 ≤ ||w||
2
2 andb ≥ 3. The estimator’s expectation and variance satisfy

E[est] ≤ ‖GROUP‖22 + 1
b ||w||

2
2 Var[est] ≤ 4

c‖w‖
4
2

Applying the Chebyshev inequality we obtainPr
[

|est− E[est]| ≥ λ||w||22
]

≤
4

cλ2

and by settingc = 32
λ2 the bound becomes18 , for some parameterλ. Using the above

bounds on variance and expectation and the fact that|a− b| ≥ ||a| − |b|| we have,

|est− E[est]| ≥

∣

∣

∣

∣

est− ‖GROUP‖22 −
1

b
||w||22

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

∣est− ‖GROUP‖22
∣

∣−
1

b
||w||22

∣

∣

∣

∣

.

Consequently (note thatPr[|a| > b] ≥ Pr[a > b]),

Pr

[

∣

∣est− ‖GROUP‖22
∣

∣−
1

b
||w||22 ≥ λ||w||22

]

≤ Pr
[

|est− E[est]| ≥ λ||w||22
]

≤
1

8



or equivalently,Pr
[∣

∣est− ‖GROUP‖22
∣

∣ ≥
(

λ + 1
b

)

||w||22
]

≤ 1
8 . Settingb = 1

λ we get
Pr

[∣

∣est− ‖GROUP‖22
∣

∣ ≥ 2λ||w||2
]

≤ 1
8 and to obtain an estimator withǫ||w||22 addi-

tive error we requireλ = ǫ
2 which translates tob = O(1

ǫ ) andc = O( 1
ǫ2 ).

By Chernoff bounds, the probability that the median oft independent instances
of the estimator deviates by more thanǫ||w||22 is less thane−qt, for some constantq.
Setting this to the probability of failureδ, we requiret = O

(

log 1
δ

)

, which gives the
claimed bounds. ⊓⊔

Hierarchical Search Structure for Large Coefficients.We apply our GCS synopsis
and estimators to the problem of finding items with large energy (i.e., squared value)
in thew vector. Since our GCS works in the wavelet domain (i.e., sketches the wavelet
coefficient vector), this is exactly the problem of recovering important coefficients. To
efficiently recover large-energy items, we impose a regulartree structure on top of the
data domain[N ], such that every node has the same degreer. Each level in the tree in-
duces a partition of the nodes into groups corresponding tor-adic ranges, defined by the
nodes at that level.7 For instance, a binary tree creates groups corresponding todyadic
ranges of size1, 2, 4, 8, and so on. The basic idea is to perform a search over the tree
for those high-energy items above a specified energy threshold, φ||w||22. Following the
discussion in Section 3, we can prune groups with energy below the threshold and, thus,
avoid looking inside those groups: if the estimated energy is accurate, then these can-
not contain any high-energy elements. Our key result is that, using such a hierarchical
search structure of GCSs, we can provably (within appropriate probability bounds) re-
trieve all items above the threshold plus a controllable error quantity ((φ+ǫ)||w||22), and
retrieve no elements below the threshold minus that small error quantity ((φ− ǫ)||w||2).

Theorem 3. Given a vectorw of sizeN we can report, with high probability≥ 1 − δ,
all elements with energy above(φ + ǫ)||w||22 (whereφ ≥ ǫ) within additive error of
ǫ||w||2 (and therefore, report no item with energy below(φ − ǫ)||w||2 ) using space

of O
(

log
r

N
ǫ3 · log r log

r
N

φδ

)

, per item processing time ofO
(

logr N · log r log
r

N
φδ

)

and

query time ofO
(

r
φǫ2 · logr N · log

r log
r

N
φδ

)

.

Proof. Constructlogr N GCSs (with parameters to be determined), one for each level
of ourr-ary search-tree structure. We refer to an element that has energy aboveφ||w||2

as a “hot element”, and similarly groups that have energy aboveφ||w||2 as “hot ranges”.
The key observation is that allr-adic ranges that contain a hot element are also hot.
Therefore, at each level (starting with the root level), we identify hotr-adic ranges by
examining only thoser-adic ranges that are contained in hot ranges of the previous
level. Since there can be at most1

φ hot elements, we only have to examine at most
1
φ logr N ranges and pose that many queries. Thus, we require the failure probability to

be log
r

n
φδ for each query so that, by the union bound, we obtain a failureprobability of

at mostδ for reporting all hot elements. Further, we require each level to be accurate
within ǫ||w||22 so that we obtain all hot elements above(φ + ǫ)||w||22 and none below
(φ− ǫ)||w||22. The theorem follows. ⊓⊔

7 Thus, theid function for levell is easily defined asidl(i) = ⌊i/rl⌋.



Setting the value ofr gives a tradeoff between query time and update time. Asymp-
totically, we see that the update time decreases as the degree of the tree structure,r,
increases. This becomes more pronounced in practice, sinceit usually suffices to set
t, the number of tests, to a small constant. Under this simplification, the update cost
essentially reduces toO(logr N), and the query time reduces toO( r

ǫ2φ logr N). (We
will see this clearly in our experimental analysis.) The extreme settings ofr are2 and
N : r = 2 imposes a binary tree over the domain, and gives the fastest query time but
O(log2 N) time per update;r = N means updates are effectively constantO(1) time,
but querying requires probing the whole domain, a total ofN tests to the sketch.

Sketching in the Wavelet Domain.As discussed earlier, given an input update stream
for data entries ina, our algorithms build GCS synopses on the corresponding wavelet
coefficient vectorwa, and then employ these GCSs to quickly recover a (provably good)
approximateB-term wavelet representation ofa. To accomplish the first step, we need
an efficient way of “translating” updates in the original data domain to the domain of
wavelet coefficients (for both one- and multi-dimensional data streams).

– One-Dimensional Updates.An update(i, v) ona translates to the following collection
of log N + 1 updates to wavelet coefficients (that lie on the path to leafa[i], Fig. 1(a)):
(

0, 2−
1

2
log Nu

)

,
{(

2log N−l + k, (−1)k mod 22−
l

2 u
)

: for eachl = 0, . . . , log N − 1
}

,

wherel = 0, . . . , log N − 1 indexes the resolution level, andk = ⌊i2−l⌋. Note that
each coefficient update in the above set is easily computed inconstant time.

– Multi-Dimensional Updates.We can use exactly the same reasoning as above to pro-
duce a collection of (constant-time) wavelet-coefficient updates for a given data update
in d dimensions (see, Fig. 1(b)). As explained in Section 2.2, the size of this collec-
tion of updates in the wavelet domain isO(logd N) andO(2d log N) for standard and
non-standard Haar wavelets, respectively. A subtle issue here is that our search-tree
structure operates over a linear ordering of theNd coefficients, so we require a fast
method for linearizing the multi-dimensional coefficient array — any simple lineariza-
tion technique will work (e.g., row-major ordering or otherspace-filling curves).

Using GCSs for Approximate Wavelets.Recall that our goal is to (approximately)
recover theB most significant Haar DWT coefficients, without exhaustively search-
ing through all coefficients. As shown in Theorem 3, creatingGCSs for for dyadic
ranges over the (linearized) wavelet-coefficient domain, allows us to efficiently identify
high-energy coefficients. (For simplicity, we fix the degreeof our search structure to
r = 2 in what follows.) An important technicality here is to select the right threshold
for coefficient energy in our search process, so that our finalcollection of recovered
coefficients provably capture most of the energy in the optimal B-term representation.
Our analysis in the following theorem shows how to set this threshold, an proves that,
for data vectors satisfying the “small-B property”, our GCStechniques can efficiently
track near-optimal approximate wavelet representations.(We present the result for the
standard form of the multi-dimensional Haar DWT — the one-dimensional case follows
as the special cased = 1.)

Theorem 4. If a d-dimensional data stream over the[N ]d domain has aB-term stan-
dard wavelet representation with energy at leastη||a||22, where||a||22 is the entire energy,



then our GCS algorithms can estimate an at-most-B-term standard wavelet represen-

tation with energy at least(1− ǫ)η||a||22 using space ofO(B3d log N
ǫ3η3 · log Bd log N

ǫηδ ), per

item processing time ofO(d logd+1 N · log Bd log N
ǫηδ ), and query time ofO( B3d

ǫ3η3 · log N ·

log Bd log N
ǫηδ ).

Proof. Use our GCS search algorithm and Theorem 3 to find all coefficients with energy
at leastǫηB ||a||

2
2 = ǫη

B ||w||
2
2. (Note that||a||22 can be easily estimated to within small

relative error from our GCSs.) Among those choose the highest B coefficients; note
that there could be less thanB found. For those coefficients selected, observe we incur
two types of error. Suppose we choose a coefficient which is included in the bestB-
term representation, then we could be inaccurate by at mostǫη

B ||a||
2
2. Now, suppose we

choose coefficientc1 which is not in the bestB-term representation. There has to be a
coefficientc2 which is in the bestB-term representation, but was rejected in favor of
c1. For this rejection to have taken place their energy must differ by at most2 ǫη

B ||a||
2
2

by our bounds on the accuracy of estimation for groups of size1. Finally, note that for
any coefficient not chosen (for the case when we pick fewer than B coefficients) its true
energy must be less than2 ǫη

B ||a||
2
2. It follows that the total energy we obtain is at most

2ǫη||a||22 less than that of the bestB-term representation. Setting parametersλ, ǫ′, N ′

of Theorem 3 toλ = ǫ′ = ǫη
B andN ′ = Nd we obtain the stated space and query time

bounds. For the per-item update time, recall that a single update in the original data
domain requiresO(logd N) coefficient updates. ⊓⊔

The corresponding result for the non-standard Haar DWT follows along the same lines.
The only difference with Theorem 4 comes in the per-update processing time which, in
the non-standard case, isO(d2d log N · log Bd log N

ǫηδ ).

5 Experiments
Data Sets and Methodology.We implemented our algorithms in a mixture of C and
C++, for the Group-Count sketch (GCS) with variable degree.For comparison we also
implemented the method of [11] (GKMS) as well as a modified version of the algorithm
with faster update performance using ideas similar to thosein the Group-Count sketch,
which we denote by fast-GKMS. Experiments were performed ona 2GHz processor
machine, with 1GB of memory. We worked with a mixture of real and synthetic data:

– Synthetic Zipfian Datawas used to generate data from arbitrary domain sizes and
with varying skewness. By default the skewness parameter ofthe distribution is
z = 1.1.

– Meteorological data set8 comprised of105 meteorological measurements. These
were quantized and projected appropriately to generate data sets with dimensional-
ities between1 and4. For the experiments described here, we primarily made use
of theAirTemperature andWindSpeed attributes to obtain1- and2-dimensional
data streams.

8 http://www-k12.atmos.washington.edu/k12/grayskies/
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Fig. 3.Performance on one-dimensional data.

In our experiments, we varied the domain size, the size of thesketch9 and the degree
of the search tree of our GCS method and measured (1) per-itemupdate time, (2) query
time and (3) accuracy. In all figures, GCS-k denotes that the degree of the search tree is
2k; i.e. GCS-1 uses a binary search tree, whereas GCS-logn usesann-degree tree, and
so has a single level consisting of the entire wavelet domain.

One-Dimensional Experiments.In the first experimental setup we used a synthetic
1-dimensional data stream with updates following the Zipfian distribution (z = 1.1).
Space was increased based on the log of the dimension, so forlog N = 14, 280KB
was used, up to 600KB forlog N = 30. Figure 3 (a) shows the per-item update time
for various domain sizes, and Figure 3 (b) shows the time required to perform a query,
asking for the top-5 coefficients. The GKMS method takes orders of magnitude longer
for both updates and queries, and this behavior is seen in allother experiments, so we
do not consider it further. Apart from this, the ordering (fastest to slowest) is reversed
between update time and query time. Varying the degree of thesearch tree allows up-
date time and query time to be traded off. While the fast-GKMSapproach is the fastest
for updates, it is dramatically more expensive for queries,by several orders of mag-

9 In each experiment, all methods are given the same total space to use.
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Fig. 4. Accuracy of Wavelet Synopses.

nitude. For domains of size222, it takes several hours to recover the coefficients, and
extrapolating to a 32 bit domain means recovery would take over a week. Clearly this
is not practical for realistic monitoring scenarios. Although GCS-logn also performs
exhaustive search over the domain size, its query times are significantly lower as it does
not require a sketch construction and inner-product query per wavelet coefficient.

Figures 3 (c) and (d) show the performance as the sketch size is increased. The
domain size was fixed to218 so that the fast-GKMS method would complete a query in
reasonable time. Update times do not vary significantly withincreasing space, in line
with our analysis (some increase in cost may be seen due to cache effects). We also
tested the accuracy of the approximate wavelet synopsis foreach method. We measured
the SSE-to-energy ratio of the estimatedB-term synopses for varyingB and varying
zipf parameter and compared it against the optimalB-term synopsis computed offline.
The results are shown in Figures 4 (a) and (b), where each sketch was given space
360KB. In accordance to analysis (GCS requiresO(1

ǫ ) times more space to provide the
same guarantees with GKMS) the GCS method is slightly less accurate when estimating
more than the top-15 coefficients. However, experiments showed that increasing the size
to 1.2MB resulted in equal accuracy. Finally we tested the performance of our methods
on single dimensional meteorological data of domain size220. Per-item and query times
in Figure 5 (a) are similar to those on synthetic data.

Multi-Dimensional Experiments. We compared the methods for both wavelet decom-
position types in multiple dimensions. First we tested our GCS method for a synthetic
dataset (z = 1.1, 105 tuples) of varying dimensionality. In Figure 5 (b) we kept the
total domain size constant at224 while varying the dimensions between 1 and 4. The
per-item update time is higher for the standard decomposition, as there are more up-
dates on the wavelet domain per update on the original domain. The increase in query
time can be attributed to the increasing sparseness of the domain as the dimensionality
increases which makes searching for big coefficients harder. This is a well known effect
of multidimensional standard and non-standard decompositions. For the real dataset,
we focus on the two dimensional case; higher dimensions are similar. Figure 5(c) and
(d) show results for the standard and non-standard respectively. The difference between
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Fig. 5.Performance on 1-d Real Data and multi-d Real and Synthetic Data.

GCS methods and fast-GKMS is more pronounced, because of theadditional work in
producing multidimensional wavelet coefficients, but the query times remain signifi-
cantly less (query times were in the order of hours for fast-GKMS), and the difference
becomes many times greater as the size of the data domain increases.

Experimental Summary. The Group-Count sketch approach is the only method that
achieves reasonable query times to return an approximate wavelet representation of
data drawn from a moderately large domain (220 or larger). Our first implementation is
capable of processing tens to hundreds of thousands of updates per second, and giving
the answer to queries in the order of a few seconds. Varying the degree of the search tree
allows a tradeoff between query time and update time to be established. The observed
accuracy is almost indistinguishable from the exact solution, and the methods extend
smoothly to multiple dimensions with little degradation ofperformance.

6 Related Work
Wavelets have a long history of successes in the signal and image processing arena [15,
20] and, recently, they have also found their way into data-management applications.



Matias et al. [17] first proposed the use of Haar-wavelet coefficients as synopses for ac-
curately estimating the selectivities of range queries. Vitter and Wang [22] describe I/O-
efficient algorithms for building multi-dimensional Haar wavelets from large relational
data sets and show that a small set of wavelet coefficients canefficiently provide accu-
rate approximate answers to range aggregates over OLAP cubes. Chakrabarti et al. [4]
demonstrate the effectiveness of Haar wavelets as a general-purpose approximate query
processing tool by designing efficient algorithms that can process complex relational
queries (with joins, selections, etc.) entirely in the wavelet-coefficient domain. Schmidt
and Shahabi [19] present techniques using the Daubechies family of wavelets to an-
swer general polynomial range-aggregate queries. Deligiannakis and Roussopoulos [8]
introduce algorithms for building wavelet synopses over data with multiple measures.
Finally, I/O efficiency issues are studied by Jahangiri et al. [14] for both forms of the
multi-dimensional DWT.

Interest in data streams has also increased rapidly over thelast years, as more al-
gorithms are presented that provide solutions in a streaming one-pass, low memory
environment. Overviews of data-streaming issues and algorithms can be found, for in-
stance, in [3, 18]. Sketches first appeared for estimating the second frequency moment
of a set of elements [2] and have since proven to be a useful summary structure in such
a dynamic setting. Their application includes uses for estimating join sizes of queries
over streams [1, 9], maintaining wavelet synopses [11], constructing histograms [12,
21], estimating frequent items [5, 6] and quantiles [13]. The work of Gilbert et al. [11]
for estimating the most significant wavelet coefficients is closely related to ours. As
we discuss, the limitation is the high query time required for returning the approximate
representation. In follow-up work, the authors proposed a more theoretical approach
with somewhat improved worst case query times [12]. This work considers an approach
based on a complex construction of range-summable random variables to build sketches
from which wavelet coefficients can be obtained. The update times remain large. Our
bounds improve those that follow from [12], and our algorithm is much simpler to im-
plement. In similar spirit, Thaper et al. [21] use AMS sketches to construct an optimal
B-bucket histogram of large multi-dimensional data. No efficient search techniques are
used apart from an exhaustive greedy heuristic which alwayschooses the next best
bucket to include in the histogram; still, this requires an exhaustive search over a huge
space. The idea of usinggroup-testingtechniques to more efficiently find heavy items
appears in several prior works [6, 7, 12]; here, we show that it is possible to apply similar
ideas to groups underL2 norm, which has not been explored previously.

7 Conclusions
We have proposed the first known streaming algorithms for space- and time-efficient
tracking of approximate wavelet summaries for both one- andmulti-dimensional data
streams. Our approach relies on a novel, Group-Count Sketch(GCS) synopsis that, un-
like earlier work, satisfies all three key requirements of effective streaming algorithms,
namely: (1) polylogarithmic space usage, (2) small, logarithmic update times (essen-
tially touching only a small fraction of the GCS for each streaming update); and, (2)
polylogarithmic query times for computing the top wavelet coefficients from the GCS.
Our experimental results with both synthetic and real-lifedata have verified the ef-



fectiveness of our approach, demonstrating the ability of GCSs to support very high
speed data sources. Future work is to extend this analysis tothe problem of extended
wavelets [8] and histograms.
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