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Abstract. Recent years have seen growing interest in effective dlgos for
summarizing and querying massive, high-speed data strézamslomized sketch
synopses provide accurate approximations for generglegersummaries of the
streaming data distribution (e.g., wavelets). The focusxisting work has typi-
cally been on minimizingpace requirements the maintained synopsis — how-
ever, to effectively support high-speed data-stream aigly crucial practical
requirement is to also optimize: (1) thpdate timefor incorporating a stream-
ing data element in the sketch, and (2) thesry timefor producing an approx-
imate summary (e.g., the top wavelet coefficients) from tetch. Such time
costs must be small enough to cope with rapid stream-anatat and the real-
time querying requirements of typical streaming applmadi (e.g., ISP network
monitoring). With cheap and plentiful memory, space is ofaly a secondary
concern after query/update time costs.

In this paper, we propose the first fast solution to the proldétracking wavelet
representations of one-dimensional and multi-dimens$idaita streams, based on
a novel stream synopsis, ti@&oup-Count Sketch (GCSBy imposing a hierar-
chical structure of groups over the data and applying the &08&algorithms
can quickly recover the most important wavelet coefficievith guaranteed ac-
curacy. A tradeoff between query time and update time iésteed, by varying
the hierarchical structure of groups, allowing the rightabae to be found for
specific data stream. Experimental analysis confirms thiewoff, and shows that
all our methods significantly outperform previously knowettrods in terms of
both update time and query time, while maintaining a higlelle¥ accuracy.

1 Introduction

Driven by the enormous volumes of data communicated ovexytednternet, several
emerging data-management applications crucially depenthe ability to continu-
ously generate, process, and analyze massive amountsaoindegal time. A typical
example domain here comprises the classarftinuous event-monitoring systedes
ployed in a wide variety of settings, ranging from networxlesgt tracking in large ISPs
to transaction-log monitoring in large web-server farmd aatellite-based environ-
mental monitoring. For instance, tracking the operatioma afationwide ISP network
requires monitoring detailed measurement data from thalssaf network elements
across several different layers of the network infrastrreetThe volume of such mon-
itoring data can easily become overwhelming (in the ordefeshbytes per day). To
deal effectively with the massive volume and continuoughtgpeed nature of data in
such environments, thdata streamingparadigm has proven vital. Unlike conventional



database query-processing engines that require sevepaingve) passes over a static,
archived data image, streaming data-analysis algoritkefgson building concise, ap-
proximate (but highly accuratsynopsesf the input stream(s) in real-time (i.e., in one
pass over the streaming data). Such synopses typicalliresspace that is significantly
sublinear in the size of the data and can be used to preygdeoximate query answers
with guarantees on the quality of the approximation. In nrayitoring scenarios, it is
neither desirable nor necessary to maintain the data irirfistead, stream synopses can
be used to retain enough information for the reliable retrangon of the key features
of the data required in analysis.

The collection of the top (i.e., largest) coefficients in Wevelet transfornfor, de-
compositiof of an input data vector is one example of such a key featutfesoftream.
Waveletgprovide a mathematical tool for the hierarchical decompmsiof functions,
with a long history of successful applications in signal émdge processing [15, 20].
Applying the wavelet transform to a (one- or multi-dimemsit) data vector and retain-
ing a select small collection of the largest wavelet coedfitgives a very effective form
of lossy data compression. Sualavelet summariegrovide concise, general-purpose
summaries of relational data, and can form the foundatiofaii and accurate approx-
imate query processing algorithms (such as approximagetséty estimates, OLAP
range aggregates and approximate join and multi-join gaeWavelet summaries can
also give accurate (one- or multi-dimensionabtogramsof the underlying data vec-
tor at multiple levels of resolution, thus providing valleprimitives for effective data
visualization.

Most earlier stream-summarization work focuses on minimgithespace require-
mentdor a given level of accuracy (in the resulting approximasvelet representation)
while the data vector is being rendered as a stream of ampjiint updates. However,
while space is an important consideration, it is certairdythe only parameter of in-
terest. To effectively support high-speed data-streanyses, two additional key pa-
rameters of a streaming algorithm are: (1) tipelate timdor incorporating a streaming
update in the sketch, and (2) thheery timefor producing the approximate summary
(e.g., the top wavelet coefficients) from the sketch. Mimimg query and update times
is a crucial requirement to cope with rapid stream-arriggds and the real-time query-
ing needs of modern streaming applications. Furthermbegetare essential tradeoffs
between the above three parameters (i.e., space, quenammthepdate time), and it can
be argued that space usage is oftenl¢fastimportant of these. For instance, consider
monitoring a stream of active network connections for thersigonsuming the most
bandwidth (commonly referred to as the “top talkers” or ‘ehitters” [6, 16]). Typical
results for this problem give a stream-synopsis space remeint ofO(1/¢), meaning
that an accuracy of = 0.1% requires only a few thousands of storage locations, i.e.,
a few Kilobytes, which is of little consequence at all in tg"eoff-the-shelf systems
featuring Gigabytes of main memdryNow, suppose that the network is processing IP
packets on average a few hundred bytes in length at rateshaféds of Mbps; essen-
tially, this implies that the average processing time pekpamust much less than one
millisecond: an average system throughput of tens to hasdrEthousands of packets

4 One issue surrounding using very small space is whetheratzestructure fits into the faster
cache memory, which again emphasizes the importance oingitime costs.



per second. Thus, while synopsis space is probably a nae-isghis setting, the times
to update and query the synopsis can easily become an ingataidde bottleneck. To

scale to such high data speeds, streaming algorithms masamggee provably small

time costs for updating the synopsis in real time. Small gtieres are also important,

requiring near real-time response. (e.g., for detectinraacting to potential network
attacks). In summary, we need fast item processing, fasysisaand bounded space
usage — different scenarios place different emphasis dmg@@meter but, in general,
more attention needs to be paid to the time costs of streaafgagithms.

Our Contributions. The streaming wavelet algorithms of Gilbert et al. [11] gudeed
small space usage, only polylogarithmicM Unfortunately, the update- and query-
time requirements of their scheme can easily become pratiiefior real-time moni-
toring applications, since the whole data structure mustdeched” for each update,
and every wavelet coefficient queried to find the best fewh@ugh [11] tries to reduce
this cost by introducing more complex range-summable hasttions to make estimat-
ing individual wavelet coefficients faster, the number oédes does not decrease, and
the additional complexity of the hash functions means thatupdate time increases
further. Clearly, such high query times are not acceptadafy real-time monitoring
environment, and pose the key obstacle in extending theitiiges in [11] to multi-
dimensional data (where the domain size grows exponegntigth dimensionality).

In this paper, we propose the first known streaming algomsttion space- and
time-efficient trackingof approximate wavelet summaries for bathe- and multi-
dimensional data stream®ur approach relies on a novel, sketch-based stream syn-
opsis structure, termed ti@roup-Count Sketch (GCH)at allows us to provide sim-
ilar space/accuracy tradeoffs as the simple sketches §¢f jiile guaranteeing: (1)
small, logarithmic update times (essentially touchingyanbkmall fraction of the GCS
for each streaming update) with simple, fast, hash funstiand, (2) polylogarithmic
query times for computing the top wavelet coefficients frdra GCS. In brief, our
GCS algorithms rely on two key, novel technical ideas. First workentirely in the
wavelet domainin the sense that we directly sketalavelet coefficientgather than
the original data vector, as updates arrive. Second, oursG@#loygroup structures
based on hashing and hierarchical decompositiover the wavelet domain to enable
fast updates and efficient binary-search-like techniqae&lentifying the top wavelet
coefficients in sublinear time. We also demonstrate thayesying the degree of our
search procedure, we can effectively explore the tradestffvéen update and query
costs in our GCS synopses. Our GCS algorithms and resutisnatsirally extend to
both the standard and non-standard form ofrtheéti-dimensionalvavelet transform,
essentially providing the only known efficient solution &ireaming wavelets in more
than one dimension. As our experimental results with botfitsstic and real-life data
show, they allow very fast update and searching, capablepgfarting very high speed
data sources.

2 Preliminaries

2.1 Stream Processing Model and Stream Sketches

Our input comprises a continuous stream of update opegtiendering a data vector
a of N values (i.e., the data-domain size). Without loss of gditgrae assume that the



index of our data vector takes values in the integer doffféjrn= {0, ..., N -1}, where
N is a power o (to simplify the notation). Each streaming update is a pktine form
(i, v}, denoting a net change &fv in theal:] entry; that is, the effect of the update is to
setafi] < ali]zv. Intuitively, “+v” (* —v”) can be seen asinsertions (resp., deletions)
of thei*" vector element, but more generally we allow entries to tadgative values.
(Our modelinstantiates the most general and, hence, mostrtdingurnstile modebf
streaming computations [18].) Our model generalizes tdirdirhensional data: fod
data dimensionsg, is ad-dimensional vectotténso) and each updatgiy, . . . ,iq), £v)
effects a net change dfv on entryaliy, . . . ,i4).°

In the data-streaming context, updates are only seee in the (fixed) order of
arrival; furthermore, the rapid data-arrival rates and large dataain sizeN make
it impossible to store explicitly. Instead, our algorithms can only maintain a cise
synopsisof the stream that requires only sublinear space, and, addime time, can
(a) be maintained in small, sublinear processing time pdatg and (b) provide query
answers in sublinear time. Sublinear here means polylthgaic in V, the data-vector
size. (More strongly, our techniques guarantee updatestinag are sublinear in ttsize
of the synopsi$
Randomized AMS Sketch Synopses for Stream3he randomizedMS sketclf?] is
a broadly applicable stream synopsis structure based amanging randomized linear
projections of the streaming input data veatoBriefly, anatomic AMS sketcbf a is
simply theinner product(a, §) = ", a[i]¢(7), where{ denotes a random vector of four-
wise independent-1-valued random variates. Such variates can be easily gedera
on-line through standard pseudo-random hash func§ionssing onlyO(log N) space
(for seeding) [2, 11]. To maintain this inner product oves gtream of updates @
initialize a running counteX to 0 and setX « X + v{(i) whenever the update
(i, %wv) is seen in the input stream. AKMS sketclof a comprises several independent
atomic AMS sketches (i.e., randomized counters), each avififferent random hash
function¢(). The following theorem summarizes the key property of AM8tskes for
stream-query estimation, whelie||» denotes thd.,-norm of a vectow, so||v||s =
V{v,v) = /3, v[i]?
Theorem 1 ([1, 2]).Consider two (possibly streaming) data vectesndb, and letZ
denote theD(log(1/4))-wise median 0O (1/¢?)-wise means of independent copies of
the atomic AMS sketch product_, a[i]€;(¢))(>, b[t]€;(¢)). Then|Z— < a,b > | <
€||al|2]|b||2 with probability> 1 — 4.

Thus, using AMS sketches comprising orﬂylog(l/é)) atomic counters we can ap-
proximate the vector inner produ¢t, b) to within +e||al|2||b||2 (hence implying an
e-relative error estimate fdta||3).

2.2 Discrete Wavelet Transform Basics
TheDiscrete Wavelet Transform (DWiE)a useful mathematical tool for hierarchically
decomposing functions in ways that are both efficient andrétecally sound. Broadly

® Without loss of generality we assume a domaifé}* for thed-dimensional case — different
dimension sizes can be handled in a straightforward maRoeher, our methods do not need
to know the domain siz& beforehand — standard adaptive techniques can be used.
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Fig. 1. Example error-tree structures for (a) a one-dimensionia daay (V = 8), and (b) non-
standard two-dimensional Haar coefficients fot & 4 data array (coefficient magnitudes are
multiplied by +1 (—1) in the “+” (resp., “-") labeled ranges, aridin blank areas).

speaking, the wavelet decomposition of a function consiséscoarse overall approxi-
mation together with detail coefficients that influence tnection at various scales [20].
Haar waveletgepresent the simplest DWT basis: they are conceptuallglsireasy to
implement, and have proven their effectiveness as a datamswization tool in a variety
of settings [4, 22, 10].

One-Dimensional Haar Wavelets.Consider the one-dimensional data vector=
[2,2,0,2,3,5,4,4] (N = 8). The Haar DWT ofa is computed as follows. We first
average the values together pairwise to get a new “lowehrdsn” representation of
the data with the pairwise averagég?, %2 345 444] — [2 1 4 4]. This averaging
loses some of the information in To restore the original values, we needetail coef-
ficients that capture the missing information. In the Haar DWT, ¢hestail coefficients
are the differences of the (second of the) averaged valoes thie computed pairwise
average. Thus, in our simple example, for the first pair ofayed values, the detail
coefficient isO since2 — 2 = 0, for the second it is-1 sincel — 2 = —1. No infor-
mation is lost in this process — one can reconstruct the ggbes of the original data
array from the lower-resolution array containing the fouerages and the four detalil
coefficients. We recursively apply this pairwise averaging differencing process on
the lower-resolution array of averages until we reach trexalaverage, to get the full
Haar decomposition. The final Haar DWT @fs given byw, = [11/4, —=5/4,1/2, 0,

0, —1, —1, 0], that is, the overall average followed by the detail coeffits in order
of increasing resolution. Each entryn, is called awavelet coefficienfThe main ad-
vantage of usingu, instead of the original data vectaris that for vectors containing
similar values most of the detail coefficients tend to havg seall values. Thus, elim-
inating such small coefficients from the wavelet transform (treating them as zeros)
introduces only small errors when reconstructing the nebdata, resulting in a very
effective form of lossy data compression [20].

A useful conceptual tool for visualizing and understandimg (hierarchical) Haar
DWT process is therror tree structure [17] (shown in Fig. 1(a) for our example array
a). Each internal tree nodg corresponds to a wavelet coefficient (with the root node
¢o being the overall average), and leaf nod@$ correspond to the original data-array
entries. This view allows us to see that the reconstructfamy a[i] depends only on
thelog N + 1 coefficients in the path between the root afd, symmetrically, it means
a change im[] only impacts itdog N + 1 ancestors in an easily computable way. We
define thesupportfor a coefficientc; as the contiguous range of data-array thais



used to reconstruct (i.e., the range of data/leaf nodesisubtree rooted at). Note
that the supports of all coefficients at resolution lelvef the Haar DWT are exactly
the 2! (disjoint) dyadic rangeof size N/2! = 2'°¢N=! over [N], defined ask; =
[k-2leN=l  (k+1)-2°eN=tl _1]fork =0,...,2! — 1 (for each resolution level
[ =0,...,log N). The Haar DWT can also be conceptualized in terms of ventwer:
product computations: lef; ,, denote the vector with 4 [i] = 2l=log N for; ¢ R, and
0 otherwise, foll = 0, ..., log N andk = 0,...,2' — 1; then, each of the coefficients
in the Haar DWT ofa can be expressed as the inner product @fith one of theN
distinct Haawavelet basis vectors

{%(¢l+172k — ¢l+1,2k+1) = o,... 710g2\7 — 1;/€ =0,... ,2l — 1} U {¢070}

Intuitively, wavelet coefficients with larger support cae higher weight in the re-
construction of the original data values. To equalize thpdrtance of all Haar DWT
coefficients, a common normalization scheme is to scaledb#icient values at level
[ (or, equivalently, the basis vectogs ;) by a factor of\/N/2!. This normalization
essentially turns the Haar DWT basis vectors intaahonormal basis— letting ¢}
denote the normalized coefficient values, this fact has twportant consequences:
(1) Theenergyof the a vector is preserved in the wavelet domain, thatifigl|? =
Sosalil? =30, (cr)? (by Parseval's theorem); and, (2) Retaining fhdargest coeffi-
cients in terms o&bsolute normalized valugives the (provably) bedB-term approx-
imation in terms of Sum-Squared-Error (SSE) in the datanstraction (for a given
budget of coefficient®) [20].

Multi-Dimensional Haar Wavelets. There are two distinct ways to generalize the Haar
DWT to the multi-dimensional case, tistandardand nonstandardHaar decomposi-
tion [20]. Each method results from a natural generalizatibthe one-dimensional
decomposition process described above, and both have kedrirua wide variety of
applications. Consider the case wheris ad-dimensional data array, comprising?
entries. As in the one-dimensional case, the Haar DWA refsults in ad-dimensional
wavelet-coefficient array, with N? coefficient entries. The non-standard Haar DWT
works inlog N phases where, in each phasag stepof pairwise averaging and dif-
ferencing is performed across each of thdimensions; the process is then repeated
recursively (for the next phase) on the quadrant contaittiegaverages across all di-
mensions. The standard Haar DWT worksdiphases where, in each phase;cn-
plete 1-dimensional DWT is performed for each one-dimensional odvarray cells
along dimensiork, for all k = 1,..., d. (full details and efficient decomposition al-
gorithms are in [4, 22].) The supports of non-standadimensional Haar coefficients
are d-dimensional hyper-cubes (over dyadic rangesNi), since they combiné-
dimensional basis functions from the same resolution sesetoss all dimensions. The

cross product of a standartldimensional coefficient (indexed by, says, ..., %))
is, in general ai-dimensional hyper-rectangle, given by the cross-prodfiche 1-
dimensional basis functions corresponding to coefficietékes, ..., i4.

Error-tree structures can again be used to conceptuaéizartiperties of both forms
of d-dimensional Haar DWTs. In the non-standard case, the ggeris essentially a
quadtree (with a fanout af?), where all internal non-root nodes contaifr ! coef-
ficients that have the same support region in the origina datay but with differ-
ent quadrant signs (and magnitudes) for their contributi@n standard-dimensional



Haar DWT, the error-tree structure is essentially a “ciossduct” ofd one-dimensional
error trees with the support and signs of coefficignt. . . , i4) determined by the prod-
uct of the component one-dimensional basis vectorsi(far. ., d). Fig. 1(b) depicts a
simple example error-tree structure for the non-standaat BWT of a2-dimensional

4 x 4 data array. It follows that updating a single data entry edfdimensional data
array a impacts the values g2 — 1)log N + 1 = O(2¢1log N) coefficients in the
non-standard case, arftbg N + 1)¢ = O(log” N) coefficients in the standard case.
Both multi-dimensional decompositions preserve the artinmality, thus retaining the
largestB coefficient values gives a provably SSE-optinsaterm approximation ofi.

3 Problem Formulation and Overview of Approach

Our goal is to continuously track a compdgitcoefficient wavelet synopsis under our
general, high-speed update-stream model. We require tuticsoto satisfy all three
key requirements for streaming algorithms outlined eaifiethis paper, namely: (1)
sublinear synopsis space, (2) sublinear per-item updake tind (3) sublinear query
time, where sublinear means polylogarithmic in the dome&ie &". As in [11], our al-
gorithms return only aapproximatesynopsis comprising (at mosb Haar coefficients
that is provably near-optimal (in terms of the captured gyef the underlying vector)
assuming that our vector satisfies thmall-B property” (i.e., most of its energy is con-
centrated in a small number of Haar DWT coefficients) — thiiagption is typically
satisfied for most real-life data distributions [11].

The streaming algorithm presented by Gilbert et al. [11ned “GKMS” in the
remainder of the paper) focuses primarily on the one-dimoeascase. The key idea is
to maintain an AMS sketch for the streaming data veat@as discussed in Sec. 2.1).
To produce the approximatB-term representation, GKMS employs the constructed
sketch ofa to estimate the inner product afwith all wavelet basis vectors, essen-
tially performing an exhaustive search over the space efalklet coefficients to iden-
tify important ones. Although techniques based on rangenrsable random variables
constructed using Reed-Muller codes were proposed to esoluamortize the cost of
this exhaustive search by allowing the sketches of basi®reto be computed more
quickly, the overall query time for discovering the top daé€nts remains superlinear
in N (i.e.,at IeastQ(}leog N)), violating our third requirement. For large data do-
mains, sayN = 232 ~ 4 billion (such as the IP address domain considered in [11]),
a query can take a very long time: over an hour, even if a mildoefficient queries
can be answered per second! This essentially renders d ektenision of the GKMS
technigue to multiple dimensions infeasible since it iraplan exponential explosion
in query cost (requiring at leag)(N?) time to cycle through all coefficients i di-
mensions). In addition, the update cost of the GKMS algoritblinear in the size of
the sketctsince the whole data structure must be “touched” for eaclatgpd his is
problematic for high-speed data streams and/or even miedsred sketch synopses.

Our Approach. Our proposed solution relies on two key novel ideas to avoédshort-
comings of the GKMS technique. First, we waktirely in the wavelet domaiinstead
of sketching the original data entries, our algorithmsakeéhe wavelet-coefficient vec-
tor w, as updates arrive. This avoids any need for complex rangersible hash func-
tions. Second, we empldyash-based grouping conjunction withefficient binary-



search-like techniques enable very fast updates as well as identification of irgr
coefficients in polylogarithmic time.

— Sketching in the Wavelet Domafdur first technical idea relies on the observation
that we can efficiently produce sketch synopses of the stdéattly in the wavelet do-
main That is, we translate the impact of each streaming updatieeorelevant wavelet
coefficients. By the linearity properties of the DWT and oarlier description, we
know that an update to the data entries corresponds to ohfjogarithmically many
coefficients in the wavelet domain. Thus, on receiving anatgdoa, our algorithms
directly convert it toO(polylog(/N')) updates to the wavelet coefficients, and maintain
an approximate representation of the wavelet coefficiectove,, .

— Time-Efficient Updates and Large-Coefficient SearcBkstching in the wavelet do-
main means that, at query time, we have an approximate epegin of the wavelet-
coefficient vectorw, and need to be able to identify all those coefficients that are
“large”, relative to the total energy of the dafta, |3 = ||a||2. While AMS sketches can
give us these estimates (a point query is just a special ¢éasamner product), querying
remains much too slow taking at lea{ - V) time to find which of theV coefficients
are theB largest. Note that although a lot of earlier work has giveitieht stream-
ing algorithms for identifying high-frequency items [51&], our requirements here
are quite different. Our techniques must monitor items,(D8WT coefficients) whose
values increase and decrease over time, and which may vdrpeveegative(even if
all the data entries in are positive). Existing work on “heavy-hitter” trackingdiases
solely on non-negative frequency counts [6] often assurodumetnon-decreasing [5,
16]. More strongly, we must find items whosguared valués a large fraction of the
total vector energyjw,||3: this is a stronger condition since such2‘heavy hitters”
may not be heavy hitters under the conventional sum-of-tscaefinition.®

At a high level, our algorithms rely ondivide-and-conqueor binary-search-like
approach for finding the large coefficients. To implemens,thie need the ability to
efficiently estimate sums-of-squares §poupsof coefficients, corresponding to dyadic
subranges of the domajiv]. We then disregard low-energy regions and recurse only
on high-energy groups — note that this guarantees no falgatimes, as a group that
contains a high-energy coefficient will also have high eperga whole. Furthermore,
our algorithms also emplosandomized, hash-based groupin§ dyadic groups and
coefficients to guarantee that each update only toucheslamonizon of our synopsis,
thus guaranteeing very fast update times.

4 Our Solution: The GCS Synopsis and Algorithms

We introduce a novel, hash-based probabilistic synopsas steucture, terme@roup-
Count Sketch (GCsSbhhat can estimate the energy (squakgdhorm) of fixed groups of
elements from a vectar of size N under our streaming model. (To simplify the expo-
sition we initially focus on the one-dimensional case, arekpnt the generalization to
multiple dimensions later in this section.) Our GCS synspsguires small, sublinear
space and takes sublinear time to process each stream ifedatenore importantly,

® For example, consider a set of items with coufitsl, 1,1, 1,1, 1, 1, 1}. The item with count
4 representsg of the sum of the squared counts, but oélxof the sum of counts.
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Fig. 2. Our Group-Count Sketch (GCS) data structurés hashed(times) to a bucket and then
to a subbucket within the bucket, where a counter is updated.

we can use a GCS to obtain a high-probability estimate ofieegy of a group within
additive errore||w||2 in sublinear time We then demonstrate how to use GCSs as the
basis of efficient streaming procedures for tracking largeeiet coefficients.

Our approach takes inspiration from the AMS sketching smiufor vector Lo-
norm estimation; still, we need a much stronger result, hathe ability to estimate
Ly norms for a (potentially large) number gfoups of item$orming a partition of the
data domair{N]. A simple solution would be to keep an AMS sketch of each group
separately; however, there can tanygroups, linear inV, and we cannot afford to
devote this much space to the problem. We must also processrshg updates as
quickly as possible. Our solution is to maintain a structhe first partitions items of
w into their group, and then maps groups to buckets using afbiastion. Within each
bucket, we apply a second stage of hashing of items to sukelsjeeach containing
an atomic AMS sketch counter, in order to estimatefhenorm of the bucket. In our
analysis, we show that this approach allows us to providerate estimates of the
energy of any group im with tight +-¢||w||3 error guarantees.

The GCS SynopsisAssume a total o groups of elements af that form a partition
of [V]. For notational convenience, we use a functienthat identifies the specific
group that an element belongs tal : [N] — [£]. (In our setting, groups correspond
to fixed dyadic ranges oveéN| so thei d mapping is trivial.) Following common data-
streaming practice, we first define a basic randomized einfier the energy of a
group, and prove that it returns a good estimate with cohgtarbability > %; then,
by taking the median estimate oveindependent repetitions, we are able to reduce
the probability of a bad estimate to exponentially smalt.i©ur basic estimator first
hashes groups intobuckets and then, within each bucket, it hashesdrsiob-buckets.
(The values ot, b, andc parameters are determined in our analysis.) Furthermsre, a
in AMS sketching, each item has{&1} random variable associated with it. Thus, our
GCS synopsis requires three sets blsh functionsh.,, : [k] — [b], fm : [N] — [c],
and¢,, : [N] — {£1} (m = 1, ..., t). The randomization requirement is tha},’s

and f,,,’s are drawn from families of pairwise independent funcsiowhile¢,,’s are
four-wise independent (as in basic AMS); such hash funstame easy to implement,
and require only)(log N) bits to store.

Our GCS synopsisconsists of - b- ¢ counters (i.e., atomic AMS sketches), labeled
s[1][1][1] throughs]t][b][], that are maintained and queried as follows:



UPDATE(Z, u). Sets[r|[hy, (i d(i))][fm (1)]+ = u - &n (i), foreachm =1, ..., t.
ESTIMATE(GROUP). Return the estimateedian,,—1,.... Y_;_, (s[m][hm (GROUP)[])
for the energy of the group of iten@rouP e {1,...,k} (denoted by|GROUF|3).

Thus, the update and query times for a GCS synopsis are siplyandO(t - ¢),
respectively. The following theorem summarizes our keultdsr GCS synopses.

Theorem 2. Our Group-Count Sketch algorithms estimate the energyeafi igroups
of the vectorw within additive errore||w||3 with probability> 1 — § using space of
O (% log 3) counters, per-item update time®f(log £ ), and query time o (% log 5 ).

Proof. Fix a particular grougrouPand a rowr in the GCS; we drop the row index

in the context where it is understood. LB CKET be the set of elements that hash into
the same bucket asrRouPdoes:BUCKET = {i | i € [1,n] A h(i d(i)) = h(GRouP }.
Among those, letoLL be the set of elements other than thosesabur coLL =

{i i€ [l,n] Nid(i) # crouPA h(i d(i)) = h(croup)}. In the following, we abuse
notation in that we refer to a refer to both a group and thefs&tms in the group with
the same name. Also, we writ5||% to denote the sum of squares of the elements (i.e.
L3)insetS: [|S)I3 = >,cq wlil*.

Let est be the estimator for the sum of squares of the itemsrdupr. That is,
est = >0, est; whereest; = s2[m][h..(GROUP)][]] is the square of the count in
sub-buckesuB;. The expectation of this estimator is, by simple calculattbe sum of
squares of items in sub-bucketwhich is a fraction of the sum of squares of the bucket.
Similarly, using linearity of expectation and the four-wimdependence of thehash
functions, the variance efst is bounded in terms of the square of the expectation:

E[est] = E[||BUCKET]||3] Varlest] < 2E[||[BUCKET]|3]

To calculateE[|[BUCKET]||3], observe that the bucket contains itemss®oup as
well as items from other groups denoted by theaetL which is determined by:.
Because of the pairwise independencé ahis expectation is bounded by a fraction of
the total energy. Therefore:

E[l|BUckET|]3] = [|GROUA|3 + E[[|coLL|j3] < [|GROUR|3 + 3||w|[3
andE|[||BUCKET||3] = ||GROURA|3 + E[||coLL||3] + 2||cROURA|3E[||coLL]|3]
< lwll3 + $llwll3 +2[|w|3 - $llwl3 < (1+ )||wll3 < 2[|wl3

since||GROUA|3 < ||w||3 andb > 3. The estimator’s expectation and variance satisfy
Elest] < [[GROUP|Z + 7 |wl[3 Varlest] < ¢flwl3

Applying the Chebyshev inequality we obtdin [|est — E[est]| > A||w|3] < BV
C

and by setting: = % the bound becomeé‘,, for some parameter. Using the above
bounds on variance and expectation and the factthatb| > ||a| — |b|| we have,

1
lest — E[est]| > |est — || GROUP||2 — E||w||§

1
> ‘}est — HGROUPH%} — g||w||g}
Consequently (note th&r[|a| > b] > Pr[a > b)),
1
Pr [|est ~ lloRou3] — + luil? > A||w||§] < Pr [Jest — Elest]] = Mlul2] <

| =



or equivalentlyPr [|est — [GROUR|3| > (A + 1) [|w[|3] < &. Settingb = + we get
Pr[|est — [[6GROUA|3| > 2A||w[|?] < % and to obtain an estimator wit|w||3 addi-
tive error we requires = £ which translates to = O(1) andc = O(%).

By Chernoff bounds, the probability that the mediantdhdependent instances
of the estimator deviates by more thdhw||3 is less thare—%, for some constan.
Setting this to the probability of failuré we requiret = O (log §), which gives the
claimed bounds. O

Hierarchical Search Structure for Large Coefficients.We apply our GCS synopsis
and estimators to the problem of finding items with large gpér.e., squared value)
in thew vector. Since our GCS works in the wavelet domain (i.e.,cdlext the wavelet
coefficient vector), this is exactly the problem of recomgrimportant coefficients. To
efficiently recover large-energy items, we impose a regudge structure on top of the
data domainN], such that every node has the same degré&ach level in the tree in-
duces a partition of the nodes into groups correspondingtiic rangesdefined by the
nodes at that level. For instance, a binary tree creates groups corresponditygitic
ranges of sizd, 2, 4, 8, and so on. The basic idea is to perform a search over the tree
for those high-energy items above a specified energy thigishigw||3. Following the
discussion in Section 3, we can prune groups with energybtle threshold and, thus,
avoid looking inside those groups: if the estimated enesgacicurate, then these can-
not contain any high-energy elements. Our key result is tieihg such a hierarchical
search structure of GCSs, we can provably (within approgpeobability bounds) re-
trieve all items above the threshold plus a controllablereguantity (¢+¢)||w||3), and
retrieve no elements below the threshold minus that smalt guantity (¢ — €)||w||?).

Theorem 3. Given a vectorw of sizeN we can report, with high probability 1 — 9,
all elements with energy above + ¢)||w||3 (where¢ > ¢) within additive error of
e||w||? (and therefore, report no item with energy bel¢w— ¢)||w||? ) using space
of O (loigN - log “1o%: N), per item processing time 6f (1ogT N -log M) and

e )
query time oD (# -log, N -log “‘;L(;N).

Proof. Constructiog, NV GCSs (with parameters to be determined), one for each level
of ourr-ary search-tree structure. We refer to an element thatrrerg g aboves||w||?

as a “hot element”, and similarly groups that have energyabgw||? as “hot ranges”.
The key observation is that attadic ranges that contain a hot element are also hot.
Therefore, at each level (starting with the root level), denitify hotr-adic ranges by
examining only those-adic ranges that are contained in hot ranges of the previous
level. Since there can be at mo%thot elements, we only have to examine at most

% log, N ranges and pose that many queries. Thus, we require thesfailabability to

be loig” for each query so that, by the union bound, we obtain a fapuobability of
at mosté for reporting all hot elements. Further, we require eacklléy be accurate
within ¢||w||3 so that we obtain all hot elements abdve+ ¢)||w||3 and none below

— ¢)||wl||2. The theorem follows. O
(¢ — e)l[wl]]3

" Thus, the d function for levell is easily defined aisd; (i) = |i/r'].



Setting the value of gives a tradeoff between query time and update time. Asymp-
totically, we see that the update time decreases as thealefjtbe tree structure:,
increases. This becomes more pronounced in practice, ginseally suffices to set

t, the number of tests, to a small constant. Under this siroatifin, the update cost
essentially reduces tO(log, V), and the query time reduces @( z; log, V). (We

will see this clearly in our experimental analysis.) Therente settings of are2 and
N:r = 2 imposes a binary tree over the domain, and gives the fastesy ¢jme but
O(log, N) time per updater = N means updates are effectively constait ) time,

but querying requires probing the whole domain, a totaVaksts to the sketch.

Sketching in the Wavelet DomainAs discussed earlier, given an input update stream
for data entries im, our algorithms build GCS synopses on the correspondingleav
coefficient vectotw,, and then employ these GCSs to quickly recover a (provaldgpo
approximateB-term wavelet representation @f To accomplish the first step, we need
an efficient way of “translating” updates in the original@alomain to the domain of
wavelet coefficients (for both one- and multi-dimensiorstbdstreams).

— One-Dimensional Update&n updatg(i, v) ona translates to the following collection

of log N + 1 updates to wavelet coefficients (that lie on the path tod¢adf Fig. 1(a)):

(0,2‘% IOgNu) , {(210%1\’" + k, (—1)k mod 22‘%) : foreachl =0,...,log N — 1},

wherel = 0,...,log N — 1 indexes the resolution level, aid= |i2~!]. Note that
each coefficient update in the above set is easily computeshstant time.

— Multi-Dimensional UpdatedMe can use exactly the same reasoning as above to pro-
duce a collection of (constant-time) wavelet-coefficigpdates for a given data update

in d dimensions (see, Fig. 1(b)). As explained in Section 2.2 diae of this collec-

tion of updates in the wavelet domain@log? N) andO(2? log N) for standard and
non-standard Haar wavelets, respectively. A subtle issue Is that our search-tree
structure operates over a linear ordering of fi¢ coefficients, so we require a fast
method for linearizing the multi-dimensional coefficientay — any simple lineariza-
tion technique will work (e.qg., row-major ordering or otlgrace-filling curves).

Using GCSs for Approximate Wavelets.Recall that our goal is to (approximately)
recover theB most significant Haar DWT coefficients, without exhaustivetarch-
ing through all coefficients. As shown in Theorem 3, creatB1@Ss for for dyadic
ranges over the (linearized) wavelet-coefficient domdiows us to efficiently identify
high-energy coefficients. (For simplicity, we fix the degmdeour search structure to
r = 2 in what follows.) An important technicality here is to seléwe right threshold
for coefficient energy in our search process, so that our tiokéction of recovered
coefficients provably capture most of the energy in the oglttiByterm representation.
Our analysis in the following theorem shows how to set thieghold, an proves that,
for data vectors satisfying the “small-B property”, our G@shniques can efficiently
track near-optimal approximate wavelet representatiiis. present the result for the
standard form of the multi-dimensional Haar DWT — the onelisional case follows
as the special cage=1.)

Theorem 4. If a d-dimensional data stream over th&¥]¢ domain has aB-term stan-
dard wavelet representation with energy at legist| |3, where||a||3 is the entire energy,



then our GCS algorithms can estimate an at-mBsterm standard wavelet represen-

tation with energy at leagtl — €)7||a||3 using space o@(BBjQ;’:g-’;N -log Bd:sg; Ny, per

item processing time @?(dlog™*" N -log £4%%), and query time of)( B’d oo N

33
Bdlog N )
enod '

log

Proof. Use our GCS search algorithm and Theorem 3 to find all coefitisigith energy

at least%||a||3 = %||wl|3. (Note that||a||3 can be easily estimated to within small
relative error from our GCSs.) Among those choose the higBesoefficients; note
that there could be less th@hfound. For those coefficients selected, observe we incur
two types of error. Suppose we choose a coefficient whichcisided in the besB-
term representation, then we could be inaccurate by at fdsi|3. Now, suppose we
choose coefficient; which is not in the besB-term representation. There has to be a
coefficientcs which is in the besB-term representation, but was rejected in favor of
c1. For this rejection to have taken place their energy mugedify at mos2%||a|[3

by our bounds on the accuracy of estimation for groups of kizeénally, note that for
any coefficient not chosen (for the case when we pick fewer thaoefficients) its true
energy must be less thas?||a||3. It follows that the total energy we obtain is at most
2en||al|? less than that of the be&-term representation. Setting parameterg, N’

of Theorem3to\ = ¢ = ¢ andN' = N? we obtain the stated space and query time
bounds. For the per-item update time, recall that a singtiatgin the original data
domain require®(log? N) coefficient updates. O

The corresponding result for the non-standard Haar DWDWadlalong the same lines.
The only difference with Theorem 4 comes in the per-updategssing time which, in

the non-standard case,(d2¢ log N - log Bd;?iof’]\’).

5 Experiments

Data Sets and MethodologyWe implemented our algorithms in a mixture of C and
C++, for the Group-Count sketch (GCS) with variable degFee.comparison we also
implemented the method of [11] (GKMS) as well as a modifiediogr of the algorithm
with faster update performance using ideas similar to tihotge Group-Count sketch,
which we denote by fast-GKMS. Experiments were performe@ @GHz processor
machine, with 1GB of memory. We worked with a mixture of read @ynthetic data:

— Synthetic Zipfian Datavas used to generate data from arbitrary domain sizes and
with varying skewness. By default the skewness parametéreoflistribution is
z=1.1.

— Meteorological data set comprised ofl0° meteorological measurements. These
were quantized and projected appropriately to generatesgds with dimensional-
ities betweerl and4. For the experiments described here, we primarily made use
of theAi r Tenper at ur e andW ndSpeed attributes to obtain- and2-dimensional
data streams.
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Fig. 3. Performance on one-dimensional data.

In our experiments, we varied the domain size, the size kbt and the degree
of the search tree of our GCS method and measured (1) peujidate time, (2) query
time and (3) accuracy. In all figures, GCS-k denotes that tlyeeke of the search tree is
2 i.e. GCS-1 uses a binary search tree, whereas GCS-logrmnsedegree tree, and
so has a single level consisting of the entire wavelet domain

One-Dimensional Experiments.In the first experimental setup we used a synthetic
1-dimensional data stream with updates following the Zipfisstribution ¢ = 1.1).
Space was increased based on the log of the dimension, $ogfdr = 14, 280KB
was used, up to 600KB fdng N = 30. Figure 3 (a) shows the per-item update time
for various domain sizes, and Figure 3 (b) shows the timeiredtio perform a query,
asking for the top-5 coefficients. The GKMS method takes isrdémagnitude longer
for both updates and queries, and this behavior is seen ottadlr experiments, so we
do not consider it further. Apart from this, the orderingsfest to slowest) is reversed
between update time and query time. Varying the degree adeéhech tree allows up-
date time and query time to be traded off. While the fast-GKaproach is the fastest
for updates, it is dramatically more expensive for quengsseveral orders of mag-

9 In each experiment, all methods are given the same totabdpacse.
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Fig. 4. Accuracy of Wavelet Synopses.

nitude. For domains of siz2??, it takes several hours to recover the coefficients, and
extrapolating to a 32 bit domain means recovery would taler aweek. Clearly this
is not practical for realistic monitoring scenarios. Altlghh GCS-logn also performs
exhaustive search over the domain size, its query timesgniisantly lower as it does
not require a sketch construction and inner-product queryyavelet coefficient.
Figures 3 (c) and (d) show the performance as the sketch sieelieased. The
domain size was fixed '® so that the fast-GKMS method would complete a query in
reasonable time. Update times do not vary significantly witlieasing space, in line
with our analysis (some increase in cost may be seen due he edfects). We also
tested the accuracy of the approximate wavelet synopseafdr method. We measured
the SSE-to-energy ratio of the estimatBeterm synopses for varying and varying
zipf parameter and compared it against the optiBderm synopsis computed offline.
The results are shown in Figures 4 (a) and (b), where eaclelskes given space
360KB. In accordance to analysis (GCS requiPgs ) times more space to provide the
same guarantees with GKMS) the GCS method is slightly lessrate when estimating
more than the top-15 coefficients. However, experimentastdhat increasing the size
to 1.2MB resulted in equal accuracy. Finally we tested thrféopmance of our methods
on single dimensional meteorological data of domain $t2ePer-item and query times
in Figure 5 (a) are similar to those on synthetic data.

Multi-Dimensional Experiments. We compared the methods for both wavelet decom-
position types in multiple dimensions. First we tested o@S3method for a synthetic
dataset { = 1.1, 10° tuples) of varying dimensionality. In Figure 5 (b) we kepé th
total domain size constant at* while varying the dimensions between 1 and 4. The
per-item update time is higher for the standard decompusits there are more up-
dates on the wavelet domain per update on the original doriamincrease in query
time can be attributed to the increasing sparseness of thaidas the dimensionality
increases which makes searching for big coefficients hartées is a well known effect

of multidimensional standard and non-standard decormripositFor the real dataset,
we focus on the two dimensional case; higher dimensionsiauitas Figure 5(c) and
(d) show results for the standard and non-standard respictThe difference between
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Fig. 5. Performance on 1-d Real Data and multi-d Real and Synthetia.D

GCS methods and fast-GKMS is more pronounced, because afittifonal work in
producing multidimensional wavelet coefficients, but theery times remain signifi-
cantly less (query times were in the order of hours for faktis), and the difference
becomes many times greater as the size of the data domagages.

Experimental Summary. The Group-Count sketch approach is the only method that
achieves reasonable query times to return an approximateletaepresentation of
data drawn from a moderately large domaiff(or larger). Our first implementation is
capable of processing tens to hundreds of thousands ofegpdat second, and giving
the answer to queries in the order of a few seconds. Varymdédigree of the search tree
allows a tradeoff between query time and update time to labksihed. The observed
accuracy is almost indistinguishable from the exact sofytand the methods extend
smoothly to multiple dimensions with little degradationpafrformance.

6 Related Work

Wavelets have a long history of successes in the signal aaglrprocessing arena [15,
20] and, recently, they have also found their way into dataxagement applications.



Matias et al. [17] first proposed the use of Haar-waveletfaiehts as synopses for ac-
curately estimating the selectivities of range queriee¥and Wang [22] describe I/O-
efficient algorithms for building multi-dimensional Haaawelets from large relational
data sets and show that a small set of wavelet coefficientsffiaiently provide accu-
rate approximate answers to range aggregates over OLAR.cGhakrabarti et al. [4]
demonstrate the effectiveness of Haar wavelets as a ggnanabse approximate query
processing tool by designing efficient algorithms that cescess complex relational
queries (with joins, selections, etc.) entirely in the watreoefficient domain. Schmidt
and Shahabi [19] present techniques using the Daubechigly faf wavelets to an-
swer general polynomial range-aggregate queries. Daligikis and Roussopoulos [8]
introduce algorithms for building wavelet synopses ovdadeth multiple measures.
Finally, I/O efficiency issues are studied by Jahangiri ef1s1] for both forms of the
multi-dimensional DWT.

Interest in data streams has also increased rapidly ovdashgears, as more al-
gorithms are presented that provide solutions in a stregqoire-pass, low memory
environment. Overviews of data-streaming issues and ithgas can be found, for in-
stance, in [3, 18]. Sketches first appeared for estimatiag#itond frequency moment
of a set of elements [2] and have since proven to be a usefuhsuyrstructure in such
a dynamic setting. Their application includes uses foneating join sizes of queries
over streams [1, 9], maintaining wavelet synopses [11]stowting histograms [12,
21], estimating frequent items [5, 6] and quantiles [13]e Trork of Gilbert et al. [11]
for estimating the most significant wavelet coefficientslesely related to ours. As
we discuss, the limitation is the high query time requireadr&urning the approximate
representation. In follow-up work, the authors proposedasentheoretical approach
with somewhat improved worst case query times [12]. Thisaeonsiders an approach
based on a complex construction of range-summable randaabies to build sketches
from which wavelet coefficients can be obtained. The updates remain large. Our
bounds improve those that follow from [12], and our algaritls much simpler to im-
plement. In similar spirit, Thaper et al. [21] use AMS skegslto construct an optimal
B-bucket histogram of large multi-dimensional data. No @ffit search techniques are
used apart from an exhaustive greedy heuristic which alveiig®ses the next best
bucket to include in the histogram; still, this requires ahaustive search over a huge
space. The idea of usirgyoup-testingechniques to more efficiently find heavy items
appearsin several prior works [6, 7, 12]; here, we show tiepiossible to apply similar
ideas to groups unddr, norm, which has not been explored previously.

7 Conclusions

We have proposed the first known streaming algorithms focespand time-efficient
tracking of approximate wavelet summaries for both one-raotti-dimensional data
streams. Our approach relies on a novel, Group-Count SKEIC) synopsis that, un-
like earlier work, satisfies all three key requirements éd&tfve streaming algorithms,
namely: (1) polylogarithmic space usage, (2) small, Iabaric update times (essen-
tially touching only a small fraction of the GCS for each atréng update); and, (2)
polylogarithmic query times for computing the top wavelegfficients from the GCS.
Our experimental results with both synthetic and real-fitga have verified the ef-



fectiveness of our approach, demonstrating the ability 6556 to support very high
speed data sources. Future work is to extend this analy#ietproblem of extended
wavelets [8] and histograms.
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