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ABSTRACT
A fundamental problem in data management and analysis is to gen-
erate descriptions of the distribution of data. It is most common
to give such descriptions in terms of the cumulative distribution,
which is characterized by the quantiles of the data. The design
and engineering of efficient methods to find these quantiles has
attracted much study, especially in the case where the data is de-
scribed incrementally, and we must compute the quantiles in an
online, streaming fashion. Yet while such algorithms have proved
to be tremendously useful in practice, there has been limited for-
mal comparison of the competing methods, and no comprehensive
study of their performance. In this paper, we remedy this deficit by
providing a taxonomy of different methods, and describe efficient
implementations. In doing so, we propose and analyze variations
that have not been explicitly studied before, yet which turn out to
perform the best. To illustrate this, we provide detailed experimen-
tal comparisons demonstrating the tradeoffs between space, time,
and accuracy for quantile computation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Experimentation, Algorithms

Keywords
Data stream algorithms, quantiles

1. INTRODUCTION
Given a large amount of data, a first and foundational problem is

to describe the data distribution. If the data follows a known dis-
tribution family, such as normal, it can be described succinctly by
the parameters of the distribution. This is rarely the case in prac-
tice, which thus calls for nonparametric methods. Quantiles are
the mostly commonly used nonparametric representation for data
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distributions. They correspond to the cumulative distribution func-
tion (cdf), which in turn yields the probability distribution func-
tion (pdf). Thus, quantile computation is arguably one of the most
fundamental problems in data analysis. For example, rankings are
often expressed in terms of percentiles, such as for giving results
of standardized testing, or measuring children’s physical develop-
ment. Distributions are commonly compared via quantiles, in the
form of quantile-quantile plots, which leads to the Kolmogorov-
Smirnov divergence, one of the most commonly used distance mea-
sure between distributions.

Computing the quantiles has significant practical importance:
Standard statistical packages, such as R and Excel, include func-
tions to compute the median and other quantiles. In the Sawzall lan-
guage that is the basis for all of Google’s log data analysis, quantile
computation is one of the seven basic operators defined (the others
including sum, max, top-k, and count-distinct) [20]. The quantiles
also play an important role in network health monitoring for In-
ternet service providers [7] and data collection in wireless sensor
networks [?].

The problem is also intellectually interesting enough to have
attracted a lot of prior study, from both the algorithms and the
database community, sometimes investigated under the name of
“the selection problem” or “order statistics”. Algorithmic interest
dates back to at least 1973, when the celebrated linear-time selec-
tion algorithm was invented [3]. In the past 30 years, this problem
has received particular attention in the streaming model, i.e., the
data elements arrive one by one in a streaming fashion, and the al-
gorithm only has limited memory to work with. There have been
numerous algorithms proposed in this setting, using a variety of
different techniques and offering different performance guarantees
[19, 13, 17, 18, 11, 9, 10, 16, 22]. In addition, there have been
many studies on variations and extensions of the problem, such as
computing quantiles over sliding windows [2], over distributed data
[21, 1, 14, 15], continuous monitoring of quantiles [5, 24], biased
quantiles [8], computing quantiles using GPUs [12], etc.

The median has long been recognized as a more stable statistic
of data distribution than, say, the average, in the sense that it is
very robust to outliers. The quantiles are a natural generalization
of the median. Let S be a (multi)set of n elements drawn from a
totally ordered universe. Recall that the φ-quantile of S, for some
0 < φ < 1, is the element whose rank is bφnc in S, where the rank
of an element x is the number of elements in S smaller than x.

The quantiles can be easily found by sorting if sufficient space
is available. The problem becomes significantly more challenging
in the streaming model, which is the focus of this work. It dates
back to 1980, when Munro and Paterson [19] showed that any al-
gorithm that computes the median with p passes over the data has
to use Ω(n1/p) space. Thus, approximation is necessary for any



streaming quantile algorithm using sublinear space. Recall that a
streaming algorithm is one that makes one pass over the data and
perform the desired computation. Often, the algorithm is not given
the knowledge of n, the length of the stream, so that the algorithm
has to be ready to stop and provide the results at any time. This
semantics has been adopted by most prior work, and so do we in
this paper, because it corresponds to the practical setting where the
stream is conceptually an infinite sequence of elements, and the al-
gorithm should always be ready to provide the results at any time
for the data seen so far.

Subsequently, the problem of computing approximate quantiles
over streaming data has been widely studied in the past three decades
(which will be reviewed shortly). The commonly used notion of
approximation for this problem is the following: For an error pa-
rameter 0 < ε < 1, the ε-approximate φ-quantile is any element
with rank between (φ − ε)n and (φ + ε)n. Since quantiles are
used for approximating the data distribution anyway, and the input
data is often noisy in itself, allowing some errors in the computed
quantiles is often tolerable.

However, despite the importance of the problem and the many
efforts devoted, a complete and clear picture of the problem still
appears elusive, both theoretically and empirically. We lack match-
ing upper and lower bounds for the problem, which constitutes a top
open problem in data stream algorithms (see http://sublinear.
info/2). Moreover, existing empirical studies are both incom-
plete and outdated. In this work, we primarily address the latter
issue, and carry out an extensive experimental comparison of var-
ious quantile algorithms that have not been compared before, on a
full range of performance features and data sets. However, our con-
tribution goes beyond a straightforward implementation study. By
carefully examining existing algorithms, we provide new variants
in both the cash register and the turnstile model, which turn out to
perform the best. We also give theoretical analyses on these new
variants to complement the empirical results.

1.1 Classification of algorithms
Depending on different models, algorithms for computing quantiles
of data streams can be classified along the following axes:

1. In the turnstile model, the stream consists of a sequence of
updates where each update either inserts an element or deletes
one, but a deletion cannot delete an element that does not ex-
ist. When there are duplicates, this means that the multiplic-
ity of any element cannot go negative. In the cash register
model, only insertions are allowed.

2. In the comparison model, the algorithm can only access the
elements through comparisons. Implicitly, this means that
the algorithm must store a set of elements that it has observed
from the stream (together with some extra information), and
only return from this set as quantiles in the end, namely
it cannot “create” or “compute” elements to return. In the
fixed universe model, the elements are integers in the uni-
verse [u] = {0, . . . , u − 1}. Here, the algorithm is allowed
to perform bit manipulation tricks, and return elements that
may have never appeared in the stream as quantiles provided
they satisfy the approximation guarantees. Any comparison-
based algorithm clearly also works in the fixed universe model,
but not vice-versa. Such algorithms can also handle elements
that cannot be easily mapped to a fixed universe [u], such as
variable-length strings, user-defined types, etc1.

1Note that floating-point numbers in standard representations (e.g.
IEEE 754) can be mapped to integers in a fixed universe in an order-
preserving fashion.

3. Finally, an algorithm can be deterministic or randomized. We
are not aware of any ‘Las Vegas’ quantile algorithms, so we
will only consider Monte Carlo randomization, where an al-
gorithm may return an incorrect quantile (i.e., exceeding the
stated ε error) with a small probability. We usually consider
the probability that the algorithm returns all quantiles cor-
rectly, but this will be the case as long as it is correct on the
1/ε − 1 quantiles for φ = ε, 2ε, . . . , 1 − ε. To simplify
the bounds, most theoretical analyses make this probability a
constant. This probability can always be boosted using stan-
dard techniques; in practice, due to the looseness of the anal-
ysis (often resulting from the use of a union bound), it suf-
fices to set the success probability to a reasonable constant.

1.2 Existing quantile algorithms and our new
findings

1.2.1 The cash register model
In their pioneering paper [19], Munro and Paterson also gave a

p-pass algorithm for computing exact quantiles. Although not ana-
lyzed explicitly, the first pass of the algorithm yields a streaming al-
gorithm for computing ε-approximate quantiles usingO( 1

ε
log2(εn))

space. This fact was made more explicit by Manku et al. [17], who
also proposed another algorithm that is empirically better, though
it has the same worst-case space bound. In 2001, Greenwald and
Khanna [13] designed a quite ingenious algorithm (referred to as
the GK algorithm below) and showed that it uses O( 1

ε
log(εn))

space in the worst case. But interestingly, their experimental study
implements a simplified algorithm, for which it is not clear if the
O( 1

ε
log(εn)) space bound still holds. Nevertheless, they showed

that this algorithm empirically outperforms that of Manku et al. [17].
All these algorithms are deterministic and comparison-based. Hung
and Ting [16] showed an Ω( 1

ε
log 1

ε
) space lower bound for such

algorithms. In this category, the GK algorithm is generally consid-
ered to be the best, both theoretically and empirically (in its respec-
tive versions).

In 2004, Shrivastava et al. [21] designed a deterministic, fixed-
universe algorithm, called q-digest, that uses O( 1

ε
log u) space.

This algorithm was designed for quantile computation in sensor
networks, and is a mergeable summary [1], a model that is more
general than streaming. But no better fixed-universe algorithm is
known in the streaming model. Note that the log u and log(εn)
terms are not comparable in theory, and [21] did not include an
experimental comparison with the GK algorithm.

Randomized algorithms have also been investigated. Classic re-
sults [23] show that a random sample of sizeO( 1

ε2
log 1

ε
) preserves

all quantiles within ε error with at least a constant probability. This
fact was reproved in [17] and exploited for computing quantiles by
feeding a random sample to a deterministic algorithm. But this al-
gorithm requires the a priori knowledge of n, so it is not a true
streaming algorithm. Manku et al. [18] proposed a randomized al-
gorithm that does not need the knowledge of n, and showed that
its space requirement is O( 1

ε
log2 1

ε
). Note that the log2 1

ε
factor

could be larger or smaller than the log(εn) factor of GK, but these
two algorithms have not been compared experimentally. Recently,
Agarwal et al. [1] gave a more complicated algorithm with a space
complexity of O( 1

ε
log1.5( 1

ε
))

In this paper, we empirically compare the GK algorithm, q-digest,
and the randomized algorithm of Manku et al. [18]. We omit re-
sults for the algorithms of Munro and Paterson [19] and Manku et
al. [17], since they have previously been demonstrated to be out-
performed by the GK algorithm. Our experimental study reveals
that the randomized algorithm of Manku et al. [18] generally per-



Table 1: All algorithms evaluated in this paper. Those marked with * are new varaints.

Algorithm Space Update time Randomization Model
GKAdaptive — O(log Space) Deterministic Comparison
GKMixed O

(
1
ε

log(εn)
)

O
(
log 1

ε
+ log log(εn)

)
Deterministic Comparison

FastQDigest O
(
1
ε

log u
)

O
(
log 1

ε
+ log log u

)
Deterministic Fixed universe

MRL99 O
(
1
ε

log2 1
ε

)
O
(
log 1

ε

)
Randomized Comparison

Random * O
(
1
ε

log1.5 1
ε

)
O
(
log 1

ε

)
Randomized Comparison

Random subset sum O( 1
ε2

log2 u log( log u
ε

)) O( 1
ε2

log2 u log( log u
ε

)) Randomized Fixed universe
DCM O( 1

ε
log2 u log( log u

ε
)) O(log u log( log u

ε
)) Randomized Fixed universe

DCS * O( 1
ε

log1.5 u log1.5( log u
ε

)) O(log u log( log u
ε

)) Randomized Fixed universe
vDCS * — O(log u log( log u

ε
)) Randomized Fixed universe

forms the best, but it suffers from the following undesirabilities.
First, it uses some fairly complex rules for maintaining its sam-
ples and sets its parameters delicately by solving an optimization
problem, which increases implementation difficulty. Second, as
the algorithm is difficult to analyze, the analysis given in [18] is
quite pessimistic, resulting in an O( 1

ε
log2( 1

ε
)) bound. In prac-

tice, this mean that for an error target ε, we often allocate more
space than necessary. Through our experimental study, we ob-
served that many of the details of these algorithms were not actu-
ally needed, and the algorithm can be significantly simplified with-
out affecting its performance. In addition, we are able to give an
improved O( 1

ε
log1.5( 1

ε
)) bound for this new, simpler algorithm,

which we refer to as Random. This matches the best theoretical
bound (among those that depend only on ε) for this problem ob-
tained in [1].

1.2.2 The turnstile model
The turnstile model presents additional challenges, due to the

deletions of elements. Attempts to adapt the above algorithms to
this model can often be thwarted by finding particularly adversarial
patterns of insertions and subsequent deletions. In fact, it can be
argued that no comparison-based algorithm is possible using sub-
linear space under the turnstile model: Imagine that we first insert
n elements and then delete all but one. Before the deletions, the al-
gorithm has no information about which element will survive, and
because the comparison-based model does not allow the creation or
computation of elements to return, it has to retain all n elements.
Therefore, all turnstile algorithms work only for a fixed universe,
and are mostly randomized algorithms. Deterministic algorithms
for this model have been provided: Ganguly and Majumder de-
scribe an algorithm which usesO( 1

ε2
log5 u log( log u

ε
)) space [10].

The high dependency on 1
ε

and log u mean that this is not consid-
ered practical.

Existing algorithms in the turnstile model generally make use of
a dyadic structure imposed over the universe of possible elements.
More precisely, we build log u levels, decomposing the universe
[u] as follows. In level 0, every integer in [u] is by itself; in level i,
the universe is partitioned into intervals of size 2i; the top level thus
consists of only one interval [0, u−1]. Every interval in every level
in this hierarchy is called a dyadic interval. The algorithms make
use of randomized sketch data structures which process a stream
of updates in the turnstile model, and allow the frequency of any
element to be estimated [4, 9]. Each level keeps a frequency es-
timation sketch that can be used to estimate the total number of
elements in any interval. To find the rank of a given element x, we
decompose the interval [0, x− 1] into the disjoint union of at most
log u dyadic intervals, one from each level. From the frequency es-
timation sketch, we estimate the number of elements in each dyadic

interval, and then add them up. Then for any given φ, we can find
an approximate φ-quantile by doing a binary search on [u] to find
the largest element whose rank is below φn.

Different frequency estimation sketches have been proposed to
instantiate this outline. Gilbert et al. [11] first proposed the random
subset sum sketch for this purpose, which results in an overall size
of O( 1

ε2
log2 u log( log u

ε
)). Later, Cormode and Muthukrishnan

applied the Count-Min sketch in the dyadic structure, reducing the
overall size to O( 1

ε
log2 u log( log u

ε
)) [9]. This remains the best

bound in the turnstile model. In this paper, we propose to use the
Count-Sketch [4], and give a new analysis showing that it further
reduces the space to O( 1

ε
log1.5 u log1.5( log u

ε
)). We also carry

out an experimental comparison of these different variants, which
shows that the new variant using the Count-Sketch is not only the-
oretically the best, but also gives superior performance in practice.

Table 1 summarizes all the algorithms that we evaluate in this
paper, in both the cash register and the turnstile model.

2. CASH REGISTER ALGORITHMS
In this section, we describe the cash register algorithms. Recall

that in this model, there are only insertions in the stream. We use
n to denote the current number of elements in the stream. We use
r(x) to denote the rank of x in all the elements received so far.

2.1 GK algorithm
The GK algorithm [13] is a deterministic, comparison-based quan-

tile algorithm. It maintains a list of tuples L = 〈(vi, gi,∆i)〉,
where the vi’s are elements from the stream such that vi ≤ vi+1.
The gi’s and ∆i’s are integers satisfying the following conditions:

(1)
∑
j≤i gj ≤ r(vi) + 1 ≤

∑
j≤i gj + ∆i;

(2) gi + ∆i ≤ b2εnc.

Note that condition (1) gives both a lower and an upper bound
on the possible ranks of vi. Also, gi + ∆i − 1 is the maximum
possible number of elements between vi−1 and vi, so (2) ensures
that for any 0 < φ < 1, there must be an element in the list
whose rank is within εn to φn. Thus, to extract the φ-quantile,
we can find the smallest i such that

∑
j≤i gj + ∆i > 1 + dφNe+

maxi (gi + ∆i) /2, and then report vi−1. It can be verified that
this vi−1 will be a valid ε-approximate φ-quantile.

The list is initialized as L = 〈(∞, 1, 0)〉. To insert a new ele-
ment v, we find its successor in L, i.e., the smallest vi such that
vi > v, and insert the tuple (v, 1, b2εnc) right before vi. We
may also remove tuples: To remove (vi, gi,∆i), we set gi+1 ←
gi + gi+1 and remove the tuple from L. Note that this may vio-
late condition (2) for the next tuple, so we call a tuple removable if
gi + gi+1 + ∆i+1 ≤ b2εnc.



In order to keep |L| small, the original paper [13] gave a fairly
complex COMPRESS procedure to carefully select tuples to remove
while maintaining (1). It is performed once every 1

2ε
incoming ele-

ments. It has been shown that after the COMPRESS procedure, |L|
is at most 11

2ε
log (2εn). COMPRESS can be done in time O(|L|),

so if it is performed only when |L| doubles, its amortized cost is
O(1). An insertion can be done in time O(log |L|), therefore the
amortized per-element update time is O

(
log 1

ε
+ log log(εn)

)
.

2.1.1 Variant: GKAdaptive
The algorithm described was structured to permit theoretical anal-

ysis of the space cost; in the paper [13], the authors instead imple-
mented the following variant:

1. To insert v, insert to L a tuple (v, 1, gi + ∆i − 1) instead of
(v, 1, b2εNc).

2. Following an insertion, try to find a removable tuple in L. If
there is one, remove it; otherwise |L| increases by 1.

The original paper [13] did not specify how to find a remov-
able tuple, as they did not focus on running time. In our imple-
mentation, we maintain the tuples in L in a min-heap ordered by
gi + gi+1 + ∆i+1. When a new tuple is inserted, we first check if
the newly inserted tuple is removable, and remove it immediately
if so. Otherwise, we check the top element in the heap, and remove
it if it is removable. If the top element in the heap is not remov-
able, then no others are. The heap can be maintained in O(log |L|)
time per element, so the update time is not affected. Note that |L|
will remain the same after inserting v if one removable tuple is
found, otherwise |L| is increased by 1. We refer to this variant as
GKAdaptive.

In this variant, COMPRESS is never called (in fact it is not im-
plemented as such). So it is not clear if the space upper bound of
O( 1

ε
log(εn)) still holds.

2.1.2 Variant: GKMixed
Curious about whether the more careful COMPRESS procedure

leads to smaller size of L, we implemented another variant that ad-
heres more closely to the original analysis. In this variant, called
GKMixed, after inserting an element, we first check if it is remov-
able. If so, we remove it right away. Then, whenever |L| dou-
bles, we call COMPRESS to remove tuples. For this variant, the
O( 1

ε
log(εn)) space bound still holds.

2.2 q-digest
The q-digest [21] designed by Shrivastava et. al. was initially in-

troduced as an algorithm for computing quantiles in a (distributed)
sensor environment. It also applies to the streaming model. The
algorithm is deterministic and assumes a fixed universe [u].

The q-digest also makes use of the dyadic structure of the uni-
verse [u] described previously. This structure naturally corresponds
to a complete binary tree with u leaves. Each leaf corresponds to
an integer in [u], while each node corresponds to a dyadic interval.
We do not distinguish a node and its corresponding dyadic inter-
val. Each node v is associated with a counter cv , representing cv
elements from the steam in the dyadic interval of v. Initially all
counters are 0.

We use lc(v) and rc(v) to denote respectively the left child and
right child of v. The following two invariants are maintained for
any internal node v:

(1) cv ≤ εn/ log u;

(2) cv + clc(v) + crc(v) >
εn

log u
if clc(v) + crc(v) > 0.

The first condition above ensures the accuracy of quantiles, and
the second ensures that there are at most O( 1

ε
log u) nodes with

non-zero counters. We say a node v is empty if cv = 0, and it is
full if cv = εn/ log u. Note that a full node may become non-full
as n increases. As most tree nodes are empty, we only store the
non-empty nodes, and denote by Q the set of non-empty nodes.

To extract the φ-quantile, we sort all nodes (dyadic intervals)
in Q based on the left endpoints of the intervals, breaking ties by
putting smaller intervals first. Then we find the first node v such
that the sum of counters of v and all nodes before v are greater than
φn. Finally we return the right endpoint of v. It can be verified that
this is an ε-approximate φ-quantile due to condition (1) above.

To merge two q-digests, we first add up the corresponding coun-
ters, and then carry out a COMPRESS procedure [21] to make sure
that condition (2) above is maintained. To adapt it to the stream-
ing model, for each element in the stream, we simply increment the
counter of its corresponding leaf, without enforcing condition (2).
Then, we carry out the COMPRESS procedure whenever |Q| dou-
bles. Since COMPRESS takesO(|Q| log u) time [21], the amortized
update cost per element is O(log u).

We see in our experiments that the O(log u) update time trans-
lates to a high cost in practice. This can be explained by observing
that each element begins as a leaf in the structure, but the COM-
PRESS operation moves it up within the tree structure one step at a
time until it comes to rest. Based on this observation we designed
a variant called FastQDigest, following the discussion in [8]. The
idea is to insert each new update directly in the tree-structure where
it would reside following a COMPRESS, without the lengthy search.
We start with an empty Q. To insert an element x, we find the low-
est ancestor of x in Q, say v (if Q is empty, we choose the root as
v). If increasing cv by 1 does not violate condition (1), we do so.
Otherwise, we find the child of v that is also the ancestor of x (or x
itself), set its counter to 1, and add it to Q. Finally, we call COM-
PRESS whenever n doubles. Since the accuracy of the algorithm
only depends on condition (1), the correctness is still ensured.

Now, we observe that the set of non-empty nodes Q in this vari-
ant always form a connected subtree rooted at the root of the dyadic
tree (which is not the case in the original version). This means that
to find the lowest ancestor of x in Q, we can do a binary search
on the path from x to the root. This can be done in O(log log u)
time, by storing Q in a hash table. But in the experiments we ob-
serve substantial overhead with the hash table, so we used a simpler
version where we replaced the hash table with a binary search tree
(using std::map). We observe that the lowest ancestor of x in
Q is exactly the innermost dyadic interval containing x. So we can
store all nodes (dyadic intervals) of Q in the binary search tree,
ordered by their left endpoints, breaking ties by putting longer in-
tervals first. Now the innermost interval containing x is found by
simply locating the predecessor of x, which is efficiently supported
by this data structure.

COMPRESS is also more efficient in this variant, in time propor-
tional to |Q|. Recall that all nodes in Q form a connected subtree.
To compress Q, we try to move as many elements as possible from
the counter of each node to its ancestors, without violating condi-
tion (1). This can be done by a post-order traversal of Q.

Space and time analysis. After each COMPRESS, it is clear that all
nodes with at least one non-empty child must be full, therefore |Q|
is bounded byO( 1

ε
log u). Next we show that between two consec-

utive COMPRESS operations, its size remains O( 1
ε

log u). Suppose
n goes from n0 to 2n0 between two consecutive COMPRESS oper-
ations. Since we only add a node to Q when its parent’s counter is
εn/ log u ≥ εn0/ log u, there are at most twice as many of these
nodes as those with counters greater than εn0/ log u. There are



at most 2n0
εn0/ log u

= O( 1
ε

log u) nodes of the latter type before
we do the next COMPRESS, so the size of Q remains bounded by
O( 1

ε
log u).

It takes time O(log |Q|) = O
(
log 1

ε
+ log log u

)
to insert an

element into the data structure. Then recall that we call COMPRESS
whenever Q doubles, so it is invoked at most O(logn) times over
the entire stream. Its amortized cost of O( logn log u

εn
) is negligible

for n sufficiently large.

2.3 The randomized algorithm
We now describe a randomized quantile algorithm, which can be

seen as a simplified version of the one by Manku et al. [18]. It is
also inspired by the current best theoretical algorithm by Agarwal
et al. [1]. We denote this algorithm as Random. It will correctly
report all quantiles with constant probability.

Setting h = log 1
ε

, b = h + 1 and s = 1
ε

√
log 1

ε
, Random

maintains b buffers of size s each. Each bufferX is associated with
a level l(X).

Two buffers at the same level l can be merged into one buffer
at level l + 1. To do so, in the sorted sequence of elements from
both buffers, we randomly choose half of them: either those at odd
positions, or those at even positions, each with probability 1/2. The
merged 2 buffers are then marked as empty.

Initially all buffers are marked as empty. We set the active level
l = max{0,

⌈
log n

s2h−1

⌉
}. If there is an empty buffer X , we read

the next 2ls elements from the stream. For every 2l elements, we
randomly pick one and add it to X . Thus X contains s sampled
elements, becoming full, unless the stream is terminated. X is as-
sociated with level l. Whenever all buffers becomes full, we find
the lowest level that contains at least 2 buffers, and merge 2 of them
together.

In the end, the rank of an element v is estimated as r̂(v) =∑
X 2l(X)|{i < v|i ∈ X}|, where X ranges over all nonempty

buffers. A φ-quantile is reported as the element whose estimated
rank is closest to φn, which can be found using a binary search.

Space and time analysis. Two buffers can be merged in O(s)
time, and the total number of merges is O(n/s) throughout the
entire data stream, which is amortized O(1) for each update. Each
buffer is sorted when it just becomes full, which can be done in
O(s log s) time, which is O(log s) per update amortized. So the
amortized update time is O(log s) = O

(
log 1

ε

)
.

The space bound is simply bs = O
(
1
ε

log1.5 1
ε

)
.

Error analysis. We show that with constant probability, this algo-
rithm finds all quantiles correctly.

Since our analysis will focus on the asymptotics, we assume that
n/s is a power of 2, which means that when the stream terminates,
l has been just increased by 1 and becomes ln = log( n

2hs
) + 2. In

order to simplify the proof, at this point we merge all the buffers
into one, whose level is ln + h − 2 = log(n/s). Note that this
operation can only increase the error.

As illustrated in Figure 1, all buffers that ever existed form a bi-
nary tree, where any non-leaf buffer is obtained by merging its two
children. A leaf buffer is obtained directly by sampling from the
stream. There are 2h−1 leaf buffers at level 0, each storing s ele-
ments from the stream; for 1 ≤ l < ln, there are 2h−2 leaf buffers
at level l, each storing s elements sampled from 2ls elements in the
stream. There are 2h−2 non-leaf buffers at level l for any 1 ≤ l ≤
ln, and 2ln+h−l−2 non-leaf buffers for ln + 1 ≤ l ≤ ln + h− 2.

If the estimated ranks of all the 1/ε − 1 elements that rank at
εn, 2εn, . . . , (1 − ε)n are correct (i.e., with at most additive εn
error), then all the quantiles can be answered correctly. By the

Figure 1: Illustration of Random.

union bound, it suffices to ensure that each rank is correct with
probability at least 1− ε.

When the algorithm estimates the rank of any element, the error
comes from two sources: random sampling and random merging.
Clearly, the expected error of each type is zero, so the estimator is
unbiased. Now we analyze the probability that the error is larger
than εn. For the random sampling part, consider any sampled el-
ement at level l, which has been chosen from 2l elements, so the
error is between −2l and 2l. By Hoeffding’s inequality, the proba-
bility of the absolute value of their sum exceeding εn is at most

exp

− 2(εn)2∑
leaf bufferX

4l(X)s

 = exp
(
−Θ

(
ε22hs

))
< ε/2,

since the summation over X is dominated by the contribution from
the highest level, where l(X) = logn/s.

Next consider the error from the random merging. Merging 2
buffers at level l may contribute an error between −2l and 2l.
Again by Hoeffding’s inequality, the probability that the total er-
ror exceeds εn is bounded in terms of the sum of the squares of the
absolute errors (also dominated by the contribution of the highest
level), as

exp

− 2(εn)2∑
non-leaf bufferX

4l(X)

 = exp
(
−Θ

(
ε2s2

))
< ε/2.

Finally, when n/s is not a power of 2, then there will be more
than one buffer left even if we perform all possible merges. How-
ever, as the weights of these buffers are geometrically smaller, this
does not change the error asymptotically.

2.4 The MRL99 algorithm
As mentioned, the algorithm Random can be seen as a sim-

plified version of the one by Manku et al. [18], which we denote
as MRL99. Compared with Random, MRL99 has the following
complications. (1) The parameters b, h and s are determined by
solving a complicated optimization problem, whereas in our case,
they are set easily. (2) In addition to level, each buffer X is also
associated with a weight. In our case, the weight is always 2l(X) so
it is implicit, but this may not be the case in MRL99. (3) A more
complex merging procedure is used that may merge buffers of dif-
ferent weights together and may merge more than two buffers at a
time. In Random, we only merge 2 at a time and they must have
the same weight.

Due to these complex procedures and the delicacy in setting the
parameters, MRL99 is very difficult to analyze. As a result, Manku
et al. [18] only gave a pessimisticO

(
1
ε

log2 1
ε

)
bound, which is not

interesting by today’s standard since it can also be obtained by sim-
ply running O(log 1

ε
) instances of the GK algorithm on multiple

random samples of the stream. Nevertheless, the practical behavior
of the algorithm should be very competitive.



3. TURNSTILE ALGORITHMS
In this section, we describe the quantile algorithms in the turn-

stile model (see Table 1 for a summary).
Recall that all existing algorithms build upon the dyadic struc-

ture over the universe [u] as described in Section 1, and use a fre-
quency estimation sketch for each level. Known turnstile quantile
algorithms only differ in the sketches they choose to use. Over a
stream of updates with both insertions and deletions of elements,
a frequency estimation sketch should be able to return an estimate
of the frequency of any given element x. Note that when used in
level i in the dyadic structure (the bottom level is level 0), an “ele-
ment” is actually a dyadic interval of length 2i, and the frequency
estimation sketch summarizes a reduced universe [u/2i]. Thus, for
an integer x in the stream, we take its first log u− i bits to map it to
level i. Finally, it is obvious that if the reduced universe size u/2i

is smaller than the sketch size, we should maintain the frequencies
exactly, rather than using a sketch.

In the turnstile model, we use n to denote the number of elements
currently remaining, which is at most the stream length.

3.1 Random subset sum
Gilbert et al. [11] were the first to consider the quantile problem

in the turnstile model, and designed the random subset sum sketch
as a frequency estimation sketch to be used in the dyadic structure.
However, it results in an overall size of O( 1

ε2
log2 u log( log u

ε
)):

the dependence on ε is much higher than subsequent methods. More-
over, its update time is proportional to its size. Our implementation
experience with this algorithm confirmed these properties, as the
results were markedly poorer than with other algorithms. So we
exclude it from further experimental evaluation.

3.2 Count-Min sketch
The Count-Min sketch consists of an array C of w × d coun-

ters, all initialized to 0. For each of the d rows of the array, it uses
a pairwise independent hash function hi : [u] → [w] that maps
the elements in the universe to the w counters in this row. To in-
sert/delete an element x in the sketch, we add/subtract 1 from the
counter C[i, hi(x)], for i = 1, . . . , d. To estimate the frequency of
x, we return mini C[i, hi(x)].

It has been shown [9] that if w = O(1/ε) and d = O(log 1
δ
),

then the estimate has at most εn error with probability at least 1−δ.
To use this in the dyadic structure, we only allow εn/ log u error
from each level, so we use an error parameter ε′ = ε/ log u in each
sketch. To find a quantile, we do a binary search with log u probes,
where each probe involves log u queries to the sketches. We also
want all 1/ε quantiles to be correct with constant probability, so a
union bound implies that we need to set the failure probability of
each sketch to δ′ = Θ(ε/ log2 u). This leads to an overall size
of O( 1

ε
log2 u log( log u

ε
)). To process an update in the stream, we

need to update log u sketches, one from each level, while updating
each sketch requires updating all its d rows. So the total update
time is O(log u log( log u

ε
)). These results are stated in [9]. We

denote this algorithm as DCM (Dyadic Count-Min).

3.3 Count Sketch
The Count Sketch [4] is very similar to the Count-Min sketch.

It also consists of an array C of w × d counters. For each row, in
addition to hi, it uses a second pairwise hash function gi : [u] →
{−1,+1} that maps each element to −1 or +1 with equal proba-
bility. To insert/delete an element x in the sketch, for each row i,
we add/subtract gi(x) to C[i, hi(x)]. To estimate the frequency of
x, we return the median of gi(x) · C[i, hi(x)], i = 1, . . . , d.

Using a similar analysis to the Count-Min sketch, when setting

w = O(1/ε) and d = O(log 1
δ
), the Count Sketch also returns

an estimate with more than εn error with probability at most δ—
although the constant factors that emerge from the analysis are
larger. On the other hand, the sketch also provides a guarantee
based on the second frequency moment of the data [4]. In general,
this guarantee is incomparable, but it can be tighter for some data
distributions.

However, we observe another property of the Count Sketch that
makes it appealing for the quantile problem, that it produces an
unbiased estimator. In the dyadic structure, since we add up the
estimates from log u sketches, it is likely that some of the positive
and negative errors will cancel each other out, leading to a more ac-
curate final result. Below we give a new analysis showing that this
in fact leads to an asymptotic improvement over using the Count-
Min sketch for the quantile problem, although it does not improve
over Count-Min for the basic frequency estimation problem.

Analysis. Let Yi = gi(x)·C[i, hi(x)]. Each Yi is clearly unbiased,
since gi(x) maps to −1 or +1 with equal probability. Let Y be the
median of Yi, i = 1 . . . , d (assuming d is odd). The median of
independent unbiased estimators is not necessarily unbiased, but if
each estimator also has a symmetric pdf, then this is the case. This
result seems to be folklore. In our case, each Yi has a symmetric
pdf, so Y is still unbiased.

Using the same argument as for the Count-Min sketch, we have

Pr[|Yi − E[Yi]| > εn] < 1/4.

Since Y is the median of the Yi’s, by a Chernoff bound, we have

Pr[|Y − E[Y ]| > εn] < exp(−O(d)).

Now consider adding up log u such estimators; the sum must
still be unbiased. By the union bound, the probability that every
estimate has at most εn error is at least 1 − exp(−O(d)) · log u.
Conditioned upon this event happening, we can use Hoeffding’s
inequality to bound the probability that the sum of log u such (in-
dependent) estimators deviate from its mean by more than t as

2 exp

(
− 2t2

(2εn)2 log u

)
.

We see that if we set t = Θ
(
εn
√

log u
)
, this probability will

be a constant. This means that, summing over the log u levels,
the error only grows proportionally to a

√
log u factor, rather than

linearly in the number of levels.
To make this bound rigorous, we must ensure that all quantiles

are correct with constant probability. So each such sum should
fail with probability no more than ε/ log u. Thus, we set t =

Θ

(
εn
√

log u log( log u
ε

)

)
. In addition, we need to choose d =

Θ(log( log u
ε

)) to ensure that the prerequisite condition holds with
probability at least 1− ε/ log u. Finally, to get εn error in the end,

we use a parameter ε′ = ε

/√
log u log( log u

ε
) in the sketches.

Summing over all levels, we have the following guarantee.

THEOREM 1. There is a randomized algorithm in the turnstile
model that computes all ε-approximate quantiles with constant prob-
ability, using space O( 1

ε
log1.5 u log1.5( log u

ε
)). Its update time is

O(log u log( log u
ε

)).

Note that since u > 1/ε, this is never worse than the guarantee
from using the Count-Min sketch (for which symmetric estimators
are not known). We denote this algorithm as DCS.
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Figure 2: Distribution of MPCAT-OBS

3.4 A variant of the Count Sketch algorithm
Since every row in the Count Sketch is unbiased, it is natural to

consider the following variant. Instead of having d rows for the
sketch, we only use one row per sketch. But we build d indepen-
dent copies of the whole structure. To find the rank of an element,
we query all d structures and take the median. This still results in
an unbiased estimator, though the analysis is less forthcoming. We
include this variant, denoted as vDCS, in our experimental com-
parison. Note that it has the same space and update time as DCS.

4. EXPERIMENTS

4.1 Setup
We implemented all algorithms in C++, compiled with GCC.

The executables were tested under Linux 2.6.18 on a machine with
a 3GHz CPU, 6MB CPU cache and 16GB memory.

4.1.1 Data sets
We used 2 real data sets and 12 synthetic data sets in the exper-

iments. The first real data set is the MPCAT-OBS data set, which
is an observation archive available from the Minor Planet Center2.
We used the optical observation records from 1802 to 2012. The
records are ordered by the timestamp, and we feed the right ascen-
sions3 as a stream to the algorithms. The stream values appear to
arrive randomly overall, but consist of chunks of ordered data of
various lengths. This is because an observatory usually traces a
planet continuously in a session, and then moves on to other plan-
ets. The right ascension is not uniformly distributed, as shown in
Figure 2. This data set contains 87,688,123 records, and the right
ascensions are integers ranging from 0 to 8,639,999. The second
real data set is the terrain data for the Neuse River Basin4, which
contains LIDAR points measuring the elevation of the terrain. This
data set contains about 100 million points.

In order to study how different data characteristics affect the al-
gorithms’ performance, we also generated 12 synthetic data sets
with different sizes (107 to 1010), universe sizes (216 to 232), dis-
tributions (uniform and normal with different variances), and order
(random and sorted). Further details are given in context. Note
that we know that certain factors do not affect certain algorithms,
due to their definition. For example, the universe size and distribu-
tion should not affect any comparison-based algorithms; the stream
order should not affect (the space and accuracy of) the turnstile al-
gorithms; and the stream length should not affect q-digest and the
turnstile algorithms.

2http://www.minorplanetcenter.net/iau/ecs/
mpcat-obs/mpcat-obs.html
3Right ascension is an astronomical term used to locate a point (a
minor planet in this case) in the equatorial coordinate system.
4http://www.ncfloodmaps.com

4.1.2 Measures
We measure the algorithms along the following dimensions:

Space is one of the most important measures for streaming algo-
rithms. We report space usage in bytes, where every element from
the stream, counter, or pointer consumes 4 bytes. When an algo-
rithm uses auxiliary data structures such as a binary tree or a hash
table, the space needed by these internally is carefully accounted
for. For algorithms whose space usage changes over time, we mea-
sured the maximum space usage.

Update time is as important as space, if not more so, as it translates
to the throughput of the streaming algorithm. Prior empirical stud-
ies have overlooked this issue [13, 17]; more recent works on other
streaming problems have included time as a main consideration [6].
In our experiments, we measured the average wall-clock process-
ing time per element in the stream. In some cases, it is important
to bound the worst-case time per element, and some algorithms
periodically use a slower pruning procedure (e.g. a COMPRESS
or merge step). We note that standard de-amortization techniques,
such as use of buffering, can be adopted to avoid blocking opera-
tions.

Accuracy is the third factor we measure: we want to understand
the accuracy-space and accuracy-time tradeoffs. There are some
technical subtleties in measuring the error. The error parameter ε
used by the algorithms controls the accuracy, but it is not suited for
use as the measure of empirical accuracy for two reasons. First,
the error analysis usually considers worst-case input and may be
loose: the actual error could be substantially better; and second,
the deterministic algorithms provide an ε-error guarantee while the
randomized ones give such a guarantee only probabilistically, so it
is not a fair comparison. Therefore, in our experiments, we measure
the observed errors, and used the following two error metrics.

We first extract the φ-quantiles for φ = ε, 2ε, · · · , (1 − ε). For
each φ-quantile extracted, we compute its true rank from the data,
and take its difference from φn, divided by n. From all these errors,
we take the maximum and average values. The former is exactly the
Kolmogorov-Smirnov divergence between the true CDF and that of
the extracted quantiles, while the latter is determined by the total
variation distance of the two CDFs, both of which are standard
statistical distances between distributions. There is some ambiguity
over the rank of elements which appear multiple times in the data.
We favor the algorithms, so that the rank of such items is taken as
an interval. We compute the error as the difference from φn to the
closer interval endpoint, or 0 if φn is contained within the interval.

Thus, in total we make 5 measurements (space, time, ε, actual
maximum error, actual average error) for each algorithm in each
experiment. For randomized algorithms, we repeat the algorithm
100 times and take the average. For space reasons, we present a
selection of most representative results in this paper; the full com-
parison across all 9 algorithms and 5 measurements over 14 real and
synthetic data sets can be explored (anonymously) through an in-
teractive interface at http://quantiles.github.com. Be-
low, all results are on the MPCAT-OBS data set unless specified
otherwise.

4.2 Results on cash register algorithms

4.2.1 ε vs. actual error
Figures 3a and 3b show how the actual errors of the algorithms

deviate from the given ε parameter. All the deterministic algo-
rithms indeed never exceed the ε guarantee, and they usually obtain



10−6

10−5

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2 10−1

M
ax

im
um

E
rr

or

ε

(a) Maximum error — ε

10−6

10−5

10−4

10−3

10−2

10−1

10−5 10−4 10−3 10−2 10−1

A
ve

ra
ge

E
rr

or

ε

(b) Average error — ε

10−3

10−2

10−1

100

101

102

10−7 10−6 10−5 10−4 10−3 10−2

Sp
ac

e
(M

B
)

Average Error

(c) Space — Average Error

10−3

10−2

10−1

100

101

102

10−6 10−5 10−4 10−3 10−2 10−1

Sp
ac

e
(M

B
)

Maximum Error

(d) Space — Maximum Error

0

0.2

0.4

0.6

0.8

1

10−7 10−6 10−5 10−4 10−3 10−2

U
pd

at
e

Ti
m

e
(µ

s)

Average Error

(e) Time — Average Error

0

0.2

0.4

0.6

0.8

1

10−3 10−2 10−1 100 101 102

U
pd

at
e

Ti
m

e
(µ

s)

Space (MB)

(f) Time — Space

GKAdaptive GKMixed FastQDigest MRL99 Random ε

Figure 3: Results on MPCAT-OBS

average error between 1
4
ε and 2

3
ε. The maximum errors of Ran-

dom and MRL99 are much smaller than ε, and the average errors
are even smaller, revealing that their bounds are loose. We subse-
quently use the observed errors (max and average) as the primary
error metric.

4.2.2 Space
Figure 3c and 3d show the error-space tradeoff of the algorithms

using the max error and the average error, respectively. We see that
MRL99 and Random are the best two algorithms with very similar
performance. Between the two, MRL99 looks slightly better. This
shows that the detailed choices of MRL99 offer a minor advantage,
but not much. GKAdaptive comes quite close, especially when
max error is considered. GKMixed uses more space than GKAdap-
tive, despite using the more sophisticated COMPRESS procedure
that leads to theO( 1

ε
log(εn)) space guarantee. Recall that GKAdap-

tive uses a simple heuristic to remove tuples. FastQDigest uses the
largest space among all algorithms. Note that log u = 24 in this
case; we study other universe sizes subsequently.

4.2.3 Time
Figure 3e shows the tradeoff between error and the update time

per element for each algorithm. Here we use log scale on the x-axis
but linear scale on the y-axis, as the update time depends asymp-
totically on log(1/ε). Again, MRL99 and Random are the best
two algorithms in terms of running time (for achieving the same
error). Between the two, Random is slightly faster, due to the sim-
plicity of the merging procedure. These two algorithms are fast
for two reasons. First, they only sample a fraction of the stream
to process—although this only kicks in when n � 1/ε2. For
small n (equivalently, for small ε), they are very fast primarily due
to its simplicity: All they do are just sorting and merging! This
phenomenon is more prominent on the space-time tradeoff plot-

ted in Figure 3f, where all the algorithms, except for Random and
MRL99, suffer a big speed loss when their space use exceeds 5MB,
which is roughly the size of CPU cache. Recall that all these algo-
rithms perform a binary search for each incoming element, so their
running times are similar, and are not as cache-friendly as Random
or MRL99. As MRL99 and Random are similar in terms of both
space and time, we omit the results on MRL99 in the remaining
plots to improve readability.

4.2.4 Varying universe size and data skewness
From the analysis, q-digest should work better with a smaller

universe size. We tested the algorithms on synthetic data sets fol-
lowing a normal distribution, but with different universe sizes. The
length of the stream is fixed at n = 108, and elements arrive in
a random order. In Figures 4a and 4b, we plot the error-space
and error-time tradeoffs of FastQDigest on data sets with different
log u. We also plot the curves of GKAdaptive and Random, the
best deterministic and randomized comparison-based algorithms,
which are unaffected by the universe size5.

From the figures, we see that q-digest is only competitive when
log u = 16 and ε < 10−5. However, when this is the case,
storing the frequencies of all the u elements exactly only takes
0.25MB space. We also tested on data sets with different skewness
by changing the variance of the normal distribution, but did not ob-
serve significant changes in the performance of q-digest. Therefore,
we do not find any streaming situation where q-digest is the method
of choice. Nevertheless, the algorithm remains of importance, since
it is the only deterministic mergeable summary for quantiles [1],
needed when summaries are merged in an arbitrary fashion.

4.2.5 Varying stream length
5It is possible for the error to be affected due to more duplicates in
smaller universes, but we found this effect negligible in practice.
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We tested the algorithm on streams whose length increases from
107 to 1010, and plot how the time and space changes in Figures 5a
and 5b. We used uniformly distributed data, with the universe size
fixed at u = 232 and ε = 10−4. Elements arrive in a random order.
We observe that there is little direct effect on update time or space
usage as stream length grows, implying that these algorithms can
scale to increasingly large data sets. Indeed, the per-element up-
date time for Random actually decreases, due to random sampling
playing a more major role as n goes up. The update time of the
q-digest also goes down, since the cost of COMPRESS is amortized
over more elements. Recall that the algorithm executes COMPRESS
logn times throughout the whole stream.

Looking at Figure 5b, we see that the space used by GKAdaptive
and GKMixed is essentially flat; we conjecture that they have a
space bound independent of n on randomly ordered data. The space
used by Random is constant, because the buffers are pre-allocated
according to ε.

4.2.6 Sorted data
Finally, we tested how stream order affects the performance of

the algorithms. We generated uniformly distributed data with u =
232 and n = 108, and compared performance on the sorted and
randomly ordered streams. Here we show the results for GKAdap-
tive, Random, the two most competitive algorithms.

In Figure 6a, we see that when the stream order changes from
random to sorted, the update time of Random decreases while
that of GKAdaptive increases, and the gap widens for smaller er-
ror. Recall that for Random, the amortized cost of all the merges
per element is O(1), while that of sorting is O(log(1/ε)). When
the stream is already sorted, the cost of the sorting goes down to
O(1) as well (the sorting algorithm we use in our implementation

can make use of the existing sortedness in the data and reduce its
work). On the other hand, when the stream is sorted, GKAdaptive
has more trouble finding a removable element. When the stream is
random ordered, very often the newly inserted element can be im-
mediately removed. But when the stream is sorted, the heap always
has to be checked, leading to a slower running time.

In terms of space, from Figure 6b we see that GKAdaptive suf-
fers from the sorted data because it has more trouble removing ele-
ments. However, Random is taking advantage of it, due to its way
of sampling. When the data is sorted, the sampling part contributes
almost no error at all because the sampled elements are equally
spaced.

4.2.7 Conclusions for cash register algorithms
From our study, we can safely conclude that MRL99 and Ran-

dom are generally the best performing algorithms with very sim-
ilar behaviors. Random is slightly faster than MRL99, while the
latter uses slightly less spaces. As Random is much easier to im-
plement and has a better bound, it is our recommended method of
choice. GKAdaptive is also very competitive, and can be used
when a worst-case guarantee on the error is desired. However, note
that we still lack a guarantee on its size as it uses a heuristic to re-
move tuples. On the other hand, Random uses a fixed amount of
space that depends only on ε, and should be used when there is a
hard limit on space.

4.3 Results on turnstile algorithms
In this section, we compare the empirical performances of DCM,

DCS, and vDCS. We exclude the random subset sum sketch, as its
performance is much weaker than these three.

Although we are experimenting with turnstile algorithms, it is
not necessary to explicitly include deletions in the data sets: it is



0

0.2

0.4

0.6

0.8

1

10−6 10−5 10−4 10−3 10−2 10−1

U
pd

at
e

Ti
m

e
(µ

s)

Average Error

(a) Time — Average Error

10−4

10−3

10−2

10−1

100

101

10−6 10−5 10−4 10−3 10−2 10−1

Sp
ac

e
(M

B
)

Average Error

(b) Space — Average Error

GKAdaptive
GKAdaptive (sorted)
Random
Random (sorted)

Figure 6: Random order vs sorted — uniform distributed data, u = 232 and n = 108

Table 2: Tuning d for average error.

sketch size (KB)
d 64 128 256 512 1024 2048 4096

3 10.24 4.307 1.924 0.826 0.425 0.279 0.134
5 9.558 4.447 2.084 0.933 0.558 0.304 0.132
7 8.947 4.198 1.851 1.108 0.621 0.261 0.146
9 11.153 5.043 2.287 1.37 0.603 0.373 0.142
11 11.14 5.753 3.055 1.418 0.652 0.363 0.173
13 21.93 5.121 2.642 1.557 0.707 0.355 0.167

clear that the algorithms proceed in exactly the same way as on
insertion-only data sets. Deleting a previously inserted element
completely removes its impact on the data structure, so it has no
effect on the accuracy, either. What matters is only those elements
that remain.

4.3.1 Parameter tuning
Recall that all the three algorithms use a sketch that is aw×d ar-

ray, for each level in the dyadic hierarchy. Theoretically speaking,
w determines the error while d determines the confidence of obtain-
ing an estimate within the error bound. In Section 3 we have given
their relationships with the commonly used notion of an (ε, δ)-error
guarantee. Intuitively, both w and d are meant to reduce the ob-
served errors. So the question is, given a certain total sketch size,
what is the best allocation to w and d?

To this end, we first conduct a series of experiments trying out
different combinations of w and d. Specifically, for a fixed sketch
size, we vary d, which in turn determines w, and record the maxi-
mum and average errors of the computed quantiles. Here we used a
uniformly distributed data set with n = 107 elements drawn from
a universe of size u = 232.

In Table 2, we show the average errors (×10−4) of DCS using a
series of sketch sizes, and find out that d = 7 appears to be a good
choice. Similarly, we did the same for the maximum error in Table
3. We observe that for the maximum error, we generally require
a slightly larger d (which makes sense), but still 7 appears to be a
good choice. We performed the same study for DCM and vDCS
and found that d = 7 is the best choice there also. So we set d = 7
for all the subsequent experiments. We set w = 1/(ε log u) for
DCM and w = 1/(ε

√
log u) for DCS and vDCS.

4.3.2 ε vs. actual error
In Figure 7a and 7b, we plot the actual maximum and average

errors on the real data for different ε. This shows that the asymp-

Table 3: Tuning d for maximum error.

sketch size (KB)
d 64 128 256 512 1024 2048 4096

3 53.67 22.92 9.27 7.71 3.58 2.56 0.931
5 50.04 25.11 11.13 8.07 3.383 2.498 0.931
7 65.26 22.28 8.71 5.49 2.923 1.693 2.419
9 75.41 27.39 8.87 9.543 2.63 2.389 0.542
11 61.03 33.32 13.5 8.769 3.067 2.261 0.824
13 139.3 29.25 17.34 7.503 2.843 1.824 0.869

totic analysis is rather loose: The actual maximum error is typically
only ε/10, while the average error is even smaller.

The actual errors of these three algorithms appear similar, but
note that DCM has a larger size while DCS and vDCS have exactly
the same size. Looking more closely at the curves, we see that
DCM tends to be better in terms of the maximum error, but not as
good in terms of average error. This might be due to the fact that
the Count-Min sketch gives out biased estimators, while the Count
Sketch is unbiased. Subsequently we will use average error as the
error metric unless specified otherwise.

4.3.3 Space
Figure 7c shows the error-space tradeoffs of the algorithms. We

see that to achieve the same error, DCS and vDCS require only
about 1/10 of the space required by DCM. The gap appears to be
wider for larger error (or smaller space). One explanation is that,
when the sketches are smaller, more levels in the dyadic hierarchy
will use sketches as opposed to recording the frequencies exactly
(recall that we use exact counting when the reduced universe size
of a level is smaller than the sketch size). Thus, the effect of posi-
tive errors canceling with negative errors becomes more prominent.
The difference between DCS and vDCS is small, with DCS being
slightly better.

4.3.4 Time
Figure 7d shows the error-time tradeoff of these algorithms. Here,

DCS and vDCS have similar curves, which is expected, since they
have essentially the same structure and differ only in how quantiles
are extracted. But the curve of DCM is quite different.

More revealing is Figure 7e, which shows the space-time trade-
off. Here we see that all three algorithms behave similarly, with
DCM being slightly faster. This is expected, since if the space is
the same, they will update exactly the same number of counters
upon receiving an element. DCM is then slightly faster because it
has one less hash function to compute.
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Figure 7: Results on MPCAT-OBS

Looking at the three algorithms together, all of their update times
decrease first as space goes up, then increase, and then decrease
again. This phenomenon is the result of two competing factors.
First, as the sketch size increases, more top levels in the dyadic hi-
erarchy will store the exact frequencies instead of using sketches.
Updating such an exact level only takes constant time, while updat-
ing a sketch takes O(d) time. So in general the update time should
go down as the sketch size goes up. But on the other hand, as the
sketch size increases, the size of the whole data structure will even-
tually exceed the cache size (6MB), at which point we see a sharp
increase in the update time due to more cache misses.

It is also instructive to compare Figure 7c and 7d with Figure 3c
and 3e. This shows that the turnstile model in indeed more difficult
to deal with than the cash register model. To achieve the same ac-
curacy, the best turnstile algorithm has to spend significantly more
space and time (roughly by an order of magnitude) than the best
algorithm in the cash register model.

4.3.5 Varying universe size
The universe size u plays an important role in the turnstile al-

gorithms, as it determines the height of the dyadic hierarchy. We
tested the algorithms with data sets generated according to a Nor-
mal distribution with σ = 0.15, but on different universe sizes.
Figure 8a shows two series of trade-offs between error and space:
one is on u = 216, and the other is on u = 232. Clearly, we see
that a smaller universe indeed makes the algorithms more accurate,
or equivalently speaking, makes the data structures smaller. The
u = 216 curves halt at a small error value, since at this point the
algorithms have sufficient space to store all frequencies exactly.

Similarly, Figure 8b shows two series of trade-offs between er-
ror and update time for different universe sizes. Again, a small
universe makes the algorithms much faster.

4.3.6 Varying data skewness
Finally, we tested the algorithms on data sets with different lev-

els of skewness. We used data generated by a Normal distribution
with σ = 0.05 and 0.25. Data skewness does not obviously affect
space or time (for a given ε), so we only show how the actual er-
rors respond, in Figures 9a and 9b. From the figures, we see that
as the data gets less skewed, the accuracy improves for all three al-
gorithms. The improvement for DCM is very small, but it is more
prominent for DCS and vDCS. This again is predicted well by the
theory: Although in this paper, we analyzed the error of the Count
Sketch in terms of n, i.e., the first frequency moment (F1) of the
data, in order to get the theoretical bound, its error actually depends
more closely on the F2 of the data [4]. As the variance decreases,
the F2 decreases, and the Count Sketch gets more accurate. On the
other hand, the Count-Min sketch does not depend on the F2.

4.3.7 Conclusions for turnstile algorithms
From the experiments, it should be clear that DCS is the pre-

ferred turnstile algorithm for computing quantiles. DCM uses a
much larger amount of space than DCS. The difference between
DCS and vDCS is negligible, but DCS has a nice theoretical anal-
ysis. All algorithms have almost the same update time.
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