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Abstract—An electronic book may be viewed as an application with a multimedia database. We define an electronic textbook as an

electronic book that is used in conjunction with instructional resources such as lectures. In this paper, we propose an electronic

textbook data model with topics, topic sources,metalinks (relationships among topics), and instructional modules which are multimedia

presentations possibly capturing real-life lectures of instructors. Using the data model, the system provides users a topic-guided

multimedia lesson construction. This paper concentrates, in detail, on the use of one metalink type in lesson construction, namely,

prerequisite dependencies, and provides a sound and complete axiomatization of prerequisite dependencies. We present a simple

automated way of constructing lessons for users where the user lists a set of topic names (s)he is interested in, and the system

automatically constructs and delivers the “best” user-tailored lesson as a multimedia presentation, where “best” is characterized in

terms of both topic closures with respect to prerequisite dependencies and what the user knows about topics. We model and present

sample lesson construction requests for users, discuss their complexity, and give algorithms that evaluate such requests. For

expensive lesson construction requests, we list heuristics and empirically evaluate their performance. We also discuss the worst-case

performance guarantees of lesson request algorithms.

Index Terms—Electronic textbooks, electronic textbook data models, instructional modules, topics, lesson construction, lesson

construction heuristics, lesson complexity.
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1 INTRODUCTION

PRESENTLY, a large number of user manuals and books are
made available in electronic form over the Internet or in

CD-ROMs. These “electronic books” are typically large,
usually contain a hyperlinked table of contents, provide
indexed search facilities on keywords, and occasionally
have multimedia data such as images, maps, and audio/
video streams. There are now also electronic versions of
hardcopy textbooks on CDs or on the Web (e.g., see
NetLibrary [22]). In this paper, we are interested in electronic
textbooks, which we view to be electronic versions of
hardcopy textbooks, enhanced by other instructional
resources containing, among others, precaptured multi-
media presentations about topics in the book. In this paper,
our goal is to develop generic and domain-application-
independent techniques for automated assembly of lessons
from electronic textbooks. We

1. formalize concepts about electronic textbooks in
particular and educational technology, in general,

2. relate data modeling and instructional design,

3. analyze the complexity of automated lesson con-
struction from topics and instructional modules, and

4. give heuristics when it is infeasible to find the “best”
lesson.

We identify three data-centric research issues for electro-
nic textbooks: Defining

1. a very basic data model for electronic textbooks with
instructional resources about topics,

2. simple ways of topic-based searching and extracting
information from electronic textbooks for computer-
naı̈ve users, and

3. a query language for more advanced users to query
the information in electronic textbooks.

This paper deals with the first two of the above-listed
issues.

We assume that multimedia presentations of instructors
about topics in a book are captured and enhanced with
content-based information, tags, annotations, etc. We call
each such unit of data an instructional module, and maintain
it in the electronic textbook database. As an example, an
instructional module can be an enhanced, tagged, anno-
tated, and catalogued version of a course lecture, a tutorial,
or a seminar. It may contain instructors’ audio/video clips,
students’ audio/video clips interacting with instructors,
whiteboards, animated data, slides, text, etc. [14]. This way,
a content-based model of instructional modules is provided.
The DBMS maintains users’ knowledge levels on topics,
and allows automated construction of user-tailored multi-
media lessons from instructional modules. We define the
notions of teaching and learning topics, and use them in
defining lessons, which are multimedia presentations. In
short, the electronic textbook application has the ability to
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1) model its data and 2) automatically create lessons as
multimedia presentations.

Our electronic textbook data model, adapted from the
industry standard topic maps data model [34], contains

1. topic entities (or, simply topics) with topic names,
topic types, topic detail levels, topic domains, topic
hierarchies, etc. (which constitutes metadata),

2. metalinks, which are relationships between topics
(also metadata),

3. topic sources which are parts of the textbook (e.g.,
paragraphs, or sections containing text, figures,
tables, etc., of the actual textbook and, hence,
constitute data. Also note that topic sources con-
stitute the simplest form of instructional modules.),

4. instructional modules, and
5. explicit knowledge levels of users on each topic.

We investigate, in-depth, just one specific metalink type,
namely, prerequisite dependencies that specify the order of
presenting different topics at different knowledge levels.

Section 2 discusses related work. In Section 3, we list the
main features of the electronic textbook data model to be
used as a basis in the rest of the paper. Section 4 discusses
the use of the data model in constructing lessons. In
Section 5, we present the axiomatization of prerequisite
dependencies. Section 6 discusses automated construction
of the best lesson for a specific lesson construction request.
Section 7 concludes our article.

2 RELATED WORK

Advantages of using multimedia in learning, in general, have
been reported in the literature [26], [6], [31], [7], [18], [27]. The
Open eBook Forum (OeBF) [24] is an international trade and
standards organization for the development of e-book
applications. In [9], an example of a commercial electronic
publishing system that provides online books is given. The
BookWorks application combines full-text search and navi-
gation tools, has full multimedia support with access to the
Web, and allows users to organize their data. Net Library [22]
is another online textbook system that allows users to keep
personal notes in a database.

The Multibook effort (iTeach and IT-Beankit projects) [28],
[32], [33] builds a Web-based adaptive hypermedia learning
system (knowledge networks): It describes the resources by
metadata, connects them by relations, and has an ontology
containing all relevant concepts. It considers large user
groups, user levels and learning strategies, gains informa-
tion from interactions with users, and uses standardized
content relations and metainformation to adaptively com-
pile a selection from the set of available information units. A
subset of the metainformation represents a “compiled
lesson” at a high level, and is presented to the learner as
a dynamically generated table of contents. IT-Beankit
describes a three-tiered layered interactive approach for
the visualization content according to the user’s needs using
metadata.

The Instructional Architect [25] project builds a suite of
tools to enhance teachers’ and students’ use of “learning
objects” within educational digital libraries. The emphasis
is to define learning objects to support inquiry-based online

learning, and to mass customize and personalize learning
for instructional use.

The Walden’s Paths project [35] develops tools for
tailoring multimedia materials available on the Web and
making them available to students. The two projects of this
effort are the Path Authoring Tool and the Path Server. The
Path Authoring Tool enables primary or secondary school
teachers to create, modify, validate, and reuse paths over
the Web and over paths that have been developed
previously. The Path Server is the implementation means
through which students use the paths.

ARIADNE projects [2] developed tools and methodolo-
gies for producing, managing, and reusing computer-based
pedagogical elements and training curricula. The Simulation
Authoring Tool allows users to develop models of generic,
goal-oriented simulations in specified fields. Once a model
is available, educators specify the scenario of their own
exercise or simulation-based courseware. The Questionnaire
Authoring Tool helps educators create, generate, and analyze
computerized questionnaires, which can either be executed
locally or remotely. The Autoevaluation Exercise Authoring
Tool enables the student to solve a problem, with
hypermedia access to pertinent information for under-
standing the learned concepts. There are also the Pedagogic
Hypertext Generator tool and the Video Clip Generator tool.

Our proposal is distinguished from the above works by
its data-centric view of electronic textbooks and its use of
the topic-oriented data model with metalinks. To the best of
our knowledge, our electronic textbook data model and
topic closure-based automated lesson construction are both
new contributions.

We now summarize the Topic Map data model, as
described in [34]. The definition of a topic is very general: A
topic can be anything about which anything can be asserted by
any means. As an example, in the context of the encyclope-
dia, the country Spain or the city Rome are topics (about
subjects). Topics are typed (e.g., type of the topic Rome is
city) and have names. Topic names are also typed; e.g., base
name (required), display name (optional), etc. Topic names
have scopes, e.g., language, style, domain, etc. Topics have
occurrences (sources) within addressable information re-
sources. For example, a topic can be described in a
monograph, depicted in a video or a picture, or mentioned
in the context of something else. Moreover, each occurrence
is typed using the notion of occurrence role. A topic association
specifies a relationship between two or more topics. For
example, topic Rome is-in topic Italy; topic Tom Robbins
was-born-in topic US, etc. A topic map is a structure, perhaps
a file or a database or an XML document, which contains a
topic data model, together with occurrences, types, con-
texts, and associations. From the descriptions above, a Topic
Map data model is similar to the Entity-Relationship model
specialized for the abstract domain of topics and topic-
related information.

The Resource Description Framework (RDF) [19] is
designed to describe Web information sources by attaching
metadata specified in XML. RDF is a graph-based informa-
tion model, and consists of a set of statements, represented
as triples. A triple denotes an edge between two nodes, and
has a property name (edge), a resource (node), and a value
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(node). A resource can be anything from a Web document
to an abstract notion. A value can be a resource or a literal.
A literal is an atomic type, e.g., real, integer, string. RDF
Schema [4] defines a type system for RDF, and is similar to
the type systems of object-oriented programming languages
such as Java. RDF Schema allows the definition of classes for
resources and property types. The resource Class is used to
type resources, and the resource Type is used to type
properties. Various properties such as SubClassOf, SubPro-
pertyOf, isDefinedBy, seeAlso, and type are available. Various
constraints on resources (e.g., ConstraintResource), and on
properties (e.g., range and domain constraints, which restrict
the range and the domain of a property, respectively) also
are available.

3 ELECTRONIC TEXTBOOK DATA MODEL

Clearly, one may model very different aspects of electronic
textbooks. In what follows, we only model topics, topic
sources with detail levels, metalinks, users’ knowledge
levels, multimedia instructional modules, and lessons. Also,
note that, in choosing the features of the data model (and in
lesson requests later in Section 6), we have tried to be as
generic as possible. Nevertheless, we have made decisions
(such as the chosen set of topic attributes, etc.) based on our
experiences as educators in computer science, which may
not apply to textbooks in other disciplines, or may not
match with the experiences of other educators.

3.1 Topic Entities and Topic Sources

The topic entity constitutes metadata, and we assume that
the electronic textbook is modeled in terms of topics. We
envision that the topics for an electronic book are derived
using automated techniques from information retrieval
[29] (first stage), and then revised using data mining
techniques [17] (second stage). For example, one approach
in information retrieval is to use the vector space model,
e.g., the TF-IDF (Term Frequency-Inverse Domain Fre-
quency) model, and to create a “word list” [29], [12]
which may be viewed as topics. One can then use data
mining techniques to further locate “semantically mean-
ingful” topics and to reduce the number of topics
obtained in the first stage. In [23], we have used this
approach to generate about 43,000 topics in the first stage
and 10,000 topics in the second stage from the titles of
221,000 conference and journal papers in the DBLP
Bibliography [13]. Alternatively, topics also may be
generated manually by experts, e.g., the author of the
textbook, or an instructor who uses the textbook.

The notion of topic in hardcopy books (and textbooks) is
not new: Topics in their simplest form as keywords appear
as part of a book index at the end of each hardcopy book.
We expand this notion as a topic entity, where a topic entity
has a unique topic identifier, a topic name (Tname) (arbitrarily
specified phrases or words, e.g., “basics of data models”
that characterize the data in the electronic book), a topic type
(Ttype), e.g., “database textbook author,” “research article
author,” “survey,” “introductory chapter”) specifying the
type of the topic, a topic domain (Tdomain) (e.g., “intro-
ductory database information for CS undergraduates”)
specifying the domain within which the topic is to be used,

and an integer-valued maximum detail level. The attributes
(Tname, Ttype, Tdomain) constitute a key for the topic
entity. And, the Tid attribute is also a key for topics. A topic
is instantiated by a topic source in the electronic book, which
is part of the text such as a paragraph, multiple paragraphs
from different parts of the book, or a section in the book.
Each topic source has an integer-valued topic detail level
describing how advanced the level of the topic source is.
For example, the knowledge of a user on the topic
“relational calculus” can be at a beginner (i.e., detail
level 1) level, e.g., only “relational calculus with proposi-
tional calculus formulas.” Or, it may be at an advanced (say,
detail level n) level, e.g., “relational calculus and its safety,”
etc. Topic x at detail level i is more advanced (i.e., more
detailed) than topic x at detail level j when i > j.

Topics have topic sources, which refer to parts of the
electronic textbook. For example, for the topic “relational
query languages,” Section 3.1 of the electronic textbook may
be a topic source at detail level 1 (beginner). Or, Section 3.2
of the textbook may be a topic source at detail level 2
(intermediate) for the topic “SQL query specification,” etc.
For a given topic, it is possible to have multiple topic
sources at the same detail level.

3.2 Metalinks and Topic Closure

Topic Metalinks represent relationships among topics. Any
relationship involving topics deemed suitable by an expert
in the field can be a topic metalink. For instance, Prerequisite,
RelatedTo, and WrittenBy are possible metalink types.
SubTopicOf and SuperTopicOf metalink types together would
represent a topic composition hierarchy. Metalinks repre-
sent relationships among topics, not topic sources. There-
fore, they are metarelationships, hence, our choice of the term
“metalink.” Metalink types are usually recursive relation-
ships, and may have as attributes types, roles, domains, etc.
Each metalink type has a signature, e.g., the RelatedToPapers
metalink type has the signature

RelatedToPapers : PaperId ! PaperIdI:

In this paper, we concentrate solely on one metalink type,
namely, the Prerequisite metalink type with the signature
Prerequisite: SetOf Topic ! SetOf Topic.

Some hardcopy textbooks provide “dependency diagrams”
in an attempt to help instructors and students choose the
order of topic coverage. For example, the prerequisite to
discussing the topic relational algebra in a database course is
the coverage of the topic relational data model. We formalize
this concept into the metalink type of prerequisite dependen-
cies among topics, and use it (and the existing instructional
modules in the database) for automated lesson (i.e., multi-
media presentation) construction. For example, the pre-
requisite dependency “the topic relational algebra (ra) should
be taught after teaching the topic relational data model (rm)”
implies that the dependency ra ! rm holds. In a given
course, if topic y is a prerequisite to another topic x (i.e.,
x ! y holds), for the cohesiveness of the course, the
instructor makes sure that topic y is covered first, and
topic x is covered next. We require that, when a student
requests a lesson (a multimedia presentation) on topic x,
and those instructional modules that correspond to topic y

OZSOYOGLU ET AL.: ON AUTOMATED LESSON CONSTRUCTION FROM ELECTRONIC TEXTBOOKS 3



have not yet been rendered, then the constructed lesson
should also have the topic sources and the instructional
modules that correspond to topic y. Note that we actually
use prerequisite dependencies among topics at different
detail levels, e.g., the prerequisite dependency ra4 ! rm1

states that “the prerequisite to teaching relational algebra at
the detail level 4 is teaching relational data model at the
detail level 1 or higher.” As an illustration, consider the
interpretation of the prerequisite dependency shown in
Fig. 1: If topic x at level 3 is presented in a lesson, say S, then
topic y at level 2 or a higher level must either 1) be in S
before x, or 2) the user knows y at level 2 already. That is,
the prerequisite dependency x3 ! y2 holds. Note that, in
this prerequisite dependency, the right-hand side specifies
“topic y at level 2 or a level higher than 2,” as opposed to
“topic y at level 2.” Also, note that new constraints such as
the consistency constraint as illustrated in Fig. 1 (e.g.,
forbidding the crossing over two dependencies), may be
needed [3].

As stated before, metalink types are usually recursive.
For example, the metalink type RelatedTo is both transitive
and reflexive. Metalink type IsIn is transitive, but not
reflexive; metalink type SubTopicOf is transitive. In an
electronic textbook application, when a user lists a set X of
topics and asks for topic sources of topics in X as well as
others that are prerequisite(s) of topics in X, we need to take
the “topic closure” of the topic set X with respect to the
recursive metalink type Prerequisite. We emphasize the
notion of Topic Closure with respect to prerequisite
dependencies, in order to return query results that satisfy
all prerequisite dependencies. Given a set X of topics, the
query response will include the topic closure Xþ, which is
formed of all topics that are logically implied by the initial
set X. Clearly, computing topic closures requires a sound
and complete set of prerequisite dependency axioms, and a
polynomial-time algorithm that computes the topic closure
using the axioms. We discuss the axiomatization of
prerequisite dependencies and the computation of topic
closures in Section 5.

3.3 Personalization: User Profiles

User profiles contain the knowledge levels of users about
topics as well as other information such as users’
preferences. Other information kept in user profiles may
be sections (chapters, examples, pictures, etc.) of electronic
books that are read or viewed by users, the number of times
each section is taught, and the time spent on sections. To
simplify our presentation, in this paper, we only deal with

one piece of user profile information: users’ knowledge
levels on topics. For a given user and a topic, the knowledge
level of the user on the topic (zero, originally) is kept in the
user profile.

3.4 Multimedia Instructional Modules

An instructional module is a multimedia presentation that
describes and illustrates one or more topics. We assume that
the electronic textbook has a number of instructional
modules on topics. An instructional module is a synchro-
nized multimedia presentation which contains audio/video
segments of instructors, students, teaching assistants, as
well as images, text, animation, and whiteboards used by
instructors and students, etc. As an example, a specific
instructional module M3 may exist for the topic name
“Instructor John Doe explaining SQL Triggers operator.” In
Fig. 3, using the horizontal x-axis as a timeline, an
instructional module is illustrated. Possibly, an instruc-
tional module is captured in real-time from a live lecture
session in an automated manner (we have built such a tool
in an electronic classroom project [14]). It is then analyzed
and enhanced by a domain expert (instructor or someone
highly trained in the subject matter) by identifying
important and relevant parts and content information,
tagging different media, cross-referencing, etc., and entered
into the database. In its simplest form, an instructional
module may consist of a topic source. We expect that the
process of instructional module creation is a labor-intensive
but one-time task.

There may be various relationships between topics and
instructional modules as topic sources, e.g., mappings
between instructional modules and topics as illustrated in
Fig. 2. For the sake of simplicity, we assume that each topic
maps to a set of modules. In practice, a topic may only map
to parts of a module, e.g., “the first 20 minutes of the
instructional module M is about the topic Databases.” Next,
we define the notions of teaching and learning.

Definition 1 (Teaching). Topic t is said to be taught at level i if
a lesson that covers the topic t at level i and all the prerequisite
topics of t at level i are rendered to the user at least once. Such
a lesson is said to be a teaching lesson for topic t at level i.

Thus, in this paper, we assume that users are taught a topic
if they view the corresponding lesson once. How do we
model as to whether users “learn” a topic? A common
measure for learning is the concept of “testing:” One may
assume that, for each topic and its level, there is a timed test
in the database that evaluates the users’ knowledge on the
topic at that level. The test is passed when the user obtains a
score above a predefined threshold. As in a traditional
classroom environment, testing is not always sufficient by
itself to make sure that topics are “learned” by electronic
book users. Developing a deeper learning behavior for
electronic book users is a research topic for education
specialists. In this paper, we will make the, perhaps
insufficient, assumption that for electronic textbook users,
given a topic, passing the associated test constitutes
“learning” the topic at that level. Thus, we will not deal
with learning at different taxonomy levels, as specified by
Bloom [5].
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Definition 2 (Learning). Topic t is said to be learned at level i
by a user if the user passes the test for t at level i. A learning
lesson for topic t at level i is a lesson that includes in it the test
for t at level i.

4 MAKING USE OF THE DATA MODEL

4.1 Lesson Construction Based on
Prerequisite Topic Closures

Users request multimedia lessons from the electronic text-
book application where each lesson contains one or more
instruction instructional modules. Thus, a lesson is also a
multimedia presentation. The electronic textbook applica-
tion is to construct from instructional modules “semanti-
cally coherent” lessons that satisfy the prerequisite
dependencies: Given a set X of topics by a user, the sytem
finds the closure Xþ of all topics that contains all the
prerequisite topics of X (i.e., topic closure with respect to
prerequisite dependencies), eliminates from Xþ those topics
that are already known by users to obtain the set T of topics,
and prepares a lesson L from the instructional modules for
the topics in T.

All the topics in the topic set T must be covered by the
lesson L. We say that lesson L containing a set of
instructional modules covers topic t at level i if L contains
all the instructional modules in the mapping from the topic
t at level i to the set of instructional modules.

For the sake of simplicity, in this paper, we assume that
there is a total ordering of all the instructional modules in
the database so that, for a given lesson L containing a
number of instructional modules to be rendered (i.e., played
out), the modules in L are ordered into a sequence. Thus,
we assume that any chosen sets of instructional modules are
always ordered by this total ordering in order to form a

lesson. In reality, a lesson as a multimedia presentation can
be formed by selectively choosing or eliminating different
media in the chosen instructional modules, and by “mer-
ging” instructional modules using height and length
constraints [15], [16]. The resulting multimedia presentation
in such a case can be viewed as a directed acyclic graph
with nodes representing the media and edges representing
the presentation ordering of media.

Section 6 deals with lesson construction requests based
on prerequisite topic closures.

4.2 Topic Closures with Regular Expressions and
Values, and Querying Topics

In this paper, we assume that a dependency (i.e., a
metalink) between topics either exists and has to be
employed for topic closure, or it does not exist. In reality,
dependencies have relative “significance” or “importance”
or “validity” values, e.g., topic A is a prerequisite of topic B
with the importance value of 0.7, where the values are
normalized to the range [0, 1]. Then, users’ requests are in
the form of “give all the prerequisites of the topic set X with
an importance value above a given threshold”. In a recent
work, we call such requests threshold-based closure requests
[23]. An alternative request is “give the k highest-scored
prerequisites of the topic set X,” which we call as top-k
closure requests [23], [10], [11]).

One can generalize the notion of topic closure with respect
to a single dependency type into a topic closure with respect
to a regular expression of multiple dependency types. For
example, assume that we have 1) the dependency type
ResearchArticlesOf with the signature ResearchArticlesOf:
Topic ! SetOfPaper, which, given a topic, lists the related
research articles in the book, and 2) the dependency type
AuthorOf with signature AuthorOf: Paper ! SetOfAuthor,
which, given a reference paper, returns the authors of that
paper. And, assume that the function TopicSourcesOf takes a
set of topics and returns the associated topic sources, i.e., parts
of the actual textbook. TopicSourcesOf has the signature
TopicSourcesOf: SetOfTopic ! SetOfTopicSource. Then,
given a set X of topics by users, the topic closure X with
respect to the regular expression TopicSourcesOf (AuthorOf
(ReferencesOf (Prerequisites* (X)))) returns the topic sources of
the authors of papers referenced by the topics in X and all of
their prerequisites (here, * denotes the Kleene star). Note that
here, papers and authors are also topics. In our recent work
[23], we define such a topic closure operator within the
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context of an object-relational model of topics with impor-
tance values, metalinks with importance values, and topic
sources, and investigate its evaluation techniques.

In [1], [23], we described an SQL-like language for
retrieving topic sources (in our case, parts of electronic
textbooks), and discussed its query processing issues. These
languages can easily be extended into electronic textbooks,
which, for space limitations, we do not discuss here.

5 PREREQUISITE DEPENDENCIES AND

TOPIC CLOSURE COMPUTATION

This section discusses the axiomatization of prerequisite
dependencies, the sole metalink type investigated in this
paper, and presents polynomial-time topic closure algo-
rithms. In order to compute topic closures with respect to
prerequisite dependencies, we classify prerequisite depen-
dencies into four classes in terms of cyclicity/acyclicity and
whether a dependency is left-hand side-decomposable or
not. For each class, in Sections 5.1, 5.2, 5.3, and 5.4, we
discuss how to compute topic closures. In Section 5.4, for
acyclic and nondecomposable prerequisite dependencies,
we define two new axioms, prove their soundness and
completeness, present the topic closure algorithm, and
prove its correctness.

We classify prerequisite dependencies as 1) cyclic (e.g.,
x ! x forms a trivial cycle; x ! y and y ! x form a
nontrivial cycle) or acyclic (e.g., trivial or nontrivial cycles
are not allowed), 2) (left-hand side) decomposable (e.g.,
xy ! z is equivalent to x ! z and y ! z) or nondecomposable
(e.g., xy ! z is not equivalent to x ! z and y ! z). Next, we
define what it means for a set of dependencies to be acyclic.

Defintion 3. A set of dependencies is strongly cyclic if, applying
the rule of transitivity, it is possible to deduce that a topic depends
on itself. For example, the set F ¼ fx ! y; y ! z; z ! xg is
strongly cyclic. This still holds if x represents a set of topics.

Definition 4. A set of dependencies is weakly cyclic if, treating
the set of dependencies as decomposable and applying the rule
of transitivity, it is possible to deduce that a topic depends on
itself. For example, the set F ¼ fwx ! y; yz ! V;V ! wg is
weakly cyclic.

A set of dependencies is considered to be acyclic if it is
neither weakly cyclic nor strongly cyclic. Absence of weak
cycles implies the absence of strong cycles.

The simplest prerequisite dependency model commonly
used in hardcopy textbooks allows only acyclic and
decomposable prerequisite dependencies. However, when
the semantics of applications require or when dependencies
are created in automated ways using data mining or
information retrieval techniques, one also can have electro-
nic textbook environments in which prerequisite depen-
dencies are cyclic and/or nondecomposable [3]. Consider
the case of a cycle of three prerequisite dependencies,
namely, x ! y, y ! z, z ! x, among topics x, y, and z. We
interpret this cycle as “in any lesson request having one of
topics x, y, or z, the instructional modules that cover all
three topics must be included into the constructed lesson.”
Clearly, this attaches a separate semantics to a cycle of

prerequisite dependencies, which overrides the semantics
of each individual prerequisite dependency in the cycle.

As for decomposability, consider the prerequisite de-
pendency ab ! c which states that “a and b together in a
presentation request have c as the prerequisite” or “the
prerequisite of a and b is c.” We say that ab ! c is
nondecomposable if ab ! c does not imply that a ! c and
b ! c. (Note that the reverse is always true, i.e., the
prerequisite dependencies a ! c and b ! c always imply
the prerequisite dependency ab ! c). Below, we illustrate a
case of nondecomposable prerequisite dependencies.

Example 1. Consider the three topics, 1) “Training for high
school downhill ski racing,” 2) “Training for state slalom
downhill ski racing,” and 3) “Advanced Strength
Training.” For learning about either topic 1) (i.e., high
school racing) or topic 2) (i.e., state racing) alone, one
does not need to learn about 3) (Advanced Strength
Training), but for the two together, one needs the
advanced strength training—purportedly because there
will be too many races in a season so that one needs to be
much stronger physically to handle both at the same
time. That is, ab ! c is not equivalent to a ! c and
b ! c. The nondecomposibility requirement in ab ! c
states that, to learn a and b, one first needs to learn c
while, for learning a or b alone, it is not necessary to
learn c first. Here, a and b are not independent in the
sense that learning one of the two alone does not need c,
but learning both pushes the requirement high enough
for c to become a prerequisite.

In the rest of this section, we discuss how to compute
topic closures when prerequisite dependencies are cyclic/
acyclic and decomposable/nondecomposable.

5.1 Cyclic and Nondecomposable
Prerequisite Dependencies

If prerequisite dependencies are nondecomposable and
allowed to be cyclic, then their semantics is equivalent to
the semantics of functional dependencies. That is, prere-
quisite dependencies can be axiomatized using Armstrong’s
axioms, which are sound and complete [36]. One can then
compute Pþ, the closure (i.e., the set of implied prerequisite
dependencies) of a set P of prerequisite dependencies. More
interestingly, one can find the closure (i.e., all the
prerequisite topics) Xþ of a set X of topics by using the
O(N.L) closure algorithm for a set of attributes [36] where N
is the number of prerequisite dependencies and L is the
length of the encoding for a prerequisite dependency.

Assume that there is a nondecomposable prerequisite
dependency xy ! z. First, the user u asks for a lesson which
includes x, but does not include y or z. Later, the user u asks
for another lesson which includes y, but does not include x
or z. As a result of these two lessons, user u will be taught x
and y, but not z, thus violating the prerequisite dependency
xy ! z. One possible solution to this problem is to utilize
the user profiles. Since user profiles contain users’ knowl-
edge about all instructional modules that are taught to the
user, topic z coverage can be added to the second lesson
request when topic y is requested (since it is known in the
user profile that x was taught to the user before).
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5.2 Acyclic and Decomposable Prerequisite
Dependencies

If prerequisite dependencies are acyclic and decomposable,
then a given topic cannot be a prerequisite to itself. This
means that the reflexivity axiom for functional dependen-
cies does not apply to prerequisite dependencies of this
model. Similarly, the augmentation axiom of functional
dependencies does not apply either [3]. For this case, to find
the closure Pþ of a set P of prerequisite dependencies, we
can first fully decompose all prerequisite dependencies into
P0 so as to have only one topic in the left-hand side and the
right-hand side of each dependency. Then, we can create a
dependency graph GPðV;EÞ, where V is the set of topics,
and the set E of edges contains the edge from node a to
node b iff P0 contains the prerequisite dependency a ! b.
The closure Pþ of P can then be found by finding the
transitive closure of GP. And, the closure Xþ of a set of
topics X can be found by finding all topics that contain
nodes in GP reachable from each of the nodes in X. Also
note that we can check the acyclicity of a set of prerequisite
dependencies in this model by simply checking the
existence of a cycle in its precedence graph in linear time.

5.3 Cyclic and Decomposable Prerequisite
Dependencies

If prerequisite dependencies are cyclic and nondecompo-
sable, then finding the closure Pþ of a set P of prerequisite
dependencies is identical to the solution of Section 5.2
above. We first fully decompose all prerequisite dependen-
cies in P into P0 so as to have only one topic in the left-hand
side and the right-hand side of each dependency. Then, we
create the dependency graph GPðV;EÞ, where V is the set of
topics, and the set E of edges contains the directed edge
from node a to node b iff P0 contains the prerequisite
dependency a ! b. The closure Pþ of P can be found by
finding the transitive closure of GP. And, the closure Xþ of a
set of topics X can be found by finding all nodes in GP

reachable from each of the nodes in X.

5.4 Acyclic and Nondecomposable
Prerequisite Dependencies

If prerequisite dependencies are acyclic and nondecompo-
sable, then the left-hand side of a prerequisite dependency
may contain multiple topics. In this case, one may think of
using a dependency graph where the node from which an
edge emanates contains a set of topics. Such a graph leads to a
hypergraph as a dependency graph. However, unlike the
solutions in Sections 5.2 and 5.3, the transitive closure of such
a graph would not capture all the dependencies. Consider, for
example, the set of dependencies fx ! a; ab ! cg, and the
request for the closure of the set fx; bg of topics. The transitive
closure of the dependency graph returns fx; a; bg as the
answer whereas the correct answer should be fx; a; b; cg.

Thus, transitivity itself is not sufficient for topic closure. We

also observe that Armstrong’s Axioms, used to axiomatize

standard functional dependencies, are not appropriate when

acyclicity is demanded: The axiom of reflexivity generates

trivial (weak) cycles, as does the axiom of augmentation.

Next, we give a sound and complete axiomatization for this
case, and describe a topic closure algorithm. We first define

two axioms.

Definition 5. Pseudotransitivity axiom: If x ! y and wy ! z,

then wx ! z.

Definition 6. Split/join axiom: If x ! ab, then x ! a and

x ! b, and vice-versa.

Proofs of all lemmas and theorems are given in the

Appendix which can be found on the Computer Society

Digital Library at http://computer.org/tkde/archives.htm.

Theorem 1. The pseudotransitivity and split/join axioms are

sound and complete.

Algorithm TC in Fig. 4, which is similar to the algorithm

to compute the closure of functional dependencies [36],

computes the closure of a set of topics X.
The algorithm TC terminates when XðjÞ ¼ Xðjþ1Þ (when

no dependency can be invoked), and the output Xþ is XðjÞ.

Clearly, it always will terminate.

Lemma 1. Algorithm TC correctly computes Xþ.

Algorithm TC is functionally equivalent to that described

for cyclic and nondecomposable dependencies of

Section 5.1, and runs in time linear in the size of the

representation of the dependencies. Finally, we show that

our system does not break the condition of acyclicity.

Lemma 2. Computation of the closure of a set of topics X under a

set F of acyclic nondecomposable dependencies does not violate

acyclicity. That is, X ) Xþ will not imply any cycles.

6 AUTOMATED LESSON CONSTRUCTION

What would be the common features of lesson requests?

While this question needs to be answered empirically when

electronic textbooks with lessons are commonplace, in our

opinion, most lesson requests will have the following

features.

1. Lessons about topics. An example request is “prepare a
lesson on topics x at level i and y at level j.” Clearly,
this corresponds to computing the closure Xþ of the
topic set X ¼ fxi; yjg which, from Section 5 above,
we know to be O(N) for all four prerequisite
dependency types, where N is the number of topics
in the database and the length of a dependency
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encoding is one. We view this request to be the most
basic lesson request.

2. Lessons with the highest detail levels of topics.
3. Lessons with as many covered topics as possible.
4. Lessons with time constraints (e.g., an upper bound tUB

on the time length of the lesson). An example is
“prepare a lesson on topic x which is at most
30 minutes long.”

5. Lessons in which users prioritize topics and request an
optimization of the total topic priorities in the lesson.

6. Lessons tied to a quantifiable increase, say integer k, in the
user’s knowledge level(s) on a given topic. An example is
“prepare a lesson (i.e., one with tests) on topic x that,
if I pass the tests in the lesson, increases my current
knowledge on topic x by k units (e.g., from
“beginner” to “intermediate”).”

7. Lessons constructed around tests, assignments, quizzes,
chapters, etc. An example is “Prepare a lesson on (the
topics covered in) the current assignment.” We
assume that there are mappings from tests, quizzes,
assignments, chapters, etc., into topics; and these
requests reduce to requests of type 1 above.

8. Lessons constructed around instructional module con-
tents. An example is “prepare a lesson that contains
all the audio/video question streams of student John
Smith.” One can characterize such lesson requests as
requests of the type “prepare a lesson request that
contains instructional modules (or their media
components) satisfying a Boolean condition C about
module contents.” Such lesson requests require an
extension to our data model in that the content
semantics of instructional modules need to be
modeled [20], [21]. In this paper, we will not be
dealing with such lesson requests.

In the next section, we characterize and classify a
number of automated lesson construction requests that
represent combinations of lessons of type 2 through 6
above, and discuss how they can be evaluated.

6.1 Automated Lesson Construction Requests

The lesson construction requests described in this section
have different solutions for each prerequisite dependency
case described in Section 5. The differences between the
solutions are in the handling of cycles. Topic closure
calculation is included in deciding the complexity of the
algorithms: Topic closure can be calculated with the same
algorithm in O(N) for all four cases, where N is the number

of topics in the database and the length of a dependency
encoding is one.

Lesson Request 1. Given 1) the user’s knowledge levels
for topics, 2) the set X of topics, and 3) prerequisite
dependencies in the electronic textbook, produce a lesson
that covers topics X at the highest levels.

Request 1 can be evaluated by a polynomial-time algo-
rithm as follows: First, we calculate the topic closure Xþ of X
using the highest detail level. Then, we eliminate the topics
known by the user from Xþ. The last step is to find the
instructional modules that map to the topics that are left in
Xþ, and to order them (using their total ordering) to obtain a
lesson. Step 1 has complexity O(N) where N is the number of
topics in the database, and Steps 2 and 3 each have O(M)
complexity, where M is the number of topics in Xþ.

Lesson Request 2. Given 1) the user’s knowledge levels
for topics, 2) prerequisite dependencies in the electronic
textbook, 3) the set X of topics, and 4) an upper bound tUB
on the lesson timelength, produce within the time bound
tUB a lesson that covers all the topics in X where all the
topics are at the same and the highest possible levels.

Request 2 can also be evaluated by a polynomial-time
algorithm, which is given in Fig. 5. The complexity of the
algorithm is O(LN), where N is the number of topics in the
database and L is the maximum number of detail levels.

Lesson Request 3. Given 1) the user’s knowledge levels
for topics, 2) the set X of topics and priorities attached to
topics in X, 3) prerequisite dependencies in the electronic
textbook, and 4) an upper bound tUB on the lesson
timelength, produce a lesson of duration tUB or less that
has the highest total priority.

Theorem 2. Request 3 is an NP-Complete problem.

The following request asks for a lesson that maximizes
the number of topics taught from the user’s list of chosen
topics.

Lesson Request 4. Given 1) the user’s knowledge levels
for topics, 2) the set X of topics, 3) prerequisite dependen-
cies in the electronic textbook, and 4) an upper bound tUB
on the lesson timelength, produce a lesson of duration tUB
or less that covers as many of the topics in X as possible.

Theorem 3. Request 4 is NP-Complete.

Section 6.2 describes four heuristics, proposed for
evaluating Requests 3 and 4, and Section 6.3 gives the
evaluation of the four heuristics for Request 4. A heuristic
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algorithm, which is linear in the number of topics and uses
the heuristics described in Section 6.2, is shown in Fig. 6.
Lesson construction requests above dealt with constructing
learning lessons with no tests. The request below is for
constructing a teaching lesson with tests, where the user’s
knowledge levels about topics are evaluated.

Lesson Request 5. Given 1) the user’s knowledge levels
for topics, 2) prerequisite dependencies in the electronic
textbook, and 3) an upper bound tUB on the lesson time
length, produce a lesson with tests and of duration tUB or
less for topics X such that, if the tests in the lesson are
passed, the sum of the level increases on topics in X is
maximized.

Theorem 4. Request 5 is NP-Complete.

An approximate algorithm similar to the one in Fig. 6 can
also be used for evaluating Request 5. Other lesson requests
and their evaluation algorithms can be found at [3].

6.2 Heuristics for Expensive Lesson Requests

Next, for NP-complete lesson requests such as Requests 3
through 5 of Section 6.1, we propose and empirically
evaluate four different heuristics.

Best Base Heuristic (BB): Find the topic x in X which is a
prerequisite to the largest number of topics in X, and add
the corresponding instructional modules into the lesson
being constructed.

The motivation for heuristic BB is that if a topic x is
included in a lesson, it will satisfy, as much as possible, the
prerequisite requirement of other topics in X. To find x, we
find the prerequisites of each topic in X. Next, we calculate
the number of times a topic appears in the prerequisite lists
of other topics in X. The topic with the highest prerequisite
count is chosen.

Example 2. Assume that the knowledge level of the user is
zero on all topics; X ¼ fa4, b6, c5, d6, e5, f4g; the
instructional modules of all topics at all levels take the
same amount of time, say t, to present (e.g., a4 takes 4*t
time to present); total time allowed for the presentation is
20t; and the prerequisite dependencies are a4 ! b5,
c4 ! a4, d6 ! b3, and e3 ! f2. Using Table 1, we calculate
the prerequisite count (the number of times a topic
appears in the second column) for a as 1, b as 3, c as 0, d
as 0, e as 0, and f as 1. Using heuristic BB, b will be the
first topic included in the result. A solution set of topics

using BB would be fb6; a4; f4; c5g with duration 19t. Any
other solution set with four or more topics which does
not include b will have a duration longer than 20t.
Clearly, for this example, including b as the first topic
into the solution by heuristic BB is a good choice.

Lowest Detail Level Heuristic (LDL): Find the topic
with the lowest detail level, which is not known by the user,
and add the corresponding instructional modules into the
lesson being constructed.

The motivation for heuristic LDL is that lower detail
levels of topics are more likely to be prerequisites to other
topics. Then, it is easier to include a topic in a lesson if the
prerequisite of the topic is already included in a lesson.
Hence, adding the topic with the lowest detail level into the
lesson being constructed increases the chances of other
topics in X being included.

Example 3. Assume that the knowledge level of the user is
zero on all topics; X ¼ fa4; b6; c3; d6; e4; f4g; all topics at all
levels take the same amount of time (t) to present (e.g., a4

takes 4t to present); total time allowed for the presenta-
tion is 15t; and the prerequisite dependencies are
a4 ! c2, b4 ! c1, d6 ! b3, and e3 ! f2. Using heuristic
LDL, c will be the first topic included in the result as it
has the lowest detail level unknown to the user. A
solution set of topics using LDL would be fc3; a4; f4; e4g
with duration 15t. Any other solution set with four or
more topics will have duration longer than 15t, which is
not acceptable. Including c as the first topic into the
solution by the heuristic LDL allows us to include other
topics that depend on c, and is clearly a good choice.

Highest Number of Detail Levels Heuristic (HNDL):

Find the topic with the highest number of detail levels that
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is not known by the user, and add the corresponding
instructional modules into the lesson being constructed.

The motivation for the heuristic HNDL is that a topic
with high number of detail levels has a higher chance of
being a prerequisite to other topics than a topic with a low
number of detail level. Similar to the LDL, including more
prerequisites in a lesson increases the chances of other
topics in X to be included into the lesson.

Example 4. Assume that the knowledge level of the user is
zero on all topics; X ¼ fa4, b6, c4, d4, e4, f5g; a topic at
level x takes x*t time to present (e.g., a4 takes 4t time to
present); total time allowed for the presentation is 15t;
and the prerequisite dependencies are a4 ! b6, c4 ! b6,
d4 ! b6, b6 ! f5, and e4 ! f5. Using heuristic HNDL, b
will be the first topic included in the result as it has the
highest number of detail levels unknown to the user. A
solution set of topics using the HNDL would be
fb6; f5; a4g with duration 15t. Any other solution set with
three or more topics will have a duration of at least 15t,
which is not any better than the solution found by HNDL
heuristic. Including b as the first topic into the solution
by the heuristic HNDL allows us to include other topics
that depend on b, and is clearly a good choice.

Lowest Number of Prerequisites Heuristic (LNP): Find
the topic with the lowest number of prerequisites (that are
not known by the user), and add the corresponding
instructional modules into the lesson being constructed.

The motivation for heuristic LNP is that we expect to
include more topics by choosing topics with few pre-
requisites.

Example 5. Assume that the knowledge level of user is zero
on all topics; X ¼ fa5; b6; c5; d6; e3; f4g; a topic at level x
takes t*x time to present (e.g., a5 takes 5*t time to
present); total time allowed for the presentation is 20t;
and the prerequisite dependencies are a5 ! b6, c5 ! a5,
d6 ! b6, b6 ! f4, and e3 ! f4. Then, the number of
prerequisites for a is 2 (i.e., b6 and f4), b is 1 (i.e., f4), c is 3
(i.e., a5, b6, and f4), d is 2 (i.e., b6 and f4), e is 1 (i.e., f4),
and f is 0. Using heuristic LNP, f will be the first topic
included in the result. A solution set of topics using LNP
would be ff4; e3; b6; a5g with duration 18t. Any other
solution set with four or more topics, which does not
include f, will have duration of at least 22t. Clearly,
including f as the first topic into the solution by the
heuristic LNP is a good choice.

Finally, we considered the Random Selection (RS)
Heuristic that chooses topics randomly from the set of

topics unknown to the user, and adds the corresponding

instruction modules into the lesson being constructed. The

RS heuristic performed poorly; 70 percent (or more) worse

with large (greater than 10,000) number of topics, and with

a large number of topic details (greater than 15). Hence, to

save space, we did not report the performance of RS

heuristic in this paper.

6.3 Evaluating the Expected Case Behavior
of Heuristics

This section describes the experiments conducted to

evaluate the expected performances of the four heuristics

described above. The heuristics and the acronyms that are

used in the rest of this section are given in Table 3.
To evaluate the heuristics, we have simulated an

electronic textbook.1 In this environment, students decide

on the length and the content of a presentation about a

lecture using various constraints.

6.3.1 Electronic Textbook Environment

We have used four components (users, topics, dependen-

cies, and requests) to model the electronic textbook

environment, summarized in Table 4. Table 5 lists the

parameters and their respective ranges in our simulations.
Users: This component represents the users of the

system, and contains information about users’ knowledge

of topics. For each topic, information about the highest

detail level known by the user is kept.
Topics: The number of detail levels for each topic is

controlled by the topic depth parameter. Also, information

about the length (in time) of the instructional module

corresponding to each topic at a given detail level is stored

in this component. In our simulation, the length of an

instructional module for a topic at a given detail level

varied between 1 minute and 15 minutes, and the number

of topics varied between 200 to 2,000.
Dependencies: These components correspond to pre-

requisite dependencies which have the form xk ! yr, where

x and y are topics, and k and r are detail levels. The number

of dependencies in each simulation run varied depending

on the number of topics and number of detail levels within

a topic. We have chosen to generate the dependencies

randomly, with no structure (e.g., hierarchical) among them

(which may or may not hold, in practice, and remains to be

empirically verified).
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1. Experiments with real electronic textbooks would have been ideal.
However, we did not have access to electronic textbooks and could not get
permission from publishers. In any case, we think that a simulation that
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experiments from a single electronic book or few books do not provide.

TABLE 3
Heuristics



The experimental parameter ranges of Table 5 are in

line with our experience: In [23], we generated topics for

the titles of journal and conference papers from the DBLP

bibliography [13]. Using the titles of 91,000 journal papers

and 132,000 conference papers, after eliminating stop-

words such as words like “the,” “a,” “of,” etc., from the

words in each title and after stemming, we gathered

43,000 topics (as a word list or vocabulary for paper

titles). We used the TF-IDF (Term Frequency-Inverse

Domain Frequency) vector space model with the cosine

similarity function [29], [12], and had, on the average,

about 5 to 15 dependencies (metalinks) with “significant”

importance values, emanating from each topic. In the next

stage, in an effort to reduce topic and metalink counts, we

applied rule-based data mining techniques to the topics

and dependencies at hand, and, without losing too much

of the richness of the data model, we reduced the number

of topics in the range of 20 percent to 5 percent of the

original number of 43,000 topics. Using 5 percent as the

basis, the number of topics is 2,000 for our simulation.

Using the ratio of 10 metalinks per topic, one can use the

range of 200 (manually generated) to 20,000 (automatically

generated) dependencies. These findings confirm our
choice of parameter ranges as listed in Table 5.

Requests: Users increase their knowledge levels by
lesson requests from the system. Requests contain a set of
2-tuples of topics and detail levels. The size of requests in
our simulation varied between two topics and 20 topics.

6.3.2 Experimental Results for Lesson Request 4

The first set of results (Fig. 7) shows the effects of changing
the number of prerequisite dependencies. In this experi-
ment, we have kept the following parameters constant: the
number of topics: 1,000, topic depth: 12, instructional
module length: 10 minutes, presentation length: 60 minutes,
and size of requests: 10 topics. There are five curves
displayed on Fig. 7; one for each of the four heuristics and
one for the theoretical best for the percentage of requested
topics presented. For all five curves, as the number of
prerequisite dependencies increases, the number of pre-
sented topics decreases. This result is expected as increasing
the number of prerequisite dependencies increases the
length of the presentation of topics and, hence, decreases
the chances of topics being included into the resulting
lesson. All heuristics performed within 7 percent of the
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theoretical maximum. Among the heuristics, LNP per-
formed the best, while HNDL performed the poorest.

Fig. 8 shows the effect of the topic depth (i.e., the number
of detail levels) on the percent of requested topics
presented. In this experiment, we have kept the following
parameters constant: number of topics: 1,000, instructional
module length: 10 minutes, presentation length: 60 minutes,
and size of requests: 10 topics. The number of prerequisite
dependencies (400-4,000) is changed proportionally to the
change in the number of detail levels (2-20). The results are
similar to prerequisite dependency results. As the topic
depth increases, topics at higher detail levels are included
into the requests. Instructional modules for topics at higher
detail levels have longer durations than topics at lower
detail levels, and this decreases the chances of a topic being
included into the resulting lesson. Obviously, topic depth
and the percentage of the requested topics presented are
inversely proportional. As the topic depth increases, the
percentage of the requested topics presented decreases.

Fig. 9 illustrates the effect of increasing the time upper
bound tUB on the presentation. In this experiment, we have
kept the following parameters constant: number of topics:
1,000, topic depth: 12, instructional module length 10: min-
utes, number of prerequisite dependencies: 2,400, and size
of requests: 10 topics. Clearly, increasing the time limit
increases the chances of a topic being included into the
resulting lesson. Similar to the previous results, the
behaviors of all heuristics closely resemble the theoretically
possible best result. Time upper bound and the percentage
of the requested topics presented are directly proportional.

As the time upper bound increases, the percentage of the
requested topics presented increases.

As expected, changing the number of topics in the
simulation has no effect on the performance of the
heuristics, which can be observed in Fig. 10. In this
experiment, we have kept the following parameters con-
stant: topic depth: 12, instructional module length: 10 min-
utes, presentation length: 60 minutes, and size of requests:
10 topics.

Changing the request length (i.e., the number of topics in
X) has an effect similar to changing the prerequisite
dependencies or changing the topic depth, as shown in
Fig. 11. In this experiment, we have kept the following
parameters constant: number of topics: 1,000, topic depth:
12, instructional module length: 10 minutes, presentation
length: 60 minutes, and the number of prerequisite
dependencies: 2,400. Since the time limit on the lesson does
not change, the percentage of requested topics that are
presented decreases. The request length and the percentage
of the requested topics presented are inversely propor-
tional. As the request length increases, the percentage of the
requested topics presented decreases.

Lesson request calculation times of all four heuristics,
assuming a main-memory-based representation of topics and
dependencies, have been about the same (in reality, topics
and dependencies would be disk-resident). As the length of
the lesson increases, the time to calculate the best solution
increases exponentially. When the lesson includes 18 topics,
using a simulation implemented in C and running on a
Pentium 4 with Windows NT operating system, all heuristic
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algorithms produced a solution under 5 milliseconds, while it
took more than 167 seconds for the best solution by
enumeration. Clearly, as the request length increases,
heuristic solutions become a must for an efficient implemen-
tation. Thus, all of the four heuristics perform well with
results that are within 7 percent of the best solution (we have
computed the best lesson by enumeration). Similar results
can be shown for lesson requests 3 and 5.

6.4 Worst-Case Performance Guarantees
of Lesson Requests

From the previous section, we have observed that the
expected performances of lesson construction requests are
shown to have acceptable performance on randomly
generated test data. However, in the worst-case, their
performance can be dramatically poorer, on data contrived
to elicit this performance. For worst-case performance
guarantees of lesson request algorithms, we now consider
the simplest case, i.e., decomposable prerequisite depen-
dencies, and the lesson request 4. We first transform the
problem into the bipartite graph problem, and state it as a
mathematical integer-programming problem, which are
known to be difficult to approximate.

So far, we have often considered the case where the
hierarchy of dependencies is shallow: The topics are
partitioned into two sets, with dependencies from one set
to the other. We shall now show that this situation is not
unrepresentative: Any set of decomposable dependencies
can be rewritten as a two-level hierarchy. Each topic is
represented by a node, a, on the left side of the bipartite
graph, G. The length of the instructional module for this
topic (i.e., the cost of the topic) is set to zero. We also create a

topic, a0, on the right-hand side of the bipartite graph whose
cost is that of the length of the instructional module for the
topic. We initialize F0, the new set of dependencies, to be a
! a0. We then add dependencies to F0 such that a ! b0 for
each b 2 Xþ;X ¼ fxg, derivable from the original set F of
dependencies. In our graph, we shall represent this by
putting an edge in G for each dependency in F0, linking the
zero-weight topics on the left to their weighted prerequi-
sites on the right. This problem is identical to the original
problem instance.

In the case that we are trying to answer a request of the
form of Request 4, we can reduce the problem further. Our
observation is that we are only interested in the requested
topics in X. Where we have that some b not in X has closure
fbgþ such that no member of fbgþ is in X, then we can
replace the whole of fbgþ with a single topic whose length
is the sum of the lengths of the component topics. We also
can merge any topics which form a cycle into a single topic,
whose prerequisites are the union of the prerequisites of the
component topics. The intuition here is that, if any topic in a
cycle is chosen, then all topics in that cycle must be
included. This leads to a canonical form for representing
such requests as a bipartite graph problem. The goal is to
“collect” as many nodes on the left side as possible within
the time limit. To collect such a node, we must “buy” all the
nodes on the right to which it is connected, each of which
has a certain cost. We have a total budget of tUB. This
problem can also be stated as a mathematical integer-
programming problem. Let @ represent a bit vector where a
one in position i indicates that xi, the ith topic from X, is
chosen to be taught. Also, let C be a vector where Ci is the
length of xi. We can then create a function fð@Þ, which
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Fig. 10. Changing the number of topics.

Fig. 11. Changing the request length (the number of requested topics).



evaluates the number of topics that are taught and have all
their prerequisites included. In formal terms, this mathe-
matical program is:

Maximize fð@Þ subject to : C:@ � tUB;@i ¼ 0; 1 8i;
where fð@Þ is defined as �i @i � �Xj2Xiþ@j

:

Unfortunately, problems of this type are hard to
approximate. Results from Mathematical Programming
Theory [8] show that there is effectively no approximation
for the general nonlinear programming problem. Even
considering the extreme restriction that each topic can
depend on at most one topic (that is, for a topic a then fagþ
contains at most one other item), then the problem is still
hard. This restricted problem forms an instance of quadratic
programming, for which no general approximation algo-
rithms are known [8]. This leads us to conclude that, for
requests like Request 4, there are unlikely to be approxima-
tion algorithms that can guarantee their results are within
any factor of the optimal, and so we should be content with
using heuristics to solve real instances of the problems.

7 CONCLUSIONS AND FUTURE RESEARCH

This paper opens up a new problem domain (electronic
textbooks) for database researchers; we are not aware of any
database research that attaches a data model for electronic
textbooks. We design an electronic textbook environment
for the automated assembly of multimedia lessons, and
study the use of a multimedia database, and database
techniques for electronic textbooks containing precaptured
multimedia presentations about topics in the book. We
believe that this paper is a first step toward formulating and
solving what may be a very large number of practical
research problems about electronic textbooks.

One research direction to pursue is to design and
evaluate a query language for users to construct their
lesson requests. Another research direction is to introduce
multiple experts, and handle advice conflicts between
experts.
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