
PrivLava: Synthesizing Relational Data with Foreign Keys under
Differential Privacy

Kuntai Cai

caikt@comp.nus.edu.sg

National University of Singapore

Singapore, Singapore

Xiaokui Xiao

xkxiao@nus.edu.sg

National University of Singapore

Singapore, Singapore

Graham Cormode

g.cormode@warwick.ac.uk

University of Warwick

Coventry, UK

ABSTRACT
Answering database queries while preserving privacy is an impor-

tant problem that has attracted considerable research attention in

recent years. A canonical approach to this problem is to use syn-
thetic data. That is, we replace the input database R with a synthetic

database R∗ that preserves the characteristics of R, and use R∗ to
answer queries. Existing solutions for relational data synthesis,

however, either fail to provide strong privacy protection, or assume

that R contains a single relation. In addition, it is challenging to

extend the existing single-relation solutions to the case of multiple

relations, because they are unable to model the complex correla-

tions induced by the foreign keys. Therefore, multi-relational data

synthesis with strong privacy guarantees is an open problem.

In this paper, we address the above open problem by proposing

PrivLava, the first solution for synthesizing relational data with

foreign keys under differential privacy, a rigorous privacy frame-

work widely adopted in both academia and industry. The key idea

of PrivLava is to model the data distribution in R using graphical
models, with latent variables included to capture the inter-relational
correlations caused by foreign keys. We show that PrivLava sup-
ports arbitrary foreign key references that form a directed acyclic

graph, and is able to tackle the common case when R contains

a mixture of public and private relations. Extensive experiments

on census data sets and the TPC-H benchmark demonstrate that

PrivLava significantly outperforms its competitors in terms of the

accuracy of aggregate queries processed on the synthetic data.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion.

KEYWORDS
differential privacy, data synthesis

ACM Reference Format:
Kuntai Cai, Xiaokui Xiao, and Graham Cormode. 2023. PrivLava: Synthe-
sizing Relational Data with Foreign Keys under Differential Privacy. In

Proceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,

18 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Answering database queries while preserving individual privacy is

an important problem that has attracted considerable research effort

[2, 4–6, 8, 12, 15, 22, 25, 27, 28, 33, 35, 37, 38, 40, 41, 43, 45, 46] in

recent years. The bulk of existing solutions have adopted an output
perturbation approach [35], where the database engine is modified

to perturb each query answer with noise for privacy protection.

The amount of noise needed is calibrated according to the amount

of sensitive information that the query answer may reveal, typically

based on a formal privacy framework such as differential privacy
(DP) [16] or its generalizations.

Despite the popularity of output perturbation, it suffers one ma-

jor deficiency that restricts its application in practice: the database

can only answer a limited number of queries with good accuracy.

This observation (formalized by Dinur and Nissim [14]) follows

since each noisy answer returned by the database should inevitably

reveal some information about the underlying data. As more queries

are processed, the total amount of information revealed monoton-

ically increases, and will eventually reach a threshold where an-

swering any new queries leads to an excessive overall privacy risk,

at which point the database can no longer answer new queries

accurately. For this reason, existing work may focus primarily on

providing a per-query privacy guarantee, and not address providing

an overarching bound for all queries combined [2, 12, 35, 40, 45, 46].

Nevertheless, for a meaningful guarantee we should seek a strong

privacy bound that holds for the lifetime of the database.

A natural mitigation is to build a privacy-preserving database

using synthetic data that can be queried indefinitely without de-

grading the privacy with regard to the original ground truth data.

Specifically, given a database R that contains sensitive information,

we generate a synthetic version R∗ of R that mimics the latter but

conceals the private data therein; after that, we can use R∗ (instead
of R) to answer queries, without imposing any constraints on the

amount of queries that the users may issue. The rationale is that

because all queries are processed on the synthetic database R∗,
the query answers only reveal the information in R∗ instead of R;
therefore, as long as R∗ itself preserves privacy, we do not need

to restrict the number of queries answered using R∗. Furthermore,

in contrast to output perturbation, the usage of synthetic data R∗
does not require any change to the database engine, nor does it

incur any additional query processing overheads.

Nevertheless, to ensure strong privacy protection in R∗, it is
important that R∗ should be generated using an algorithm that

provides a rigorous privacy assurance such as DP. In relation to

this, there exist a number of DP methods [7, 9, 13, 18, 21, 23, 29,

34, 36, 47, 49, 50] for synthesizing relational data. Unfortunately,

all of them are designed for the restricted case when the input

https://orcid.org/0009-0006-8278-716X
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0002-0698-0922
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

database R contains a single relation. In particular, they assume

that the database tuples are independent samples from an unknown

multi-dimensional distribution; they infer this distribution based

on the observed tuples in the input table, and then sample from

the inferred distribution to generate synthetic data. It is difficult

to extend these methods to the general case when R consists of

multiple relations with foreign key constraints, because the foreign

keys lead to complex correlations among the tuples in different

parts of the database, whereas such correlations are ignored in

single-relation synthesis methods. As a consequence, synthetic

data generation with foreign keys under DP is an open problem.

Our contributions. This paper presents PrivLava1, the first DP so-

lution for synthesizing relational data with foreign key constraints.

The key idea of PrivLava is to model the data distribution in the

input database using graphical models [44], with latent variables
included to capture the inter-relational correlations caused by for-

eign keys. For example, consider a census database containing two

relations 𝑅𝐼 and 𝑅𝐻 , such that each tuple in 𝑅𝐼 (resp. 𝑅𝐻) repre-

sents an individual (resp. household), and that 𝑅𝐼 has a foreign

key referencing 𝑅𝐻 to connect each individual to the household

that she belongs to. To model 𝑅𝐼 and 𝑅𝐻 , we assume that (i) each

household is associated with a latent variable 𝑍 that indicates its

type (e.g., whether it is a nuclear family), and (ii) 𝑍 also decides

how the household size, attributes, and members are distributed.

Based on this assumption, we construct a graphical model with

latent variables to infer the type 𝑍 of each household based on its

member composition, which then enables us to estimate the overall

distribution 𝑝 (𝑍) of household types, as well as the conditional

distributions of household sizes, attributes, and members, respec-

tively, given the household type 𝑍 . Once we have these estimated

distributions, we can use them to generate synthetic households as

follows: we first sample a household type 𝑍 from 𝑝 (𝑍), and then

generate a synthetic household tuple by sampling its attributes

based on 𝑍 ; after that, we sample a household size 𝑠 given 𝑍 , and

proceed to generate 𝑠 individual tuples based on 𝑍 . In other words,

we use 𝑍 to bridge the generation of the synthetic households and

individuals, to preserve the distribution of household compositions

induced by the foreign key between 𝑅𝐼 and 𝑅𝐻 .

In general, PrivLava models each foreign key in the input data-

base R separately using a graphical model with latent variables, and

injects carefully calibrated noise in the model training algorithm

to ensure DP. Its modeling approach is sufficiently general that

it supports arbitrary foreign key references that form a directed

acyclic graph. In addition, it is able to tackle the common case when

R contains a mixture of public and private relations.

We experimentally evaluate PrivLava against the state-of-the-art
DP data synthesis methods [9, 34, 49], using two census data sets

from the Integrated Public Use Microdata Series [10, 42] as well as the
TPC-H benchmark [1]. Our experimental results show that PrivLava
significantly outperforms its competitors in terms of the accuracy

of aggregate queries processed on the synthetic data that they

generate. In addition, PrivLava is able to process a large benchmark

data set in a matter of hours on a standard machine, which is

reasonable for a process that would be performed once in order to

release a data set.

2 PROBLEM DEFINITION
Let R be a database containing relations 𝑅0, 𝑅1, 𝑅2, For any

𝑅𝑖 , 𝑅 𝑗 ∈ R, we say that 𝑅𝑖 refers to 𝑅 𝑗 , if 𝑅𝑖 has a foreign key

referencing 𝑅 𝑗 ’s primary key. Accordingly, we say that a tuple

𝑡𝑖 ∈ 𝑅𝑖 refers to a tuple 𝑡 𝑗 ∈ 𝑅 𝑗 (denoted as 𝑡𝑖 → 𝑡 𝑗), if the foreign

key of 𝑡𝑖 equals the primary key of 𝑡 𝑗 . In addition, a tuple 𝑡 depends
on 𝑡 𝑗 (denoted as 𝑡 ⇝ 𝑡 𝑗), if either 𝑡 → 𝑡 𝑗 or 𝑡 refers to another

tuple that depends on 𝑡 𝑗 . We assume that the foreign key references

in R form a directed acyclic graph, i.e., 𝑡 ⇝ 𝑡 never occurs.

Without loss of generality, assume that 𝑅0 is a private relation

that contains sensitive information. Let 𝑡0 be a tuple in 𝑅0, and

R′ be a database obtained by removing, from R, 𝑡0 and all other

tuples that depend on 𝑡0. We refer to R and R′ as neighboring
databases. Based on this notion of neighboring databases, we have

the following formalization of differential privacy:

Definition 2.1 (Differential Privacy (DP) [16]). Let 𝐹 be an algo-

rithm that takes as input a database. 𝐹 satisfies (𝜖, 𝛿)-differential
privacy (DP), if and only if for any two neighboring databases R
and R′ and any possible set O of outputs from 𝐹 ,

Pr[𝐹 (R) ∈ O] ≤ 𝑒𝜖 · Pr[𝐹 (R′) ∈ O] + 𝛿.

Intuitively, the above notion of differential privacy aims to ensure

that when an adversary observes the output of 𝐹 , he is unable to

infer the existence or absence of any single tuple 𝑡 in the relation

𝑅0, even if he takes into account the dependencies among the tuples

induced by foreign keys. For convenience, we refer to 𝑅0 as the

primary private relation. For any other relation 𝑅𝑖 , we refer to 𝑅𝑖
as a secondary private relation if the tuples in 𝑅𝑖 depend on the

tuples in 𝑅0; otherwise, 𝑅𝑖 is a public relation, i.e., it can be directly

published without incurring any privacy cost.

Following previous work [15, 25, 43], we assume that each for-

eign key in the database has a bounded multiplicity. That is, when-
ever 𝑅𝑖 has a foreign key referencing 𝑅 𝑗 , each tuple in 𝑅 𝑗 is referred

to by at most 𝜏𝑖 𝑗 tuples in 𝑅𝑖 , where 𝜏𝑖 𝑗 is a predefined constant.

This assumption is to ensure that each tuple in the primary pri-

vate relation 𝑅0 is depended on by a bounded number of other

tuples; otherwise, inserting or removing one tuple 𝑡 in 𝑅0 may in-

cur unbounded changes in the database, which makes it infeasible

to enforce differential privacy since an adversary can easily infer

whether 𝑡 exists in 𝑅0. For this reason, all previous work assumes

that each foreign key has a bounded multiplicity. In practice, we can

enforce this assumption by truncating the data, i.e., from each 𝑅 𝑗 ,

we remove the tuples that are referred to by more than 𝜏𝑖 𝑗 tuples

in any 𝑅𝑖 [25, 43]. When each threshold 𝜏𝑖 𝑗 is reasonably large, the

truncation only removes outliers in the data set, which would not

significantly affect the fidelity of the data.

Our objective is to develop a synthetic data generation algorithm

that (i) takes as input a database R, (ii) outputs a database R∗ that
has the same schema as R, and (iii) satisfies (𝜖, 𝛿)-DP.

3 SOLUTION OVERVIEW
In a nutshell, PrivLavamodels each foreign key in the input database

R separately using a graphical model. It combines these models to-

gether to generate synthetic relations that preserve the correlations

1
Privacy-preserving graphical models with latent variables.

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

Table 1: Individual table 𝑹1.

ID Age . . . H-ID
1 28 . . . 1

2 25 . . . 1

3 27 . . . 2

4 29 . . . 2

5 35 . . . 3

6 36 . . . 3

7 5 . . . 3

.

Table 2: Household table 𝑹0.

H-ID . . .

1 . . .

2 . . .

3 . . .

.

Table 3: 𝑹1 with latent 𝒁 .

ID Age . . . H-ID 𝒁
1 28 . . . 1

𝑧1
2 25 . . . 1

3 27 . . . 2

𝑧1
4 29 . . . 2

5 41 . . . 3

𝑧26 39 . . . 3

7 10 . . . 3

.

Table 4: 𝑹0 with latent 𝒁 .

H-ID . . . 𝒁
1 . . . 𝑧1

2 . . . 𝑧1

3 . . . 𝑧2

.

induced by the foreign key constraints. In what follows, we present

an overview of the modeling approach adopted by PrivLava, start-
ing from the base case when R contains only two private relations

and one foreign key.

3.1 Handling One Foreign Key
Assume that R consists of a primary private relation 𝑅0 and a sec-

ondary private relation 𝑅1. We say that two tuples in 𝑅1 belong to

the same group, if they refer to the same tuple in 𝑅0. For instance,

Tables 1 and 2 show an example when 𝑅0 and 𝑅1 contain infor-

mation about households and individuals, respectively. Then, each

group in 𝑅1 is a set of individuals in the same household.

Intuitively, if we are to generate synthetic versions of 𝑅0 and 𝑅1,

there are three types of information that we need to model:

(1) The inter-attribute correlations among the attributes in the

same relation (e.g., how individuals’ ages correlate with their

incomes);

(2) The intra-group correlations among the tuples in the same

group in 𝑅1 (e.g., what types of individuals tend to co-exist

in the same household);

(3) The inter-relational correlations between the tuples in 𝑅1
and 𝑅0 (e.g., what types of individuals are likely to reside in

suburban households).

Existing work on single-relation synthesis [7, 9, 29, 34, 49] has ex-

tensively studied the modeling of inter-attribute correlations. The

typical approach is to (i) identify sets of attributes that are strongly

correlatedwith each other, (ii) measure the joint-distribution of each

attribute group under DP, and then (iii) use the joint-distributions

obtained to generate synthetic tuples. However, there is no exist-

ing study on the preservation of intra-group and inter-relational

correlations in data synthesis.

To address the above problem, our idea is to identify the patterns
of tuple group compositions in 𝑅1, and utilize them as a proxy to

capture intra-group and inter-relational correlations. For example,

in Table 1, the compositions of tuple groups may exhibit certain

(a) Input database. (b) Foreign keys.

𝑓 (·)

𝑓 (·)

𝑓 (·)𝑓 (·)

(c) Foreign key models. (d) Synthetic database.

Figure 1: Solution overview.

patterns, e.g., young couples without kids, or middle-aged parents

with children. We assume that each group’s pattern is decided by

a latent (i.e., hidden) attribute 𝑍 in 𝑅1, as illustrated in Table 3.

Observe that the first and second tuple groups in Table 3 both

have 𝑍 = 𝑧1, which indicates that their group compositions share

the same pattern. Meanwhile, the third tuple group has 𝑍 = 𝑧2,

implying that its group composition differs appreciably from those

of the first two groups.

Suppose that we are able to infer the value of the latent attribute

𝑍 for each tuple group in 𝑅1. In that case, we can use 𝑅1 to estimate

the joint-distribution 𝑃1 of 𝑍 and other attributes in 𝑅1. In addition,

we can associate the latent attribute of each group with the tuple

in 𝑅0 that the group refers to, which results in a version of 𝑅0
augmented with 𝑍 , as illustrated in Table 4. This enables us to

estimate the joint-distribution 𝑃0 of 𝑍 and the attributes in 𝑅0. With

the aforementioned joint-distributions, we can generate synthetic

tuples as follows: we first sample a value 𝑧 from the distribution

of 𝑍 in the augmented 𝑅0, and then generate a synthetic tuple 𝑡∗

for 𝑅0 based on 𝑃0, conditioned on 𝑍 = 𝑧; after that, we synthesize

the tuple group in 𝑅1 corresponding to 𝑡
∗
, based on 𝑃1 and 𝑍 = 𝑧.

Intuitively, if𝑍 accurately characterizes the patterns of tuple groups,

then the synthetic tuples that we generate could preserve the intra-

group and inter-relational correlations in the input data.

How dowe infer the latent attribute𝑍 for each tuple group in 𝑅1?

We adopt expectation maximization (EM) [44], a classic approach for
estimating the parameters of statistical models with latent variables.

The high-level idea is that EM enables us to cluster the tuple groups

in 𝑅1 based on their similarities, and then we can assign one𝑍 value

to each cluster to indicate that tuple groups in the same cluster

follow similar patterns. In Section 4, we present the details of our

EM-based algorithm for modeling one foreign key.

3.2 Handling Multiple Foreign Keys
For the general case when the input database R contains multiple

foreign key references, PrivLava processes R following the steps

illustrated in Figure 1. It first identifies the foreign keys pertinent

to the private relations in R, and then models each of them in turn

using an approach similar to the algorithm outlined in Section 3.1.

After that, it uses the models to generate synthetic data in a manner

that preserves the correlations induced by the foreign keys.

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

𝑅2 𝑅1 𝑅0

(a) Three private relations 𝑅0, 𝑅1, 𝑅2.

𝑅2 𝑅1 𝑅0

𝑍2 𝑍2

(b) Modeling the foreign key from 𝑅2 to 𝑅1.

𝑅2 𝑅1 𝑅0

𝑍2 𝑍2 𝑍1𝑍1

(c) Modeling the foreign key from 𝑅1 to 𝑅0.

Figure 2: Example for the case of multiple foreign keys.

For example, Figure 2a shows a primary private relation 𝑅0 and

two secondary private relations 𝑅1 and 𝑅2, such that 𝑅2 refers to 𝑅1,

which in turn refers to 𝑅0. Given 𝑅0, 𝑅1, 𝑅2, PrivLava first processes
the foreign key from 𝑅2 to 𝑅1, which leads to the augmentation

of both 𝑅1 and 𝑅2 with a latent attribute 𝑍2. After that, PrivLava
processes the foreign key from 𝑅1 to 𝑅0, taking 𝑍2 into account

when characterizing the tuple groups in 𝑅1 (i.e., it treats 𝑍2 as if it
is an attribute of 𝑅1). This results in the augmentation of 𝑅1 and 𝑅0
with another latent attribute 𝑍1.

After the foreign key models are constructed, PrivLava uses

them to generate synthetic data in the reverse order of foreign key

modeling. In particular, given the augmented relations in Figure 2c,

PrivLava first samples 𝑍1, based on which it generates a synthetic

tuple in 𝑅0 as well as a corresponding group 𝑆 of tuples in the

augmented 𝑅1. After that, for each synthetic tuple in 𝑆 , PrivLava in-
spects its value on 𝑍2, based on which it constructs a corresponding

tuple group in 𝑅2. The process is repeated until we have sufficient

numbers of synthetic tuples in 𝑅0, 𝑅1, and 𝑅2.

In general, given a set of foreign key references that form a

directed acyclic graph, PrivLavawouldmodel the foreign keys based

on a topological order of the graph edges, and then synthesize data

following the reverse order. Special consideration is given to cases

when a private relation refers to a public relation or tomultiple other

relations, since such cases complicate the process of synthetic tuple

generation. In Section 5, we elaborate our solution for handling

multiple foreign keys.

4 SOLUTION FOR ONE FOREIGN KEY
This section presents our solution for the base case when the in-

put database R contains only a primary private relation 𝑅0 and

a secondary private relation 𝑅1, as exemplified by Tables 1 and 2.

Sections 4.1-4.3 elaborate our modeling of 𝑅1, and then Section 4.4

explains how we model 𝑅0. After that, Section 4.5 discusses the

generation of synthetic data based our modeling of 𝑅0 and 𝑅1.

4.1 Modeling the Secondary Private Relation 𝑅1
We first tackle the secondary private relation 𝑅1, and describe how

to model the table augmented with a latent attribute via a graphical

model. Without loss of generality, we assume that 𝑅1 contains a

Table 5: Private relation 𝑹1.
𝑨ID 𝑨1 𝑨2 𝑨3 𝑨FK

𝑡1 1 0 0 1 1

𝑡2 2 1 0 0 1

𝑡3 3 0 1 1 2

𝑡4 4 1 0 1 2

𝑡5 5 1 1 0 2

Table 6: Marginal on {𝐴1, 𝐴2}.
𝑐00 1 (for 𝐴1 = 0, 𝐴2 = 0)

𝑐01 1 (for 𝐴1 = 0, 𝐴2 = 1)

𝑐10 2 (for 𝐴1 = 1, 𝐴2 = 0)

𝑐11 1 (for 𝐴1 = 1, 𝐴2 = 1)

primary key attribute 𝐴ID and a foreign key attribute 𝐴FK refer-

encing 𝑅0, as well as 𝑑 other attributes𝐴1, 𝐴2, . . . , 𝐴𝑑 . As explained

in Section 3.1, we assume that 𝑅1 has a latent (unobservable) at-

tribute 𝑍 that characterizes the tuple groups induced by 𝐴FK, as

shown in Table 3. We model 𝑅1 based on its marginals, which are

histograms built upon subsets of the attributes in 𝑅1. To explain,

let A𝑖 = {𝐴𝑖1 , 𝐴𝑖2 , . . . , 𝐴𝑖𝑘 } be a 𝑘-size subset of {𝐴1, 𝐴2, . . . , 𝐴𝑑 },
and span(A𝑖) = 𝐴𝑖1 ×𝐴𝑖2 × · · · ×𝐴𝑖𝑘 be the 𝑘-dimensional space

spanned by𝐴𝑖1 , 𝐴𝑖2 , . . . 𝐴𝑖𝑘 . Suppose that we project the tuples in 𝑅1
onto span(A𝑖). Then, for each point (𝑎𝑖1 , 𝑎𝑖2 , . . . , 𝑎𝑖𝑘) ∈ span(A𝑖),
we have a count of the tuples 𝑡 in 𝑅1 with 𝑡 [𝐴𝑖 𝑗] = 𝑎𝑖 𝑗 for all

𝑗 = 1, 2, . . . , 𝑘 , where 𝑡 [𝐴𝑖 𝑗] denotes the value of 𝑡 on 𝐴𝑖 𝑗 . We refer

to this set of counts as the marginal of 𝑅1 on A𝑖 . For example,

consider the relation 𝑅1 in Table 5, where the domains of attributes

𝐴1 and 𝐴2 are both {0, 1}. Then, the marginal of 𝑅1 on {𝐴1, 𝐴2}
consists of four counts 𝑐00, 𝑐01, 𝑐10, 𝑐11, such that 𝑐𝑥𝑦 is the number

of tuples in 𝑅1 with 𝐴1 = 𝑥 and 𝐴2 = 𝑦, as illustrated in Table 6.

The marginal of 𝑅1 on A𝑖 is a representation of the joint-

distribution of the attributes inA𝑖 . We utilize such representations

in our solution, and extend them conceptually to take into account

the latent attribute 𝑍 . In particular, for any tuple 𝑡 in 𝑅1 and any

element 𝑧 in the domain of 𝑍 , let 𝑝 (𝑧 | 𝑡) denote the probability
that 𝑡 ’s tuple group has 𝑍 = 𝑧. (Note that this probability is not

directly observable from 𝑅1, since 𝑍 is latent.) We consider the

(𝑘 + 1)-dimensional space span(A𝑖 ∪ {𝑍 }) spanned by 𝑍 and the

attributes in A𝑖 . For each point (𝑎𝑖1 , . . . , 𝑎𝑖𝑘 , 𝑧) ∈ span(A𝑖 ∪ {𝑍 }),
we take the sum of all 𝑝 (𝑧 | 𝑡) where 𝑡 ∈ 𝑅1 and 𝑡 [𝐴𝑖 𝑗] = 𝑎𝑖 𝑗 for
𝑗 = 1, 2, . . . , 𝑘 . In other words, we count the expected number of

tuples 𝑡 with 𝑡 [𝐴𝑖 𝑗] = 𝑎𝑖 𝑗 and belong to a tuple group with 𝑍 = 𝑧.

This results in a set of |span(A𝑖 ∪ {𝑍 }) | expected counts, which

we define as the marginal of 𝑅1 on A𝑖 ∪ {𝑍 }. We refer to such a

marginal as a latent marginal, and refer to a marginal defined on

some A𝑖 as an observed marginal.

Suppose that we are given a setM of marginals of 𝑅1. We model

𝑅1 using an exponential family graphical model [44]. The model is

parameterized by a vector 𝜃 , where each coordinate is associated

with a count (or expected count) 𝑐 in a marginal in M (that is,

the size of 𝜃 equals the total number of counts in the marginals in

M). For convenience, we use 𝜃 [𝑐] to denote the coordinate in 𝜃

associated with 𝑐 . Let 𝑡 be a tuple and 𝑧 be a value in the domain of

𝑍 , and 𝑝 (𝑡, 𝑧) be the probability that if we sample a tuple from 𝑅1,

it would have the same attribute values as 𝑡 and belong to a tuple

group with 𝑍 = 𝑧. Our graphical model assumes that 𝑝 (𝑡, 𝑧) can be

derived from 𝜃 based on the marginal counts (or expected counts)

𝑐 that are linked to (𝑡, 𝑧), denoted as 𝑐 ↔ (𝑡, 𝑧):

𝑝 (𝑡, 𝑧) ∝
∏

𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)
exp(𝜃 [𝑐]). (1)

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

Specifically, in a marginal 𝑀 on an attribute set A𝑖 , a count 𝑐 is

linked to (𝑡, 𝑧) if 𝑐 corresponds to a point (𝑎𝑖1 , . . . , 𝑎𝑖𝑘) ∈ span(A𝑖)
with 𝑎𝑖 𝑗 = 𝑡 [𝐴𝑖 𝑗] for 𝑗 = 1, . . . , 𝑘 . For example, in the marginal in

Table 6, the count 𝑐10 is linked to 𝑡2 and 𝑡4 in Table 5, since 𝑐10
corresponds to the point (𝐴1 = 1, 𝐴2 = 0), while both 𝑡2 and 𝑡4
have 𝐴1 = 1 and 𝐴2 = 0. Similarly, in a marginal on an attribute

set A𝑖 ∪ {𝑍 }, we say that an expected count is linked to (𝑡, 𝑧) if it
corresponds to a point (𝑡 [𝐴𝑖1], . . . , 𝑡 [𝐴𝑖𝑘], 𝑧) ∈ span(A𝑖 ∪ {𝑍 }).

In addition to Equation 1, we also assume that the latent at-

tributes 𝑧 of the tuple groups in 𝑅1 follow a distribution 𝑝𝑍 , and

that the sizes of the tuple groups follow a distribution 𝑝size con-

ditioned on 𝑧. We consider that each tuple group 𝐺 in 𝑅1 has the

following generative process:

(1) Sample a value 𝑧 of 𝑍 with probability 𝑝𝑍 (𝑧);
(2) Sample a group size 𝑠 with probability 𝑝size (𝑠 | 𝑧);
(3) Sample 𝑠 tuples 𝑡1, 𝑡2, . . . , 𝑡𝑠 , each with probability

𝑝 (𝑡 𝑗 | 𝑧) =
𝑝 (𝑡 𝑗 ,𝑧)∑
𝑡 𝑝 (𝑡,𝑧)

, 𝑗 = 1, 2, . . . , 𝑠 .

Based on this generative process, for each tuple group 𝐺 in 𝑅1, we

formulate its likelihood as

𝑝 (𝐺) =
∑︁
𝑧

(
𝑝𝑍 (𝑧) · 𝑝size (|𝐺 | | 𝑧) ·

∏
𝑡 ∈𝐺

𝑝 (𝑡 | 𝑧)
)
. (2)

Our objective is to estimate 𝜃 , 𝑝𝑍 , and 𝑝s𝑖𝑧𝑒 to maximize the overall

log-likelihood of all tuple groups𝐺 observed in 𝑅1, i.e.,
∑
𝐺 log𝑝 (𝐺)

(note that this is equivalent to maximizing

∏
𝐺 𝑝 (𝐺)). In Section 4.2,

we introduce an algorithm for estimating 𝜃 , 𝑝𝑍 , and 𝑝size when

given a setM of marginals of 𝑅1. After that, in Section 4.3, we

explain how we determineM in our solution.

4.2 Estimating Parameters 𝜃 , 𝑝𝑍 , and 𝑝s𝑖𝑧𝑒
Next, we assume that a setM of marginals is given, and describe an

algorithm for learning the parameters of the model. Suppose that

M contains both observed and latent marginals. We assume that

the counts in the observed marginals have been computed from 𝑅1
and injected with Gaussian noise [3] to achieve DP. (We explain the

details of noise injection in Section 4.3.) Meanwhile, for the latent

marginals, we treat each of their counts as a variable, since the val-

ues of𝑍 in 𝑅1 are unknown in advance. We useM to estimate 𝜃 , 𝑝𝑍 ,

and 𝑝size using an algorithm based on the expectation-maximization
(EM) method [44], as shown in Algorithm 1.

Algorithm 1 starts by taking initial model parameters 𝜃, 𝑝𝑍 , 𝑝size
from the input. (We explain the initialization of these parameters

in Section 4.3.) The next part of Algorithm 1 consists of𝑇 iterations

(Lines 1-23), each of which follows the typical framework of the

EM method and consists of two steps as follows:

(1) The E step (Lines 2-7): Estimate the latent attribute of each

tuple group 𝑅1, based on the current model parameters;

(2) The M step (Lines 8-23): Update the model parameters to

optimize the overall log-likelihood of all tuple groups 𝐺 , i.e.,∑
𝐺 log𝑝 (𝐺).

In other words, the algorithm iteratively refines the estimation of

each tuple group’s latent attribute, and utilizes them to improve

the accuracy of the model parameters.

Specifically, in each iteration, Algorithm 1 first inspects the tuple

groups in 𝑅1 (Lines 2-7). For each tuple group 𝐺 , it computes the

Algorithm 1: Parameter estimation

Input: Relation 𝑅1, initial model parameters 𝜃 , 𝑝𝑍 , and

𝑝size, iteration number 𝑇 , marginal setM, noise

scales 𝜎𝑧 , 𝜎size, and 𝜎ℓ
Output: Updated model parameters 𝜃 , 𝑝𝑍 , 𝑝size, latent

attribute 𝑧𝐺 for each tuple group 𝐺

1 for 𝑗 = 1 to 𝑇 do
2 for each tuple group 𝐺 in 𝑅1 do
3 for each tuple 𝑡 in 𝐺 and each 𝑧 do
4 Compute 𝑝 (𝑡 | 𝑧) = 𝑝 (𝑡,𝑧)∑

𝑡 ′ 𝑝 (𝑡 ′,𝑧)
based on 𝜃 ;

5 for each 𝑧 do
6 Compute 𝑝 (𝑧 | 𝐺) = 𝑝 (𝐺,𝑧)∑

𝑧′ 𝑝 (𝐺,𝑧′) , where

𝑝 (𝐺, 𝑧) = 𝑝𝑍 (𝑧) · 𝑝size (|𝐺 | | 𝑧) ·
∏

𝑡 ∈𝐺 𝑝 (𝑡 | 𝑧);
7 Let 𝑧𝐺 be the 𝑧 that maximizes 𝑝 (𝑧 | 𝐺);
8 for each 𝑧 do
9 Count the number cnt(𝑧) of tuple groups 𝐺 in 𝑅1

with 𝑧𝐺 = 𝑧;

10 Let cnt
∗ (𝑧) = max

{
0, cnt(𝑧) + N (0, 𝜎2𝑧)

}
;

11 for each 𝑧 do
12 𝑝𝑍 (𝑧) = cnt

∗ (𝑧)∑
𝑧′ cnt∗ (𝑧′)

;

13 for each 𝑧 do
14 for each group size 𝑠 do
15 Count the number cnt(𝑠, 𝑧) of tuple groups 𝐺

with 𝑧𝐺 = 𝑧 and |𝐺 | = 𝑠;
16 Let cnt

∗ (𝑠, 𝑧) = max

{
0, cnt(𝑠, 𝑧) + N (0, 𝜎2

size
)
}
;

17 for each group size 𝑠 do
18 𝑝size (𝑠 | 𝑧) = cnt

∗ (𝑠,𝑧)∑
𝑠′ cnt∗ (𝑠′,𝑧)

19 for each latent marginal𝑀 ∈ M do
20 Compute the expected counts in𝑀 based on the 𝑧𝐺

of each group 𝐺 ;

21 for each expected count 𝑐 in𝑀 do
22 𝑐 = 𝑐 + N(0, 𝜎2

ℓ
);

23 Update 𝜃 based on the noisy counts and expected counts

currently in the marginals inM;

24 return 𝜃, 𝑝size, and 𝑧𝐺 for each tuple group 𝐺 ;

conditional probability 𝑝 (𝑡 | 𝑧) = 𝑝 (𝑡,𝑧)∑
𝑡 ′ 𝑝 (𝑡 ′,𝑧)

for each 𝑡 ∈ 𝐺 and 𝑧

based on the current 𝜃 . Then, based on 𝑝 (𝑡 | 𝑧) and the current 𝑝𝑍
and 𝑝size, it derive the conditional probability

𝑝 (𝑧 | 𝐺) = 𝑝 (𝐺, 𝑧)∑′
𝑧 𝑝 (𝐺, 𝑧′)

, (3)

where

𝑝 (𝐺, 𝑧) = 𝑝𝑍 (𝑧) · 𝑝size (|𝐺 | | 𝑧) ·
∏
𝑡 ∈𝐺

𝑝 (𝑡 | 𝑧) . (4)

Based on 𝑝 (𝑧 | 𝐺), it identifies the latent value 𝑧𝐺 that is most likely

for 𝐺 , and takes it as the current estimate of 𝐺 ’s latent attribute.

After that, for each 𝑧, the algorithm counts the number cnt(𝑧)
of tuple groups whose latent attributes are estimated to be 𝑧, and

obtains a noisy version cnt
∗ (𝑧) of the number by injecting Gaussian

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

noise N(0, 𝜎2𝑧) (Lines 8-10). Then, it updates the estimated distri-

bution 𝑝𝑍 of 𝑍 based on cnt
∗ (𝑧) (Lines 11-12). Similarly, for each

𝑧 and each group size 𝑠 , the algorithm computes a noisy version

cnt
∗ (𝑠, 𝑧) of the number of tuple groups 𝐺 in 𝑅1 that have 𝑧𝐺 = 𝑧

and |𝐺 | = 𝑠 (Lines 13-16). It then uses cnt
∗ (𝑠, 𝑧) to update the

estimated distribution 𝑝size (𝑠 | 𝑧) of the group size 𝑠 given 𝑧.

In addition, for each latent marginal 𝑀 ∈ M, the algorithm

calculates the expected counts in 𝑀 based on the estimated la-

tent attribute of each tuple group, and then injects Gaussian noise

N(0, 𝜎2
ℓ
) into them. In other words, it materializes a noisy version

of each latent marginal inM. Then, it treats all latent marginals

as observed marginals (since they have been materialized), and

updates the graphical model parameter 𝜃 to fit the noisy counts in

all marginals inM (Line 23). Inferring 𝜃 from observed marginals

is well studied in the literature of graphical models [44]; for Line 23

of Algorithm 1, we adopt the gradient descent method in [34], as it

is optimized for the case when the marginal counts are noisy. One

issue here is that the method in [34] is designed for an objective

function different from ours, so it is not immediately clear that

the method fits our EM framework; however, we prove in Appen-

dix A that the solution returned by the method is still correct in

our context, i.e., it optimizes the overall log-likelihood of all tuple

groups.

4.3 Choosing the Marginal SetM
Now we remove the assumption that the marginal set M is

given, and describe a procedure to choose the observed and la-

tent marginals inM. Intuitively, the observed and latent marginals

inM serve different purposes: the observed marginals help us cap-

ture the inter-attribute correlations in 𝑅1, while the latent marginals

enable us to model the intra-group correlations in 𝑅1. In relation

to this, existing work on single-table synthesis [7, 9, 49] has pro-

posed a number of DP solutions for choosing observed marginals

to model inter-attribute correlations. Nevertheless, the selection of

latent marginals under DP has not been studied.

The main challenge in latent marginal selection is the following

dilemma. To choose latent marginals based on their usefulness, we

need to inspect the joint-distribution of the latent attribute 𝑍 and

the other attributes pertinent to each marginal; this requires us

to estimate the latent attribute of each tuple group. However, to

estimate each tuple’s latent attribute using Algorithm 1, we need

to provideM as an input to the algorithm, which requires that we

have decided the latent marginals inM.

To resolve the above dilemma, we adopt an iterative approach as

follows. We first select an initial set of latent marginals, and insert

them intoM along with a number of observed marginals. After

that, we invoke Algorithm 1 to estimate our model parameters

based on the currentM. With the parameters obtained, we use our

model to estimate the latent attribute of each tuple group. Then,

we utilize the estimated latent attributes to evaluate the usefulness

of a candidate set C of latent marginals currently not inM, based

on which we choose the most promising latent marginals from C
and insert them intoM. This process is repeated until we have a

sufficient set of latent marginals inM.

Algorithm 2 shows the pseudo-code of our method for deciding

M. It first invokes the DP marginal selection algorithm in existing

Algorithm 2: Marginal selection and model constrution

for 𝑅1

Input: Relation 𝑅1, candidate marginal number 𝑛C ,
marginal number increment 𝑛inc, iteration numbers

𝑇C and 𝑇 , noise scales 𝜎𝑧 , 𝜎size, 𝜎ℓ , and 𝜎𝑀
Output:Marginal setM, model parameters 𝜃, 𝑝size, and

latent attribute 𝑧𝐺 for each tuple group 𝐺

1 Invoke the DP marginal selection algorithm in [9] on 𝑅1 to

obtain a setM
obs

of observed marginals with Gaussian

noise injected;

2 LetM =M
obs

;

3 for each attribute 𝐴 ∈ {𝐴1, 𝐴2, . . . , 𝐴𝑑 } do
4 Let𝑀 be the latent marginal of 𝑅1 on {𝐴,𝑍 };
5 Insert𝑀 intoM;

6 Initialize model parameters 𝜃, 𝑝𝑍 , 𝑝size;

7 𝜃, 𝑝size, 𝑧𝐺 ← Alg. 1 (𝑅1, 𝜃, 𝑝𝑍 , 𝑝size,𝑇 ,M, 𝜎𝑧 , 𝜎size, 𝜎ℓ);
8 for 𝑡 = 1 to 𝑇C do
9 Sample a set C of 𝑛C latent marginals that satisfy

𝜆-usefulness and are not inM;

10 Let C′ be the observed marginal set corresponding to C;
11 for each observed marginal𝑀′ ∈ C′ do
12 Generate an estimated version𝑀′ of𝑀′ by

replacing each count with an estimate derived

using the current 𝜃 ;

13 Let ẽrr(𝑀′) = ∥𝑀′ −𝑀′∥1 + N(0, 𝜎2err);
14 Identify the 𝑛inc marginals𝑀′ in C′ that maximizes

ẽrr(𝑀′), and insert their corresponding latent

marginals intoM;

15 Update 𝜃 by inserting an new coordinate 𝜃 [𝑐] = 0 for

each count 𝑐 in each latent marginal newly inserted

intoM;

16 𝜃, 𝑝size, 𝑧𝐺 ← Alg. 1 (𝑅1, 𝜃,M, 𝑝𝑍 , 𝑝size, 1, 𝜎𝑧 , 𝜎size, 𝜎ℓ);
17 returnM, 𝜃 , 𝑝size, and 𝑧𝐺 for each tuple group 𝐺 ;

work [9] to identify a set of observed marginals that preserve inter-

attribute correlations 𝑅1 and has Gaussian noise injected (Line

1). It then uses this marginal set as the initialM (Line 2). After

that, for each attribute 𝐴 ∈ {𝐴1, . . . , 𝐴𝑑 }, the algorithm inserts a

latent marginal of 𝑅1 on {𝐴,𝑍 } intoM (Lines 3-4). The rationale is

that these latent marginals represent the most basic type of joint-

distributions between the latent attribute 𝑍 and the others, and

hence, they are a good set of latent marginals to start with.

Then, the algorithm proceeds to initialize our model parameters

𝜃 , 𝑝𝑍 , and 𝑝size (Line 6), by setting 𝜃 to a zero vector, 𝑝𝑍 to a

uniform distribution over the predefined domain of 𝑍 , and 𝑝size to

a uniform distribution over {1, 2, . . . , 𝜏}, where 𝜏 is the maximum

multiplicity of 𝑅1’s foreign key to 𝑅0 (see Section 2). After that,

the algorithm invokes Algorithm 1 to learn 𝜃 , 𝑝𝑍 , and 𝑝size based

on the current marginal setM (Line 7). The subsequent part of

the algorithm consists of 𝑇C iterations (Lines 8-16), each of which

identifies 𝑛inc additional latent marginals and inserts them intoM.

In particular, in each iteration, the algorithm samples a set C of

𝑛C latent marginals𝑀 that are not inM but satisfy a property of

𝜆-usefulness [49]:

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

𝑛̃

|𝑀 | ≥ 𝜆 ·
√︂

2

𝜋
· 𝜎ℓ , (5)

where 𝑛̃ is the noisy number of tuples in 𝑅1 obtained from the

selection algorithm in Line 1, |𝑀 | is the number of counts in 𝑀 ,

𝜆 > 1 is a pre-defined constant, and

√︃
2

𝜋 𝜎ℓ is the expected absolute

value of the Gaussian noise that Algorithm 1 will insert into𝑀 if it

is selected intoM (see Line 16). Intuitively, 𝜆-usefulness requires

that the average count in𝑀 is larger than the expected amount of

noise to be inserted into𝑀 , which ensures that the signal-to-noise

ratio in𝑀 is reasonable after noise injection. We set 𝜆 = 20.

Next, Algorithm 2 constructs a set C′ of observed marginals

corresponding to the latent marginals in C (Line 10). Specifically, we

say that an observed marginal𝑀′ corresponds to a latent marginal

𝑀 , if 𝑀′ is defined on an attribute set A ⊆ {𝐴1, 𝐴2, . . . , 𝐴𝑑 } and
𝑀 is defined on A ∪ {𝑍 }. Subsequently, for each observed mar-

ginal 𝑀′ in C′, Algorithm 2 evaluates how accurate the current

model can approximate the counts in 𝑀′. In particular, the algo-

rithm first utilizes the current model parameter 𝜃 to estimate the

counts in𝑀′ (based on Equation 1), obtaining an estimated version

𝑀′ of𝑀′ (Line 12). After that, it computes the 𝐿1 distance between

𝑀′ and𝑀′, and injects Gaussian noise N(0, 𝜎2
err
) into it (Line 13).

Let ẽrr(𝑀′) denote the resulting noisy 𝐿1 distance. Intuitively, if

ẽrr(𝑀′) is large, then the information in𝑀′ is not accurately cap-

tured by our model; in that case, it is beneficial to add a marginal

corresponding to𝑀′ intoM, so as to improve our model. Accord-

ingly, Algorithm 2 identifies the 𝑛inc marginals𝑀′ in C′ with the

largest ẽrr(𝑀′), and inserts their corresponding latent marginals

intoM (Line 14). After that, the algorithm updates the model pa-

rameter 𝜃 by creating a new coordinate 𝜃 [𝑐] = 0 for each cell in

each newly added marginal (Line 15). Then, the algorithm invokes

Algorithm 1 to update 𝜃 based on the currentM (Line 16). Note

that the iteration number in Algorithm 1 is set to 𝑇 = 1, because

the learning of model parameters here is based on the previously

obtained 𝜃 , 𝑝𝑍 , 𝑝size (instead of starting from scratch), and hence,

one iteration is sufficient for fine-tuning our model.

4.4 Modeling the Primary Private Relation 𝑅0
To complete the modeling step, we model the primary private rela-

tion 𝑅0, using existing techniques. Recall that, with Algorithms 1

and 2, we obtain a DP graphical model for the secondary private

relation 𝑅1, as well as the inferred latent attribute 𝑧𝐺 for each tuple

group 𝐺 in 𝑅1. Then, we can insert a new attribute 𝑍 into the pri-

mary private relation 𝑅0 as follows: if a tuple group 𝐺 in 𝑅1 refers

to a tuple 𝑡 in 𝑅0, then we set 𝑡 [𝑍] = 𝑧𝐺 , as exemplified in Table 4.

In that case, 𝑍 can be regarded as an observed attribute (instead of

a latent attribute), since its value for each tuple in 𝑅0 is determined.

Therefore, to model 𝑅0, we can apply any existing DP method for

single-relation synthesis. In our solution, we model 𝑅0 using the

state-of-the-art approach in [9].

4.5 Synthesizing 𝑅0 and 𝑅1
Now that we have modeled the foreign key between 𝑅0 and 𝑅1,

we discuss how to generate synthetic data from the model by a

random sampling procedure. This relies on standard ideas, and can

be done efficiently. First, we use the model for 𝑅0 to generate a

synthetic tuple 𝑟∗, which contains all attributes originally in 𝑅0
as well as the additional attribute 𝑍 . After that, we retrieve the

model for 𝑅1, which is parameterized by 𝜃 , 𝑝𝑍 , and 𝑝size. We first

inspect 𝑟∗ [𝑍], and sample a tuple group size 𝑠 with probability

𝑝size (𝑠 | 𝑧 = 𝑟∗ [𝑍]). Then, we generate a group𝐺 of 𝑠 tuples for 𝑅1.

Each tuple 𝑡∗ in 𝐺 is sampled with probability 𝑝 (𝑡∗ | 𝑧 = 𝑟∗ [𝑍]),
where 𝑝 (𝑡 | 𝑧) is as defined in Section 4.1. This sampling of tuples

can be conducted efficiently using the junction tree representation of
our graphical model [44], which is a standard approach adopted in

previous work [9]. We omit the details for brevity. Once the tuples

in 𝐺 are constructed, we set their foreign keys to make them refer

to 𝑟∗. In general, the above generation process can be repeated to

create an arbitrary number of tuples for 𝑅0 and the corresponding

tuple groups in 𝑅1.

4.6 Extension to Multiple Latent Attributes
Our discussions in Sections 4.1-4.5 assume that we use only one

latent attribute 𝑍 in the modeling of 𝑅1 and 𝑅0. In general, however,

we can have multiple latent attributes 𝑍1, 𝑍2, . . ., and treat them

as a composite attribute to model tuple groups, in a way similar

to the case of a single latent attribute 𝑍 . The main advantage of

using multiple latent attributes is that it provides additional flexi-

bility in the choices of marginals in our model, since each observed

attribute can be combined with different latent attributes to form

latent marginals. Nevertheless, having more latent attributes also

increases the difficulty of modeling, as it requires us to deal with

higher-dimensional data in both 𝑅1 and 𝑅0.

In our solution, we choose to use two latent attributes 𝑍1 and

𝑍2 for each foreign key, as it leads to better empirical results in

general. Accordingly, we revise Algorithms 1 and 2 as follows:

(1) In Algorithm 1, we use the composite attribute {𝑍1, 𝑍2} in
place of 𝑍 .

(2) In Lines 3-5 of Algorithm 2, we consider the latent marginals

that are defined on {𝐴,𝑍1}, {𝐴,𝑍2}, or {𝑍1, 𝑍2}, where 𝐴 ∈
{𝐴1, . . . , 𝐴𝑑 }.

(3) In Line 9 of Algorithm 2, we allow each latent marginal to

contain 𝑍1 or 𝑍2 or both.

4.7 Choice of Latent Attribute Domain
Our solution requires that each latent attribute 𝑍𝑖 is a categorical

attribute with a given domain. While the elements of 𝑍𝑖 ’s domain

can be arbitrary, the size of the domain |𝑍𝑖 | has a considerable

effect on the performance of our solution. To explain, recall that

our solution uses 𝑍𝑖 to characterize the composition of each tuple

group in 𝑅1, i.e., each 𝑍𝑖 value represents a type of tuple groups.
When each |𝑍𝑖 | is small, we would have an insufficient number of

types to categorize the tuple groups in 𝑅1, which leads to inaccurate

modeling of the data. On the other hand, if |𝑍𝑖 | is large, then each

latent marginal would contain an excessive number of counts; in

that case, the “signal” in the latent marginals is too sparse to satisfy

our 𝜆-usefulness requirement (see Line 9 of Algorithm 2), namely,

we are unable to utilize the latent marginals to model 𝑅1.

To address the above issue, we set the domain sizes of our latent

attributes 𝑍1 and 𝑍2 as follows. Let 𝐴 be the attribute in 𝑅1 with

the largest domain. We let |𝑍1 | = |𝑍2 | = 𝑘 , where 𝑘 is the largest

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

𝑅3

𝑅1

𝑅2

𝑅0 𝑃2 𝑃1

1

2 4

3

5

Figure 3: An example of multiple foreign key references.

Algorithm 3:Modeling multiple foreign keys

Input: Database R, strict total order ≺
1 for each private foreign key FK(𝑅, 𝑅′) in ascending order of ≺

do
2 Apply Algorithm 2 to model FK(𝑅, 𝑅′), and augment 𝑅′

with the estimated latent attributes;

3 for each relation 𝑅 that has no private foreign keys but is
referred to by at least one private relation do

4 Construct a DP single-relation model for 𝑅 (see

Section 4.4);

5 return all models constructed;

number such that the latent marginals on {𝑍1, 𝑍2} and {𝑍𝑖 , 𝐴} all
satisfy 𝜆-usefulness. That is, we set the domain size of 𝑍𝑖 as large

as possible, while ensuring that our solution is able to use latent

marginals to model the joint-distribution between 𝑍1 and 𝑍2, as

well as the correlations between each observed attribute and 𝑍𝑖 .

5 SOLUTION FOR MULTIPLE FOREIGN KEYS
Assume that the input database R contains a primary private rela-

tion 𝑅0, secondary private relations 𝑅1, 𝑅2, . . ., and public relations

𝑃1, 𝑃2, For any two relations 𝑅, 𝑅′ ∈ R such that 𝑅 refers to 𝑅′,
we use FK(𝑅, 𝑅′) to denote the foreign key from 𝑅 to 𝑅′. By our

problem definition, the foreign keys between public relations do not

incur any privacy issues. In addition, there should be no foreign key

from a public relation 𝑃 to a private relation; otherwise, 𝑃 should

be a secondary private relation instead. Therefore, there are only

two types of foreign keys in R that we need to tackle: (i) FK(𝑅𝑖 , 𝑅 𝑗),
where 𝑅𝑖 and 𝑅 𝑗 are both private relations, and (ii) FK(𝑅𝑖 , 𝑃), where
𝑃 is a public relation. We refer to these two types of foreign keys

as private foreign keys.

Observe that there exists a strict total order ≺ on the set of

private foreign keys in R, such that FK(𝑅, 𝑅′) ≺ FK(𝑅′, 𝑅′′) always
holds. For example, Figure 3 shows the foreign key references in

a database with four private relations 𝑅0, . . . , 𝑅3 and two public

relations 𝑃1, 𝑃2. The circled number associated with each private

foreign key indicates the index of the foreign key in a total order

≺. Observe that both FK(𝑅1, 𝑅0) ≺ FK(𝑅0, 𝑃2) and FK(𝑅2, 𝑅0) ≺
FK(𝑅0, 𝑃2). In general, such a strict total order can be constructed

by applying a topological sort on the directed acyclic graph that

represents the foreign key references.

In the following, we explain how we can extend our solution in

Section 4 to address the case of multiple foreign keys, based on the

aforementioned total order ≺.

5.1 Modeling Multiple Foreign Keys
Algorithm 3 shows the pseudo-code of our method for modeling R.
The algorithm performs a linear scan of the private foreign keys in

Algorithm 4: Synthesis without public relations
Input: Database R without public relations, strict total

order ≺
Output: A synthetic version R∗ of R

1 Synthesize 𝑅∗
0
from the single-relation model for 𝑅0;

2 for each private foreign key FK(𝑅𝑖 , 𝑅 𝑗) in descending order of
≺ do

3 if 𝑅∗
𝑖
has not been generated then

4 𝑅∗
𝑖
= ∅;

5 for each synthetic tuple 𝑡∗ in 𝑅∗
𝑗
do

6 Sample a tuple group 𝐺∗ for 𝑡∗ using the
graphical model for FK(𝑅𝑖 , 𝑅 𝑗);

7 Insert the tuples in 𝐺∗ into 𝑅∗
𝑖
;

8 else
9 Let 𝑆 = 𝑅∗

𝑖
;

10 for each synthetic tuple 𝑡∗ in 𝑅∗
𝑗
do

11 Sample a tuple group 𝐺∗ for 𝑡∗ using the

graphical model for FK(𝑅𝑖 , 𝑅 𝑗), but restrict the
sample space to 𝑆 ;

12 for each tuple 𝑡∗
𝑖
in 𝑅∗

𝑖
that is also in 𝐺∗ do

13 Let 𝑡∗
𝑖
refer to 𝑡∗;

14 Remove 𝑡∗
𝑖
from 𝑆 ;

15 return all synthetic relations generated;

R in ascending order of ≺. For each private foreign key FK(𝑅, 𝑅′),
the algorithm applies Algorithm 2 to model FK(𝑅, 𝑅′), which also

augments 𝑅′ with the estimated latent attributes associated with

each tuple group in 𝑅. This augmented 𝑅′ is then used in place of

the original 𝑅′ in the subsequent processing of any foreign key

FK(𝑅′, 𝑅′′) encountered. When the linear scan terminates, the al-

gorithm proceeds to examine the relations in R that (i) have no

private foreign keys but (ii) are referred to by at least one private

relation. Such relations are not modeled by Algorithm 2, but they

are augmented with latent attributes, which are needed in data

synthesis. We model such relations using the DP single-relation

modeling approach in [9], following the procedure in Section 4.4.

For example, given the database R in Figure 3, Algorithm 3 first

processes FK(𝑅3, 𝑅2) and augments 𝑅2 with estimated latent at-

tributes. After that, it proceeds to model FK(𝑅3, 𝑅1), FK(𝑅2, 𝑅0),
and FK(𝑅1, 𝑅0), respectively, and inserts estimated latent attributes

into 𝑅1 and 𝑅0. Note that at this stage, 𝑅0 is augmented with two

sets of latent attributes, induced by FK(𝑅2, 𝑅0) and FK(𝑅1, 𝑅0), re-
spectively. Both sets of latent attributes are taken into account

when the algorithm subsequently processes FK(𝑅0, 𝑃2).

5.2 Synthesis without Public Relations
In what follows, we explain how we generate a synthetic version

of R based on the models constructed by Algorithm 3. For ease

of exposition, we first consider the case when R does not contain

any public relations. In that case, the primary relation 𝑅0 does

not have any foreign keys referencing other relations, and hence,

Algorithm 3 would have constructed a single-relation model for 𝑅0.

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

Algorithm 4 shows the pseudo-code of our data synthesis method

for the case of no public relation in R. It first utilizes the single-
relation model constructed for 𝑅0 to generate a synthetic version 𝑅

∗
0

of𝑅0 (Line 1). After that, it inspects the foreign keys inR in descend-

ing order of ≺ (Lines 2-14). For each foreign key FK(𝑅𝑖 , 𝑅 𝑗) encoun-
tered, the algorithm differentiates two cases based on whether 𝑅∗

𝑖
has been created previously when other foreign keys are processed

(Line 3). If 𝑅∗
𝑖
does not exist, then the algorithm initializes 𝑅∗

𝑖
= ∅,

and retrieves the synthetic version 𝑅∗
𝑗
of 𝑅 𝑗 (which must have been

generated due to the inspection order of the foreign keys). For each

synthetic tuple 𝑡∗ in 𝑅∗
𝑗
, the algorithm samples a tuple group𝐺∗ for

𝑡∗ using the graphical model for FK(𝑅𝑖 , 𝑅 𝑗), and inserts the tuples

in 𝐺∗ into 𝑅∗
𝑖
(Lines 3-7).

On the other hand, if 𝑅∗
𝑖
already exists, then the processing of

FK(𝑅𝑖 , 𝑅 𝑗) becomes more complicated. For example, consider the

foreign keys shown in Figure 3, and assume that the public relations

𝑃1 and 𝑃2 do not exist. If we apply Algorithm 4 to process these

foreign keys in descending order of ≺, then FK(𝑅3, 𝑅1) would be

processed before FK(𝑅3, 𝑅2). Therefore, by the time that the algo-

rithm examines FK(𝑅3, 𝑅2), a synthetic version 𝑅∗
3
of 𝑅3 would have

been constructed. In that case, if the algorithm handles FK(𝑅3, 𝑅2)
as if 𝑅∗

3
does not exist, then it would generate another synthetic

version of 𝑅3. It is unclear how we can reconcile the differences

between the two synthetic versions of 𝑅3.

To address the above issue, when 𝑅∗
𝑖
already exists, Algorithm 4

would sample synthetic tuple groups in a different manner as fol-

lows. First, it constructs a set 𝑆 = 𝑅∗
𝑖
(Line 9). Then, when it samples

tuple groups from the model for FK(𝑅𝑖 , 𝑅 𝑗), it restricts the sample

space to 𝑆 , i.e., only the tuples in 𝑆 has a chance to be sampled (Line

11). In addition, each time a tuple 𝑡∗
𝑖
in 𝑆 is sampled, it is removed

from 𝑆 to avoid being sampled again by the algorithm (Line 14). As

such, the tuple groups generated for FK(𝑅𝑖 , 𝑅 𝑗) would consist of

only the tuples in the previously generated 𝑅∗
𝑖
, and hence, we do

not need to deal with two different synthetic versions of 𝑅𝑖 .

5.3 Synthesis with Public Relations
Our solution in Section 5.2 only handles foreign keys between

private relations. In what follows, we extend this solution to take

into account foreign keys in the form of FK(𝑅𝑖 , 𝑃), where 𝑅𝑖 and 𝑃
are private and public relations, respectively.

Observe that when Algorithm 3 processes FK(𝑅𝑖 , 𝑃), it would
(i) construct a graphical model for FK(𝑅𝑖 , 𝑃), (ii) augment 𝑃 with

estimated latent attributes pertinent to 𝑅𝑖 , and (iii) create a DP

single-relation model on the augmented 𝑃 (since 𝑃 has no private

foreign key to other relations). If we are to generate synthetic

data in relation to FK(𝑅𝑖 , 𝑃), a naive approach is to first construct

a synthetic version 𝑃∗ of 𝑃 based on the single-relation model

for 𝑃 , and then sample synthetic tuple groups from the graphical

model for FK(𝑅𝑖 , 𝑃). This, however, is unsatisfactory in terms of

accuracy, since it does not exploit the fact that 𝑃 is a public relation

and can be released directly. Another naive approach is to publish

the augmented 𝑃 , and then utilize the latent attributes therein to

sample synthetic tuple groups for 𝑅𝑖 from the graphical model.

Unfortunately, this violates DP, because the latent attributes of

each tuple in 𝑃 convey private information and cannot be directly

disclosed.

To address the limitations of the naive approaches above, we

adopt an improved solution as follows. First, for each tuple 𝑡 in 𝑃 , we

use the DP single-relation model for 𝑃 to infer the latent attributes

of 𝑡 . This does not incur any privacy cost, since it uses only public

information (i.e., 𝑃) and a DP model. Then, for each tuple 𝑡 with its

inferred latent attributes, we generate a synthetic tuple group for 𝑡

by sampling from the graphical model for FK(𝑅𝑖 , 𝑃). As such, we
can avoid synthesizing 𝑃 while ensuring DP.

We incorporate this improved solution into Algorithm 4 as fol-

lows. First, we change the input of Algorithm 4 to allow R to have

both private and public relations. Second, if the primary private

relation 𝑅0 has any foreign key to a public relation, we skip Line 1

of Algorithm 4, and leave the generation of 𝑅∗
0
to Lines 3-14. After

that, when the algorithm processes private foreign keys in descend-

ing order of ≺, we handle each foreign key FK(𝑅𝑖 , 𝑅 𝑗) differently
depending on whether 𝑅 𝑗 is private or public. If 𝑅 𝑗 is private, we

process FK(𝑅𝑖 , 𝑅 𝑗) as in Lines 3-14 of Algorithm 4. Otherwise, we

handle FK(𝑅𝑖 , 𝑅 𝑗) using the improved solution mentioned above,

with one change: if a synthetic version 𝑅∗
𝑖
of 𝑅𝑖 already exists, then

we use 𝑅∗
𝑖
as the sample space for the generation of tuple groups

(see Lines 9-14 in Algorithm 4).

6 ENSURING DIFFERENTIAL PRIVACY
In this section, we explain how we can ensure (𝜖, 𝛿)-DP in our

solution by choosing appropriate parameters for each algorithm

that we invoke. We start by introducing the concept of 𝐿2 sensitivity
and a known result on Gaussian-distributed noise.

Definition 6.1 (𝐿2 Sensitivity [16]). Let 𝑓 be a function that maps

a database to a real vector. The 𝐿2 sensitivity of 𝑓 , denoted as Δ(𝑓),
is the maximum value of ∥ 𝑓 (R) − 𝑓 (R′)∥2 for any two neighboring
database R and R′, where ∥ · ∥2 denotes the 𝐿2 norm.

Theorem 6.2 ([3]). Let {𝑓1, . . . , 𝑓𝑘 } be a set of functions. For any
𝑖 = 1, . . . , 𝑘 , suppose that we inject independent Gaussian noise
N(0, 𝜎2

𝑖
) into each element in 𝑓𝑖 ’s output. Then, the perturbed func-

tions as a whole satisfy (𝜖, 𝛿)-DP, if and only if

Φ

(
𝛾

2

− 𝜖
𝛾

)
− 𝑒𝜖 · Φ

(
−𝛾
2

− 𝜖
𝛾

)
≤ 𝛿, (6)

whereΦ is the cumulative distribution function of the standard normal
distribution, and

𝛾 =

√︂∑𝑘
𝑖=1

(
Δ(𝑓𝑖)
𝜎𝑖

)
2

.

Note that the left hand side of Equation (6) monotonically in-

creases with𝛾 . Therefore, if we are to inject Gaussian noise into a set

of functions {𝑓1, . . . , 𝑓𝑘 } to achieve (𝜖, 𝛿)-DP, then by Theorem 6.2,

we can set the noise scale 𝜎𝑖 for each function 𝑓𝑖 as follows:

(1) Let 𝛾max be the largest 𝛾 that satisfies Equation (6), for the

given 𝜖 and 𝛿 .

(2) Choose 𝜎𝑖 to ensure that

∑𝑘
𝑖=1

(
Δ(𝑓𝑖)
𝜎𝑖

)
2

≤ 𝛾2
max

.

For convenience, we refer to

∑
𝑖

(
Δ(𝑓𝑖)
𝜎𝑖

)
2

as the privacy consumption
of a function set {𝑓𝑖 }.

Observe that, whenever our algorithms access private informa-

tion from R, they always inject Gaussian noise into it for privacy

protection. Therefore, if we can quantify the privacy consumption

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

of each component of our solution, then we can set the parameters

accordingly to ensure (𝜖, 𝛿)-DP. In relation to this, we note that

the privacy consumption of our algorithms depends on the private

relations that they are applied on, because adding or removing one

tuple in the primary private relation 𝑅0 generally induces differ-

ent amounts of changes in different secondary private relations.

To take into account such dependencies, we define each relation’s

tuple multiplier and group multiplier as follows.

Definition 6.3 (Tuple and Group Multipliers). For any relation 𝑅

in R, its tuple multiplier is the maximum number of tuples in 𝑅

that may change between two neighboring databases. In addition,

its group multiplier with respect to a foreign key FK(𝑅, 𝑅′) is the
maximum number of tuple groups induced by FK(𝑅, 𝑅′) that may

change between two neighboring databases.

In what follows, we quantify the privacy consumption of our

algorithms based on the tuple and group multipliers of the input

relations. We starts with Algorithm 1. (Due to the space constraint,

we include our proofs in Appendix C.)

Lemma 6.4. Suppose that we apply Algorithm 1 on a relation 𝑅,
considering the tuple groups induced by a foreign key FK(𝑅, 𝑅′). Let
𝜇𝑔 be the group multiplier of 𝑅 with respect to FK(𝑅, 𝑅′). Let 𝜏 be the
maximum multiplicity of FK(𝑅, 𝑅′). Then, the privacy consumption
of Algorithm 1 is:

𝐶1 (𝑇,𝑚M) = 𝑇 · 𝜇2𝑔 ·
(
𝑚M ·𝜏2

𝜎2

𝑙

+ 1

𝜎2

𝑠𝑖𝑧𝑒

+ 1

𝜎2

𝑧

)
, (7)

where𝑇,M, 𝜎𝑧 , 𝜎𝑠𝑖𝑧𝑒 , 𝜎𝑙 are the input parameters of Algorithm 1 and
𝑚M is the number of latent marginals inM.

Next, we consider the DP single-relation modeling method [9]

used in Line 1 of Algorithm 2 and Line 4 of Algorithm 3. Based on

Lemma 2 in [9], we have the following result.

Corollary 6.5. Suppose that we apply Algorithm 6 in [9] on a
relation 𝑅 with a tuple multiplier 𝜇𝑡 . Let 𝑑 be the number of attributes
in 𝑅. Then, the privacy consumption of the algorithm is:

𝐶single (𝑑) = 𝜇2𝑡 ·
(

1

𝜎2

U
+ 2𝑑 (𝑑−1)

𝜎2

𝑅

+ 𝑡 ·𝑘
𝜎2

ℎ

+ 𝑑+𝑡
𝜎2

𝑚

)
, (8)

where 𝜎U , 𝜎𝑅, 𝜎ℎ, 𝜎𝑚, 𝑡, 𝑘 are the parameters of the algorithm.

Then, we have the following result for Algorithm 2.

Lemma 6.6. Suppose that we apply Algorithm 2 on a relation 𝑅,
considering the tuple groups induced by a foreign key FK(𝑅, 𝑅′). Let
𝜇𝑡 be the tuple multiplier of 𝑅, and 𝑑 be the number of attributes in
𝑅. Then, the privacy consumption of Algorithm 2 is:

𝐶2 (FK(𝑅, 𝑅′)) = 𝐶single (𝑑) +𝐶1 (𝑇, 2𝑑)

+
𝑇C∑︁
𝑖=1

𝐶1 (1, 2𝑑 + 𝑖 · 𝑛inc) + 𝜇2𝑡 ·
𝑛C ·𝑇C
𝜎2err

. (9)

Given Lemma 6.6 and Corollary 6.5, we can quantify the pri-

vacy consumption of Algorithm 3, by summing up the privacy

consumption of (i) applying Algorithm 2 to process each private

foreign key in R and (ii) applying the single-relation method on

each relation that has no private foreign key but is referred to by

at least one private relation. We can then set the parameters of

PrivLava accordingly to ensure that PrivLava achieves (𝜖, 𝛿)-DP
with predefined 𝜖 and 𝛿 . Note that once we obtain DP models from

Algorithm 3, using the models to generate synthetic data does not

incur any privacy cost. In addition, we can use the synthetic data to

answer arbitrary queries without any privacy overhead.This is due

to the post-processing property [17] of DP: if an algorithm satisfies

(𝜖, 𝛿)-DP, then adding any post-processing on the output of the

algorithm does not degrade its privacy guarantee.

Lastly, we clarify how we divide the primary consumption of

Algorithms 1 and 2 among their components. In Algorithm 1, we let

the generation of noisy latent marginals (Lines 19-22) account for

80% of the primary consumption, and we split the remaining 20%

between the generation of 𝑝size (Lines 13-18) and 𝑝size (Lines 8-12)

in a ratio of 4 : 1. In other words,
𝑚M ·𝜏2

𝜎2

𝑙

:
1

𝜎2

𝑠𝑖𝑧𝑒

:
1

𝜎2

𝑧
= 20 : 4 : 1. In

addition, we set𝑇 = 6. In Algorithm 2, we allocate 20% of the privacy

consumption to Line 1, 75% to the invocations of Algorithm 1, and

the remaining 5% to Lines 9-14. We also set 𝑇C = 2, 𝑛C = 400, and

𝑛inc = 𝑑/4. We determine these allocation ratios based on empirical

calibrations across a range of different data sets, but these are not

necessarily optimal. Identifying the optimal distribution of privacy

budget is an interesting direction for future work.

7 EXPERIMENTS
7.1 Settings
Data Sets.We use two census databases from [10, 42] and the TPC-

H benchmark [1] for experiments. The census databases contain

census data collected in California and Île-de-France, respectively.

Each of them contains a person relation 𝑅𝑃 and a household rela-

tion 𝑅𝐻 , with a foreign key 𝐹𝐾 (𝑅𝑃 , 𝑅𝐻) indicating the household
that each person belongs to. We regard 𝑅𝐻 and 𝑅𝑃 as the primary

and secondary private relations, respectively. Table 7 shows the

statistics of the two census databases.

The TPC-H benchmark contains 8 relations and 8 foreign keys,

as shown in Figure 4. We use Orders and Lineitem as the primary

and secondary private relations, respectively, and regard the others

as public relations. Note that the original TPC-H benchmark gener-

ates each foreign key based on a uniform distribution; as a result,

it has minimum inter-relational correlations, which makes it un-

suitable for evaluating the effectiveness of multi-relation synthesis.

Motivated by this, we revise TPC-H to introduce inter-relational

correlations as follows.

First, we assign a weight to each part-type and part-brand in

Part. Then, for each tuple in Lineitem, we scale its price value by

the product of the weights of its part-type and part-brand. In other

words, we let the price of each lineitem depend on the type and

brand of its part. In particular, the weight of each part-type (resp.

part-brand) is chosen from [0.2, 1] (resp. [0.2, 2]). Second, for each
year 𝑦, we randomly select a 15% subset of the customers, and

associate 40% of the orders in year 𝑦 to those customers; then, we

distribute the remaining 60% orders randomly to the other 85%

customers. This leads to correlations between customers and order-

year. Third, for each year 𝑦, we drop each order in year 𝑦 with 75%

probability, unless the order contains 𝑦 − 1992 lineitems. This is

to introduce correlations between the order sizes and order-year.

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

Table 7: Summary of census datasets.
(a) California

Relation # records # attributes domain size
Person 1,690,642 23 ≈ 6.77 × 1012

Household 616,115 10 ≈ 3.24 × 107

(b) Île-de-France

Relation # records # attributes domain size
Person 4,297,133 14 ≈ 1.84 × 1010

Household 1,911,412 10 ≈ 1.24 × 107

Lineitem

Orders

Customer Nation Region

PartSupp Supplier

Part

private
relations

Figure 4: The foreign key dependencies in TPC-H.

With the above changes, we obtain a revised TPC-H benchmark

with roughly 4× 106 tuples in Lineitem and 1× 106 tuples in Order.
Recall that our solution requires that the maximum multiplicity

of each private foreign key 𝐹𝐾 (𝑅, 𝑅′) is given. In practice, a data

owner may choose an upper bound based on prior knowledge
2
;

this assumption is adopted in previous work [46]. We follow the

same assumption in our experiments. In particular, we examine the

sizes of all tuple groups in 𝑅 with respect to 𝑅′, and calculate the

99% quantile of the group sizes. Then, we use this quantile as the

maximum multiplicity of 𝐹𝐾 (𝑅, 𝑅′).
Baselines.We consider three state-of-the-art solutions for DP data

synthesis: PrivMRF [9], PrivBayes [49], and PB-PGM [34]. These

three solutions are designed for single-relation synthesis, but we

apply them on our data sets as follows. First, we use 80% of the

privacy budget to generate a synthetic version of each private

relation. Then, we spend the remaining 20% budget to generate,

for each private foreign key 𝐹𝐾 (𝑅, 𝑅′), a noisy histogram 𝐻∗ of
the tuple group sizes in 𝑅 with respect to 𝐹𝐾 (𝑅, 𝑅′). After that, we
randomly associate the synthetic tuples for 𝑅 with the synthetic

tuples for 𝑅′, while preserving the group size distribution in 𝐻∗.
In addition, we include a denormalization-based baseline, De-

norm, which works as follows. It first uses 20% of the privacy

budget to generate a noisy histogram of each foreign key’s group

size. Then, it joins all relevant relations in the input database into a

denormalized relation, and generates a synthetic version 𝑅∗ of it
using PrivMRF with the remaining 80% privacy budget. After that,

it normalizes 𝑅∗ back into a set of relations. For example, suppose

that 𝑅∗ is a synthetic version of 𝑅𝐻 ⊲⊳ 𝑅𝑃 , where 𝑅𝐻 and 𝑅𝑃 are the

household and person relation, respectively, in the California or

Île-de-France data set. To normalize 𝑅∗, we first sort the tuples in
𝑅∗ in lexicographic order, with the household attributes preceding

all person attributes. This results in a sorted sequence where adja-

cent tuples have similar household attributes. Then, we divide the

sorted tuples into groups, following the distribution of group sizes

observed in the noisy group size histogram. We regard each group

𝐺 as a household, and unify the household attributes in𝐺 by first

randomly choosing a tuple 𝑡 in 𝐺 and then copying 𝑡 ’s household

2
When such prior knowledge is unavailable, the data owner may use a differentially

private algorithm to decide a suitable upper bound, e.g., by computing an approximate

99% quantile of the degrees of the foreign key; previous work [15, 25] has presented

algorithms for this purpose.

attributes into all other tuples in𝐺 . The TPC-H database is handled

in a similar manner.

Privacy parameters. In all of our experiments, we vary 𝜖 but fix

𝛿 = 1

𝑛 , where 𝑛 is the number of tuples in the secondary private

relation. Similar settings are adopted in previous work [6, 9, 19, 22].

7.2 Experimental Results on Census Databases
Our first set of experiments focuses on the two census databases.We

consider aggregate queries 𝑄 (𝑠, 𝑃ℎ, 𝑐, {𝑃𝑖 }) in the following form.

Count the households ℎ that satisfy the following conditions:

• the size of ℎ equals 𝑠 , and

• ℎ satisfies a predicate 𝑃ℎ on its attributes, and

• ℎ contains 𝑐 persons 𝑝1, . . . 𝑝𝑐 , such that each 𝑝𝑖 (𝑖 = 1, . . . , 𝑐)

satisfies a predicate 𝑃𝑖 on its attributes.

Intuitively, when 𝑐 = 1, the accuracy of 𝑄 on a synthetic database

R∗ indicates whether R∗ preserves the correlations between the

household and person relations. Meanwhile, when 𝑐 > 1, 𝑄 can

also be used to evaluate whether R∗ preserves the intra-group

correlations between the household members.

We consider the cases of 𝑐 = 1 and 𝑐 = 2, with randomly selected

𝑠 . For 𝑃ℎ and {𝑃𝑖 }, we consider 1-attribute and 2-attribute conjuctive
predicates, such that the condition on each attribute 𝐴 𝑗 is 𝑡 [𝐴 𝑗] ∈
𝑆 𝑗 , where 𝑡 is a tuple and 𝑆 𝑗 is a set of randomly selected values from

𝐴 𝑗 ’s domain. We let

|𝑆 𝑗 |
|𝐴 𝑗 | = (0.2)

1/𝑘
, where 𝑘 is the total number of

conditions in 𝑃ℎ and {𝑃𝑖 }. In other words, we set the size of each

𝑆 𝑗 to a constant, such that the selectivity of all predicates combined

is 0.2 on uniformly distributed data. We measure the accuracy of

each query 𝑄 by its relative error, which is defined as

absolute error of 𝑄

max{actual result of 𝑄, 0.01 · total number of households} ,

where “0.01 · total number of households” is a regularization term

to mitigate the effects of excessively small query results.

Figure 5 (resp. Figure 6) shows the errors of each method aver-

aged over 10,000 queries on California (resp. Île-de-France). Observe

that, regardless of whether 𝑐 = 1 or 𝑐 = 2 and whether each predi-

cate involves 1 or 2 attributes, PrivLava significantly outperforms

its competitors in terms of query accuracy. This demonstrates the

effectiveness of PrivLava in modeling the inter-relational and intra-

group correlations in the input data. The accuracy of PrivLava im-

proves when the privacy budget 𝜖 increases, since a larger 𝜖 allows

PrivLava to use smaller noise for data synthesis. In contrast, the ac-

curacy of the baseline methods shows little improvement with the

increase of 𝜖 , which indicates that their inability to model foreign

keys is the main cause of their query errors. In addition, Denorm
outperforms other baselines, but is still inferior to PrivLava, which
shows that the denormalization approach of Denorm helps reserve

inter-relational correlations but is not as effective as PrivLava’s
latent variable approach.

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

(a) 𝒄 = 1, 1-attribute predicates (b) 𝒄 = 1, 2-attribute predicates (c) 𝒄 = 2, 1-attribute predicates (d) 𝒄 = 2, 2-attribute predicates

Figure 5: California: relative error vs. 𝜖.

(a) 𝒄 = 1, 1-attribute predicates (b) 𝒄 = 1, 2-attribute predicates (c) 𝒄 = 2, 1-attribute predicates (d) 𝒄 = 2, 2-attribute predicates

Figure 6: Île-de-France: relative error vs. 𝜖.

(a) Q4 (b) Q5 (c) Q7 (d) Q9

(e) Q12 (f) Q14 (g) Q17 (h) Q19

Figure 7: TPC-H: relative error vs. 𝜖.

7.3 Experimental Results on TPC-H
In our second set of experiments, we evaluate each method on

8 aggregate queries from the TPC-H benchmark. Each query 𝑄

returns either a value or a set of values generated with GROUP BY.

We measure the accuracy of 𝑄 by the average relative error of the

value(s) that it returns. In addition, we remove the regularization

term from the definition of relative error, since all values from

TPC-H queries are sufficiently large.

Figure 7 shows the accuracy of each method as a function of

𝜖 , averaged over 10 runs. Observe that PrivLava consistently out-

performs its competitors, in most cases by a large margin. This is

consistent with the results in Figure 5 and Figure 6. Interestingly,

there are a few queries (e.g., Q7, Q14, Q17) for which PrivLava’s
accuracy degrades noticeably when 𝜖 is small. The main reason is

that some components of those queries have small selectivity, and

hence, they can be answered accurately only if our modeling of the

input data is highly accurate, which is difficult under a small privacy

budget 𝜖 . For example, the result of Q17 contains one value that is

computed over merely 0.01% of the tuples in Lineitem. Nonetheless,

even with a modest 𝜖 = 1.6, PrivLava is already able to substantially
outperform its competitors on all queries.

Denorm shows noticeable improvement over other baselines in

Q4, Q9, and Q12. For all other queries, however,Denorm only offers

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

(a) California (b) Île-de-France (c) TPC-H
Figure 8: Computation cost vs. 𝜖.

comparable query accuracy to other baselines. This is consistent

with our observation from the experimental results in Section 7.2:

Denorm is able to capture some inter-relational correlations, but it

is inferior to PrivLava in terms of modeling accuracy.

7.4 Computation Cost
Our last set of experiments evaluates the computation time of each

method on our three data sets, using a Linuxmachine with a 32-core

2.9GHz CPU and an Nvidia A10 GPU. All methods are implemented

using Python. Figure 8 shows the processing cost of each method,

averaged over 10 runs. The computation cost of PrivLava increases
with the privacy budget 𝜖 , since (i) a larger 𝜖 allows PrivLava to

use larger marginals for modeling (see Equation 5), and (ii) such

marginals are more time-consuming to process. PrivLava incurs

a higher computation time than other baselines, but it is still able

to finish processing the input data set within 12 hours in all cases.

PrivLava’s computation time is acceptable, since data synthesis

only incurs a one-time cost, and the synthetic data generated can

be used repeatedly by downstream applications.

8 RELATEDWORK
As mentioned in Section 1, there exist a sizable number of methods

for synthesizing data under DP [7, 9, 13, 21, 23, 29, 34, 36, 39, 47–50],

but all of them focus on the single-relation cases. Among thesemeth-

ods, the most comparable to our proposed approach is PrivMRF [9],
which also models the input data using a similar family of graphi-

cal models. However, PrivMRF differs significantly from PrivLava
in the sense that the graphical models do not include any latent

variables, whereas the use of latent variables in PrivLava is the key
ingredient in its modeling of foreign key constraints. The usage

of latent variables also makes the model construction algorithm

of PrivLava considerably more complex than those in [9]. Existing

work [13, 21, 23, 29, 36, 47] has also proposed DP single-relation

synthesis techniques using other models (e.g., Copula functions

[29], generative adversarial networks [23, 39, 48]), but the perfor-

mance of these techniques is generally not as good as methods

based on graphical models, as shown in [9].

In the context of non-DP data synthesis, existing work [19, 20,

24, 26, 31, 32] has presented a number of solutions for handling

foreign keys. Specifically, the technique in [20] assumes that there

are hard constraints on the non-key attributes in each table, and

utilizes those constraints to generate foreign keys between syn-

thetic relations. In practice, however, it is unclear where we obtain

such constraints in a privacy preserving manner, and whether they

are sufficient to preserve the correlations induced by foreign keys.

Meanwhile, previous work [24, 26, 31, 32] propose to retain the for-

eign keys in the input data, and perturb the non-key attributes for

privacy protection. Unfortunately, these approaches fail to provide

strong privacy guarantees.

In addition, there is a long line of research [5, 6, 8, 12, 15, 22, 25,

33, 35, 37, 40, 41, 45, 46] on constructing database engines under

DP using output perturbation. As we explain in Section 1, how-

ever, such database engines may only answer a limited number of

queries accurately, since each query inevitably reveals some private

information about the underlying data. Note that this limitation is

inherent to output perturbation: Dinur and Nissim [14] has proved

that all output perturbation methods would suffer from the same

issue under any reasonably strong privacy notion.

Finally, previous work [30] proposed an algorithm for generat-

ing database benchmarks under DP. In particular, given a database

D and a workload Q of queries, the algorithm produces another

databaseD′ under DP, such that if we use a database engine to pro-

cess Q on D and D′, respectively, each query would have similar

processing time on both databases. In other words, the algorithm

aims to preserve the costs of queries in Q, instead of the accuracy

of the query results. Therefore, the solution in [30] is inapplicable

in our setting.

9 CONCLUSION
This paper presents PrivLava, the first solution for synthesizing

relational data with foreign keys under differential privacy (DP).

PrivLava models the input database using graphical models, with

latent variables included to capture the complex correlations in-

duced by foreign key constraints. It supports databases with both

private and public relations, with any foreign keys that form a di-

rected acyclic graph. Extensive experiments on real data show that

PrivLava offers significantly higher query accuracy on synthetic

data than competing methods do.

The main limitation of PrivLava is that it requires a substantial
amount of data to train accurate DP models of foreign keys. In

particular, it requires generating a relatively large number of ob-

served and latent marginals from the input database, and it injects

Gaussian noise into each marginal to achieve DP. When the number

of tuples in the input database is small, the noise injected into each

marginal may overwhelm the signal therein (especially in latent

marginals); in that case, PrivLava is unable to model foreign keys

effectively. In future work, we plan to investigate how this issue

could be mitigated, and to extend PrivLava to take into account

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

other types of constraints on relational data, e.g., denial constraints
[11].

Acknowledgements. This research/project is supported by the

National Research Foundation, Singapore under its Strategic Capa-

bility Research Centres Funding Initiative. Any opinions, findings

and conclusions or recommendations expressed in this material

are those of the author(s) and do not reflect the views of National

Research Foundation, Singapore. This work is also supported in

part by the UKRI Prosperity Partnership Scheme (FAIR) under the

EPSRC Grant EP/V056883/1, and the Alan Turing Institute.

REFERENCES
[1] 2022. TPC-H benchmark homepage. https://www.tpc.org/tpch/.

[2] Gergely Ács, Claude Castelluccia, and Rui Chen. 2012. Differentially private

histogram publishing through lossy compression. In 2012 IEEE 12th International
Conference on Data Mining. 1–10.

[3] Borja Balle and Yu-Xiang Wang. 2018. Improving the gaussian mechanism for

differential privacy: Analytical calibration and optimal denoising. In Proceedings
of the 35th International Conference on Machine Learning. 394–403.

[4] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel N Kho, and

Jennie Rogers. 2017. SMCQL: Secure query processing for private data networks.

Proceedings of the VLDB Endowment 10, 6 (2017), 673–684.
[5] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.

2018. Shrinkwrap: Efficient sql query processing in differentially private data

federations. Proceedings of the VLDB Endowment 12, 3 (2018), 307–320.
[6] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. Saqe:

Practical privacy-preserving approximate query processing for data federations.

Proceedings of the VLDB Endowment 13, 12 (2020), 2691–2705.
[7] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. 2017. Plausible deniability

for privacy-preserving data synthesis. Proceedings of the VLDB Endowment 10, 5
(2017), 481–492.

[8] Jaroslaw Błasiok, Mark Bun, Aleksandar Nikolov, and Thomas Steinke. 2019.

Towards instance-optimal private query release. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2480–2497.

[9] Kuntai Cai, Xiaoyu Lei, Jianxin Wei, and Xiaokui Xiao. 2021. Data synthesis via

differentially private Markov random fields. Proceedings of the VLDB Endowment
14, 11 (2021), 2190–2202.

[10] Minnesota Population Center. 2020. Integrated public use microdata se-

ries, international: Version 7.3 [dataset]. Minneapolis, MN: IPUMS.

https://doi.org/10.18128/D020.V7.3.

[11] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity main-

tenance using tuple deletions. Information and Computation 197, 1-2 (2005),

90–121.

[12] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. 2018. Marginal re-

lease under local differential privacy. In Proceedings of the 2018 ACM SIGMOD
International Conference on Management of Data. 131–146.

[13] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, and Thanh TL Tran.

2012. Differentially private summaries for sparse data. In Proceedings of the 15th
International Conference on Database Theory. 299–311.

[14] Irit Dinur and Kobbi Nissim. 2003. Revealing information while preserving

privacy. In Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems. 202–210.

[15] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2022.

R2T: Instance-optimal truncation for differentially private query evaluation with

foreign keys. In Proceedings of the 2022 ACM SIGMOD International Conference
on Management of Data. 759–772.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of Cryptography.
265–284.

[17] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[18] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhi-

wei Steven Wu. 2014. Dual query: Practical private query release for high di-

mensional data. In Proceedings of the 31th International Conference on Machine
Learning. 1170–1178.

[19] Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F Ilyas. 2021. Kamino:

Constraint-aware differentially private data synthesis. Proceedings of the VLDB
Endowment 14, 10 (2021), 1886–1899.

[20] Amir Gilad, Shweta Patwa, and Ashwin Machanavajjhala. 2021. Synthesizing

linked data under cardinality and integrity constraints. In Proceedings of the 2021
ACM SIGMOD International Conference on Management of Data. 619–631.

[21] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A simple and practical

algorithm for differentially private data release. InAdvances in Neural Information
Processing Systems 25. 2348–2356.

[22] Noah Johnson, Joseph PNear, andDawn Song. 2018. Towards practical differential

privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018), 526–
539.

[23] James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. 2019. PATE-GAN:

Generating synthetic data with differential privacy guarantees. In Proceedings of
the 7th International Conference on Learning Representations.

[24] Christopher T Kenny, Shiro Kuriwaki, Cory McCartan, Evan TR Rosenman, Tyler

Simko, and Kosuke Imai. 2021. The use of differential privacy for census data

and its impact on redistricting: The case of the 2020 US Census. Science Advances
7, 41 (2021), eabk3283.

[25] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. Privatesql: A differentially private

sql query engine. Proceedings of the VLDB Endowment 12, 11 (2019), 1371–1384.
[26] Amy Lauger, Billy Wisniewski, and Laura McKenna. 2014. Disclosure avoidance

techniques at the US Census Bureau: Current practices and research. Center for
Disclosure Avoidance Research, US Census Bureau (2014).

[27] Chao Li, Michael Hay, GeromeMiklau, and YueWang. 2014. A data-andworkload-

aware algorithm for range queries under differential privacy. Proceedings of the
VLDB Endowment 7, 5 (2014), 341–352.

[28] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Ras-

togi. 2015. The matrix mechanism: Optimizing linear counting queries under

differential privacy. The VLDB journal 24, 6 (2015), 757–781.
[29] Haoran Li, Li Xiong, and Xiaoqian Jiang. 2014. Differentially private synthesiza-

tion of multi-dimensional data using copula functions. In Proceedings of the 17th
International Conference on Extending Database Technology. 475–486.

[30] Wentian Lu, Gerome Miklau, and Vani Gupta. 2014. Generating private syn-

thetic databases for untrusted system evaluation. In 2014 IEEE 30th International
Conference on Data Engineering. 652–663.

[31] Paul M Massell and Jeremy M Funk. 2007. Recent developments in the use of

noise for protecting magnitude data tables: Balancing to improve data quality

and rounding that preserves protection. In Proceedings of the 2007 FCSM Research
Conference.

[32] Laura McKenna. 2018. Disclosure avoidance techniques used for the 1970 through
2010 decennial censuses of population and housing. Technical Report. US Census
Bureau, Center for Economic Studies.

[33] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.

2018. Optimizing error of high-dimensional statistical queries under differential

privacy. Proceedings of the VLDB Endowment 11, 10 (2018), 1206–1219.
[34] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model

based estimation and inference for differential privacy. In Proceedings of the 36th
International Conference on Machine Learning. 4435–4444.

[35] Frank D McSherry. 2009. Privacy integrated queries: An extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data. 19–30.

[36] Noman Mohammed, Rui Chen, Benjamin CM Fung, and Philip S Yu. 2011. Dif-

ferentially private data release for data mining. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 493–
501.

[37] PrashanthMohan, Abhradeep Thakurta, Elaine Shi, Dawn Song, and David Culler.

2012. GUPT: Privacy preserving data analysis made easy. In Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data. 349–360.

[38] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. 2016. The geometry of differ-

ential privacy: The small database and approximate cases. SIAM J. Comput. 45, 2
(2016), 575–616.

[39] Noseong Park, Mahmoud Mohammadi, Kshitij Gorde, Sushil Jajodia, Hongkyu

Park, and Youngmin Kim. 2018. Data synthesis based on generative adversarial

networks. Proceedings of the VLDB Endowment 11, 10 (2018), 1071–1083.
[40] Davide Proserpio, Sharon Goldberg, and Frank McSherry. 2014. Calibrating

data to sensitivity in private data analysis: A platform for differentially-private

analysis of weighted datasets. Proceedings of the VLDB Endowment 7, 8 (2014),
637–648.

[41] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2014. Priview: Practical differ-

entially private release of marginal contingency tables. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data. 1435–1446.

[42] Steven Ruggles, Sarah Flood, Ronald Goeken, Megan Schouweiler, and Matthew

Sobek. 2022. IPUMS USA: Version 12.0 [dataset]. Minneapolis, MN: IPUMS.

https://doi.org/10.18128/D010.V12.0.

[43] Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. 2020. Computing

local sensitivities of counting queries with joins. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 479–494.

[44] Martin J Wainwright, Michael I Jordan, et al. 2008. Graphical models, exponential

families, and variational inference. Foundations and Trends® in Machine Learning
1, 1–2 (2008), 1–305.

[45] Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang, Ninghui

Li, and Somesh Jha. 2019. Answering multi-dimensional analytical queries under

https://www.tpc.org/tpch/

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

local differential privacy. In Proceedings of the 2019 ACM SIGMOD International
Conference on Management of Data. 159–176.

[46] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel

Simmons-Marengo, and Bryant Gipson. 2020. Differentially private SQL with

bounded user contribution. Proceedings on Privacy Enhancing Technologies 2
(2020), 230–250.

[47] Chugui Xu, Ju Ren, Yaoxue Zhang, Zhan Qin, and Kui Ren. 2017. DPPro: Dif-

ferentially private high-dimensional data release via random projection. IEEE
Transactions on Information Forensics and Security 12, 12 (2017), 3081–3093.

[48] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.

2019. Modeling tabular data using conditional GAN. In Advances in Neural
Information Processing Systems 32. 7333–7343.

[49] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2017. Privbayes: Private data release via Bayesian networks. ACM
Transactions on Database Systems 42, 4 (2017), 25:1–25:41.

[50] Jun Zhang, Xiaokui Xiao, and Xing Xie. 2016. Privtree: A differentially private al-

gorithm for hierarchical decompositions. In Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data. 155–170.

A PARAMETER ESTIMATION
In this section, we elaborate our parameter estimation method for

𝜃 in Line 23 of Algorithm 1. Recall that our objective of parameter

estimation is tomaximize the overall likelihood

∑
𝐺 log𝑝 (𝐺), where

𝑝 (𝐺) is defined in Eq. (2). Towards this end, We use EM, which

attempts to maximize the following expected log likelihood in each

iteration 𝑗 ∈ [𝑇]:

𝑄 (𝑗) =
∑︁
𝐺∈𝑅

∑︁
𝑧

𝑝 (𝑗) (𝑧 | 𝐺) log 𝑝 (𝐺, 𝑧), (10)

where 𝑝 (𝑗) (𝑧 | 𝐺) is the conditional latent variable distribution

𝑝 (𝑧 | 𝐺) in the 𝑗-th iteration, as defined in Eq. (3), and 𝑝 (𝐺, 𝑧) is as
defined in Eq. (4).

Let 𝑝 (𝑡, 𝑧) be as defined in Eq. (1) and 𝜃 be the parameter of 𝑝 .

Let 𝑝
tuple
(𝑡, 𝑧;𝜃) denote 𝑝 (𝑡, 𝑧) when it is parameterized with 𝜃 ,

and 𝑝
tuple
(𝑡 | 𝑧;𝜃) = 𝑝tuple (𝑡,𝑧;𝜃)∑

𝑡 𝑝tuple (𝑡,𝑧;𝜃)
. For convenience, we omit 𝜃 in

𝑝
tuple
(·) when the context is clear. We will show that the estimation

results in the 𝑗-th iteration of Algorithm 1 are:

𝑝
(𝑗)
𝑍
, 𝑝
(𝑗)
size
, 𝑝
(𝑗)
tuple

= argmax

𝑝𝑍 ,𝑝size,𝑝tuple

𝑄 (𝑗) . (11)

As mentioned in Section 4.2, Line 23 of Algorithm 1 invokes the

gradient descent method in [34], which is referred to as PGM. We

first briefly explain PGM, and then prove that the invocation of

PGM in Line 23 of Algorithm 1 returns the parameters 𝜃 (𝑗) of 𝑝 (𝑗)
tuple

.

Given a collectionM of marginals, PGM identifies the parameters

𝜃 of 𝑝
tuple

by minimizing 𝐿 = ∥M𝑅−M𝜃 ∥2, whereM𝑅 is the noisy

counts of the relation 𝑅 andM𝜃 is the marginal counts of 𝑝
tuple

. In

what follows, we first transform the problem of maximizing Eq. (10)

into the problem of maximizing a new objective function regarding

𝑝
tuple
(𝑡, 𝑧), as shwon in Lemma A.1. Then, we show in Theorem A.2

that the new objective is concave, and thus, can be maximized with

gradient ascent methods such as PGM.

With Eq. (10), (11), and (4), we have:

𝑝
(𝑗)
𝑍
, 𝑝
(𝑗)
size
, 𝑝
(𝑗)
tuple

= argmax

𝑝𝑍 ,𝑝size,𝑝tuple

∑︁
𝐺∈𝑅

∑︁
𝑧

𝑝 (𝑗) (𝑧 | 𝐺) log 𝑝 (𝐺, 𝑧)

= argmax

𝑝𝑍 ,𝑝size,𝑝tuple

∑︁
𝐺∈𝑅

∑︁
𝑧

𝑝 (𝑗) (𝑧 | 𝐺)

· log
(
𝑝𝑍 (𝑧) · 𝑝size (|𝐺 | | 𝑧) ·

∏
𝑡 ∈𝐺

𝑝 (𝑡 | 𝑧)
)

= argmax

𝑝𝑍 ,𝑝size,𝑝tuple

∑︁
𝐺∈𝑅

∑︁
𝑧

𝑝 (𝑗) (𝑧 | 𝐺)
(
log 𝑝𝑍 (𝑧) + log 𝑝size (|𝐺 | | 𝑧)

+
∑︁
𝑡 ∈𝐺

log𝑝
tuple
(𝑡 | 𝑧;𝜃)

)
.

Notice that we may compute 𝑝
(𝑗)
𝑍
, 𝑝
(𝑗)
size
, 𝑝
(𝑗)
tuple

separately as follows:

𝑝
(𝑗)
𝑍

= argmax

𝑝𝑍

∑︁
𝐺∈𝑅

∑︁
𝑧

𝑝 (𝑗) (𝑧 | 𝐺) log𝑝𝑍 (𝑧),

𝑝
(𝑗)
size

= argmax

𝑝size

∑︁
𝐺∈𝑅

∑︁
𝑧

𝑝 (𝑗) (𝑧 | 𝐺) log𝑝size (|𝐺 | | 𝑧),

𝑝
(𝑗)
tuple

= argmax

𝑝tuple

∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑗) (𝑧 | 𝐺) log 𝑝
tuple
(𝑡 | 𝑧;𝜃). (12)

Let 𝑁 denote the number of groups in 𝑅. By Gibbs’ inequality, we

have:

𝑝
(𝑗)
𝑍
(𝑧) = 1

𝑁

∑︁
𝐺∈𝑅

𝑝 (𝑗) (𝑧 | 𝐺),

𝑝
(𝑗)
size
(𝑠 | 𝑧) =

∑
𝐺∈𝑅 𝑝

(𝑗) (𝑧 | 𝐺)I(|𝐺 | = 𝑠)∑
𝐺∈𝑅 𝑝 (𝑗) (𝑧 | 𝐺)

.

We first solve Eq. (12). By Eq. (1), we can rewrite 𝑝
tuple
(𝑡, 𝑧;𝜃)

as:

𝑝
tuple
(𝑡, 𝑧;𝜃) = 1

𝐴(𝜃)
∏

𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)
exp(𝜃 [𝑐]), (13)

where𝐴(𝜃) is a constant such that

∑
𝑡,𝑧 𝑝tuple (𝑡, 𝑧;𝜃) = 1. Similarly,

𝑝
tuple
(𝑡 | 𝑧;𝜃) can be rewritten as:

𝑝
tuple
(𝑡 | 𝑧;𝜃) = 1

𝐴′ (𝜃, 𝑧)
∏

𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)
exp(𝜃 [𝑐]), (14)

where 𝐴′ (𝜃, 𝑧) is also a constant such that

∑
𝑡 𝑝tuple (𝑡 | 𝑧;𝜃) = 1

for any 𝑧.

Observe that 𝑝
tuple

is determined by 𝜃 when the structureM is

fixed. Therefore, Eq. (12) is equivalent to:

𝜃 (𝑗) = argmax

𝜃

∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑗) (𝑧 | 𝐺) log 𝑝
tuple
(𝑡 | 𝑧;𝜃) . (15)

To solve this equation, we have the following lemma. (The proof is

given in Appendix B.)

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

Lemma A.1. Let𝑀𝑍 denote the collection of latent variables. Given
some latent variable distribution 𝑝 (𝑧 |𝐺) for each group and a mar-
ginal setM such that there exist𝑀 ∈ M and𝑀𝑍 ⊆ 𝑀 , let:

𝐿1 (𝜃) =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺) log 𝑝tuple (𝑡 | 𝑧;𝜃), (16)

𝐿2 (𝜃) =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺) log 𝑝tuple (𝑡, 𝑧;𝜃), (17)

𝜃∗ = argmax

𝜃

𝐿2 . (18)

Then, 𝜃∗ is a solution of argmax𝜃 𝐿1.

In the case of a single latent variable,𝑀𝑍 is a subset of any latent

marginals. In the case of multiple latent variables, we require that

M contains𝑀𝑍 in Section 4.6. Therefore, we may apply this lemma

to solve Eq. (15). Let:

𝐿 (𝑗) (𝜃) =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑗) (𝑧 | 𝐺) log 𝑝
tuple
(𝑡, 𝑧;𝜃).

We have:

𝜃 (𝑗) = argmax

𝜃

𝐿 (𝑗) (𝜃)

= argmax

𝜃

∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑗) (𝑧 | 𝐺) log 𝑝
tuple
(𝑡, 𝑧;𝜃). (19)

This turns out to be a convex optimization problem, as shown in

the following theorem.

Theorem A.2. Given some latent variable distribution 𝑝 (𝑧 | 𝐺)
of each group 𝐺 , let:

𝐿(𝜃) =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺) log 𝑝tuple (𝑡, 𝑧;𝜃) . (20)

Then, 𝐿 is concave and its partial derivative of each count 𝑐 is:

𝜕𝐿

𝜕𝜃 [𝑐] =
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑗) (𝑧 | 𝐺) − 𝑛
∑︁

𝑡,𝑧:𝑐↔(𝑡,𝑧)
𝑝tuple (𝑡, 𝑧;𝜃) .

(21)

Proof. By Eq. (13) and (20),

𝐿(𝜃) =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑗) (𝑧 | 𝐺)
(∑︁
𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)

𝜃 [𝑐] − log𝐴(𝜃)
)

=
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑗) (𝑧 | 𝐺)
∑︁

𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)
𝜃 [𝑐] − 𝑛 log𝐴(𝜃),

where 𝑛 is the number of tuples in 𝑅. The first term is a linear

function since 𝑝 (𝑗) (𝑧 | 𝐺) are all fixed values. By linearity, it is also
concave. Besides, it is well known that log𝐴(𝜃) is convex w.r.t 𝜃 in

the literature of graphical models. Therefore, 𝐿(𝜃) is concave. For
each count 𝑐 , the partial derivative of 𝜃 [𝑐] is:
𝜕𝐿

𝜕𝜃 [𝑐] =
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑗) (𝑧 | 𝐺) − 𝑛
∑︁

𝑡,𝑧:𝑐↔(𝑡,𝑧)
𝑝
tuple
(𝑡, 𝑧;𝜃),

where the first term is due to the linearity and the sec-

ond term is given by the property 𝜕 log𝐴(𝜃)/𝜕𝜃 [𝑐] =∑
𝑡,𝑧:𝑐↔(𝑡,𝑧) 𝑝tuple (𝑡, 𝑧;𝜃). □

Theorem A.2 shows that Eq. (19) is a convex optimization prob-

lem and we may apply any gradient ascent method to estimate 𝜃 (𝑗) .
Particularly, the first term of the derivative Eq. (21) is the value of

count 𝑐 of the relation and the second term is a marginal count

of 𝑝
tuple

. We may calculate the second term with any marginal

inference algorithm (e.g. junction tree algorithm).

Moreover, since the derivative is the difference between the

data marginal counts and the model marginal counts, our gradient

method is the same as Algorithm 1 of PGM [34] by extending the

concept of marginals to include latent marginals. This explains Line

23 of Algorithm 1.

B PROOF OF LEMMA A.1
By Eq. (13) and (17),

𝐿2 (𝜃) =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺)
(∑︁
𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)

𝜃 [𝑐]

− log𝐴(𝜃)
)

=
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺)
∑︁

𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)
𝜃 [𝑐]

− 𝑛 log𝐴(𝜃),

where 𝑛 is the number of tuples in 𝑅. The first term is a linear

function since 𝑝 (𝑧 | 𝐺) are all fixed values. By linearity, it is also

concave. Besides, it is well known that log𝐴(𝜃) is convex w.r.t 𝜃 in

the literature of graphical models. Therefore, 𝐿2 is concave and the

partial derivative 𝜕𝐿2/𝜕𝜃 [𝑐] are all zero at 𝜃∗. The partial derivative
for each parameter 𝜃 [𝑐] is:
𝜕𝐿2

𝜕𝜃 [𝑐] =
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺) − 𝑛
∑︁

𝑡,𝑧:𝑐↔(𝑡,𝑧)
𝑝
tuple
(𝑡, 𝑧;𝜃),

where the first term is due to the linearity and the sec-

ond term is given by the property 𝜕 log𝐴(𝜃)/𝜕𝜃 [𝑐] =∑
𝑡,𝑧:𝑐↔(𝑡,𝑧) 𝑝tuple (𝑡, 𝑧;𝜃). Then, we have:

𝜕

𝜕𝜃 [𝑐] 𝐿2 (𝜃
∗) = 0,∑︁

𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺) − 𝑛
∑︁

𝑡,𝑧:𝑐↔(𝑡,𝑧)
𝑝
tuple
(𝑡, 𝑧;𝜃∗) = 0. (22)

It means that the expected counts of the relation on𝑀 ∈ M equal

to the marginal counts of 𝑝
tuple

at 𝜃∗. Particularly, it also holds for

each 𝑐 ∈ 𝑀𝑍 sinceM contains the marginal𝑀𝑍 . For each possible

𝑧, it corresponds to exactly one 𝑐 ∈ 𝑀𝑍 and Eq. (22) degenerates to:∑︁
𝐺∈𝑅
|𝐺 |𝑝 (𝑧 | 𝐺) = 𝑛

∑︁
𝑡

𝑝
tuple
(𝑡, 𝑧;𝜃∗),∑︁

𝐺∈𝑅
|𝐺 |𝑝 (𝑧 | 𝐺) = 𝑛𝑝

tuple
(𝑧;𝜃∗) . (23)

That is, the expected counts of the relation on 𝑀𝑍 equal to the

marginal counts of 𝑝
tuple

on𝑀𝑍 .

Now, we look into the solution of argmax𝜃 𝐿1. We have:

𝐿1 =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺) log 𝑝
tuple
(𝑡 | 𝑧;𝜃).

PrivLava: Synthesizing Relational Data with Foreign Keys under Differential Privacy Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX

By Eq. (14), we have:

𝐿1 =
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺)
(∑︁
𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)

𝜃 [𝑐]

− log𝐴′ (𝜃, 𝑧)
)

=
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺)
∑︁

𝑐∈𝑀∈M ∧𝑐↔(𝑡,𝑧)
𝜃 [𝑐]

−
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺) log𝐴′ (𝜃, 𝑧) . (24)

Similar to log𝐴(𝜃), the log normalization factor log𝐴′ (𝜃, 𝑧) is con-
vex w.r.t 𝜃 and the first term of Eq. (24) is linear. Therefore, 𝐿1 is

concave. To show that 𝜃∗ is a solution of argmax𝜃 𝐿1, it suffices

to show that 𝜕𝐿1/𝜕𝜃 [𝑐] = 0 at 𝜃∗ for all 𝑐 . Using 𝜕𝐴′ (𝜃, 𝑧)/𝜕𝜃 [𝑐] =∑
𝑡 ′ :𝑐↔(𝑡 ′,𝑧) 𝑝tuple (𝑡 ′ | 𝑧;𝜃), we have:

𝜕𝐿1

𝜕𝜃 [𝑐] =
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

−
∑︁
𝐺∈𝑅

∑︁
𝑧

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺)
∑︁

𝑡 ′ :𝑐↔(𝑡 ′,𝑧)
𝑝
tuple
(𝑡 ′ | 𝑧;𝜃)

=
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

−
∑︁
𝑧

(∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺

𝑝 (𝑧 | 𝐺)
) ©­«

∑︁
𝑡 ′ :𝑐↔(𝑡 ′,𝑧)

𝑝
tuple
(𝑡 ′ | 𝑧;𝜃)ª®¬

=
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

−
∑︁
𝑧

(∑︁
𝐺∈𝑅
|𝐺 |𝑝 (𝑧 | 𝐺)

) ©­«
∑︁

𝑡 ′ :𝑐↔(𝑡 ′,𝑧)
𝑝
tuple
(𝑡 ′ | 𝑧;𝜃)ª®¬ .

(25)

By Eq. (23), we have:

𝜕

𝜕𝜃 [𝑐] 𝐿1 (𝜃
∗)

=
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

−
∑︁
𝑧

𝑛𝑝
tuple
(𝑧;𝜃∗) ©­«

∑︁
𝑡 ′ :𝑐↔(𝑡 ′,𝑧)

𝑝
tuple
(𝑡 ′ | 𝑧;𝜃∗)ª®¬

=
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

−
∑︁
𝑧

∑︁
𝑡 ′ :𝑐↔(𝑡 ′,𝑧)

𝑛𝑝
tuple
(𝑡 ′ | 𝑧;𝜃∗)𝑝

tuple
(𝑧;𝜃∗)

=
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

−
∑︁
𝑧

∑︁
𝑡 ′ :𝑐↔(𝑡 ′,𝑧)

𝑛𝑝
tuple
(𝑡 ′, 𝑧;𝜃∗)

=
∑︁
𝐺∈𝑅

∑︁
𝑡 ∈𝐺,𝑧:𝑐↔(𝑡,𝑧)

𝑝 (𝑧 | 𝐺)

− 𝑛
∑︁

𝑡 ′,𝑧:𝑐↔(𝑡 ′,𝑧)
𝑝
tuple
(𝑡 ′, 𝑧;𝜃∗).

By Eq. (22), for each 𝑐 , we have:

𝜕

𝜕𝜃 [𝑐] 𝐿1 (𝜃
∗) = 0. (26)

Therefore, 𝜃∗ is also a solution of argmax𝜃 𝐿1.

C BOUNDING PRIVACY CONSUMPTION
In this section, we quantify the privacy consumption of Algorithms

1 and 2, as well as that of Algorithm 6 in [9]. Then, the privacy

consumption of Algorithm 3 is the summation of those of its sub-

routines.

C.1 Proof of Lemma 6.4
Algorithm 1 has the following queries on private data:

(1) It queries cnt
∗ (𝑧) at each EM step in Line 10. cnt

∗ (𝑧) is a
contingency table of groups and has a sensitivity of 𝜇𝑔 . The

total number of queries for cnt
∗ (𝑧) is 𝑇 .

(2) It queries cnt
∗ (𝑠, 𝑧) at each EM step in Line 16. cnt

∗ (𝑠, 𝑧) is
a contingency table of groups and its sensitivity is 𝜇𝑔 . The

number of queries for cnt
∗ (𝑠, 𝑧) is 𝑇 .

(3) It queries latent marginal distributions in Lines 19-22. A la-

tent marginal distribution is a contingency table and the

contribution of each group is at most 𝜏 . Therefore, its sen-

sitivity is 𝜏𝜇𝑔 . As we perform EM for 𝑇 steps and we have

𝑚M latent marginals, the total number of queries for latent

marginals is𝑚M𝑇 .

Then, the privacy consumption of Algorithm 1 is:

𝐶1 (𝑇,𝑚M) = 𝑇 · 𝜇2𝑔 ·
(
𝑚M · 𝜏2

𝜎2
𝑙

+ 1

𝜎2
𝑠𝑖𝑧𝑒

+ 1

𝜎2𝑧

)
.

Conference acronym ’XX, June 03–05, 2023, XXXXXXXXX, XX Kuntai Cai, Xiaokui Xiao, and Graham Cormode

C.2 Proof of Corollary 6.5
In the case that the tuple multiplier is 1, lemma 2 in [9] shows that

the privacy consumption of its Algorithm 6 is:

𝑔 =
1

𝜎2U
+ 2𝑑 (𝑑 − 1)

𝜎2
𝑅

+ 𝑡 · 𝑘
𝜎2
ℎ

+ (𝑑 + 𝑡)
𝜎2𝑜

. (27)

Notice that its privacy consumption is proportional to their squared

sensitivities, i.e. proportional to the squared tuple multiplier. Since

our tuple multiplier is at most 𝜇𝑡 , the privacy consumption of the

instances of Algorithm 6 [9] in our algorithms is 𝐶
single

(𝑑) = 𝜇2𝑡 𝑔.

C.3 Proof of Lemma 6.6
We list the privacy consumption of Algorithm 2 as follows:

(1) In Line 1, it invokes the Algorithm 6 of [9] and its privacy

consumption is 𝐶
single

(𝑑).
(2) In Line 7, it uses Algorithm 1 to estimate the parameters

whenM contains the initial latent marginals only. Since we

have two latent variables as stated in Section 4.6, the number

of initial latent marginals is 2𝑑 and the privacy consumption

is 𝐶1 (𝑇, 2𝑑)
(3) In Line 16, it uses Algorithm 1 to estimate the parameters

after the selection of new latent marginals. The privacy con-

sumption is

∑𝑇C
𝑖=1

𝐶1 (1, 2𝑑 + 𝑖 · 𝑛inc).
(4) In Line 13, it queries ẽrr(𝑀′) for each 𝑀′ ∈ C′. The total

number of the queries is 𝑛C ·𝑇C . Since𝑀′ is a private con-
tingency table of tuples and 𝑀′ is publicly available, the

sensitivity of ẽrr(𝑀′) = ∥𝑀′ −𝑀′∥1 is 𝜇𝑡 . Then, the privacy
consumption is 𝜇2𝑡 ·

𝑛C ·𝑇C
𝜎2

err

.

Therefore, total privacy consumption is:

𝐶2 (FK(𝑅, 𝑅′)) = 𝐶single (𝑑) +𝐶1 (𝑇, 2𝑑)

+
𝑇C∑︁
𝑖=1

𝐶1 (1, 2𝑑 + 𝑖 · 𝑛inc) + 𝜇2𝑡 ·
𝑛C ·𝑇C
𝜎2
err

. (28)

	Abstract
	1 Introduction
	2 Problem Definition
	3 Solution Overview
	3.1 Handling One Foreign Key
	3.2 Handling Multiple Foreign Keys

	4 Solution for One Foreign Key
	4.1 Modeling the Secondary Private Relation R1
	4.2 Estimating Parameters , pZ, and psize
	4.3 Choosing the Marginal Set M
	4.4 Modeling the Primary Private Relation R0
	4.5 Synthesizing R0 and R1
	4.6 Extension to Multiple Latent Attributes
	4.7 Choice of Latent Attribute Domain

	5 Solution for Multiple Foreign Keys
	5.1 Modeling Multiple Foreign Keys
	5.2 Synthesis without Public Relations
	5.3 Synthesis with Public Relations

	6 Ensuring Differential Privacy
	7 Experiments
	7.1 Settings
	7.2 Experimental Results on Census Databases
	7.3 Experimental Results on TPC-H
	7.4 Computation Cost

	8 Related Work
	9 Conclusion
	References
	A Parameter Estimation
	B Proof of Lemma A.1
	C Bounding Privacy Consumption
	C.1 Proof of Lemma 6.4
	C.2 Proof of Corollary 6.5
	C.3 Proof of Lemma 6.6

