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1. Introduction 
 
The problem of graph drawing is of relevance to computer science for a number of reasons.  It touches 
on many aspects of the subject, from algorithms and complexity, through graphics and data 
visualisation to less obviously related areas, such as VLSI.  As well as being a problem encountered 
whenever there is graph data that needs to be displayed, it is closely related to the problems of circuit 
layout and map labelling.  With the number of variations and approaches to the problem, it is perhaps 
no wonder that there is an entire annual symposium dedicated to graph drawing [GD98]. 
 
The problem of graph drawing can be summarised as “given a vertex list, V, and edge list, E, produce 
an aesthetic layout”.  Such a brief description hides a great deal of detail, notably in the word 
“aesthetic”, which is not often found used in relation to Computer Science.  Some aspects can be dealt 
with relatively easily — a layout is defined as a mapping of vertices to two-dimensional space, with 
information regarding how the linking edges are to be drawn; in other words, what we might regard 
as a drawing of the graph.  This leaves the freedom to decide whether the edges should be drawn as 
unconstrained paths, Bezier curves, straight lines, or rectilinear lines.  Likewise, whether the nodes 
should be placed freely, constrained to lie within a certain area or only at grid intersections is not 
specified. 
 
How to interpret the word “aesthetic” is perhaps the most difficult.  We might imagine that to 
adjudicate between two alternate layouts of a graph we could call on a human judge, in a manner 
reminiscent of the Turing test for supposed artificial intelligence; however, during the course of 
execution it is not reasonable to call on a human oracle, and instead a machine-evaluable function of 
“aesthetic” can be defined.  The problem may then be considered as being to minimise this function.   
 
Some simple criteria for achieving an aesthetic layout are to create an even distribution of nodes over 
the area, to make all edge lengths approximately equal, and to reduce the number of edge crossings.  
Of these criteria, the last is the most problematic.  The problem of finding the minimum number of 
crossings in a graph (the crossing number) is NP-Complete [GJ79].  Hence any algorithm that claimed 
to minimise the number of crossings would, as a sub-problem, have to certificate that the crossing 
number of the graph had been correctly found, and should be viewed sceptically if it claimed to run in 
sub-exponential time.   

 

Figure 1: Two drawings of the same graph 

It has been asserted that the best approach to “aesthetic” is to try to expose as many symmetries of the 
graph and its sub-graphs as possible in a drawing of it [KK89].  For example, the complete graph with 
four vertices can be drawn as in Figure 1.  While the second drawing minimises edge crossings, it fails 
to fully illustrate the fourfold complete symmetry that is clearly visible in the first drawing. 

 

 Figure 2: Two drawings of the cube graph 
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Even symmetry can be a hindrance; consider for example the two drawings of the graph in Figure 2.  
The first drawing shows some of the symmetry of the graph, while the second drawing is not as 
symmetrical.  Yet since we interpret the second drawing as a representation of a cube, the symmetries 
of the graph are clearer.  This is perhaps an anomalous result, since we would not expect general 
graphs to have such specific familiar, resonant representations. 
 
A more direct way to examine the quality of a drawing is to ask if it is “simple” [HR90].  The criteria 
for this are that  
1.1.1 Any two distinct edges have at most one crossing. 

1.1.2 Any two edges which share a node do not cross. 

1.1.3 No three edges cross at a common point. 

A layout which satisfies these is not difficult to obtain, and so instead we will pursue the additional 
criteria suggested earlier, viz. 
1.1.4 The nodes are evenly distributed 

1.1.5 Edge lengths are approximately equal 

1.1.6 An attempt is made to avoid edge crossings 

The additional criteria are more subjective, but a layout which satisfies all six criteria will be described 
as a “sound layout”. 

 
There are a number of broad approaches to graph drawing, fundamentally different in their 
methodology.  Some only consider special cases: drawing trees, directed acyclic graphs or planar 
graphs are all areas that have been tackled successfully [BETT94].  These can lead to general 
algorithms: it is possible to check for planarity efficiently [Eve79], so one method repeatedly removes 
arbitrary edges from a graph until it is planar, finds a planar drawing of the reduced graph (using for 
example [HS98]), then adds back the removed edges.  With graph drawing, it is frequently found that 
similar problems are known to differ in difficulty: for example, to find the maximum planar sub-graph 
rather than randomly testing sub-graphs is known to be in the complexity class NP-hard. 
 
The methods investigated in this project are quite different in approach.  They consider the vertices 
and edges as physical objects, and apply a physical simulation to evolve an aesthetic layout from a 
(usually random) starting layout.  The equations used are designed to embody some of the aesthetic 
considerations suggested above: for example, we might assign a repulsive force between nodes (the 
analogy here is with electrically-charged particles), which we hope would prevent nodes clustering 
together. 
 
These approaches, collected together under the banner of “Force Directed Placement”, still show a 
variety of approaches.  The first to be suggested by Eades in 1984 [Ead84] considered each edge as a 
spring with a constant natural length, and nodes as bodies which repelled each other.  Kamada and 
Kawai [KK89] gave a slightly simpler approach, where each node pair was connected by a spring 
whose natural length was proportional to the shortest-path graph distance between them. 
 
Borrowing further ideas from physics, we note that where we have a force, there is a corresponding 
energy, and so we can convert our forces into energies, and consider ways to minimise the “energy” of 
a layout.  This was documented by Davidson and Harel [DH89].  Once in the energy paradigm, we 
have the freedom to introduce energy “penalties” for which there is no corresponding force.  The price 
that we pay for such freedom is that the algorithms to find a layout are significantly more expensive.  
Part of the purpose of this project is to investigate whether this is a price worth paying. 
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2. Preparation 

2.1 Research into current theory 
 
The first few weeks of the project involved investigating the available literature on graph drawing, 
starting from the papers suggested by the project originator, as well as searching for papers on-line.  
Three papers formed the basis of the approaches that I decided to implement. 
 
2.1.1 P Eades, A heuristic for graph drawing, 1984 [Ead84] 

This paper describes the first time that force directed placement was used to do graph layout.  As was 
suggested in the introduction, force directed placement is generally applicable to many layout 
problems, of which graph drawing is perhaps one of the simplest.  Eades’ approach was to treat the 
current configuration of the graph as a physical system, and by calculating and applying forces on the 
nodes, simulate the action of the system iteratively. He derived the forces to be used by consideration 
of the goals of the system.   
 
Firstly, an even distribution of nodes over the area of the drawing was required.  This he achieved by 
associating a repulsive force between nodes, like that between positively-charged particles. In the 
absence of other forces, this would tend to spread the nodes out without limit; nodes may be confined 
to a finite area to prevent this.  By taking an analogy with electrostatics, the force is defined to be 
proportional to the inverse square of the distance between the nodes.  Secondly, Eades defined an 
additional force between nodes linked by an edge in the graph, as that of a spring whose natural 
length is a constant (related to the number of nodes and the area available).  The force, again by 
analogy to real springs, is taken to be proportional to the extension or compression of the spring.  
 
Although Force Directed Placement has been introduced by use of physical analogy, there is no 
justification to insist on a direct correspondence with the physical counterpart.  The constants involved 
need bear no relation to any real physical constants, but are instead selected by experiment; the force 
equations do not need to take the same form as their real-world counterparts; and we may choose to 
“cap” the values of forces so that, for example, two nodes that are repelled by an inverse square law 
that start extremely close to one another are not sent ridiculously far apart. 
 
The simulation of the system is to start from some arbitrary positioning of the vertices, with zero 
velocity, and calculate all forces, apply them, reposition the nodes according to the velocities, and 
iterate.  Such a system could easily oscillate indefinitely, so in addition to this, a friction component is 
used to ensure that the process will eventually halt.  This can be modelled by scaling the velocities by a 
constant damping factor, initially 1.0, which decays as the iterations continue.  Overall, the process 
considers each pair of nodes once per iteration, for a fixed number of iterations, giving a time 
complexity of O(V² ).  The method makes no pronouncement on the value of the constants of 
proportionality for the two forces, or the friction, but suitable values can be found empirically. 
 
2.1.2 T Kamada and S Kawai, An algorithm for drawing general undirected graphs, 1989 [KK89] 

This paper again considers springs as an analogy for edges, but this time uses a single equation to 
describe the force.  It considers a spring connecting each node pair whose natural length is 
proportional to the shortest-path distance between those nodes in the graph — in other words aiming 
to equate the geometric distance with the graph-theoretic distance.  This makes rather more use of the 
information available about the graph, but at the cost of having to calculate the shortest path table 
which, at O(V3) using Warshall’s algorithm, outweighs the O(V2) cost of the layout algorithm. 
 
Although they describe their method as being for undirected graphs, it is easy to see how it could be 
used for directed graphs, by treating them as being undirected, and adding arrows to the drawing to 
indicate the direction.  The issue of weighted graphs also becomes apparent: we could either preserve 
the weights, or consider all edges to have unit length, before finding the shortest paths.  Keeping the 
weights would give a drawing more in keeping with the input data, but we cannot guarantee that the 
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weights fit the triangle inequality, which could cause the method to converge on a locally collinear 
solution. 
 
2.1.3 R Davidson and D Harel, Drawing Graphs Nicely Using Simulated Annealing, 1989 [DH89] 

The work of Davidson and Harel takes the energy approach to graph layout further.  They note that 
once in the energy paradigm, the link with forces can be weakened, and arbitrary energy “penalties” 
can be awarded for undesirable features of a layout.  For example, a fixed penalty can be given for 
each edge crossing in the drawing, something for which there is no equivalent within the force 
approach.  Although it is theoretically possible to find a global minimum for our equations (this would 
correspond to an optimal solution in the terms of the model), it is not practical to do so — the problem 
is NP-hard.  Instead, the energy minimisation approach is usually implemented by selecting a node 
with high energy and moving it so as to reduce its energy contribution.   
 
Even this is not easy: in only the simplest of models is it feasible to solve the equations to 
deterministically find the position with the lowest energy for a single node while the rest are held 
stable.  When the function is no longer smooth, but can jump (for example, as a node comes close to an 
edge, then crosses it), we cannot employ a gradient descent approach.  In the presence of such 
discontinuities, the only way to proceed is to use a much cruder method to reduce the energy of the 
system.  We consider the effect of moving a node to a random new position on the global energy; if it 
would result in an overall decrease in energy, then the move is taken.  This process is iterated many 
times, with some bound on how long it should continue.  
 

i

j

 
Figure 3: Fragment of a graph drawing.  Moving node i  to the other side of the dividing edge would not reduce 

the number of crossings in the drawing, since the edge i,j will still cross it. 

Since only a single node is moved at a time, it is possible for a local energy minimum to be found 
which is still much greater than the global minimum; to escape the minimum would require two or 
more nodes to be repositioned simultaneously (see Figure 3).  Here, another idea borrowed from 
physics can be employed.  The technique of simulated annealing (after annealing, the physical process 
whereby crystals are formed by cooling very slowly) allocates a probability to a node being moved so 
as to increase the global energy of the system; when a new position is selected for a node, if the move 
reduces the energy it is always taken, but if it would increase the energy, a random test is made to see 
whether to take it.  The scaling factor of this probability, and the size of the random jumps to make are 
tied together into a single variable for the “temperature” of the system, which decays over the course 
of the iterations so as time progresses, the probability of taking so-called “uphill” moves reduces. 
 
Such an approach is significantly more expensive than other methods, since each move can require 
O(E² ) or more work (depending on the nature of the energy equations, and how costly they are to re-
evaluate after moving a single node), and we might consider all V nodes before decreasing the 
temperature.  In a dense graph, where E=O(V² ), there is an overall cost of potentially O(V5). 

2.2 Examination of existing implementations 
 
Whilst investigating the problem, it seemed worthwhile to examine various approaches that have been 
implemented.  The Java Development Kit (JDK) contains a sample applet which uses a force relaxation 
approach to graph drawing [JDK97].  The code is quite short, and continually applies the forces, so 
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that when the user interacts with the graph, the system responds while the user is still dragging a 
node.  However, it is quite limited, requiring the graph data to be supplied as parameters to the 
applet, and the small examples given include “hints” to the system about what importance to give to 
certain nodes. 
 
Graphlet (formerly known as GraphEd) [Grap97] is a full application in the public domain which runs 
using the TCL/TK windowing interface.  It implements several force related methods, some methods 
tailored for specific kinds of graph (tree and directed-acyclic), and is written in a mixture of C++ and 
TCL scripts.  The results are fast, and it allows convenient editing and input of graphs either via 
mouse or in a proprietary graph format.  It is somewhat fragile though, and does not implement any 
energy based methods, and the number of configurable constants for some methods (which have 
several phases) is offputtingly high. 

2.3 Analysis of the problem 
 
After surveying the theory and existing implementations, it was necessary to formalise exactly what 
would be implemented, and what goals were to be aimed at.  An important step was to lay down a 
specification of exactly what the system should be expected to do, and what kind of graph should be 
considered.  The project proposal included some early suggestions of directions to pursue.  Following 
more detailed reading of papers on the subject, the following questions arose which it would be 
desirable to use the system to answer: 
 
2.3.1 Is there a quantitative way to compare the different layout methods? 

2.3.2 All methods described above require an initial arrangement.  Does the choice of starting 
arrangement have an effect on the convergence of the layout? 

2.3.3 Is there a way to apply the algorithms to a subset of the nodes, for example if one particular 
area is confused, while keeping the layout for the rest of the graph? 

 
The primary purpose of the system would be to allow comparison of the various algorithms, in as 
flexible way as possible.  The intent was not to create a fully featured package for graph layout, but 
rather one which was sufficiently usable to examine the above questions.  This approach affected the 
features that would be implemented: for example,  to compare the algorithms it would be desirable to 
be able to start them from the same initial position, which means that a save and load layout feature 
was needed.  On the other hand, whilst the ability to produce PostScript output of the results might 
improve the quality of the output for this dissertation, it was not deemed to be of sufficient value to 
implement. 
 
To return to the question of what data should be permitted, I chose to implement a system to draw 
undirected, unweighted, non-reflexive, labelled graphs using straight lines.  Each of these requires 
some justification: 
 
undirected — to go from an undirected to directed drawing is simply a matter of adding appropriate 
arrows to the edges; though simple, I felt that this could distract from the main problem. 
 
unweighted — edge weight information could have been provided, and different methods could have 
chosen whether or not to take account of this extra data.  However, I believe that this again is 
subsidiary to the main problem, and that it would be more complicated to quantitatively compare 
methods that took account of edge weights. 
 
non-reflexive — this in part relates to the decision to use straight lines for edges: it is impossible to 
draw a reflexive edge using a single straight line.  I would also include under this heading the tacit 
decision to disallow multiple edges: two nodes are either connected by an edge, or not.  Both decisions 
reflect the general sentiment to attack the core problem of graph layout, and not to become bogged 
down with details which can occur in the more general case. 
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labelled — it is interesting to note that if we take a graph layout as fixed, and try to label the nodes so 
as to minimise the number of labels crossing one another, or crossing edges, then this problem is in the 
complexity class NP-hard [CMS95]: it is as difficult as the original problem of graph layout.  It might 
be possible to combine the stage of label placement with that of graph layout, but this starts to 
resemble the closely related problem of circuit layout.  I decided to display labels on nodes, but not to 
be concerned about the aesthetics of this aspect of the layout, and place labels in a fixed position 
relative to their node.  Edges will not be labelled. 
 
straight-lines — this is perhaps the most significant simplification of the problem.  The language I 
used to implement the system allows the use of straight lines or Bezier curves for edges; these could 
easily have been adapted to allow polylines (lines with ‘dummy’ nodes along them, allowing bends in 
the lines) or rectilinear lines.  The main reason for choosing straight lines was that the methods 
described above virtually assume the edges to be lines, if the edges are considered at all.  A further 
motivation is that should we wish to test for intersection of two edges, or find the perpendicular 
distance between a node and an edge, the geometry is significantly simplified (and hence faster) for 
direct straight lines. 
If we look again at the criteria for making a simple drawing, we find that the first two (1.1.1, two edges 
cross at most once, and 1.1.2, edges sharing a vertex do not cross) cannot be violated if we use straight 
lines to draw edges.  A final post-hoc quasi-justification is that any planar graph can be drawn with no 
edge crossings using straight lines [HR90]; this result does not extend to non-planar graphs, but we 
can comfort ourselves in the knowledge that by using straight lines we probably aren’t causing 
ourselves any significant penalty compared to the unconstrained case. 

2.4 Choice of language 
 
From this analysis it was possible to design the system in terms of functionality, and how this would 
be achieved.  While it is perhaps desirable to separate the design from the details of implementation, 
some factors, especially the choice of language, can have influence over the design.  I chose to use 
Modula-3 to implement the system, mainly for the wealth of library code available, especially a 
module called “GraphVBT”, which contains routines to allow the display of graph data in a 
windowing system.  The object-oriented nature of the language meant that it would be easy to take the 
node, edge and graph objects already defined and derive new objects from them with the additional 
functionality required to support graph drawing.  Other factors influencing my choice included my 
familiarity with the language, its support for modular code, local availability and support, and my 
personal preference for nested procedures and garbage collected storage.  Since the intention was to be 
able to compare methods without being overly concerned for high performance, Modula-3’s run-time 
checking was preferable to the more streamlined code of a language like C++. 
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3. Implementation 
 
The aim of the implementation stage was to produce an interactive system that allowed the questions 
posed in the analysis stage to be answered.  This required a substantial amount of planning to be done 
before coding began.  I have picked out what I consider to be the salient details of the implementation, 
trying to give enough of the particulars that a moderately competent programmer could implement a 
similar program without understanding in detail the action of the algorithms being investigated. 

3.1 Choice of equations 
 
Three major iterative methods were defined, based closely on those suggested in the papers of Eades, 
Kamada and Kawai, and Davidson and Harel (discussed in 2.1).  To make the methods as comparable 
as possible, I decided to try to minimise the number of user-alterable parameters without over-
constraining the flexibility of the system.  What follows is a my formulation of the methods, put into a 
consistent notation. 
 
3.1.1 Eades 

The first model, based on that proposed by Eades, applies two forces between pairs of nodes i and j. 
Let ri be the position of the i’th node.  All forces are calculated in the direction (ri - rj). For each i, j, i ≠ j 
 

Vertex Force, VFi,j =  cvertex   
 | ri - rj|²  

 
l, the natural length of the edge is defined as (width of drawing area  . √(½|V|)).  Then 

 
Edge Force, EFi,j  = cedge . (|ri - rj| - l)  if {i,j} ∈  E 
 = 0    otherwise  
  

We calculate the total force on a node i in the as 
 

Fi = ∑j Fi,j  = ∑j ( VFi,j + EFi,j ) 
 
3.1.2 Kamada 

The second model uses a single equation based on di,j, the graph theoretic distance between nodes i 
and j.  The force is again in the direction (ri - rj) 
 

Fi = ∑j, i ≠ j ckamada . (| ri - rj| - di,j . l)  
  di,j² .  

 
We shall use ckamada = cedge, and we justify this by observing that in the case that (i,j) ∈  E then  
 

Fi,j = ckamada . (|ri - rj| - 1.l) / 1²   
     = ckamada . (|ri - rj | - l) 
     = ckamada  . EFi,j 
          cedge 
 

which is equal to the edge force in the Eades case if ckamada = cedge 
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3.1.3 Annealing 

The energy equivalent of the force equations is found by integrating the forces from Eades’ method 
with respect to distance, so we obtain: 
 

Vertex Energy for i ≠ j, VEi,j = ∫ VFi,j dr  = cvertex   
 | ri - rj| 

 
Edge Energy, EEi,j =  ∫ EFi,j dr  =  ½ cedge . ((ri - rj) - l)²    if {i,j} ∈  E 
    
   = 0    otherwise 

 
In addition to this, we would like to include a penalty for edge crossings.  We could simply implement 
this as  
 

Edge-Edge Energy, EEEm,n = ccrossing  if edgem crosses edgen 

 = 0  otherwise 
 
However, simulated annealing works better if the energy functions are continuous as a parameter 
(such as the position of a node) is varied.  Also, two edges which nearly cross (say if a node is very 
close to another edge) is almost as bad as a crossing; we would wish to penalise this almost as much.  
This leads to the following equations which use pm,n, the perpendicular distance between edgem and 
edgen (defined in Appendix 1) and pthreshold, a suitable minimum distance below which we consider the 
edges to be crossing: 
 

EEEm,n =  cedges  if pm,n > pthreshold 
  pm,n   

 
EEEm,n  = ccrossing =   cedges   if pm,n ≤ pthreshold or if edgem crosses edgen. 
   pthreshold   

 
This causes the penalty for edge proximity to fall off smoothly as the edges move further apart (once 
the threshold has been exceeded).   
 
The total energy of a layout is then 
 
 E = ∑i ∑j ( VEi,j + EEi,j ) + ∑m ∑n EEEm,n 
 
Although the equations have meaning and impact on convergence for the force based methods (they 
scale the velocity changes, and hence the size of the steps taken towards equilibrium), since simulated 
annealing seeks to minimise energy, the individual values of the constants should have no effect on 
the results, only their ratio. 
 
In summary then, these three methods require three constants between them.  By setting any of the 
constants to zero, we will be able to observe the effect of omitting the corresponding equation. 
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3.2 Friction, cooling and termination 
To ensure termination each method uses some factor, drawn from physical analogy but with no strong 
grounding in physics.  The force methods use a notion of friction.  A frictionless system would have 
 

v’i = vi + Σj Fi,j  — the velocity is incremented by the sum of the forces on that node (we set the 
weight of all nodes to unity) 

 
Our frictional system instead scales the new velocity by a factor k: 
 

v’i = k . (vi + Σj Fi,j) 
 
where k is initially 1, and decays over time to zero.  When k is sufficiently small (say 0.1) we may 
conclude that no more significant alteration to the layout will happen, and halt the process.  In fact, we 
could also test to see whether any of the movements at each iteration was significant and if not, 
terminate the process at this stage. 
 
Simulated annealing has the related concept of the current temperature of the system.  It is used in two 
ways.  Firstly, the position to investigate moving a new node to is defined by a radius r, of 
 

r = 0.4 * T * (1 + R) * width 
 

where R is a random real number drawn uniformly from the range 0..1. 
 
Secondly, it is used to determine the probability of taking a move to a higher energy position: 
 

p(Enew) = cuphill . exp(-cscale . (Enew - Eold)) 
 ( T . Eold) 

 
cuphill is another user alterable constant. cscale is a scaling factor, calculated to give a 10% chance of a 
10% increase in system energy at unit temperature.  There is no convenient test for termination; we 
must wait till the temperature is sufficiently low that we expect no further significant activity. 
 
Since all methods require a factor that is initially 1 and falls off over the course of the algorithm, we 
unify friction and temperature to give a single notion of temperature, T.  We still require a cooling 
scheme, which is periodically to reduce T geometrically. 
 

Tn+1 = ccool . Tn 
 
where ccool is another user alterable constant. 
 
Finally, we observe that T, whilst defined globally, is only applied to a single node at a time; we can 
then replace the global T with a Ti for each node.  If all Ti are initially 1 and are decreased in 
accordance with the cooling scheme then the effect is the same as using a single global temperature; 
however, this now gives the freedom to set the temperature of certain nodes to zero, meaning they are 
effectively rooted, and alter the temperature of others to observe the effect of only giving freedom to a 
subset of the nodes.  This will help answer question 2.3.3. 
 

3.3 Quantitative analysis 
 
The crucial part of designing a quantitative way to examine the methods to answer 2.3.1 was the 
realisation that the energy equations used in methods like simulated annealing can be used to give an 
objective score for the current layout.  Being derived from aesthetic considerations, a lower score, 
indicates a better result with respect to the aims of keeping nodes well spaced, edges an even length, 
and pairs of edges not too close.  The caveats to this are that the score depends on the constants used, 
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and for a given graph, the minimum score cannot be determined analytically.  Although these energy 
equations were motivated by the energy methods, they can be equally applied to force methods, and 
by using the same scoring functions and constants, we can compare the performance of different 
methods on the same problem.  
 
This can be achieved by comparing the energy of the final layout converged on by a particular 
procedure, as well as taking readings of the energy as a layout procedure is in progress, and plotting 
these over time.  Readings should be taken at regular intervals, say every second or tenth of a second, 
although it is important to be aware that unless the reading is instantaneous then it will affect 
performance of the procedure being observed. 

3.4 Effect of starting position 
 
Question 2.3.2 asks what effect the starting configuration has on the eventual layout.  To answer this, 
we need to have some ways to generate starting configurations.  The following methods were 
implemented: 
 
3.4.1 Random Configuration 

In the papers studied, starting configurations were usually found by placing each node at a random 
location within the drawing area.  It is perhaps prudent to ensure that nodes do not coincide, and 
perhaps are a sensible minimum distance apart. 
 
3.4.2 Circular configuration 

One canonical way to arrange nodes is to space them evenly about the circumference of the circle with 
a radius perhaps 2/5 of the width of the drawing area, so that the i’th node of n is placed at 2πi / n 
radians about the circumference.  For very small graphs (<10 nodes) this may give an adequate final 
drawing. 
 
3.4.3 Breadth-first arrangement 

A slightly more involved approach would be to pick a node and perform a breadth-first search from it, 
and place it at the left hand end of the drawing area.  All nodes at a depth of 1 are placed in the first 
column, at a depth of 2 in the second column and so on, scaled so that the columns fill the drawing 
area.  Care is needed to handle graphs that are not connected.  Since ordering the nodes in any given 
column to minimise the number of edge crossings is a potentially exponential operation, the nodes 
should be arranged in an arbitrary order. 
 
3.4.4 Divide and conquer approach 

The traditional computer science approach of “divide and conquer” can be applied to graph layout, 
albeit crudely.  We can define the centre of a graph (or sub-graph) quite easily, as (one of) the node(s) 
with the lowest shortest path distance to reach any other node.  So we can find the centre of the 
current (sub)graph, place it at the centre of the area, divide the remaining nodes into two subsets, and 
repeat the process on each subset partitioned into one or other of the two halves of the drawing area.  
See Appendix 2 for more details of this approach. 

3.5 Tools Used 
 
The system was implemented in Modula-3 v3.6 on Thor.  By far the most important tool used was the 
GraphVBT library, which allows a graph to be created in a window by specifying the nodes, edges and 
location of the nodes.  There is a great deal of flexibility with regard to the size, shape and colour of 
the nodes and edges; suitable defaults for these were hard-coded in the program, or calculated from 
other values.   The graph, and each of its edges and nodes are represented as objects within the 
Modula-3 language.  It was hence quite natural to inherit from these to create enhanced objects with 
additional functionality for layout.   
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One major deficiency of the library is that it has no provision for allowing the user to interact with the 
graph: it does not respond to mouse clicks.  By overriding the “mouse” interactor method of the 
window, it was possible to allow the closest node to the pointer to be picked up and dragged to a new 
position, and, depending on the combination of mouse buttons pressed and the locality of the pointer, 
add new nodes or edges.  The program was designed and written to accommodate the deletion of 
nodes and edges, but code was never written to implement this. 
 
As with any tool, the gains to be had are not without some drawbacks.  One feature of GraphVBT is 
that there is no control over the placement of node labels — they are placed centrally over the node 
they label.  I could have replaced this with a method to place labels at any position relative to the node 
location, but chose not to, and to some extent this influenced the decision not to make label placement 
part of the requirements (section 2.3). 
 
The GraphVBT interface uses two internal co-ordinate representations of the graph, one for the integer 
window co-ordinates, and another for the internal real graph representation, and carries out the 
conversion between the two.  When I started implementing, I stored the node positions a third way, 
using integer co-ordinates.  It soon became apparent that there was no benefit to be gained from this 
approach, as any speed-up from using an integer representation was lost by the need to constantly 
change back to reals, for interaction with the GraphVBT representation, and for distance calculations.  
Such an unholy trinity of representations could not last, and so the real GraphVBT co-ordinates were 
used as the absolute position of the nodes.  To change the code I had written from integer to real co-
ordinates was the work of an hour or two. 

3.6 Further implementation details 
 
Graph, edge and node objects were derived from those defined in GraphVBT.  Little additional code 
was required for nodes and edges, only overriding the default code to ensure that correct alterations to 
the additional data-structures were made.  The nodes were stored in a canonical quadtree 
representation to enable efficient locality searching, which deserves some explanation. 
 
3.6.1 Quadtree 

 
The quadtree is initially empty, with a rectangle defining the area which it covers.  It consists of branch 
records, where four pointers point to the next level, one for each quadrant of the current rectangle, or 
else a leaf, which contains a single node.  Figure 4 illustrates why the representation is canonical:  there 
is just one way of partitioning up the area by quartering rectangles until each node is in a rectangle on 
its own. 

  
Figure 4: How a quadtree partitions up the space 
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The following pseudo-code describes the operations on a quadtree: 
 
AddNode(node, quadtree) =  
  repeat 
    if quadtree is an occupied leaf then convert leaf to branch 
    find which quadrant of quadtree.rectangle the node is in 
    if quadrant is empty then create a new leaf and place node in it 
    else quadtree ! quadtree.quadrant 
  until node has been placed 
 
RemoveNode(quadtreepointer) = 
  // quadtreepointer points to the node’s position in the tree  
  parent ! quadtreepointer.parent 
  delete quadtreepointer from parent 
 
FindWithinRectangle(rectangle, quadtree) =  
  if quadtree points to a leaf, then output the node if node ∈  rectangle 
  else for each quadrant of quadtree 
    if rectangle intersects the quadrant rectangle then 
      clip rectangle to quadrant rectangle 
      FindWithinRectangle(clippedRectangle, quadrant) 
 
AddNode has cost proportional to the depth of the tree which, provided there is an even distribution 
of nodes, should be O(log4(V)).  RemoveNode has constant cost; hence the overriding cost of a move, 
which is a compound delete and add, is just that of add.  FindWithinRectangle also depends on how 
many nodes there are within the rectangle, giving a cost of O(log(V) + N), N being the number of 
nodes found. 
 
The quadtree representation demonstrates its efficiency when it can be used to search for nodes within 
a rectangle or an area composed of (preferably non-overlapping) rectangles.  This is good when we are 
attempting to improve efficiency by only considering nodes within a certain distance of a specified 
node when calculating forces or energies (as the contribution of distant nodes, being related to the 
inverse square of the distance, soon becomes negligible).  It is not applicable when evaluating edge 
proximity energy, which is the over-riding cost when it comes to applying the energy method.  A more 
involved data-structure might have coped better with this, at the cost of a good deal more design and 
debugging. 
 
3.6.2 Other Algorithms Used 

Certain other algorithms of a computational geometry nature were needed.  These are explained in full 
detail in Appendix 1, but the outlines are sketched here. 
 
Intersection of two line segments — we need to be able to test whether two edges, which are line 
segments, intersect.  A fast reject case is if the two bounding rectangles do not intersect; otherwise, it is 
still possible the two edges do not intersect.  We argue that the lines intersect if and only if the two 
endpoints of one edge fall on different sides of the infinite line implied by the other edge, and the 
same test with the roles of the edges interchanged.  
 
Perpendicular distance between two line segments — we define the perpendicular distance between 
two edges to be the shortest of the perpendicular distances between one endpoint and the other line 
segment.  This in turn is defined as the shortest of the distances between the point in question and the 
two endpoints if the point does not lie in the area swept out by the line segment perpendicular to its 
direction.  Otherwise it is the perpendicular distance between the point and the infinite extension of 
the line segment.  This is illustrated by the diagram in Appendix 1.  
 
All-pairs shortest paths — the Kamada and Kawai algorithm requires knowledge of the all-pairs 
shortest paths matrix.  Warshall’s algorithm achieves this in time O(V3), which in complexity terms 
overrides the O(V² ) cost of the layout algorithm.  While faster (O(V² logV)) algorithms exist, I decided 
to use the simpler Warshall’s, since the actual running time for graphs of moderate size (100 nodes) 
and larger is still not significant.  Also note that we only need to calculate the matrix once for a graph, 
provided that it does not change. 
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3.6.3 The Graph Object 

The object used to represent graphs was derived from the GraphVBT object.  In fact, a two-stage 
inheritance was used.  Firstly a Graph object was defined, which augmented its parent with routines to 
add a node or edge, to load and save a layout, and to perform some counts of the number of nodes, 
edges, and crossings in the drawing.  In addition, it overrides the default routines to allow mouse 
interaction with the graph in order to allow user manipulation and addition of nodes and edges. 
 
A further object, “Energy”, inherits from a Graph and adds the capability to evaluate the energy of a 
graph configuration, based on the three constants (defined in section 3.1), as well as methods to get the 
value of the constants from the user interface, and to allow nodes to be started with different initial 
temperatures.  The idea of this two-layer descent was to allow clarity of code: procedures that only 
needed to work with a basic graph would be associated with a Graph object; those that examined the 
energy properties would take an Energy object. 
 
I initially planned for these objects to be ‘virtual’, and never instantiated; instead, an object would be 
defined for each layout method used which would provide its own layout procedure.  This proved 
problematic: since it was required that different methods be applied successively, it meant that the 
object type would have to be changed.  The only way to achieve this would be to copy all of the graph 
information into a new object of the appropriate type every time a different layout method was to be 
used.  This felt clumsy and inelegant: the solution adopted was to add a “layout” procedure as a 
variable of the Graph object, which was set when a layout algorithm was chosen, and called by a 
wrapper method within the object. 
 
3.6.4 Applying Layout Procedures 

The mechanism for applying the layout algorithms is as follows: 
 
Get the constants to be used from the user interface 
Set up other values, such as the natural edge length and initial temperature of 
nodes 
Call the graph.layout() method 
Display the results 

 
For the ‘simple’ layout methods (random, circular, etc.) the layout procedure is a straightforward 
implementation of the algorithm.  For the force methods (Eades and Kamada), the implementation is 
as follows: 
 
Initialise the node velocities to zero 
repeat 
  calculate the forces and apply the new velocities 
  if time since last sample is more than the sampling period, take an energy reading 
  if the number of iterations mod ~20 is zero, then 
    reduce the temperature 
    *display the current configuration 
until the convergence criteria are met 

 
The line marked * is to give some visual feedback and can give quite a pleasant animation effect as the 
graph can be seen to unravel itself into a clearer drawing. It is omitted for testing purposes, as the time 
to update can affect the timing results.  
 
The energy method (simulated annealing) has a slightly different implementation: 
 
repeat 
  repeat 
    choose a node 
    repeat ~20 times 
      evaluate energy of moving node to randomly chosen position 
      decide whether to move node 
  until all nodes have been tried   
  reduce the temperatures 
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  *display the current configuration 
until all nodes are cold (T<0.1 say) 

 
Again, the asterisked line can be omitted to improve the accuracy of timing results, at the expense of 
giving user feedback.  Some care is required: to calculate the energy of any position can require up to 
O(V² ) work to calculate the energy between all pairs of nodes.  When we are only moving a single 
node at a time, we can do better than this, since the energy between all pairs of nodes, except those 
pairs involving the node which is being moved, remains the same; only V new node-pair calculations 
need be done to evaluate the node energy of a new position, between the node moved and all other 
nodes.  By keeping a matrix of node pair energies, we can update the total energies per node by 
calculating 
 

Ei’ = Ei - Ei,j + Ei,j’ where j is the node which has moved 
 
That is, the new node energy is equal to the old node energy, less the energy from the old node 
position, plus the energy from the new node position.  A similar approach can reduce the cost of 
calculating the energy from edge pairs. 

3.7 Unevaluated code 
 
Since the evaluation section of this report seeks to answer the questions posed in 2.3, there is a certain 
amount of code that was written to facilitate answering these questions, which however does not 
figure within the evaluation, and merits mention in this chapter.  One such tranche of code 
implements an on-the-fly plot of the energy of the graph layout over time as the layout is created.  This 
gives an immediate quantitative analysis of the success of the current method.  For the purpose of the 
evaluation, it was required to plot several averaged results on a single graph, and so raw values were 
taken from the system, and processed using a spreadsheet package. 
 
Load and save routines were required to compare layout procedure performance from the same initial 
configuration.  In addition it was useful to be able to input graph connectivity information without any 
layout information, and to use a reasonable display method (such as random or circular) to display it.  
The file format chosen was a simple text file (to allow user-created input), which is structured as 
follows: 
 
n, number of nodes 
# 
optional node numbers and corresponding labels (need not label all nodes) 
# 
edge information encoded as pairs i,j where i & j are both in the range 1..n 
[# 
optional node locations for nodes 1..n] 
EOF 

 
A certain amount of debugging code was generated, for example to list the contents of the quadtree 
and information about the graph.  Most of this was removed on satisfaction that the code seemed to 
perform correctly after some testing, but certain parts were left in, in case they should be later needed.  
Some slight variants of the layout algorithms were tried: a version of Eades was implemented which 
approximated the full version by only considering node pairs within a fixed radius of each other.  It 
was moderately faster, but not significantly so, and so I decided not to investigate further. 

3.8 Realisation of the project  
 
In the project proposal, a timetable for the implementation was set out.  Initially these were closely 
adhered to, and a notebook was kept detailing the progress and sketch designs and ideas.  
Programming the system began in mid November, and by the end of the Christmas vacation I had a 
system which implemented the user interface, save and load facilities, and the two force methods, 
slightly ahead of schedule.  Around about this time, the written log lapsed, and was superseded by a 
typed log, recording the progress of the programming.   
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The list of potential extensions to the basic system given in the project proposal proved to be 
somewhat ambitious, and with the belief that there would not be room in this write-up to do justice to 
too many different investigations into aspects of graph drawing,  I decided to omit extending the 
methods into three-dimensions (suggested in work package for 28 January to 11 February).  The main 
deviations from the original timetable in the project proposal were to attempt sections in a different 
order.  I deemed the system to be complete a few days after the proposed end, at the start of March.   
 
The system was implemented in a structured modular fashion, divided into sixteen major commented 
files — half of these dealt with different layout methods, six with the different object types that were 
defined, one dealt with plotting the energy, and another defined the actual program, linking the 
interface to the appropriate procedures and methods, allowing the layout functions to be called.  
Further details of the implementation can be found in Appendix 3. 
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4. Evaluation 
 
The evaluation of this project falls into two parts; first a qualitative overview of the system and some 
observations on the performance of the algorithms that were implemented, and second the 
quantitative results of using the system to investigate the questions posed in the analysis (2.3) and 
interpretation of these results.   

4.1 Performance of the system 
 
A number of basic graphs were created to test the system, and the results of testing using these gave 
encouragement that the system was working correctly.   
 
4.1.1 The Cube: a small, structured graph 

 
Figure 5 illustrates the four different initial layout algorithms that were implemented (described in  
3.4), applied to the same graph, the cube graph (the graph which describes the connectivity of a wire-
frame cube).  All executed instantaneously.  It is easy to check that these are all drawings of the same 
graph, although the underlying structure of the graph is not particularly clear from any of them. 

 
Constants for the iterative methods were determined empirically, using a single node pair, and 
adjusting the values until an appropriate response was found.  The results of running the first of the 
iterative methods on the cube graph (starting from a random layout) led to three types of solution 
(shown in Figure 6) — most of the time, it converged upon a drawing closely resembling a cube drawn 
in projection, with the edge lengths approximately equal; sometimes it would give a result which 
resembled the cuboid drawing but with a “twist” in it; occasionally it would finish with a drawing 
which was uneven and asymmetric.   
 
The algorithm of Kamada and Kawai (referred to as Kamada) was equally fast, and almost invariably 
converged on the drawing of the cube graph illustrated in Figure 7, subject to rotation and reflection.  
The energy of the final configuration was quantitatively less than those found by Eades’ method on 
average, and this was reflected in the generally more aesthetic layouts that the Kamada method found. 
 
Simulated annealing (abbreviated to Annealing) took longer than the other two iterative methods, and 
the results resembled those found by them, but appeared cruder.  This is to be expected due to the 
nature of the method: rather than the position of the nodes being directed by forces, they are found by 
testing the energy contributions from positioning the nodes at different random locations.   However, 

 
Figure 5: Four drawings of the cube graph.  Left to right: Random, Circular, Breadth-first, Divide-and-conquer 

 
Figure 6: Result of running Eades' Algorithm on the cube graph from different initial configurations 
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the energy of the final position was slightly less than that found by the Kamada algorithm in the 
majority of tests.  The effect of changing the constants is graphically demonstrated in Figure 7, where 
the middle drawing is the effect of Annealing with a low penalty for edge crossings: the perspective-
like drawing is the low-energy solution for this system; the right hand drawing shows the effect of 
increasing the edge-crossing penalty by a factor of ten: in this case, it is the planar layout which has the 
lowest energy, and hence is found by the algorithm.  These two ways of drawing the cube graph were 
used in the introduction (Figure 2) to illustrate conflicting goals in graph drawing: it is interesting that 
a single method will find either drawing depending on the value of a single parameter.  
 
4.1.2 The Web: a larger example 

Having seen that the iterative methods are working as intended on a small example, to distinguish 
between them a larger example, a web graph was chosen.  This was designed as two concentric 
nonagons with a single point in the centre, connected like a spider’s web.  Figure 8 shows the effect of 
the different methods, again starting from an initial random placement.  Eades’ algorithm succeeds in 
revealing some of the structure, but still ends with a layout which looks as if it has been folded over 
itself, with many edge crossings.  Kamada quickly and consistently arrives at the middle drawing, 
revealing the structure as it was designed.  Annealing took significantly longer, a matter of about ten 
seconds instead of one or two, and found a planar drawing which, again due to the more probabilistic 
nature of the algorithm, displayed less symmetry than the middle drawing. 
 
We would now like to start to examine the energy ‘scores’ for these layouts, to see if they correspond 
to the aesthetic assessment.  The energies are calculated based on the same constants used to create the 
layouts, and have no direct interpretation; they give an objective scale on which to compare the 
layouts, with a lower energy being considered ‘better’.  Random initial configurations of the web 
graph have an energy of around 80,000 on average; Eades typically reduces this to around 35,000.  The 
layout converged on by Kamada has an energy of 29,200, while Annealing yields around 29,500.  We 
see that from a relatively high initial energy, the methods all succeed at significantly reducing the 
energy, but there is a relatively small energy difference between a poor layout (Eades) and a very clear 
one (Kamada), and an even lesser difference between an acceptable layout (Annealing) and one which 
shows good symmetry (Kamada). 

 
Figure 7: Effect of i) Kamada and Kawai's method  and simulated annealing with low- (ii) and high- (iii) edge 

crossing penalty. 

 
Figure 8: Effect of running i) Eades' ii) Kamada and Kawai iii) simulated annealing on the web graph 
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The consistency with which Kamada and Annealing found the planar 
drawing suggests that the graph has a single energy minimum, which 
the two methods are approaching.  In fact the lowest energy 
configuration that was found is shown in Figure 9, which was found 
by applying Eades to the layout found using Kamada; it has an 
energy of 29,100.  This makes sense: although Kamada is good at 
finding a layout which takes account of the whole of the graph data, it 
does not reflect the energy equations which are derived from the 
Eades forces; hence by applying Eades to the approximate minimum 
found by Kamada, it is improved slightly in terms of energy.  This is 
the sort of effect that needs to be investigated in more detail to answer 
question 2.3.2. 

4.2 Comparing the methods quantitatively (2.3.1) 
 
The evaluation so far has been quite anecdotal, intended to give confidence that the algorithms are 
behaving correctly within their own parameters, and noting certain points of interest.  We now take a 
more quantitative and thorough approach to answer the questions that were posed in section 2.3.  It 
has already been implied that the energy is an appropriate way to score a layout (it was originally 
advanced as such in the implementation section, 3.3).  To compare the methods, each was run on the 
same initial random layout of randomly created graphs (see [Pal85] for details).  The graphs were 
created with a fixed number of nodes, with O(V) edges added for sparse graphs, and O(V logV) edges 
added for the dense case.  Each method was run three times and the results averaged.  
 
Figure 10  shows that, for sparse graphs, there is not much to choose between the methods.  Above fifty 
nodes, Annealing quite consistently achieves the lowest energy, with Kamada not significantly worse 
than this, and Eades not much worse again, perhaps to be expected as graphs with relatively few 
edges have less potential for edge-crossings, and Eades can succeed with respect to spreading out 
nodes and keeping what few edges there are close to the desired length.  The price we have to pay for 
the performance of Annealing is the time taken to find the layout: with no way to detect convergence 
and terminate, and the more complex iteration cost it is perhaps no surprise that it takes up to twenty 
times as long as the other two methods (Figure 11). 

 
Figure 9: Result of applying 
Eades after Kamada on the web 
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Figure 10: Comparison of the layout methods on sparse graphs 
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Looking at dense graphs, the difference between the methods is more visible, though still slight.  
Figure 12 shows exactly the same ordering as before, with Annealing doing best; in this case Eades 
outperforms Random layout as before, but not by as clear a margin, as the penalty for edge-crossings 
becomes significant, and the improvement in energy comes mainly from the evening of edge lengths 
and spreading out of nodes.  Again, the improvement from Annealing comes at great price: in the 
worst case, it takes thirty times as long as the force-directed methods.  In conclusion, for these general 
graphs of moderate size, we have seen that Annealing performs the best with regard to minimising the 
energy of the layout, and Kamada does a good job, equalling Annealing for small sized graphs (those 
with fewer than fifty edges); however, the time to perform simulated annealing is measured in 
minutes, whereas the force-directed methods take only seconds. 
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Figure 12: Comparison of the different methods on dense graphs 
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Figure 11: Time comparison for sparse graphs 
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4.3 Examining the effect of the starting configuration (2.3.2) 
 
To answer this, I chose to examine the effect of using different initial configurations on the final energy 
of three particular graphs, meant to resemble ‘real’ data that it would be reasonable to want to display.  
The data was pre-processed using one of the seven layout methods — the four heuristics (Random, 
Circular, Breadth-First or Divide-and-Conquer) and the three iterative methods (Eades, Kamada, 
Annealing) — and this initial arrangement was saved.  Then each of the three iterative methods was 
executed on the initial configuration three times, and the final energy averaged across the three 
executions. 
 
4.3.1 Large and unstructured: a social network 

The first example tested was a social network with 143 nodes, generated by recording the oscular 
interactions of members of my college over the past few years; the results are illustrated in Figure 13.  
In answer to the question “does the starting configuration make a difference”, the answer must be a 
qualified ‘yes’.  Eades achieves a lower energy if working from a position generated by an iterative 
method — around 870 instead of 888 starting from a random configuration. Likewise, Kamada 
achieves its best result when run twice, and Annealing achieves the best score, 809, when executed on 
a layout found using Kamada (these two layouts are illustrated in Appendix 4).  But these results 
should be approached carefully: the differences though significant are not great, and we should also 
be wary of the spread of values — it turns out that the better results cluster quite tightly round the 
mean (the range for Annealing after Kamada being 808-810), while the spread for  Eades on a Random 
layout is 880-900.  
 
Another point to note is that Eades seems to undo some of the good work done in preparing the 
configuration, raising the score from the low 800’s from Annealing and Kamada to about 870, although 
this is still better than from any of the heuristic methods alone.  Keeping an eye on the timings (not 
illustrated), and we note that, as before, the force-directed methods take no more than six seconds of 
CPU time, while Annealing consumes nearly three minutes in all cases.  When looking at the energies 
achieved, it is reasonable to ask whether the small difference in energies found by running Annealing 
is worth the minutes of waiting. 
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Figure 13: Effect of starting configuration for a large graph (social network) 
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4.3.2 Medium-sized and planar: the London Underground 

The second example that was used was again drawn from everyday life, being a slightly modified 
version of the London Tube Map.  Most nodes with degree 2 were removed leaving 55 stations, thus 
capturing the connectivity of the network.  It was not obvious that this would be planar, but a planar 
drawing was found by Kamada during testing.  The same methodology was used as above, and the 
results are shown in Figure 14.  Here we see that the results are exceedingly close, with Kamada just 
outperforming Annealing on average but not in every particular case.  Eades is not that far behind, 
and again shows an improvement when working from a layout which has been pre-processed.  In all 
cases, the best performance of each method is seen when the initial layout method was Kamada, as in 
the previous example, suggesting that it is good practice to run Kamada as a pre-processing phase to 
bring the graph layout into the neighbourhood of an energy minimum, and then use a method of 
choice to home in on the minimum.  Since the CPU time used by Kamada never exceeded two seconds 
on this example, it adds only a negligible amount of delay if used as a pre-processing step. 
 
It is diverting to compare the drawing generated by the layout algorithms to that which the data was 
derived from; this is done in Appendix 5. 
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Figure 14: Effect of starting position for a moderate sized graph (tube map) 
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Figure 15: Binary tree laid out using (clockwise from top left) Breadth First; Divide-and-Conquer; Kamada; Annealing 

4.3.3 Sparse and structured: the binary tree 

The final example examined was a medium sized (63 nodes) binary tree; methods exist to lay out tree 
data in optimal fashion, so it would be interesting to see how well the force-directed methods fared 
compared to these.  It turns out that the heuristic methods do a good job on this data (Figure 15), with 
the Breadth First and Divide and Conquer heuristics giving very clear and regular drawings of the 
graph.  It is here we see the limit of the energy approach to scoring layouts:  the Breadth First method 
is scored at 109, while Annealing, which produces an irregular and non-planar drawing is scored at 
106.  This is because the energy equations are based on an objective approximation of aesthetic criteria, 
which, while adequate for general graphs, fail to reward layouts which work well visually but do not 
follow their strict prescription of what a good drawing is.  The scores for other combinations (Figure 
16) are too close to make any conclusive observations about, other than that two applications of 
Kamada again achieves one of the best scores. 

R
an

do
m

C
irc

ul
ar

D
 &

 C

St
rip

Ea
de

s

Ka
m

ad
a

An
ne

al
in

g

A nnea ling

K am ada

E ades

N on e

251

301

104 109 109 106 106108 109
103 110 106 107 105105 104 104 104 106 103 104106 105 106 105 105 105 106

50

100

150

200

250

300

350

Fi
na

l e
ne

rg
y 

(a
rb

itr
ar

y 
un

its
)

In itia l layou t m eth od
S eco nd  m etho d

 
Figure 16: Effect of starting configuration for a sparse, structured graph (binary tree) 
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4.4 Working with a subset of the graph (2.3.3) 
 
Again, this is a question which the system was designed to answer.  Since Annealing is the only 
method which takes a punitive amount of time to complete, the effect of using local temperatures 
rather than global temperatures for nodes was investigated for Annealing.  The social network used in 
4.3.1 was laid out using Kamada, and the nodes which appeared misplaced were selected, and their 
temperature set to 1.0.  The temperature of the remaining nodes was set to zero, then Annealing was 
run.  As a comparison, Kamada and Annealing were run from the same starting configuration but 
considering all nodes. 
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Figure 17: Effect of local versus global temperature 

 
The results (Figure 17) are not very promising: although using local temperatures to control only those 
nodes of interest results in a decrease of global energy, and only takes about half as long, the decrease 
is not as great as that found by using Annealing globally, and not even as low as that found by 
running Kamada again, which completes in significantly less time.  In conclusion, using local 
temperatures sits uncomfortably as a concept, requiring human judgement to pick which nodes to 
operate on, and achieves neither greatest energy minimisation nor greatest speed. 

4.5 Final Observations 
The focus of the evaluation has been in evaluating the performance of the different algorithms, and so 
to some extent the actual performance of the system that was implemented has been apparently 
overlooked.  This is largely due to the implication that the ability to perform such an evaluation of the 
methods would not be possible without an adequate system within which to test them.  The 
illustrations of the layouts found are actual screen shots of the system after experiments.  The first 
section of this evaluation in particular (4.1), whilst phrased in terms of examining the output of the 
layout methods, also implicitly tests that they are correctly implemented within the system by seeing 
whether they produce the kind of results that we expect.  
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While we would not expect a program of this scale to be entirely free of bugs, we have seen that 
simple examples perform correctly, and that larger tests give good results — far better than could be 
expected from any unstructured process.  The methods are such that any residual errors are not  
immediately obvious: correcting some minor bugs during implementation did not noticeably improve 
the results.  Perhaps it would be better to cast this evaluation as a comparison of the algorithms as 
implemented, rather than of the algorithms themselves, since there was some scope for interpretation 
and variation from the descriptions given in the original papers.  But however you wish to look at it, 
the system implemented three different iterative graph layout methods which were evaluated above, 
and found to work more than adequately in the cases tested. 
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5. Conclusions 
 
A system which allowed graphs to be entered, laid out using heuristic methods and different force 
inspired methods or by the user was implemented successfully.  The problem of how to test whether a 
layout was aesthetic was tackled by advancing a scoring method based on the criteria for a layout to 
be ‘sound’ (1.1.4 to 1.1.6), and this corresponded with what was judged to be the better arrangement 
for general graphs. 
 
This energy approach allowed the performance of the three iterative methods to be compared 
objectively and quantitatively.  Throughout the testing, simulated annealing achieved the best score, 
but took many times longer than the force-directed methods, and the margin of improvement was 
slim.  The exception to this were special cases such as trees, for which methods handling these cases 
specifically can give optimal results.  For a package designed to allow graph data to be arranged for 
output purposes, simulated annealing should be implemented along with a range of other approaches, 
but for an application where display of graph data is incidental to the purpose of the system, the 
designer would be better off implementing the faster and simpler method of Kamada and Kawai, 
perhaps performing two phases to improve on a single run solution. 
 
There are many possible extensions to this work.  The only extension suggested in the project proposal 
which was not implemented, to use a third dimension in the generation of a two-dimensional layout, 
would be an obvious candidate.  Extending the algorithms to operate in a full three-dimensional 
environment would be worth investigating from a data visualisation perspective.  The algorithms 
implemented are by no means the only conceivable force-directed methods, and for that matter, the 
same forces could have been formulated in a number of different ways (for example, inverse-square 
relations could equally have been formulated as reciprocal or exponentially decaying with distance).  
It would also be possible to apply the scoring of a layout by energy to drawings found by using other 
methods away from the force-directed paradigm, such as planarisation [BETT94]. 
 
Were I to redo the project with hindsight, there is little that I could usefully have done differently.  The 
use of local temperatures rather than global turned out to have little impact, but this in itself is 
worthwhile  result.  If there was more room in this dissertation and more time, I think I could have 
usefully investigated the effect of the same methods on the individual components of the energy score 
(node density, edge length and edge-crossings), and filled in the few gaps, such as the facility to delete 
nodes and edges, which would turn what is currently a tool to investigate the performance of graph 
layout algorithms into a fully-featured graph layout application. 
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Appendix 1 — Geometric Algorithms 
 
The non-trivial geometric algorithms required by the system involve edges.  We need to be able to test 
whether a pair of edges cross, and if not, find how far apart they are (some of this material is based on 
[Sed88] and [CLR90]). 

Edge Crossing 
Firstly, we implement a “fast reject” 
case, which uses the fact that if a pair of 
edges cross, then their bounding 
rectangles intersect, and hence if the 
rectangles do not intersect then the 
edges cannot cross.  This has the 
additional benefit of eliminating a case 
which proves tricky in the general case, 
if two edges are collinear but do not 
cross.  The three cases are illustrated 
left: i) boxes overlap, edges cross ii) 
boxes overlap but edges do not cross 
iii) boxes do not overlap, edges do not 
cross. 

 
Once it has been determined that the edges might intersect, we test 
for intersection by use of the fact that if the edges intersect then both 
points of one edge must lie on opposite sides of the line formed by 
extending the other edge (and vice-versa). 
This is satisfied if 0º  < ijk < 180º  and 180º  < ijl < 360º  
or if 180º  < ijk < 360º  and 0º  < ijl < 180º  (measured clockwise) 
We can find these conveniently using a dot-product test if we 
rotate the line vector 90º , by using the transformation matrix T 
=  
Then our criteria can be written  
T(j - i) . (k - i) ≤ 0 and T(j - i) . (l - i) ≥ 0 
or T(j - i) . (k - i) ≥ 0 and T(j - i) (l - i) ≤ 0 
which can be simplified to  

(T(j - i) . (k - i)) (( T(j - i) . (j - i)) ≤ 0 
 

Perpendicular distance between edges 
If two edges do not cross, then we need to be able to find the perpendicular distance between them.  
This is found in terms of the perpendicular distance between a vertex from one edge and the other 
edge.   
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The perpendicular distance between a point and an edge 
is defined as the perpendicular distance between the 
point and the infinite extension of the edge if the point 
falls between the two parallel lines perpendicular to the 
edge passing through its vertices (as in d2 and d3, left), or 
the distance between the point and the nearer of the 
edge’s vertices (as in d1, left). 
To test whether a point p lies inside the dotted lines, we 
require that the angles pab and pba are acute.  The 
conditions can be written 
i) 0º  < pab < 90º  and 0º  < abp < 90º  (measured 
clockwise)  
or ii) 270º  < pab < 360º  and 270º  < abp < 360º  
The conditions on pab can be written (p - a).(b - a) > 0 

and the conditions on abp are expressed (p - b).(b - a) < 0 
Hence our test simplifies to “p lies within the lines if ((p - a).(b - a))((p - b).(b - a)) < 0” 
 

If the p lies outside the lines, then the perpendicular 
distance is Min(|p - a|, |p - b|) 
 
If it lies inside the lines, then the distance d is 
calculated using simple geometry:  
 
c1²  + d²  = a²  
c2²  + d²  = b²  
c1 + c2 = c 
 
These equations can be solved to give  
2d²  = a²  + b²  - ½.c²  - (a²  - b² )²  / 2c²  

 
 

 
Now that we have a notion of the perpendicular distance between 
an edge and a point, we can find the shortest distance between a 
pair of edges.  This is defined as the shortest of the four 
perpendicular distances between a point from one edge to the other 
edge.  So, using the terminology of the diagram left we find 
 
di = Mindist(i, Edge(k,l)) 
dj = Mindist(j, Edge(k,l)) 
dk = Mindist(k, Edge(i,j)) 
dl = Mindist(l, Edge(i,j)) 
 
And so the perpendicular distance between the edges is  
Min(di,dj,dk,dl). 
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Appendix 2 — Centre Layout 
 
The attempt to create a divide-and-conquer algorithm to layout a graph heuristically resulted in the 
following algorithm.  Firstly, the definition of the “centre” of a graph is needed. 
 
The centre of a sub-graph V’ ⊆  V is defined as follows: 
 
Create the graph G’ = (V’, E’) where E’ = { (v,w) | (v,w) ∈  E  ∧  v ∈  V’ ∧  w ∈  V’ } 
construct the all-pairs shortest path matrix, M for the graph G’  
Find the vector L, such that L(v ∈  V’)  =  Max(M(v, w)) 
Find v such that L(v) = Min(L(w)) : v is the centre of the subgraph. 

 
We can now develop an algorithm: 
 
Start with the whole graph and the whole drawing area 
Find the centre of the current (sub-)graph 
Place the centre in the centre of the drawing area 
Divide the vertices into two sets, and divide the area into two 
Recursively place one set of vertices in one half of the area, and the other in the 
other. 

 
To divide the vertices into two sets, we perform two alternating breadth first searches.  It operates as 
follows: 
 
Initialise two lists with the current centre node 
Then alternate: 
 Take the head of the list, consider nodes adjacent to it 
 If a node is ∈  V’ and it has not been marked then 
  mark the node; add it to the list; break 

 
For such a division to be effective we would like the centre to have at least two edges on it.  
Fortunately this is easy to prove.  Assume that we have a connected graph (which we would expect 
from the way in which the breadth first search is performed: we will not have any nodes in our graphs 
that could not be reached from the starting node).  Hence if our centre does not have at least two edges 
incident on it then it will have exactly one.  We can label each node v with the value L(v).  For w to be 
the centre, we must have L(w) ≤ L(x), where x is the node adjacent to w.  But all paths which go from 
w must go through x, so every path from w is one step longer than that from x, and hence L(w) = L(x) 
+ 1 ie L(w) > L(x); this is a contradiction, and so we conclude that the centre of any non-trivial (>2 
nodes) graph has at least two edges incident to it. 
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Appendix 3 — Code Samples 
 
The system produced consisted of 16 modules written in Modula-3, with their corresponding interface 
definitions, totalling around three and a half thousand lines of code,  along with two .fv files which 
defined the user interface. 
The project briefing booklet asserts that “assessors like to see some sample code”.  In accordance with 
this suggestion, I include the “Kamada.m3” module to satisfy this.  The tranche below implements the 
method of Kamada and Kawai in a force directed fashion: 
 
 
MODULE Kamada; 
 
IMPORT Graph, Energy, Node, R2, RefList, 
Tick, IO; 
 
  PROCEDURE ApplyForces(self : Energy.T; 
max : REAL) : BOOLEAN = 
    VAR np, npc : RefList.T; 
        v0, v1 : Node.T; 
        vector, deltav : R2.T; 
        dv : REF ARRAY OF R2.T;  
        significant : BOOLEAN; 
        factor : REAL; 
    BEGIN 
      (* just do a single iteration here *) 
      (* F = 1 / dij^2 *) 
      np:=self.vertices; 
      dv:=NEW(REF ARRAY OF R2.T, 
self.noderecs+1); 
      FOR i:=0 TO self.noderecs DO 
        dv[i]:=R2.Origin; 
      END; 
 
      WHILE np#NIL DO 
        v0:=np.head; 
        npc:=np.tail; 
        WHILE npc#NIL DO 
          v1:=npc.head; 
          vector:=R2.Sub(v0.pos, v1.pos); 
          IF self.adjacency[v0.id, v1.id]=0 
THEN factor:=max  
          ELSE 
factor:=FLOAT(self.adjacency[v0.id, 
v1.id]); 
          END; 
          (* factor is the graph theoretic 
distance between points *) 
          deltav:=R2.Scale((self.ce / 
(factor*factor) ) *  
          (R2.Length(vector) - factor * 
self.l),  
                           
R2.Direction(vector)); 
          dv[v0.id]:=R2.Sub(dv[v0.id], 
deltav); 
          dv[v1.id]:=R2.Add(dv[v1.id], 
deltav); (* update the velocities *) 
           
          npc:=npc.tail; 
        END; 
        np:=np.tail; 
      END; 
 
      np:=self.vertices; 
      significant:=FALSE; 
      WHILE np#NIL DO 
        v0:=np.head; 
        v0.velocity:=R2.Scale(v0.T, 
R2.Add(v0.velocity, dv[v0.id])); 
        IF R2.SumSq(v0.velocity)>4.0 THEN  
(* apply the velocities *) 
          v0.moveto(R2.Add(v0.pos, 
v0.velocity)); 

          significant:=TRUE; 
        END; 
        np:=np.tail; 
      END; 
      dv:=NIL; 
      RETURN significant; 
   END ApplyForces; 
 
  PROCEDURE Apply(g : Graph.T) = 
    VAR 
      np : RefList.T; 
      v0 : Node.T; 
      self : Energy.T; 
      n, max :=0; 
      hottest:=1.0; 
      start, now, test : Tick.T; 
    BEGIN 
      self:=NARROW(g, Energy.T); 
      self.calcpaths(); 
      max:=0; 
      FOR i:=1 TO self.noderecs DO 
        FOR j:=i TO self.noderecs DO 
          IF g.adjacency[i,j]>max THEN 
            max:=g.adjacency[i,j]; 
          END; 
        END; 
      END; 
      (* find the longest path within the 
graph *) 
      WHILE np#NIL DO 
        v0:=np.head; 
        v0.velocity:=R2.Origin; 
        np:=np.tail; 
      END; (* zero the velocities *) 
 
      TRY 
        
test:=Tick.FromSeconds(self.period); 
      EXCEPT Tick.Overflow => 
IO.PutErr("Internal timer error"); 
      END; 
      start:=Tick.Now();       
      REPEAT 
        INC(n); 
        now:=Tick.Now(); 
        WHILE (now-start)>test DO   
          self.newreading(); 
          start:=start+test; 
        END;   
        IF (n MOD 5) = 0 AND (n>20) THEN 
          self.updateVBT(); 
          IF (n MOD 25) = 0 THEN 
            hottest:=self.cool(); 
          END; (* cool the system *) 
        END; 
      UNTIL (hottest < 0.1) OR NOT 
ApplyForces(g, FLOAT(max)); (* actually do 
it *) 
    END Apply; 
 
BEGIN 
END Kamada. 
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Appendix 4 — The Social Network 
 

 

The above layout is the result of performing two iterations of Kamada on the network; below is the 
result of performing Annealing on the above layout.  Annealing gives a less regular drawing, but 
makes better use of the area and has fewer edge crossings, and hence is awarded the better score. 
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Appendix 5 — The London Underground 
  

 
London Tube Map © London Transport.  

There is a quite good correlation between the two drawings (after the lower diagram has been 
adjusted for orientation).  The central area bounded by Notting Hill Gate, Victoria, London Bridge and 
King’s Cross is especially close to the traditional drawing; perhaps this is due more to the fact that this 
area of the map has stations placed evenly in a planar fashion, which the algorithm rediscovers. 

 
London Underground Connectivity Information, laid out using the method of Kamada and Kawai 
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1  Background and general description 
 
The problem of graph drawing - transforming a list of nodes and edges into a graphic 
representation of the information - is an area of continuing research (with an annual symposium).  
It is perhaps no surprise that many of the problems under the heading of graph drawing are NP-
complete or NP-hard.  Yet techniques have been developed which make good attempts at 
displaying graphs, and sub-optimal solutions (for which more lines cross than the theoretical 
minimum, say) are still visually acceptable. 
One approach is somewhat removed from the algorithmic methods usually taught at degree level.  
This seeks to find a physical analogy, modelling nodes as magnets which repel each other, 
connected to non-magnetic springs representing the edges.  A step-by-step calculation and 
application of the forces results in a steady-state solution, which translates into a clear graph 
representation.  If, instead of considering the forces, one analyses the energy of the system and 
moves nodes so as to reduce the energy, different results can be observed.  Allowing a small 
chance that the energy of the system can increase is known as simulated annealing. 
The choice of equations to calculate the forces and energies is vital for any such system.  Node 
density, variance of edge lengths, number of edge crossings, all these affect the “prettiness” of the 
graph and so are incorporated into models in various ways by different researchers.  The core of 
the project will be to create a system capable of accepting a specified set of force or energy 
equations, and applying them to a graph to compare the convergence and aesthetics of different 
models. 
There are then a number of extensions and variations which I wish to examine the effect of.  
Force directed methods are usually carried out in two dimensions, since a  2D drawing is 
required.  I wish to test whether allowing freedom in the third dimension, but reducing this 
freedom with the iterations of the algorithms, affects the results.  These methods use a random 
starting configuration to improve on; would a more ordered start improve things?  Lastly, once a 
configuration has “set”, the user can judge which areas of the graph are well drawn; it would be 
convenient if they could selectively "reanimate" those areas which are not, without manually 
moving single nodes into better positions.  Other extensions may suggest themselves during 
research, and certain of those mentioned may reveal themselves to be impractical; it is in the 
nature of such a project that I will have to be flexible to such discoveries. 
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2 Note of resources required 
 
No special resources will be required: it is my intention that the work be carried out on Thor, and 
neither the code nor sample graph descriptions should take up significant amounts of space. 
 

3 Starting Point 
 
Part of the preparatory work will be to look at any existing libraries or systems which deal with 
graph data and algorithms, and any use made of these will be documented later, though from the 
literature and my analysis of the problem it would be quite feasible to work almost entirely from 
scratch.  I shall also have to formalise my use of RCS and back-up methods. 
 

4 Plan of work 
 
This is split into ten approximately fortnight-long periods: 
 
24 October to 5 November 
Research into the problem — chasing up references.  Initial planning of which extensions to 
concentrate on, with reference to any areas suggested in the material.  Also prepare a back-up 
system & RCS library; look into other areas (such as learning PostScript or other relevant 
languages).  Deliverables: a brief survey of the literature (should be useful when writing up) & 
back-up scheme. 
 
5 November to 19 November 
Detailed planning of project implementation.  Choose appropriate algorithms for basic tasks 
(detecting line crossings, finding all-pairs shortest paths).  Ensure system will be flexible enough 
to accept a number of different physical models, as well as be easy to link in the extensions 
described above.  Deliverables: a document detailing the design and explaining the reasoning 
behind the design decisions (parts of which will be required in the write-up). 
 
19 November to 1 December 
Skeletal implementation of the system, including input / output (save current layout: this will be 
needed to compare convergence times.  Postscript output?), user interface, drawing and scaling of 
processed results, random plot of data (to test drawing & needed as a starting point for some 
methods).  Deliverables: tested system which implements this, notes on problems / late decisions. 
 
1 December to 14 January 
Allow user manipulation of nodes.  Implement force method, allowing equations for forces (on 
each node from other nodes, on each node from edges) to be specified based on a number of 
variables.  Deliverables: a system which meets this specification, or explanation of any problems, 
and a start of the progress report. 
 
14 January to 28 January 
Implementation of simulated annealing (consider the monotonic energy approach as a special 
case).  Allow customisation of energy equations & temperature reduction in same way as with 
forces. Include information on speed of convergence. Test.  Result: core system & progress report. 
 
28 January to 11 February 
Extension 1: Extend both methods into 3D with decreasing depth over time.  Allow selective 
reheating of mangled areas.  Some slack in case of problems / delays, else start next stage early. 
 
11 February to 25 February 
Extension 2: Implement various fast first layout heuristics (to be used in place of random layout) 
and investigate their relative effect on convergence.  Start to draw work together into a single 
report.  Deliverables: finished, stable system. 



 iv 

 
25 February to 11 March 
Begin to write up to the standard format.  Carry out structured investigations using the system to 
answer the questions posed in this project proposal.  Deliverables: near final drafts of the 
Introduction & Preparation parts of the dissertation (though these should have long been in 
progress). 
 
11 March to 29 April 
Complete the evaluation.  Write up details of the evaluation and implementation, illustrating 
with appropriate samples and examples.  Write a conclusion.  Deliverables: a first draft of the 
dissertation. 
 
29 April to 13 May 
Revise the dissertation draft, and pass it on to supervisor.  Leave plenty of time for printing and 
binding.  Deliverables: finished dissertation, as early as possible. 
 
Fall back position 
If the extensions all turn out to be impractical, or the core project requires far more effort than 
estimated, a “bare minimum” would be the implementation of the core, and a comparison of the 
performance of the two methods would be an adequate, if not especially rewarding, project. 


